1
|
Santos AVS, Cardoso DS, Takada SH, Echeverry MB. Prenatal exposition to haloperidol: A preclinical narrative review. Neurosci Biobehav Rev 2023; 155:105470. [PMID: 37984569 DOI: 10.1016/j.neubiorev.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Pre-existing maternal mental disorders may affect the early interactions between mother and baby, impacting the child's psychoemotional development. The typical antipsychotic haloperidol can be used during pregnancy, even with some restrictions. Its prescription is not limited to psychotic disorders, but also to other psychiatric conditions of high incidence and prevalence in the woman's fertile period. The present review focused on the preclinical available data regarding the biological and behavioral implications of embryonic exposure to haloperidol. The understanding of the effects of psychotropic drugs during neurodevelopment is important for its clinical aspect since there is limited evidence regarding the risks of antipsychotic drug treatment in pregnant women and their children. Moreover, a better comprehension of the mechanistic events that can be affected by antipsychotic treatment during the critical period of neurodevelopment may offer insights into the pathophysiology of neurodevelopmental disorders. The findings presented in this review converge to the existence of several risks associated with prenatal exposure to such medication and emphasize the need for further studies regarding its dimensions.
Collapse
Affiliation(s)
- Aline Valéria Sousa Santos
- Laboratory of Neuropharmacology and Motor Behavior, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Marcela Bermúdez Echeverry
- Laboratory of Neuropharmacology and Motor Behavior, Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil; Neuroscience Laboratory, School of Medicine, Universidad de Santander (UDES), Bucaramanga, Santander, Colombia.
| |
Collapse
|
2
|
Savchenko A, Müller C, Lubec J, Leo D, Korz V, Afjehi-Sadat L, Malikovic J, Sialana FJ, Lubec G, Sukhanov I. The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes. Front Psychiatry 2022; 13:799433. [PMID: 35370807 PMCID: PMC8971526 DOI: 10.3389/fpsyt.2022.799433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus-unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field.
Collapse
Affiliation(s)
- Artem Savchenko
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Carina Müller
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Leila Afjehi-Sadat
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Jovana Malikovic
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
3
|
Hyun JS, Inoue T, Hayashi-Takagi A. Multi-Scale Understanding of NMDA Receptor Function in Schizophrenia. Biomolecules 2020; 10:biom10081172. [PMID: 32796766 PMCID: PMC7465114 DOI: 10.3390/biom10081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia is a chronic and disabling psychiatric disorder characterized by disturbances of thought, cognition, and behavior. Despite massive research efforts to date, the etiology and pathophysiology of schizophrenia remain largely unknown. The difficulty of brain research is largely a result of complex interactions between contributory factors at different scales: susceptible gene variants (molecular scale), synaptopathies (synaptic, dendritic, and cell scales), and alterations in neuronal circuits (circuit scale), which together result in behavioral manifestations (individual scale). It is likely that each scale affects the others, from the microscale to the mesoscale to the macroscale, and vice versa. Thus, to consider the intricate complexity of schizophrenia across multiple layers, we introduce a multi-scale, hierarchical view of the nature of this disorder, focusing especially on N-methyl-D-aspartate-type glutamate receptors (NMDARs). The reason for placing emphasis on NMDAR is its clinical relevance to schizophrenia, as well as its diverse functions in neurons, including the robust supralinear synaptic integration provided by N-methyl-D-aspartate-type glutamate (NMDA) spikes and the Ca2+ permeability of the NMDAR, which facilitates synaptic plasticity via various calcium-dependent proteins. Here, we review recent evidence implicating NMDARs in the pathophysiology of schizophrenia from the multi-scale perspective. We also discuss recent advances from optical techniques, which provide a powerful tool for uncovering the mechanisms of NMDAR synaptic pathology and their relationships, with subsequent behavioral manifestations.
Collapse
Affiliation(s)
- Jo Soo Hyun
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama Prefecture 351-0106, Japan;
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan;
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan;
| | - Akiko Hayashi-Takagi
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama Prefecture 351-0106, Japan;
- Correspondence: ; Tel.: +81-48-467-5156
| |
Collapse
|
4
|
Ji E, Guevara P, Guevara M, Grigis A, Labra N, Sarrazin S, Hamdani N, Bellivier F, Delavest M, Leboyer M, Tamouza R, Poupon C, Mangin JF, Houenou J. Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:1367-1378. [PMID: 30953566 PMCID: PMC6811818 DOI: 10.1093/schbul/sbz015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are often conceptualized as "disconnection syndromes," with substantial evidence of abnormalities in deep white matter tracts, forming the substrates of long-range connectivity, seen in both disorders. However, the study of superficial white matter (SWM) U-shaped short-range tracts remained challenging until recently, although findings from postmortem studies suggest they are likely integral components of SZ and BD neuropathology. This diffusion weighted imaging (DWI) study aimed to investigate SWM microstructure in vivo in both SZ and BD for the first time. We performed whole brain tractography in 31 people with SZ, 32 people with BD and 54 controls using BrainVISA and Connectomist 2.0. Segmentation and labeling of SWM tracts were performed using a novel, comprehensive U-fiber atlas. Analysis of covariances yielded significant generalized fractional anisotropy (gFA) differences for 17 SWM bundles in frontal, parietal, and temporal cortices. Post hoc analyses showed gFA reductions in both patient groups as compared with controls in bundles connecting regions involved in language processing, mood regulation, working memory, and motor function (pars opercularis, insula, anterior cingulate, precentral gyrus). We also found increased gFA in SZ patients in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus), supporting functional hyperconnectivity of this network evidenced in SZ. We thus illustrate that short U-fibers are vulnerable to the pathological processes in major psychiatric illnesses, encouraging improved understanding of their anatomy and function.
