1
|
Chakkittukandiyil A, Sajini DV, Rymbai E, Sugumar D, Mathew J, Arumugam S, Ramachandran V, Selvaraj D. Synthesis and evaluation of novel ethyl ferulate derivatives as potent Keap1 inhibitors to activate the Nrf2/ARE pathway in Parkinson's disease. Toxicol Appl Pharmacol 2025; 494:117172. [PMID: 39603427 DOI: 10.1016/j.taap.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The Kelch-like ECH-associated protein 1/Nuclear factor erythroid 2 related factor 2/Antioxidant Response Elements (Keap1/Nrf2/ARE) pathway is essential for neuronal resilience against the complex pathogenesis of Parkinson's disease (PD). Activating this pathway by covalently modifying Keap1 cysteine residues is a promising strategy for regulating neuroprotective gene expression. Our study aimed to identify phytochemicals that could irreversibly inhibit Keap1. A preliminary docking analysis revealed that ethyl ferulate could covalently bind with Cys151 of Keap1 by Michael's addition reaction. Further, we designed several ethyl ferulate derivatives with improved lipophilicity and assessed their binding affinity with Keap1. The molecules with good binding scores were synthesized and structures were confirmed through 1H NMR, 13C NMR, FT-IR, and mass spectroscopy. Neuroprotection screening was conducted in all-trans retinoic acid differentiated SH-SY5Y cells using rotenone as a disease-inducing agent. Pre-treatment with compounds C2 and C4 significantly mitigated rotenone toxicity. Additionally, C2 and C4 decreased rotenone-induced ROS production and mitochondrial membrane potential loss. C2 and C4 also induced Nrf2 nuclear translocation in SH-SY5Y cells and increased mRNA expression of heme oxygenase-1, an Nrf2-regulated antioxidant response element. In vivo, pretreatment with C2 (50, 100 mg/kg, p.o.) and C4 (50, 100 mg/kg, p.o.) protected against neurodegenerative phenotypes associated with rotenone (1.5 mg/kg, s.c.) induction in Wistar rats. Results indicate, C2 and C4 dose-dependently improved muscle rigidity, catalepsy, and cognitive deficits in rotenone-induced Wistar rats, and mitigated dopaminergic neurodegeneration in the substantia nigra. These findings highlight the potential of ethyl ferulate derivatives in modulating oxidative stress and neurodegeneration in PD via activation of Nrf2.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jinu Mathew
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Suresh Arumugam
- Department of Pharmacology, The Kaavery Pharmacy College, Mecheri, Salem, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
2
|
N P D, Kondengadan MS, Sweilam SH, Rahman MH, Muhasina KM, Ghosh P, Bhargavi D, Palati DJ, Maiz F, Duraiswamy B. Neuroprotective role of coconut oil for the prevention and treatment of Parkinson's disease: potential mechanisms of action. Biotechnol Genet Eng Rev 2024; 40:3346-3378. [PMID: 36208039 DOI: 10.1080/02648725.2022.2122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurodegenerative disease (ND) is a clinical condition in which neurons degenerate with a consequent loss of functions in the affected brain region. Parkinson's disease (PD) is the second most progressive ND after Alzheimer's disease (AD), which affects the motor system and is characterized by the loss of dopaminergic neurons from the nigrostriatal pathway in the midbrain, leading to bradykinesia, rigidity, resting tremor, postural instability and non-motor symptoms such as cognitive declines, psychiatric disturbances, autonomic failures, sleep difficulties, and pain syndrome. Coconut oil (CO) is an edible oil obtained from the meat of Cocos nucifera fruit that belongs to the palm family and contains 92% saturated fatty acids. CO has been shown to mediate oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and excitotoxicity-induced effects in PD in various in vitro and in vivo models as a multi-target bioagent. CO intake through diet has also been linked to a decreased incidence of PD in people. During digestion, CO is broken down into smaller molecules, like ketone bodies (KBs). The KBs then penetrate the blood-brain barrier (BBB) and are used as a source of energy its ability to cross BBB made this an important class of natural remedies for the treatment of ND. The current review describes the probable neuroprotective potential pathways of CO in PD, either prophylactic or therapeutic. In addition, we briefly addressed the important pathogenic pathways that might be considered to investigate the possible use of CO in neurodegeneration such as AD and PD.
Collapse
Affiliation(s)
- Deepika N P
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - K M Muhasina
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Bhargavi
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Jyothi Palati
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Fathi Maiz
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia, P.O. Box 9004
- Laboratory of Thermal Processes, Center for Energy Research and Technology, Borj-Cedria, BP:95 Tunisia
| | - B Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
3
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
4
|
Benzo Y, Prada JG, Dattilo MA, Bigi MM, Castillo AF, Mori Sequeiros Garcia MM, Poderoso C, Maloberti PM. Acyl-CoA synthetase 4 modulates mitochondrial function in breast cancer cells. Heliyon 2024; 10:e30639. [PMID: 38756582 PMCID: PMC11096749 DOI: 10.1016/j.heliyon.2024.e30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Mitochondria are dynamic organelles that respond to cellular stress through changes in global mass, interconnection, and subcellular location. As mitochondria play an important role in tumor development and progression, alterations in energy metabolism allow tumor cells to survive and spread even in challenging conditions. Alterations in mitochondrial bioenergetics have been recently proposed as a hallmark of cancer, and positive regulation of lipid metabolism constitutes one of the most common metabolic changes observed in tumor cells. Acyl-CoA synthetase 4 (ACSL4) is an enzyme catalyzing the activation of long chain polyunsaturated fatty acids with a strong substrate preference for arachidonic acid (AA). High ACSL4 expression has been related to aggressive cancer phenotypes, including breast cancer, and its overexpression has been shown to positively regulate the mammalian Target of Rapamycin (mTOR) pathway, involved in the regulation of mitochondrial metabolism genes. However, little is known about the role of ACSL4 in the regulation of mitochondrial function and metabolism in cancer cells. In this context, our objective was to study whether mitochondrial function and metabolism, processes usually altered in tumors, are modulated by ACSL4 in breast cancer cells. Using ACSL4 overexpression in MCF-7 cells, we demonstrate that this enzyme can increase the mRNA and protein levels of essential mitochondrial regulatory proteins such as nuclear respiratory factor 1 (NRF-1), voltage-dependent anion channel 1 (VDAC1) and respiratory chain Complex III. Furthermore, respiratory parameters analysis revealed an increase in oxygen consumption rate (OCR) and in spare respiratory capacity (SRC), among others. ACSL4 knockdown in MDA-MB-231 cells led to the decrease in OCR and in SCR, supporting the role of ACSL4 in the regulation of mitochondrial bioenergetics. Moreover, ACSL4 overexpression induced an increase in glycolytic function, in keeping with an increase in mitochondrial respiratory activity. Finally, there was a decrease in mitochondrial mass detected in cells that overexpressed ACSL4, while the knockdown of ACSL4 expression in MDA-MB-231 cells showed the opposite effect. Altogether, these results unveil the role of ACSL4 in mitochondrial function and metabolism and expand the knowledge of ACSL4 participation in pathological processes such as breast cancer.