Collapse
Affiliation(s)
- Ellen Ji
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,To whom correspondence should be addressed; INSERM U955, Hôpitaux Universitaires Mondor, 40 rue de Mesly, Créteil 94010, France; tel: +33-1-49-81-30-51, fax: +33-1-49-81-30-59, e-mail:
| | - Pamela Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Samuel Sarrazin
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France
| | - Nora Hamdani
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Frank Bellivier
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marine Delavest
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marion Leboyer
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Ryad Tamouza
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | | | | | - Josselin Houenou
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| |
Collapse
|
5
|
Gene expression over the course of schizophrenia: from clinical high-risk for psychosis to chronic stages. NPJ SCHIZOPHRENIA 2019; 5:5. [PMID: 30923314 PMCID: PMC6438978 DOI: 10.1038/s41537-019-0073-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
The study of patients with schizophrenia (SZ) at different clinical stages may help clarify what effects could be due to the disease itself, to the pharmacological treatment, or to the disease progression. We compared expression levels of targeted genes in blood from individuals in different stages of SZ: clinical high risk for psychosis (CHR), first episode of psychosis (FEP), and chronic SZ (CSZ). Then, we further verified whether single-nucleotide polymorphisms (SNPs) could be related to gene expression differences. We investigated 12 genes in 394 individuals (27 individuals with CHR, 70 antipsychotic-naive individuals with FEP, 157 CSZ patients, and 140 healthy controls (HCs)). For a subsample, genotype data were also available, and we extracted SNPs that were previously associated with the expression of selected genes in whole blood or brain tissue. We generated a mediation model in which a putative cause (SNP) is related to a presumed effect (disorder) via an intermediate variable (gene expression). MBP and NDEL1 were upregulated in FEP compared to all other groups; DGCR8 was downregulated in FEP compared to HC and CHR; DGCR2 was downregulated in CSZ compared to FEP and HCs; DISC1 was upregulated in schizophrenia compared to controls or FEP, possibly induced by the rs3738398 and rs10864693 genotypes, which were associated with DISC1 expression; and UFD1 was upregulated in CSZ and CHR compared to FEP and HC. Our results indicated changes in gene expression profiles throughout the different clinical stages of SZ, reinforcing the need for staging approaches to better capture SZ heterogeneity.
Collapse
|
6
|
OBI-NAGATA K, TEMMA Y, HAYASHI-TAKAGI A. Synaptic functions and their disruption in schizophrenia: From clinical evidence to synaptic optogenetics in an animal model. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:179-197. [PMID: 31080187 PMCID: PMC6742729 DOI: 10.2183/pjab.95.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The adult human brain consists of approximately a hundred billion neurons, which are connected via synapses. The pattern and strength of the synaptic connections are constantly changing (synaptic plasticity), and these changes are considered to underlie learning, memory, and personality. Many psychiatric disorders have been related to disturbances in synaptogenesis and subsequent plasticity. In this review, we summarize findings of synaptic disturbance and its involvement in the pathogenesis and/or pathophysiology of psychiatric disorders. We will focus on schizophrenia, because this condition has a high proven heritability, which offers more unambiguous insights into the biological origins of not only schizophrenia but also related psychiatric disorders. To demonstrate the involvement of synaptopathy in psychiatric disorders, we discuss what knowledge is missing at the circuits level, and what new technologies are needed to achieve a comprehensive understanding of synaptopathy in psychiatric disorders.
Collapse
Affiliation(s)
- Kisho OBI-NAGATA
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yusuke TEMMA
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Akiko HAYASHI-TAKAGI
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Correspondence should be addressed: A. Hayashi-Takagi, Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan (e-mail: )
| |
Collapse
|
7
|
Leroux E, Vandevelde A, Tréhout M, Dollfus S. Abnormalities of fronto-subcortical pathways in schizophrenia and the differential impacts of antipsychotic treatment: a DTI-based tractography study. Psychiatry Res Neuroimaging 2018; 280:22-29. [PMID: 30145382 DOI: 10.1016/j.pscychresns.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
The fronto-striato-thalamic circuitry is a key network in patients with schizophrenia (SZPs). We use diffusion tensor imaging (DTI) to investigate the integrity of white matter (WM) pathways involved in this network in SZPs relative to healthy controls (HCs). We also evaluate the differential impact of chronic exposure to clozapine as well as other atypical and typical antipsychotics. 63 HCs and 41 SZPs were included. Of the SZPs, 16 were treated with clozapine (SZPsC), 17 with atypical antipsychotics (SZPsA), and 8 with typical antipsychotics (SZPsT). Three tracts were reconstructed in the left hemisphere using tractography: one fronto-subcortical tract, one prefronto-subcortical tract, and one prefronto-frontal tract. Diffusion parameters were individually extracted in each tract. SZPs exhibited lower integrity in both the fronto-subcortical and prefronto-subcortical tracts relative to HCs, and SZPsT showed altered integrity compared to SZPsC. There were no WM integrity differences in the prefronto-frontal tract between SZP groups or between SZPs and HCs. SZPs exhibit structural connectivity abnormalities in the prefronto-fronto-subcortical network that are specifically and differentially impacted by the type of antipsychotic treatment. Additional studies are needed to separate the contributions of clozapine-mediated neuroprotection, neurotoxicity related to typical antipsychotics, and the illness itself to observed differences.