Collapse
Affiliation(s)
- Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G. Prada
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Melina A. Dattilo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Bigi
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana F. Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula M. Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
5
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj J, Selvaraj D. The identification of cianidanol as a selective estrogen receptor beta agonist and evaluation of its neuroprotective effects on Parkinson's disease models. Life Sci 2023; 333:122144. [PMID: 37797687 DOI: 10.1016/j.lfs.2023.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
AIM The present study aims to identify selective estrogen receptor beta (ERβ) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS Cianidanol was identified as a selective ERβ agonist through virtual screening. The cianidanol-ERβ complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 μM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 μM) increases the expression of ERβ, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 μM) were reversed in the presence of a selective ERβ antagonist. In this study, we found that selective activation of ERβ could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
6
|
Bohnen JLB, Albin RL, Bohnen NI. Ketogenic interventions in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease: A systematic review and critical appraisal. Front Neurol 2023; 14:1123290. [PMID: 36846143 PMCID: PMC9947355 DOI: 10.3389/fneur.2023.1123290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Background There is increasing interest in therapeutic ketosis as a potential therapy for neurodegenerative disorders-in particular, mild cognitive impairment (MCI), Alzheimer's disease (AD), and Parkinson's disease (PD)-following a proof-of-concept study in Parkinson's disease published in 2005. Methods To provide an objective assessment of emerging clinical evidence and targeted recommendations for future research, we reviewed clinical trials involving ketogenic interventions in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease reported since 2005. Levels of clinical evidence were systematically reviewed using the American Academy of Neurology criteria for rating therapeutic trials. Results 10 AD, 3 MCI, and 5 PD therapeutic ketogenic trials were identified. Respective grades of clinical evidence were objectively assessed using the American Academy of Neurology criteria for rating therapeutic trials. We found class "B" evidence (probably effective) for cognitive improvement in subjects with mild cognitive impairment and subjects with mild-to-moderate Alzheimer's disease negative for the apolipoprotein ε4 allele (APOε4-). We found class "U" evidence (unproven) for cognitive stabilization in individuals with mild-to-moderate Alzheimer's disease positive for the apolipoprotein ε4 allele (APOε4+). We found class "C" evidence (possibly effective) for improvement of non-motor features and class "U" evidence (unproven) for motor features in individuals with Parkinson's disease. The number of trials in Parkinson's disease is very small with best evidence that acute supplementation holds promise for improving exercise endurance. Conclusions Limitations of the literature to date include the range of ketogenic interventions currently assessed in the literature (i.e., primarily diet or medium-chain triglyceride interventions), with fewer studies using more potent formulations (e.g., exogenous ketone esters). Collectively, the strongest evidence to date exists for cognitive improvement in individuals with mild cognitive impairment and in individuals with mild-to-moderate Alzheimer's disease negative for the apolipoprotein ε4 allele. Larger-scale, pivotal trials are justified in these populations. Further research is required to optimize the utilization of ketogenic interventions in differing clinical contexts and to better characterize the response to therapeutic ketosis in patients who are positive for the apolipoprotein ε4 allele, as modified interventions may be necessary.
Collapse
Affiliation(s)
| | - Roger L. Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Nicolaas I. Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
8
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
9
|
Li H, Xu X, Cai M, Qu Y, Ren Z, Ye C, Shen H. The combination of HT-ac and HBET improves the cognitive and learning abilities of heat-stressed mice by maintaining mitochondrial function through the PKA-CREB-BDNF pathway. Food Funct 2022; 13:6166-6179. [PMID: 35582986 DOI: 10.1039/d1fo04157f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim was to investigate whether the combination of hydroxytyrosol acetate (HT-ac) and ethyl β-hydroxybutyrate (HBET) can improve the cognition of heat-stressed mice, meanwhile exploring the mechanism of action. Mice were divided into 5 groups: control, heat-stressed, HT-ac, HBET, and HT-ac + HBET. Mice were gavaged for 21 days and exposed to heat (42.5 ± 0.5 °C, RH 60 ± 10%, 1 h day-1) on days 15-21, except for the control group. Results showed that the combination of HT-ac + HBET improved the cognitive and learning abilities of heat-stressed mice, which were tested by Morris water maze, shuttle box, and jumping stage tests. The combination of HT-ac + HBET maintained the integrity of neurons and mitochondria of heat-stressed mice. Likewise, this combination increased the mitochondrial membrane potential, the ATP content, the expression of phosphorylated PKA, BDNF, phosphorylated CREB and Bcl-2, and decreased the expression of Bax, caspase-3, and intracytoplasmic Cyt C in heat-stressed mice.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Xin Xu
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Mengyu Cai
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Yicui Qu
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Zifu Ren
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Chuyang Ye
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
10
|
Evaluation of 6-Hydroxydopamine and Rotenone In Vitro Neurotoxicity on Differentiated SH-SY5Y Cells Using Applied Computational Statistics. Int J Mol Sci 2022; 23:ijms23063009. [PMID: 35328430 PMCID: PMC8953223 DOI: 10.3390/ijms23063009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
With the increase in life expectancy and consequent aging of the world’s population, the prevalence of many neurodegenerative diseases is increasing, without concomitant improvement in diagnostics and therapeutics. These diseases share neuropathological hallmarks, including mitochondrial dysfunction. In fact, as mitochondrial alterations appear prior to neuronal cell death at an early phase of a disease’s onset, the study and modulation of mitochondrial alterations have emerged as promising strategies to predict and prevent neurotoxicity and neuronal cell death before the onset of cell viability alterations. In this work, differentiated SH-SY5Y cells were treated with the mitochondrial-targeted neurotoxicants 6-hydroxydopamine and rotenone. These compounds were used at different concentrations and for different time points to understand the similarities and differences in their mechanisms of action. To accomplish this, data on mitochondrial parameters were acquired and analyzed using unsupervised (hierarchical clustering) and supervised (decision tree) machine learning methods. Both biochemical and computational analyses resulted in an evident distinction between the neurotoxic effects of 6-hydroxydopamine and rotenone, specifically for the highest concentrations of both compounds.