Collapse
Affiliation(s)
- E Leroux
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France.
| | - A Vandevelde
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| | - M Tréhout
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| | - S Dollfus
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| |
Collapse
|
8
|
Vilor-Tejedor N, Alemany S, Cáceres A, Bustamante M, Mortamais M, Pujol J, Sunyer J, González JR. Sparse multiple factor analysis to integrate genetic data, neuroimaging features, and attention-deficit/hyperactivity disorder domains. Int J Methods Psychiatr Res 2018; 27:e1738. [PMID: 30105890 PMCID: PMC6877273 DOI: 10.1002/mpr.1738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/17/2018] [Accepted: 06/26/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We proposed the application of a multivariate cross-sectional framework based on a combination of a variable selection method and a multiple factor analysis (MFA) in order to identify complex meaningful biological signals related to attention-deficit/hyperactivity disorder (ADHD) symptoms and hyperactivity/inattention domains. METHODS The study included 135 children from the general population with genomic and neuroimaging data. ADHD symptoms were assessed using a questionnaire based on ADHD-DSM-IV criteria. In all analyses, the raw sum scores of the hyperactivity and inattention domains and total ADHD were used. The analytical framework comprised two steps. First, zero-inflated negative binomial linear model via penalized maximum likelihood (LASSO-ZINB) was performed. Second, the most predictive features obtained with LASSO-ZINB were used as input for the MFA. RESULTS We observed significant relationships between ADHD symptoms and hyperactivity and inattention domains with white matter, gray matter regions, and cerebellum, as well as with loci within chromosome 1. CONCLUSIONS Multivariate methods can be used to advance the neurobiological characterization of complex diseases, improving the statistical power with respect to univariate methods, allowing the identification of meaningful biological signals in Imaging Genetic studies.
Collapse
Affiliation(s)
- Natàlia Vilor-Tejedor
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marion Mortamais
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jesús Pujol
- MRI Research Unit, Hospital del Mar, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan R González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
9
|
Leroux E, Delcroix N, Dollfus S. Abnormalities of language pathways in schizophrenia patients with and without a lifetime history of auditory verbal hallucinations: A DTI-based tractography study. World J Biol Psychiatry 2017; 18:528-538. [PMID: 28010158 DOI: 10.1080/15622975.2016.1274053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Auditory verbal hallucinations (AVHs) are frequently observed in patients with schizophrenia (SZ) and could be the result of white matter (WM) fibre abnormalities involved in speech production/comprehension and perception. We evaluated WM integrity changes in SZ with (SZ+) and without (SZ-) lifetime AVHs compared to healthy controls (HCs), using diffusion tensor imaging-based tractography, with a novel focus on the structural connectivity within both intra- and interhemispheric fasciculi. METHODS The study included 27 SZ+, 12 SZ- and 34 HCs. Fractional anisotropy (FA) and mean and radial diffusivities (MD and RD) were extracted in each participant in two left interhemispheric fasciculi and in the interhemispheric auditory pathway (IAP) to test integrity differences among groups. RESULTS SZ- and SZ + compared to HCs presented increased diffusivities and/or decreased FA in the interhemispheric fasciculi. Decreased FA was significant only between SZ + and HCs for the IAP. CONCLUSIONS In this first comparison of integrity changes within both intra- and interhemispheric fasciculi, abnormalities in the intrahemispheric fasciculi were observed in both SZ- and SZ+, but an alteration in the IAP was seen only in SZ+. These results suggest that the IAP may be more involved in patients with AVHs-proneness.
Collapse
Affiliation(s)
- Elise Leroux
- a UNICAEN, ISTS , Normandie Univ , Caen , France
| | - Nicolas Delcroix
- b UNICAEN, CNRS, UMS GIP CYCERON , Normandie Univ , Caen , France
| | - Sonia Dollfus
- c Service de Psychiatrie , CHU de Caen , Caen , France.,d UNICAEN, UFR de médecine (Medical School) , Normandie Univ , Caen , France
| |
Collapse
|
10
|
Choi MH, Na JE, Yoon YR, Lee HJ, Yoon S, Rhyu IJ, Baik JH. Role of Dopamine D2 Receptor in Stress-Induced Myelin Loss. Sci Rep 2017; 7:11654. [PMID: 28912499 PMCID: PMC5599541 DOI: 10.1038/s41598-017-10173-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Dopaminergic systems play a major role in reward-related behavior and dysregulation of dopamine (DA) systems can cause several mental disorders, including depression. We previously reported that dopamine D2 receptor knockout (D2R-/-) mice display increased anxiety and depression-like behaviors upon chronic stress. Here, we observed that chronic stress caused myelin loss in wild-type (WT) mice, while the myelin level in D2R-/- mice, which was already lower than that in WT mice, was not affected upon stress. Fewer mature oligodendrocytes (OLs) were observed in the corpus callosum of stressed WT mice, while in D2R-/- mice, both the control and stressed group displayed a decrease in the number of mature OLs. We observed a decrease in the number of active β-catenin (ABC)-expressing and TCF4-expressing cells among OL lineage cells in the corpus callosum of stressed WT mice, while such regulation was not found in D2R-/- mice. Administration of lithium normalized the behavioral impairments and myelin damage induced by chronic stress in WT mice, and restored the number of ABC-positive and TCF4-positive OLs, while such effect was not found in D2R-/- mice. Together, our findings indicate that chronic stress induces myelin loss through the Wnt/β-catenin signaling pathway in association with DA signaling through D2R.
Collapse
Affiliation(s)
- Mi-Hyun Choi
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ye Ran Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyo Jin Lee
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
11
|
Swathy B, Banerjee M. Haloperidol induces pharmacoepigenetic response by modulating miRNA expression, global DNA methylation and expression profiles of methylation maintenance genes and genes involved in neurotransmission in neuronal cells. PLoS One 2017; 12:e0184209. [PMID: 28886082 PMCID: PMC5590913 DOI: 10.1371/journal.pone.0184209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. Methods SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Results Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Conclusions Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects.