Collapse
|
11
|
Pardo B, Herrada-Soler E, Satrústegui J, Contreras L, del Arco A. AGC1 Deficiency: Pathology and Molecular and Cellular Mechanisms of the Disease. Int J Mol Sci 2022; 23:528. [PMID: 35008954 PMCID: PMC8745132 DOI: 10.3390/ijms23010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Collapse
Affiliation(s)
- Beatriz Pardo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Herrada-Soler
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Araceli del Arco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro Regional de Investigaciones Biomédicas, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
12
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Marino A, Battaglini M, Desii A, Lavarello C, Genchi G, Petretto A, Ciofani G. Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based in vitro model of Parkinson's disease. Biomater Sci 2021; 9:8171-8188. [PMID: 34617936 DOI: 10.1039/d1bm01202a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with no satisfactory therapy options. Similar to other neurodegenerative conditions, such as Alzheimer's and Huntington's diseases, oxidative stress plays a key factor in the neurodegeneration process. To counteract the uncontrolled increase of reactive oxygen species (ROS) and oxidative stress-dependent cell death, several preclinical and clinical tests exploit natural-derived organic antioxidants, such as polyphenols. Despite some promising results, free antioxidants show scarce brain accumulation and may exhaust their scavenging activity before reaching the brain. In this work, we developed an antioxidant therapeutic nanoplatform consisting of nano-sized functionalized liposomes loaded with selected polyphenol-rich vegetal extracts with high blood-brain barrier crossing capabilities. The antioxidant extracts were obtained from the grape seeds and skins as a byproduct of wine production (i.e., pomace), following a sustainable circular approach with reduced environmental impact. The antioxidant nanoplatform was successfully tested in a relevant in vitro model of PD, where it completely rescued the ROS levels, prevented the aggregation of α-synuclein fibrils, and restored cell viability, paving the way for preclinical translation of the approach.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Chiara Lavarello
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, 16147 Genova, Italy.,University of Genoa, Department of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genova, Italy
| | - Giada Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
14
|
FBXO22, ubiquitination degradation of PHLPP1, ameliorates rotenone induced neurotoxicity by activating AKT pathway. Toxicol Lett 2021; 350:1-9. [PMID: 34182063 DOI: 10.1016/j.toxlet.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the lacking of dopaminergic neurons. Many reports have illustrated that rotenone is applied to establish the experimental model of PD, which simulates PD-like symptoms. FBXO22 is a poorly understood protein that may be involved in neurological disorders. However, little is known about FBXO22 in PD. In this study, first, SH-SY5Y cells were treated with rotenone to construct PD model in vitro. It was discovered that the FBXO22 expression was down-regulated following rotenone treatment. Additionally, overexpression of FBXO22 reduced rotenone treatment-mediated cell apoptosis in SH-SY5Y cells. In view of the ubiquitination effect of FBXO22, our study uncovered that FBXO22 bound with and degraded PHLPP1 by ubiquitination. Next, the effects of PHLPP1 on AKT pathway in PD were further explored. It was demonstrated that PHLPP1 inactivated AKT pathway through down-regulating the pAKT/AKT and pmTOR/mTOR levels. Through rescue assays, the results showed that PHLPP1 overexpression partially reversed the reduction of rotenone induced neurotoxicity caused by FBXO22 overexpression. Finally, we found that overexpression of FBXO22 alleviated rotenone-induced PD symptoms in rat model. Moreover, it was discovered that l-dopa treatment could not affect the FBXO22 expression in PD. In conclusion, findings from our work proved that FBXO22 degraded PHLPP1 by ubiquitination to ameliorate rotenone induced neurotoxicity, which attributed to activate AKT pathway. This work suggested that FBXO22 may be an effective biological marker for PD treatment.
Collapse
|
15
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
16
|
βOHB Protective Pathways in Aralar-KO Neurons and Brain: An Alternative to Ketogenic Diet. J Neurosci 2020; 40:9293-9305. [PMID: 33087477 DOI: 10.1523/jneurosci.0711-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether β-hydroxybutyrate (βOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in aralar-knock-out (KO) neurons and mice. We report that βOHB efficiently recovers aralar-KO neurons from deficits in basal-stimulated and glutamate-stimulated respiration, effects requiring βOHB entry into the neuron, and protects from glutamate excitotoxicity. Aralar-deficient mice were fed a KD to investigate its therapeutic potential early in development, but this approach was unfeasible. Therefore, aralar-KO pups were treated without distinction of gender with daily intraperitoneal injections of βOHB during 5 d. This treatment resulted in a recovery of striatal markers of the dopaminergic system including dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio, and vesicular monoamine transporter 2 (VMAT2) protein. Regarding postnatal myelination, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) myelin proteins were markedly increased in the cortices of βOHB-treated aralar-KO mice. Although brain Asp and NAA levels did not change by βOHB administration, a 4-d βOHB treatment to aralar-KO, but not to control, neurons led to a substantial increase in Asp (3-fold) and NAA (4-fold) levels. These results suggest that the lack of increase in brain Asp and NAA is possibly because of its active utilization by the aralar-KO brain and the likely involvement of neuronal NAA in postnatal myelination in these mice. The effectiveness of βOHB as a therapeutic treatment in AGC1 deficiency deserves further investigation.SIGNIFICANCE STATEMENT Aralar deficiency induces a fatal phenotype in humans and mice and is associated with impaired neurodevelopment, epilepsy, and hypomyelination. In neurons, highly expressing aralar, its deficiency causes a metabolic blockade hampering mitochondrial energetics and respiration. Here, we find that βOHB, the main metabolic product in KD, recovers defective mitochondrial respiration bypassing the metabolic failure in aralar-deficient neurons. βOHB oxidation in mitochondria boosts the synthesis of cytosolic aspartate (Asp) and NAA, which is impeded by aralar deficiency, presumably through citrate-malate shuttle. In aralar-knock-out (KO) mice, βOHB recovers from the drastic drop in specific dopaminergic and myelin markers. The βOHB-induced myelin synthesis occurring together with the marked increment in neuronal NAA synthesis supports the role of NAA as a lipid precursor during postnatal myelination.
Collapse
|
17
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|
18
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Kraeuter AK, Mashavave T, Suvarna A, van den Buuse M, Sarnyai Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology (Berl) 2020; 237:1397-1405. [PMID: 31993694 DOI: 10.1007/s00213-020-05467-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE Impaired cerebral glucose metabolism is a core pathological feature of schizophrenia. We recently demonstrated that a ketogenic diet, causing a shift from glycolysis to ketosis, normalized schizophrenia-like behaviours in an acute N-methyl-D-aspartate (NMDA) receptor antagonist model of the illness. Ketogenic diet produces the ketone body, β-hydroxybutyrate (BHB), which may serve as an alternative fuel source in its own right without a strict dietary regime. OBJECTIVE We hypothesized that chronic administration of BHB replicates the therapeutic effects of ketogenic diet in an acute NMDA receptor hypofunction model of schizophrenia in mice. METHODS C57Bl/6 mice were either treated with acute doses of 2 mmol/kg, 10 mmol/kg, or 20 mmol/kg BHB or received daily intraperitoneal injections of 2 mmol/kg BHB or saline for 3 weeks. Behavioural testing assessed the effect of acute challenge with 0.2 mg/kg MK-801 or saline on open field behaviour, social interaction, and prepulse inhibition of startle (PPI). RESULTS Acute BHB administration dose-dependently increased BHB plasma levels, whereas the 2 mmol/kg dose increased plasma glucose levels. The highest acute dose of BHB supressed spontaneous locomotor activity, MK-801-induced locomotor hyperactivity and MK-801-induced disruption of PPI. Chronic BHB treatment normalized MK-801-induced hyperlocomotion, reduction of sociability, and disruption of PPI. CONCLUSION In conclusion, BHB may present a novel treatment option for patients with schizophrenia by providing an alternative fuel source to normalize impaired glucose metabolism in the brain.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Tadiwa Mashavave
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Aditya Suvarna
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Maarten van den Buuse
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Douglas, Australia.
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
20
|
Li X, Zhan Z, Zhang J, Zhou F, An L. β-Hydroxybutyrate Ameliorates Aβ-Induced Downregulation of TrkA Expression by Inhibiting HDAC1/3 in SH-SY5Y Cells. Am J Alzheimers Dis Other Demen 2020; 35:1533317519883496. [PMID: 31648544 PMCID: PMC10624091 DOI: 10.1177/1533317519883496] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tyrosine kinase receptor A (TrkA) plays an important role in the protection of cholinergic neurons in Alzheimer's disease (AD). This study was designed to investigate whether β-hydroxybutyrate (BHB), an endogenous histone deacetylase (HDAC) inhibitor, upregulates the expression of TrkA by affecting histone acetylation in SH-SY5Y cells treated with amyloid β-protein (Aβ). The results showed that BHB ameliorated the reduction of cell vitality and downregulation of TrkA expression induced by Aβ. Furthermore, BHB inhibited the upregulation of HDAC1/2/3 expression and downregulation of histone acetylation (Ace-H3K9 and Ace-H4K12) levels in Aβ-treated cells. The expression of TrkA was upregulated in HDAC1- or 3-silenced SH-SY5Y cells. However, there was no significant difference in TrkA expression between the HDAC2 knockdown and control cells. In conclusion, this study demonstrates that BHB protects against Aβ-induced neurotoxicity in SH-SY5Y cells. The underlying mechanism of the effect may be associated with the upregulation of TrkA expression by inhibiting HDAC1/3.
Collapse
Affiliation(s)
- Xinhui Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Zhan
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
- Department of Nutrition and Food Hygiene, School of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Jingzhu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fuyuan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Camberos-Luna L, Massieu L. Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochem Int 2019; 133:104614. [PMID: 31785349 DOI: 10.1016/j.neuint.2019.104614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The therapeutic use of ketone bodies (KB) against acute brain injury and neurodegenerative disorders has lately been suggested by many studies. Several mechanisms responsible for the protective action of KB have been described, including metabolic, anti-inflammatory and epigenetic. However, it is still not clear whether a specific mechanism of action can be associated with a particular neurological disorder. Different strategies to induce ketosis including the ketogenic diet (KD), caloric restriction (CR), intermittent fasting (IF), as well as the administration of medium chain triglycerides (MCTs), exogenous ketones or KB derivatives, have been used in animal models of brain injury and in humans. They have shown different degrees of success to prevent neuronal damage, motor alterations and cognitive decline. However, more investigation is needed in order to establish safe protocols for clinical application. Throughout the present review, we describe the different approaches that have been used to elevate blood KB and discuss their effectiveness considering their advantages and limitations, as tested in models of brain injury, neurodegeneration and clinical research. We also describe the mechanisms of action of KB in non-pathologic conditions and in association with their protective effect against neuronal damage in acute neurological disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucy Camberos-Luna
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| |
Collapse
|
22
|
Ramalingam M, Huh YJ, Lee YI. The Impairments of α-Synuclein and Mechanistic Target of Rapamycin in Rotenone-Induced SH-SY5Y Cells and Mice Model of Parkinson's Disease. Front Neurosci 2019; 13:1028. [PMID: 31611767 PMCID: PMC6769080 DOI: 10.3389/fnins.2019.01028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). α-synuclein (α-syn) is known to regulate mitochondrial function and both PINK1 and Parkin have been shown to eliminate damaged mitochondria in PD. Mechanistic target of rapamycin (mTOR) is expressed in several distinct subcellular compartments and mediates the effects of nutrients, growth factors, and stress on cell growth. However, the contributions of these various regulators to DAergic cell death have been demonstrated mainly in culture with serum, which is known to dramatically influence endogenous growth rate and toxin susceptibility through nutrient and growth factor signaling. Therefore, we compared neurotoxicity induced by the mitochondrial inhibitor rotenone (ROT, 5 or 10 μM for 24 h) in SH-SY5Y cells cultured with 10% fetal bovine serum (FBS), 1% FBS, or 1% bovine serum albumin (BSA, serum-free). In addition, C57BL/6J mice were injected with 12 μg ROT into the right striatum, and brains examined by histology and Western blotting 2 weeks later for evidence of DAergic cell death and the underlying signaling mechanisms. ROT dose-dependently reduced SH-SY5Y cell viability in all serum groups without a significant effect of serum concentration. ROT injection also significantly reduced immunoreactivity for the DAergic cell marker tyrosine hydroxylase (TH) in both the mouse striatum and SNpc. Western blotting revealed that ROT inhibited TH and Parkin expression while increasing α-syn and PINK1 expression in both SH-SY5Y cells and injected mice, consistent with disruption of mitochondrial function. Moreover, expression levels of the mTOR signaling pathway components mTORC, AMP-activated protein kinase (AMPK), ULK1, and ATG13 were altered in ROT-induced PD. Further, serum level influenced mTOR signaling in the absence of ROT and the changes in response to ROT. Signs of endoplasmic reticulum (ER) stress and altered expression of tethering proteins mediating mitochondria-associated ER contacts (MAMs) were also altered concomitant with ROT-induced neurodegeneration. Taken together, this study demonstrates that complex mechanism involving mitochondrial dysfunction, altered mTOR nutrient-sensing pathways, ER stress, and disrupted MAM protein dynamics are involved in DAergic neurodegeneration in response to ROT.