Collapse
Affiliation(s)
- Babu Swathy
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
- * E-mail: ,
| |
Collapse
|
12
|
Tréhout M, Leroux E, Delcroix N, Dollfus S. Relationships between corpus callosum and language lateralization in patients with schizophrenia and bipolar disorders. Bipolar Disord 2017; 19:496-504. [PMID: 28834020 DOI: 10.1111/bdi.12526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The question of whether there is a continuum or a dichotomy among patients with schizophrenia (SZ) and bipolar disorders (BD) has not been clearly resolved and remains a challenge. Thus, the identification of specific biomarkers of these disorders might be helpful. The present study investigated the volume of the corpus callosum (CC) and functional lateralization for language as potential biomarkers and their relationships in SZ and BD. METHODS The study included 20 patients with SZ, 20 patients with BD and 40 healthy controls (HC). A functional lateralization index (FLI) was computed for each participant within the language comprehension network. For each participant, the volume of the total CC and those of three subregions were extracted. These variables and their anatomo-functional relationships were investigated. RESULTS In comparison to HC, SZ patients presented a decreased leftward lateralization for language, whereas this was not found in BD patients. However, as compared to SZ patients and HC, BD patients showed a reduction in CC volume associated with a lower leftward lateralization for language. CONCLUSIONS Our study revealed that SZ patients displayed a reduction of the leftward functional lateralization for language; however, no reduction of CC volume was observed, whereas BD patients presented a decreased volume of the CC associated with a lower leftward asymmetry for language. The results of our study detected distinct anomalies in both SZ and BD that may be considered as specific biomarkers of these disorders related to neurodevelopmental models.
Collapse
Affiliation(s)
- Maxime Tréhout
- Service de Psychiatrie, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, UFR de médecine (Medical School), Caen, France.,Normandie Univ, UNICAEN, ISTS, Caen, France
| | | | | | - Sonia Dollfus
- Service de Psychiatrie, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, UFR de médecine (Medical School), Caen, France.,Normandie Univ, UNICAEN, ISTS, Caen, France
| |
Collapse
|
13
|
Verkooijen S, Stevelink R, Abramovic L, Vinkers CH, Ophoff RA, Kahn RS, Boks MPM, van Haren NEM. The association of sleep and physical activity with integrity of white matter microstructure in bipolar disorder patients and healthy controls. Psychiatry Res 2017; 262:71-80. [PMID: 28236715 PMCID: PMC5381646 DOI: 10.1016/j.pscychresns.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 01/19/2023]
Abstract
We investigate how the sleep disruptions and irregular physical activity levels that are prominent features of bipolar disorder (BD) relate to white matter microstructure in patients and controls. Diffusion tension imaging (DTI) and 14-day actigraphy recordings were obtained in 51 BD I patients and 55 age-and-gender-matched healthy controls. Tract-based spatial statistics (TBSS) was used for voxelwise analysis of the association between fractional anisotropy (FA) and sleep and activity characteristics in the overall sample. Next, we investigated whether the relation between sleep and activity and DTI measures differed for patients and controls. Physical activity was related to increased integrity of white matter microstructure regardless of bipolar diagnosis. The relationship between sleep and white matter microstructure was more equivocal; we found an expected association between higher FA and effective sleep in controls but opposite patterns in bipolar patients. Confounding factors such as antipsychotic medication use are a likely explanation for these contrasting findings and highlight the need for further study of medication-related effects on white matter integrity.
Collapse
Affiliation(s)
- Sanne Verkooijen
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Remi Stevelink
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Lucija Abramovic
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Marco P M Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
14
|
Gene expression alterations related to mania and psychosis in peripheral blood of patients with a first episode of psychosis. Transl Psychiatry 2016; 6:e908. [PMID: 27701407 PMCID: PMC5315542 DOI: 10.1038/tp.2016.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Psychotic disorders affect ~3% of the general population and are among the most severe forms of mental diseases. In early stages of psychosis, clinical aspects may be difficult to distinguish from one another. Undifferentiated psychopathology at the first-episode of psychosis (FEP) highlights the need for biomarkers that can improve and refine differential diagnosis. We investigated gene expression differences between patients with FEP-schizophrenia spectrum (SCZ; N=53) or FEP-Mania (BD; N=16) and healthy controls (N=73). We also verified whether gene expression was correlated to severity of psychotic, manic, depressive symptoms and/or functional impairment. All participants were antipsychotic-naive. After the psychiatric interview, blood samples were collected and the expression of 12 psychotic-disorder-related genes was evaluated by quantitative PCR. AKT1 and DICER1 expression levels were higher in BD patients compared with that in SCZ patients and healthy controls, suggesting that expression of these genes is associated more specifically to manic features. Furthermore, MBP and NDEL1 expression levels were higher in SCZ and BD patients than in healthy controls, indicating that these genes are psychosis related (independent of diagnosis). No correlation was found between gene expression and severity of symptoms or functional impairment. Our findings suggest that genes related to neurodevelopment are altered in psychotic disorders, and some might support the differential diagnosis between schizophrenia and bipolar disorder, with a potential impact on the treatment of these disorders.