Collapse
Affiliation(s)
| | | | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea
| |
Collapse
|
23
|
Zhou H, Cheang T, Su F, Zheng Y, Chen S, Feng J, Pei Z, Chen L. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of Dynamin-Related Protein 1 expression. Eur J Pharmacol 2017; 819:58-67. [PMID: 29183837 DOI: 10.1016/j.ejphar.2017.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/02/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that melatonin can protect cells against rotenone-induced cell death. Yet, the mechanism involved in this protection requires further research. In this study, we aimed to further investigate the effects of melatonin on inhibiting rotenone-induced SH-SY5Y cells and the underlying molecular mechanisms. Human neuroblastoma SH-SY5Y cells were treated with 0.3 or 1μM rotenone for 6 or 12h. Cell viability was measured with an MTS assay, the mitochondrial membrane potential was determined with a Rhodamine 123 staining assay, and the protein expression levels of the markers of autophagy, including cytochrome C release (Cyt C), light chain 3B (LC3 B) and Dynamin-Related Protein 1 (Drp1) were analyzed by western blotting. The co-localization of Drp1 and TOM20 proteins in the mitochondria of SH-SY5Y cells was measured by immunofluorescence coupled with confocal microscopy and the overexpression of the Drp1 gene was then conducted. The viability and expression levels of Cyt C and LC3 B in rotenone and melatonin + rotenone-treated Drp1-overexpressed SH-SY5Y cells were analyzed with MTS and western blotting, respectively. We found that rotenone effectively induced SH-SY5Y cell death by causing mitochondrial dysfunction and increasing Cyt C expression. Drp1 expression and its regulation of mitochondrial translocation mediated the rotenone-induced cell death and melatonin inhibited this process. Overexpression of Drp1 protein attenuated melatonin's inhibition of rotenone-induced SH-SY5Y cell death. In conclusion, melatonin effectively inhibits rotenone-induced neuronal cell death via the regulation of Drp1 expression.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tuckyun Cheang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhen Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiezhen Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
24
|
Deane CAS, Brown IR. Knockdown of Heat Shock Proteins HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) Sensitizes Differentiated Human Neuronal Cells to Cellular Stress. Neurochem Res 2017; 43:340-350. [PMID: 29090408 DOI: 10.1007/s11064-017-2429-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Heat shock proteins are involved in cellular repair and protective mechanisms that counter characteristic features of neurodegenerative diseases such as protein misfolding and aggregation. The HSPA (Hsp70) multigene family includes the widely studied HSPA1A (Hsp70-1) and the little studied HSPA6 (Hsp70B') which is present in the human genome and not in mouse and rat. The effect of knockdown of HSPA6 and HSPA1A expression was examined in relation to the ability of differentiated human SH-SY5Y neuronal cells to tolerate thermal stress. Low dose co-application of celastrol and arimoclomol, which induces Hsps, enhanced the ability of differentiated neurons to survive heat shock. Small interfering RNA (siRNA) knockdown of HSPA6 and HSPA1A resulted in loss of the protective effect of co-application of celastrol/arimoclomol. More pronounced effects on neuronal viability were apparent at 44 °C heat shock compared to 43 °C. siRNA knockdown suggests that HSPA6 and HSPA1A contribute to protection of differentiated human neuronal cells from cellular stress.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
25
|
Barreca D, Currò M, Bellocco E, Ficarra S, Laganà G, Tellone E, Laura Giunta M, Visalli G, Caccamo D, Galtieri A, Ientile R. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells. Biofactors 2017; 43:549-557. [PMID: 28401997 DOI: 10.1002/biof.1358] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/08/2017] [Accepted: 02/19/2017] [Indexed: 12/31/2022]
Abstract
Phloretin and phlorizin are the two strong natural antioxidants whose biological and pharmacological applications are rapidly growing in different human pathological conditions. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells and evaluated by testing cell vitality, mitochondrial transmembrane potential and ROS production, antioxidant enzymes detection, activation of caspase 3, DNA damage, protein carbonylation, lipid peroxidation, and superoxide anion scavenging activity. Incubation of cells with rotenone caused cell death and significant increase in intracellular reactive oxygen species, activation of caspase 3, and variation in mitochondrial transmembrane potential. Although, rotenone exposure caused a significant increase of antioxidant enzymes, high levels of lipid peroxidation were also observed. Phloretin or phlorizin, at micromolar concentration, reduced rotenone-induced cell death by scavenging ability against superoxide anion radical, one of the main effectors of rotenone toxicity at level of mitochondrial respiratory chain complex I. Under our experimental conditions, a reduction of the intracellular ROS levels with consequent normalization of the aforementioned antioxidant enzymes occurred. Concomitantly, we observed the inhibition of caspase 3 activity and DNA damage. This study shows the promising neuroprotective ability of the two dihydrochalcones able to protect human differentiated neuroblastoma cells (commonly used as model of Parkinson's disease) from injury induced by rotenone, actively scavenging ROS, normalizing mitochondrial transmembrane potential and consequently avoiding energy depletion. © 2017 BioFactors, 43(4):549-557, 2017.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Via C. Valeria, Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Laura Giunta
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Via C. Valeria, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Via C. Valeria, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Via C. Valeria, Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-functional Imaging, Polyclinic Hospital University, Via C. Valeria, Messina, Italy
| |
Collapse
|
26
|
Alvarez-Suarez JM. The Chemical and Biological Properties of Propolis. BEE PRODUCTS - CHEMICAL AND BIOLOGICAL PROPERTIES 2017. [PMCID: PMC7123330 DOI: 10.1007/978-3-319-59689-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Deane CAS, Brown IR. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress. Front Neurosci 2017; 11:227. [PMID: 28484369 PMCID: PMC5401876 DOI: 10.3389/fnins.2017.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH (Hsp105α). The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B') is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles) that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1) and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
28
|
ROS Production and ERK Activity Are Involved in the Effects of d-β-Hydroxybutyrate and Metformin in a Glucose Deficient Condition. Int J Mol Sci 2017; 18:ijms18030674. [PMID: 28335557 PMCID: PMC5372684 DOI: 10.3390/ijms18030674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-β-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3β). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3β. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3β induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3β inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin.