Collapse
|
15
|
Ebdrup BH, Raghava JM, Nielsen MØ, Rostrup E, Glenthøj B. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade. J Psychiatry Neurosci 2016; 41:133-41. [PMID: 26599135 PMCID: PMC4764482 DOI: 10.1503/jpn.150030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Psychotic symptoms are core clinical features of schizophrenia. We tested recent hypotheses proposing that psychotic, or positive, symptoms stem from irregularities in long-range white matter tracts projecting into the frontal cortex, and we predicted that selective dopamine D2/3 receptor blockade would restore white matter. METHODS Between December 2008 and July 2011, antipsychotic-naive patients with first-episode schizophrenia and matched healthy controls underwent baseline examination with 3 T MRI diffusion tensor imaging and clinical assessments. We assessed group differences of fractional anisotropy (FA) using voxelwise tract-based spatial statistics (TBSS) and anatomic region of interest (ROI)-based analyses. Subsequently, patients underwent 6 weeks of antipsychotic monotherapy with amisulpride. We repeated the examinations after 6 weeks. RESULTS We included 38 patients with first-episode schizophrenia and 38 controls in our analysis, and 28 individuals in each group completed the study. At baseline, whole brain TBSS analyses revealed lower FA in patients in the right anterior thalamic radiation (ATR), right cingulum, right inferior longitudinal fasciculus and right corticospinal tract (CT). Fractional anisotropy in the right ATR correlated with positive symptoms (z = 2.64, p= 0.008). The ROI analyses showed significant associations between positive symptoms and FA of the frontal fasciculi, specifically the right arcuate fasciculus (z = 2.83, p= 0.005) and right superior longitudinal fasciculus (z = -3.31, p= 0.001). At re-examination, all correlations between positive symptoms and frontal fasciculi had resolved. Fractional anisotropy in the ATR increased more in patients than in controls (z = -4.92, p< 0.001). The amisulpride dose correlated positively with FA changes in the right CT (t= 2.52, p= 0.019). LIMITATIONS Smoking and a previous diagnosis of substance abuse were potential confounders. Long-term effects of amisulpride on white matter were not evaluated. CONCLUSION Antipsychotic-naive patients with schizophrenia displayed subtle deficits in white matter, and psychotic symptoms appeared specifically associated with frontal fasciculi integrity. Six weeks of amisulpride treatment normalized white matter. Potential remyelinating effects of dopamine D2/3 receptor antagonism warrant further clarification.
Collapse
Affiliation(s)
- Bjørn H. Ebdrup
- Correspondence to: B.H. Ebdrup, Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Copenhagen University Hospital, Mental Health Centre, Glostrup, Nordre Ringvej 29-67, DK-2600 Glostrup, Denmark;
| | | | | | | | | |
Collapse
|
16
|
Ota VK, Noto C, Santoro ML, Spindola LM, Gouvea ES, Carvalho CM, Santos CM, Xavier G, Higuchi CH, Yonamine C, Moretti PN, Abílio VC, Hayashi MAF, Brietzke E, Gadelha A, Cordeiro Q, Bressan RA, Belangero SI. Increased expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic-naïve patients with first-episode psychosis. Eur Neuropsychopharmacol 2015; 25:2416-25. [PMID: 26476704 DOI: 10.1016/j.euroneuro.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/12/2015] [Accepted: 09/24/2015] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a multifactorial neurodevelopmental disorder with high heritability. First-episode psychosis (FEP) is a critical period for determining the disease prognosis and is especially helpful for identifying potential biomarkers associated with the onset and progression of the disorder. We investigated the mRNA expression of 12 schizophrenia-related genes in the blood of antipsychotic-naïve FEP patients (N=73) and healthy controls (N=73). To evaluate the influences of antipsychotic treatment and progression of the disorder, we compared the gene expression within patients before and after two months of treatment with risperidone (N=64). We observed a significantly increased myelin basic protein (MBP) and nuclear distribution protein nudE-like 1 (NDEL1) mRNA levels in FEP patients compared with controls. Comparing FEP before and after risperidone treatment, no significant differences were identified; however; a trend of relatively low NDEL1 expression was observed after risperidone treatment. Animals chronically treated with saline or risperidone exhibited no significant change in Ndel1 expression levels in the blood or the prefrontal cortex (PFC), suggesting that the trend of low NDEL1 expression observed in FEP patients after treatment is likely due to factors other than risperidone treatment (i.e., disease progression). In addition to the recognized association with schizophrenia, MBP and NDEL1 gene products also play an essential role in the functions that are deregulated in schizophrenia, such as neurodevelopment. Our data strengthen the importance of these biological processes in psychotic disorders, indicating that these changes can be detected peripherally and potentially represent putative novel blood biomarkers of susceptibility and disorder progression.
Collapse
Affiliation(s)
- Vanessa Kiyomi Ota
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Cristiano Noto
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Marcos Leite Santoro
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Leticia Maria Spindola
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Eduardo Sauerbronn Gouvea
- Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Carolina Muniz Carvalho
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Camila Maurício Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Gabriela Xavier
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Cinthia Hiroko Higuchi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Camila Yonamine
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Patricia Natalia Moretti
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Mirian Akemi F Hayashi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Elisa Brietzke
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Ary Gadelha
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Rodrigo Affonseca Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Sintia Iole Belangero
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil.
| |
Collapse
|
17
|
Santoro ML, Gadelha A, Ota VK, Cunha GR, Asevedo E, Noto CS, Spindola LM, Pan PM, Talarico F, Mansur RB, Silva PN, Brietzke E, Cordeiro Q, Bressan RA, Belangero SI. Gene expression analysis in blood of ultra-high risk subjects compared to first-episode of psychosis patients and controls. World J Biol Psychiatry 2015; 16:441-446. [PMID: 26089098 DOI: 10.3109/15622975.2015.1048724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES This study aimed to investigate peripheral blood gene expression in ultra-high-risk subjects (UHR) compared to first-episode psychosis individuals (FEP) and healthy controls (HC). METHODS We enrolled 22 UHR, 66 FEP and 67 HC and investigated the expression of 12 genes using Taqman assays. We used the Univariate General Linear Model, as well as Bonferroni correction for multiple comparisons. RESULTS We found that UFD1L (ubiquitin fusion degradation 1 like (yeast)) gene was upregulated in UHR group compared to HC and FEP (P = 3.44 × 10-6 ; P = 9.41 × 10-6). MBP (myelin basic protein) was downregulated in UHR compared to FEP (P = 6.07 × 10-6). DISC1 (disrupted in schizophrenia 1) was also upregulated in UHR compared to FEP but lost statistical significance when corrected for age. CONCLUSIONS These genes are directly related to neurodevelopmental processes and have been associated to schizophrenia. Recent findings described that DISC1 overexpression can disrupt MBP expression, thus, we think that these alterations in UHR individuals could be associated with a common process. UFD1L showed a different pattern of expression only for UHR group, suggesting that they can be under an acute endoplasmatic reticulum stress, demanding elevated levels of Ufd1. Further studies can improve knowledge on disease progression and putative targets to preventive strategies.
Collapse
Affiliation(s)
- Marcos Leite Santoro
- a Genetics Division, Department of Morphology and Genetics , Universidade Federal de Sao Paulo (UNIFESP) , São Paulo , Brazil.,b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil
| | - Ary Gadelha
- b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil.,c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Vanessa K Ota
- a Genetics Division, Department of Morphology and Genetics , Universidade Federal de Sao Paulo (UNIFESP) , São Paulo , Brazil.,b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil
| | - Graccielle R Cunha
- c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Elson Asevedo
- c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Cristiano S Noto
- c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil.,d Department of Psychiatry , Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP) , São Paulo , Brazil
| | - Leticia M Spindola
- a Genetics Division, Department of Morphology and Genetics , Universidade Federal de Sao Paulo (UNIFESP) , São Paulo , Brazil.,b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil
| | - Pedro M Pan
- b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil.,c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Fernanda Talarico
- a Genetics Division, Department of Morphology and Genetics , Universidade Federal de Sao Paulo (UNIFESP) , São Paulo , Brazil
| | - Rodrigo B Mansur
- b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil.,c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Patricia N Silva
- a Genetics Division, Department of Morphology and Genetics , Universidade Federal de Sao Paulo (UNIFESP) , São Paulo , Brazil.,b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil
| | - Elisa Brietzke
- b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil.,c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Quirino Cordeiro
- d Department of Psychiatry , Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP) , São Paulo , Brazil
| | - Rodrigo A Bressan
- b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil.,c PRISMA - Program of Recognition and Intervention in subjects At-Risk Mental States, UNIFESP , São Paulo , Brazil
| | - Sintia Iole Belangero
- a Genetics Division, Department of Morphology and Genetics , Universidade Federal de Sao Paulo (UNIFESP) , São Paulo , Brazil.,b LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP , São Paulo , Brazil
| |
Collapse
|
18
|
Jadhav S, Greenberg ML. Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. ACTA ACUST UNITED AC 2014; 9:533-551. [PMID: 25750665 DOI: 10.2217/clp.14.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of therapies for neuropsychiatric disorders is hampered by the lack of understanding of the mechanisms underlying their pathologies. While aberrant sphingolipid metabolism is associated with psychiatric illness, the role of sphingolipids in these disorders is not understood. The genetically tractable yeast model can be exploited in order to elucidate the cellular consequences of sphingolipid perturbation. Hypotheses generated from studies in yeast and tested in mammalian cells may contribute to our understanding of the role of sphingolipids in psychiatric disorders and to the development of new treatments. Here, we compare sphingolipid metabolism in yeast and mammalian cells, discuss studies implicating sphingolipids in psychiatric disorders and propose approaches that utilize yeast in order to elucidate sphingolipid function and identify drugs that target sphingolipid synthesis.
Collapse
Affiliation(s)
- Shyamalagauri Jadhav
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
19
|
ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci 2014; 33:18381-95. [PMID: 24259563 DOI: 10.1523/jneurosci.1875-13.2013] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.
Collapse
|
20
|
Improving myelin/oligodendrocyte-related dysfunction: a new mechanism of antipsychotics in the treatment of schizophrenia? Int J Neuropsychopharmacol 2013; 16:691-700. [PMID: 23164411 DOI: 10.1017/s1461145712001095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder with complex clinical manifestations and its aetiological factors remain unclear. During the past decade, the oligodendrocyte-related myelin dysfunction was proposed as a hypothesis for schizophrenia, supported initially by a series of neuroimaging studies and genetic evidence. Recently, the effects of antipsychotics on myelination and oligodendroglial lineage development and their underlying molecular mechanisms were evaluated. Data from those studies suggest that the antipsychotics-resulting improvement in myelin/oligodendrocyte-related dysfunction may contribute, at least in part, to their therapeutic effect on schizophrenia. Importantly, these findings may provide the basis for a new insight into the therapeutic strategy by targeting the oligodendroglia lineage cells against schizophrenia.
Collapse
|
21
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
22
|
Mühle C, Reichel M, Gulbins E, Kornhuber J. Sphingolipids in psychiatric disorders and pain syndromes. Handb Exp Pharmacol 2013:431-456. [PMID: 23563670 DOI: 10.1007/978-3-7091-1511-4_22] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite the high prevalence and devastating impact of psychiatric disorders, little is known about their etiopathology. In this review, we provide an overview on the participation of sphingolipids and enzymes responsible for their metabolism in mechanisms underlying psychiatric disorders. We focus on the pathway from sphingomyelin to proapoptotic ceramide and the subsequent metabolism of ceramide to sphingosine, which is in turn phosphorylated to yield anti-apoptotic sphingosine-1-phosphate (S1P).The sphingomyelinase/ceramide system has been linked to effects of reactive oxygen species and proinflammatory cytokines in the central nervous system as well as to synaptic transmission. Compared to ubiquitously expressed acid sphingomyelinase, acid and neutral ceramidase and neutral sphingomyelinase are highly active in brain regions. Depressed patients show elevated plasma ceramide levels and increased activities of acid sphingomyelinase which is functionally inhibited by many anti-depressive drugs. Exposure to alcohol is associated with an activation of acid and neutral sphingomyelinase observed in cell culture, mouse models and in alcohol-dependent patients and with increased concentrations of ceramide in various organs.Levels of sphingomyelin and ceramide are altered in erythrocytes and post-mortem brain tissues of schizophrenic patients in addition to changes in expression patterns for serine palmitoyltransferase and acid ceramidase leading to impaired myelination. After induction of anxiety-like behavior in animal models, higher serum levels of S1P were reported to lead to neurodegeneration. Correspondingly, S1P infusion appeared to increase anxiety-like behavior. Significantly upregulated levels of the endogenous ceramide catabolite N,N-dimethylsphingosine were observed in rat models of allodynia. Conversely, rats injected intrathecally with N,N-dimethylsphingosine developed mechanical allodynia. Moreover, S1P has been implicated in spinal nociceptive processing.The increasing interest in lipidomics and improved analytical methods led to growing insight into the connection between psychiatric and neurological disorders and sphingolipid metabolism and may once provide new targets and strategies for therapeutic intervention.