Collapse
|
29
|
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 2017; 102:203-216. [PMID: 27908782 PMCID: PMC5209274 DOI: 10.1016/j.freeradbiomed.2016.11.045] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023]
Abstract
An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.
Collapse
Affiliation(s)
- Sophia M Raefsky
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
30
|
Van Laar VS, Berman SB, Hastings TG. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiol Dis 2016; 91:247-61. [PMID: 27001148 DOI: 10.1016/j.nbd.2016.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD pathogenesis.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action. Br J Nutr 2015; 114:1-14. [PMID: 25997382 DOI: 10.1017/s0007114515001452] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coconut, Cocos nucifera L., is a tree that is cultivated to provide a large number of products, although it is mainly grown for its nutritional and medicinal values. Coconut oil, derived from the coconut fruit, has been recognised historically as containing high levels of saturated fat; however, closer scrutiny suggests that coconut should be regarded more favourably. Unlike most other dietary fats that are high in long-chain fatty acids, coconut oil comprises medium-chain fatty acids (MCFA). MCFA are unique in that they are easily absorbed and metabolised by the liver, and can be converted to ketones. Ketone bodies are an important alternative energy source in the brain, and may be beneficial to people developing or already with memory impairment, as in Alzheimer's disease (AD). Coconut is classified as a highly nutritious 'functional food'. It is rich in dietary fibre, vitamins and minerals; however, notably, evidence is mounting to support the concept that coconut may be beneficial in the treatment of obesity, dyslipidaemia, elevated LDL, insulin resistance and hypertension - these are the risk factors for CVD and type 2 diabetes, and also for AD. In addition, phenolic compounds and hormones (cytokinins) found in coconut may assist in preventing the aggregation of amyloid-β peptide, potentially inhibiting a key step in the pathogenesis of AD. The purpose of the present review was to explore the literature related to coconut, outlining the known mechanistic physiology, and to discuss the potential role of coconut supplementation as a therapeutic option in the prevention and management of AD.
Collapse
|
33
|
Murray AJ, Montgomery HE. How wasting is saving: weight loss at altitude might result from an evolutionary adaptation. Bioessays 2014; 36:721-9. [PMID: 24917038 PMCID: PMC4143966 DOI: 10.1002/bies.201400042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At extreme altitude (>5,000 – 5,500 m), sustained hypoxia threatens human function and survival, and is associated with marked involuntary weight loss (cachexia). This seems to be a coordinated response: appetite and protein synthesis are suppressed, and muscle catabolism promoted. We hypothesise that, rather than simply being pathophysiological dysregulation, this cachexia is protective. Ketone bodies, synthesised during relative starvation, protect tissues such as the brain from reduced oxygen availability by mechanisms including the reduced generation of reactive oxygen species, improved mitochondrial efficiency and activation of the ATP-sensitive potassium (KATP) channel. Amino acids released from skeletal muscle also protect cells from hypoxia, and may interact synergistically with ketones to offer added protection. We thus propose that weight loss in hypoxia is an adaptive response: the amino acids and ketone bodies made available act not only as metabolic substrates, but as metabolic modulators, protecting cells from the hypoxic challenge.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
34
|
Streijger F, Lee JHT, Duncan GJ, Ng MTL, Assinck P, Bhatnagar T, Plunet WT, Tetzlaff W, Kwon BK. Combinatorial treatment of acute spinal cord injury with ghrelin, ibuprofen, C16, and ketogenic diet does not result in improved histologic or functional outcome. J Neurosci Res 2014; 92:870-83. [PMID: 24658967 DOI: 10.1002/jnr.23372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 01/20/2014] [Indexed: 11/09/2022]
Abstract
Because of the complex, multifaceted nature of spinal cord injury (SCI), it is widely believed that a combination of approaches will be superior to individual treatments. Therefore, we employed a rat model of cervical SCI to evaluate the combination of four noninvasive treatments that individually have been reported to be effective for acute SCI during clinically relevant therapeutic time windows. These treatments included ghrelin, ibuprofen, C16, and ketogenic diet (KD). These were selected not only because of their previously reported efficacy in SCI models but also for their potentially different mechanisms of action. The administration of ghrelin, ibuprofen, C16, and KD several hours to days postinjury was based on previous observations by others that each treatment had profound effects on the pathophysiology and functional outcome following SCI. Here we showed that, with the exception of a modest improvement in performance on the Montoya staircase test at 8-10 weeks postinjury, the combinatorial treatment with ghrelin, ibuprofen, C16, and KD did not result in any significant improvements in the rearing test, grooming test, or horizontal ladder. Histologic analysis of the spinal cords did not reveal any significant differences in tissue sparing between treatment and control groups. Although single approaches of ghrelin, ibuprofen, C16, and KD have been reported to be beneficial after SCI, our results show that the combination of the four interventions did not confer significant functional or histological improvements in a cervical model of SCI. Possible interactions among the treatments may have negated their beneficial effects, emphasizing the challenges that have to be addressed when considering combinatorial drug therapies for SCI.