Collapse
Affiliation(s)
- C Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen, Erlangen, Germany
| | | | | | | |
Collapse
|
23
|
D'Agati E, Casarelli L, Pitzianti M, Pasini A. Neuroleptic treatments and overflow movements in schizophrenia: are they independent? Psychiatry Res 2012; 200:970-6. [PMID: 22901438 DOI: 10.1016/j.psychres.2012.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 06/11/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
Abstract
Neurological soft signs (NSS) are minor neurological abnormalities that can be revealed by a clinical examination focused on sensory and motor information processing. NSS include overflow movements (OMs), which are defined as involuntary movements that may accompany the production of voluntary movements. OM is generally considered to be a characteristic feature of schizophrenia. White matter abnormalities might be involved in the pathogenesis of OMs. Dopamine receptors play a role in oligodendrocytes development. There is a direct link between antipsychotic agents that bind to dopamine receptors on oligodendrocytes and the development of oligodendrocytes and myelin formation. In this paper, we review the current knowledge of the effects of antipsychotic agents on NSS in schizophrenic patients. As a result of this critical review we hypothesize that the neuroleptic actions described in this paper could explain why antipsychotic agents have no effect on the resolution of NSS in patients with schizophrenia.
Collapse
Affiliation(s)
- Elisa D'Agati
- Unit of Child Neurology and Psychiatry, Department of Neuroscience, University of Rome Tor Vergata, Via Alberico 2 n. 35, 00193 Roma, Italy
| | | | | | | |
Collapse
|
24
|
Tang B, Capitao C, Dean B, Thomas EA. Differential age- and disease-related effects on the expression of genes related to the arachidonic acid signaling pathway in schizophrenia. Psychiatry Res 2012; 196:201-6. [PMID: 22397921 PMCID: PMC3361581 DOI: 10.1016/j.psychres.2011.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/22/2011] [Accepted: 09/25/2011] [Indexed: 10/28/2022]
Abstract
We have previously identified differential effects of age on global brain gene expression profiles in subjects with schizophrenia compared to normal controls. Here, we have focused on age-related effects of genes associated with the arachidonic acid-related inflammation pathway. Linear correlation analysis of published microarray expression data reveal strong age- and cell-type- specific-effects on the expression of genes related to the arachidonic acid signaling pathway, which differed in control subjects compared to those with schizophrenia. Using real-time qPCR analysis, we validated age and disease effects of arachidonic acid-related genes in a large cohort of subjects with schizophrenia and matched controls (n=76 subjects in total). We found that levels of prostaglandin-endoperoxide synthase 1 (PTGS1; aka COX-1) and prostaglandin-endoperoxide receptor 3 (PTGER3) mRNA are increased, and levels of prostaglandin-endoperoxide synthase 2 (PTGS2; aka COX-2) mRNA are decreased, in older subjects with schizophrenia (> 40years of age) compared to matched normal controls or younger subjects with schizophrenia (< 40years of age). These findings contribute to the accumulating evidence suggesting that inflammatory processes in the CNS contribute to pathophysiology of schizophrenia and further suggest that age may be an important factor in the potential use of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Bin Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cristina Capitao
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Locked Bag 11, Parkville, Victoria 3052, Australia
| | - Elizabeth A. Thomas
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
25
|
Tang B, Dean B, Thomas EA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 2011; 1:e64. [PMID: 22832356 PMCID: PMC3305989 DOI: 10.1038/tp.2011.61] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that epigenetic factors have critical roles in gene regulation in neuropsychiatric disorders and in aging, both of which are typically associated with a wide range of gene expression abnormalities. Here, we have used chromatin immunoprecipitation-qPCR to measure levels of acetylated histone H3 at lysines 9/14 (ac-H3K9K14), two epigenetic marks associated with transcriptionally active chromatin, at the promoter regions of eight schizophrenia-related genes in n=82 postmortem prefrontal cortical samples from normal subjects and those with schizophrenia and bipolar disorder. We find that promoter-associated ac-H3K9K14 levels are correlated with gene expression levels, as measured by real-time qPCR for several genes, including, glutamic acid decarboxylase 1 (GAD1), 5-hydroxytryptamine receptor 2C (HTR2C), translocase of outer mitochondrial membrane 70 homolog A (TOMM70A) and protein phosphatase 1E (PPM1E). Ac-H3K9K14 levels of several of the genes tested were significantly negatively associated with age in normal subjects and those with bipolar disorder, but not in subjects with schizophrenia, whereby low levels of histone acetylation were observed in early age and throughout aging. Consistent with this observation, significant hypoacetylation of H3K9K14 was detected in young subjects with schizophrenia when compared with age-matched controls. Our results demonstrate that gene expression changes associated with psychiatric disease and aging result from epigenetic mechanisms involving histone acetylation. We further find that treatment with a histone deacetylase (HDAC) inhibitor alters the expression of several candidate genes for schizophrenia in mouse brain. These findings may have therapeutic implications for the clinical use of HDAC inhibitors in psychiatric disorders.