Collapse
Affiliation(s)
- F Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Streijger F, Plunet WT, Lee JHT, Liu J, Lam CK, Park S, Hilton BJ, Fransen BL, Matheson KAJ, Assinck P, Kwon BK, Tetzlaff W. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One 2013; 8:e78765. [PMID: 24223849 PMCID: PMC3817084 DOI: 10.1371/journal.pone.0078765] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.
Collapse
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Ward T. Plunet
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Jae H. T. Lee
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Clarrie K. Lam
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Soeyun Park
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Brett J. Hilton
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Bas L. Fransen
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Keely A. J. Matheson
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
36
|
Condello S, Currò M, Ferlazzo N, Costa G, Visalli G, Caccamo D, Pisani LR, Costa C, Calabresi P, Ientile R, Pisani F. Protective effects of zonisamide against rotenone-induced neurotoxicity. Neurochem Res 2013; 38:2631-9. [PMID: 24142350 DOI: 10.1007/s11064-013-1181-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 02/08/2023]
Abstract
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson's disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10-100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, 98125, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Medical applications of biopolyesters polyhydroxyalkanoates. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1280-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Ryu HW, Oh WK, Jang IS, Park J. Amurensin G induces autophagy and attenuates cellular toxicities in a rotenone model of Parkinson's disease. Biochem Biophys Res Commun 2013; 433:121-6. [PMID: 23485458 DOI: 10.1016/j.bbrc.2013.02.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 01/24/2023]
Abstract
Although Parkinson's disease is a common neurodegenerative disorder its cause is still unknown. Recently, several reports showed that inducers of autophagy attenuate cellular toxicities in Parkinson's disease models. In this report we screened HEK293 cells that stably express GFP-LC3, a marker of autophagy, for autophagy inducers and identified amurensin G, a compound isolated from the wild grape (Vitis amurensis). Amurensin G treatment induced punctate cytoplasmic expression of GFP-LC3 and increased the expression level of endogenous LC3-II. Incubation of human dopaminergic SH-SY5Y cells with amurensin G attenuated the cellular toxicities of rotenone in a model of Parkinson's disease. Amurensin G inhibited rotenone-induced apoptosis and interfered with rotenone-induced G2/M cell cycle arrest. In addition, knockdown of beclin1, a regulator of autophagy, abolished the effect of amurensin G. These data collectively indicate that amurensin G attenuates cellular toxicities through the induction of autophagy.
Collapse
Affiliation(s)
- Hyun-Wook Ryu
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Cheng B, Lu H, Bai B, Chen J. d-β-Hydroxybutyrate inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress. Neurochem Int 2012; 62:620-5. [PMID: 23022628 DOI: 10.1016/j.neuint.2012.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 12/01/2022]
Abstract
Oxidative stress has an important role in neurodegenerative diseases and cerebral ischemic injury. It is reported that d-β-hydroxybutyrate (DβHB), the major component of ketone bodies, is neuroprotective in recent studies. Therefore, in the present work the neuroprotective effects of DβHB on H2O2-induced apoptosis mediated by oxidative stress was investigated. PC12 cells were exposed to H2O2 with different concentrations of H2O2 for different times after DβHB pretreatment. MTT assay, apoptotic rates, intracellular reactive oxygen species (ROS) level, GSH content, mitochondrial membrane potential (MMP) and caspase-3 activity were determined. The results showed that DβHB inhibited the decrease of cell viability induced by H2O2 in PC12 cells. DβHB decreased the apoptotic rates induced by H2O2. The changes of intracellular ROS, GSH, MMP and caspase-3 activity due to H2O2 exposure were partially reversed in PC12 cells. So DβHB inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Baohua Cheng
- Department of Neurology, Jining Medical University, Jining 272067, PR China.
| | | | | | | |
Collapse
|
40
|
Kabiraj P, Pal R, Varela-Ramirez A, Miranda M, Narayan M. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-d-β-hydroxybutyrate intervention. Biochem Biophys Res Commun 2012; 426:438-44. [DOI: 10.1016/j.bbrc.2012.08.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
|
41
|
Abstract
Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders.
Collapse
|
42
|
Iłżecka J. Serum caspase-9 levels are increased in patients with amyotrophic lateral sclerosis. Neurol Sci 2011; 33:825-9. [PMID: 22048794 PMCID: PMC3397227 DOI: 10.1007/s10072-011-0837-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 10/21/2011] [Indexed: 12/24/2022]
Abstract
It is known that apoptosis may play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Moreover, caspase-9 is implicated in the apoptosis pathway. The aim of the study was to investigate caspase-9 levels in serum of patients with ALS. The study involved 30 patients with ALS and 30 patients from the control group. The serum caspase-9 levels were measured using the enzyme-linked immunosorbent method. The study showed that caspase-9 levels are significantly increased in serum of the patients with ALS comparing to the control group (p < 0.05). There was a significant correlation of serum caspase-9 levels with severity of clinical state of ALS patients and duration of the disease (p < 0.05). The results indicate that caspase-9 may be implicated in pathomechanism of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Joanna Iłżecka
- Department of Neurological Rehabilitation, Medical University, ul. Chodźki 6, 20-093 Lublin, Poland.
| |
Collapse
|
43
|
Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011; 11:315. [PMID: 21791085 PMCID: PMC3199865 DOI: 10.1186/1471-2407-11-315] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/26/2011] [Indexed: 01/15/2023] Open
Abstract
Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.
Collapse
Affiliation(s)
- Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Schleusenweg 2-16, 60528 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu X, Zhang Q, Tu J, Ren Z. D-β-hydroxybutyrate inhibits microglial activation in a cell activation model in vitro. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1000-1948(11)60042-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Streijger F, Plunet WT, Plemel JR, Lam CK, Liu J, Tetzlaff W. Intermittent Fasting in Mice Does Not Improve Hindlimb Motor Performance after Spinal Cord Injury. J Neurotrauma 2011; 28:1051-61. [DOI: 10.1089/neu.2010.1715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ward T. Plunet
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Ryan Plemel
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Clarrie K. Lam
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
White H, Venkatesh B. Clinical review: ketones and brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:219. [PMID: 21489321 PMCID: PMC3219306 DOI: 10.1186/cc10020] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury.
Collapse
Affiliation(s)
- Hayden White
- Department of Intensive Care, Griffi ths University, Logan Hospital, Meadowbrook, Queensland 4131, Australia.
| | | |
Collapse
|
47
|
Li X, Lu Y, Pan T, Fan Z. Roles of autophagy in cetuximab-mediated cancer therapy against EGFR. Autophagy 2011; 6:1066-77. [PMID: 20864811 DOI: 10.4161/auto.6.8.13366] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cetuximab is an epidermal growth factor receptor (EGFR)-blocking antibody that is approved to treat several types of solid cancers in patients. We recently showed that cetuximab can induce autophagy in cancer cells by both inhibiting the class I phosphatidylinositol 3-kinase (PtdIns3K)/Akt/mammalian target of rapamycin (mTOR) pathway and activating the class III PtdIns3K (hVps34)/beclin 1 pathway. In the current study, we investigated the relationship between cetuximab-induced autophagy and apoptosis and the biological roles of autophagy in cetuximab-mediated cancer therapy. We found that cetuximab induced autophagy in cancer cells that show strong or weak induction of apoptosis after cetuximab treatment but not in those that show only cytostatic growth inhibition. Inhibition of cetuximab-induced apoptosis by a caspase inhibitor prevented the induction of autophagy. Conversely, inhibition of cetuximab-induced autophagy by silencing the expression of autophagy-related genes (Atg) or treating the cancer cells with lysosomal inhibitors enhanced the cetuximab-induced apoptosis, suggesting that autophagy was a protective cellular response to cetuximab treatment. On the other hand, cotreatment of cancer cells with cetuximab and the mTOR inhibitor rapamycin resulted in an Atg-dependent and lysosomal inhibition-sensitive death of cancer cells that show only growth inhibition or weak apoptosis after cetuximab treatment, indicating that cell death may be achieved by activating the autophagy pathway in these cells. Together, our findings may guide the development of novel clinical strategies for sensitizing cancer cells to EGFR-targeted therapy.
Collapse
Affiliation(s)
- Xinqun Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
48
|
Jaworska-Feil L, Jantas D, Leskiewicz M, Budziszewska B, Kubera M, Basta-Kaim A, Lipkowski AW, Lason W. Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells. Neuropeptides 2010; 44:495-508. [PMID: 20869113 DOI: 10.1016/j.npep.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/19/2010] [Accepted: 08/30/2010] [Indexed: 12/30/2022]
Abstract
TRH (thyroliberin) and its analogues were reported to possess neuroprotective effects in cellular and animal experimental models of acute and chronic neurodegenerative diseases. In the present study we evaluated effects of TRH and its three stable analogues, montirelin (CG-3703), RGH-2202 and Z-TRH (N-(carbobenzyloxy)-pGlutamyl-Histydyl-Proline) on the neuronally differentiated human neuroblastoma SH-SY5Y cell line, which is widely accepted for studying potential neuroprotectants. We found that TRH and all the tested analogues at concentrations 0.1-50 μM attenuated cell damage induced by MPP(+) (2 mM), 3-nitropropionate (10 mM), hydrogen peroxide (0.5 mM), homocysteine (250 μM) and beta-amyloid (20μM) in retinoic acid differentiated SH-SY5Y cells. Furthermore, we demonstrated that TRH and its analogues decreased the staurosporine (0.5 μM)-induced LDH release, caspase-3 activity and DNA fragmentation, which indicate the anti-apoptotic proprieties of these peptides. The neuroprotective effects of TRH (10 μM) and RGH-2202 (10 μM) on St-induced cell death was attenuated by inhibitors of PI3-K pathway (wortmannin and LY294002), but not MAPK/ERK1/2 (PD98059 and U0126). Moreover, TRH and its analogues at neuroprotective concentrations (1 and 10 μM) increased expression of Bcl-2 protein, as confirmed by Western blot analysis. All in all, these results extend data on neuroprotective properties of TRH and its analogues and provide evidence that mechanism of anti-apoptotic effects of these peptides in SH-SY5Y cell line involves induction of PI3K/Akt pathway and Bcl-2. Furthermore, the data obtained on human cell line with a dopaminergic phenotype suggest potential utility of TRH and its analogues in the treatment of some neurodegenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- L Jaworska-Feil
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chmiel-Perzyńska I, Kloc R, Perzyński A, Rudzki S, Urbańska EM. Novel Aspect of Ketone Action: β-Hydroxybutyrate Increases Brain Synthesis of Kynurenic Acid In Vitro. Neurotox Res 2010; 20:40-50. [DOI: 10.1007/s12640-010-9220-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/12/2010] [Accepted: 08/28/2010] [Indexed: 02/07/2023]
|
50
|
Seyfried TN, Kiebish MA, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P. Metabolic management of brain cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:577-94. [PMID: 20804725 DOI: 10.1016/j.bbabio.2010.08.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/11/2010] [Accepted: 08/15/2010] [Indexed: 12/29/2022]
Abstract
Malignant brain tumors are a significant health problem in children and adults. Conventional therapeutic approaches have been largely unsuccessful in providing long-term management. As primarily a metabolic disease, malignant brain cancer can be managed through changes in metabolic environment. In contrast to normal neurons and glia, which readily transition to ketone bodies (β-hydroxybutyrate) for energy under reduced glucose, malignant brain tumors are strongly dependent on glycolysis for energy. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome and normal mitochondria can effectively transition from one energy state to another. Mutations restrict genomic and metabolic flexibility thus making tumor cells more vulnerable to energy stress than normal cells. We propose an alternative approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and metabolically challenged tumor cells. This approach to brain cancer management is supported from recent studies in mice and humans treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are presented for the metabolic management of brain cancer.
Collapse
|