Collapse
Affiliation(s)
- B Tang
- Department of Molecular Biology, The
Scripps Research Institute, La Jolla, CA,
USA
| | - B Dean
- The Rebecca L. Cooper Research
Laboratories, The Mental Health Research Institute,
Parkville, VIC, Australia,The Department of Psychiatry, The
University of Melbourne, Melbourne, VIC,
Australia
| | - E A Thomas
- Department of Molecular Biology, The
Scripps Research Institute, La Jolla, CA,
USA,Department of Molecular Biology, The Scripps Research
Institute, SP-2030, 3030 Science Park Dr, La
Jolla, CA, 92037, USA.
E-mail:
| |
Collapse
|
26
|
Walterfang M, Velakoulis D, Whitford TJ, Pantelis C. Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11:971-87. [PMID: 21721915 DOI: 10.1586/ern.11.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although historically gray matter changes have been the focus of neuropathological and neuroradiological studies in schizophrenia, in recent years an increasing body of research has implicated white matter structures and its constituent components (axons, their myelin sheaths and supporting oligodendrocytes). This article summarizes this body of literature, examining neuropathological, neurogenetic and neuroradiological evidence for white matter pathology in schizophrenia. We then look at the possible role that antipsychotic medication may play in these studies, examining both its role as a potential confounder in studies examining neuronal density and brain volume, but also the possible role that these medications may play in promoting myelination through their effects on oligodendrocytes. Finally, the role of potential novel therapies is discussed.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
27
|
Steiner J, Sarnyai Z, Westphal S, Gos T, Bernstein HG, Bogerts B, Keilhoff G. Protective effects of haloperidol and clozapine on energy-deprived OLN-93 oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2011; 261:477-82. [PMID: 21328015 DOI: 10.1007/s00406-011-0197-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/01/2011] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging and postmortem studies on schizophrenia provided evidence for compromised myelin integrity and reduced numbers of oligodendrocytes, which may worsen during the disease course. However, it is not clear whether these findings result from disease-inherent oligodendrocyte degeneration or side effects of antipsychotic treatment. Therefore, effects of haloperidol and clozapine on the viability and apoptosis of immature oligodendrocytes (OLN-93 cells, immunopositive for NG2, Olig1, Olig2) have been evaluated in the present study by labeling with propidium iodide and a caspase 3 assay. Given the indications for impaired cerebral energy supply in schizophrenia, a serum and glucose deprivation (SGD) model was chosen in comparison with the basal condition (BC). SGD led to increased necrotic and apoptotic cell death. Haloperidol and clozapine were partially protective in this model and reduced the percentage of propidium iodide-positive cells, while caspase 3 activity was not altered. No significant drug effects were observed under BC. The observed protective effects of haloperidol and clozapine on energy-deprived OLN-93 oligodendrocytes suggest that previously reported reductions in oligodendrocyte density in schizophrenia are rather disease related than a side effect of medication. A new mechanism of antipsychotic action is suggested, which may help to establish new oligodendrocyte-directed therapies of schizophrenia.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Xu H, Yang HJ, Rose GM, Li XM. Recovery of behavioral changes and compromised white matter in C57BL/6 mice exposed to cuprizone: effects of antipsychotic drugs. Front Behav Neurosci 2011; 5:31. [PMID: 21747763 PMCID: PMC3130148 DOI: 10.3389/fnbeh.2011.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/13/2011] [Indexed: 01/31/2023] Open
Abstract
Recent animal and human studies have suggested that the cuprizone (CPZ, a copper chelator)-fed C57BL/6 mouse may be used as an animal model of schizophrenia. The goals of this study were to see the recovery processes of CPZ-induced behavioral changes and damaged white matter and to examine possible effects of antipsychotic drugs on the recovery processes. Mice were fed a CPZ-containing diet for 5 weeks then returned to normal food for 3 weeks, during which period mice were treated with different antipsychotic drugs. Various behaviors were measured at the end of CPZ-feeding phase as well as on the 14th and 21st days after CPZ withdrawal. The damage to and recovery status of white matter in the brains of mice were examined. Dietary CPZ resulted in white matter damage and behavioral abnormalities in the elevated plus-maze (EPM), social interaction (SI), and Y-maze test. EPM performance recovered to normal range within 2 weeks after CPZ withdrawal. Alterations in SI showed no recovery. Antipsychotics did not alter animals’ behavior in either of these tests during the recovery period. Altered performance in the Y-maze showed some recovery in the vehicle group; atypical antipsychotics, but not haloperidol, significantly promoted this recovery process. The recovery of damaged white matter was incomplete during the recovery period. None of the drugs significantly promoted the recovery of damaged white matter. These results suggest that CPZ-induced white matter damage and SI deficit may be resistant to the antipsychotic treatment employed in this study. They are in good accordance with the clinical observations that positive symptoms in schizophrenic patients respond well to antipsychotic drugs while social dysfunction is usually intractable.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, School of Medicine, Southern Illinois University Carbondale Carbondale, IL, USA
| | | | | | | |
Collapse
|
29
|
Effect of ‘chronic’ versus ‘acute’ ketamine administration and its ‘withdrawal’ effect on behavioural alterations in mice: Implications for experimental psychosis. Behav Brain Res 2011; 216:247-54. [DOI: 10.1016/j.bbr.2010.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/21/2022]
|
30
|
Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2010; 93:13-24. [PMID: 20950668 DOI: 10.1016/j.pneurobio.2010.09.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/03/2010] [Accepted: 09/30/2010] [Indexed: 01/05/2023]
Abstract
Multiple lines of evidence in schizophrenia, from brain imaging, studies in postmortem brains, and genetic association studies, have implicated oligodendrocyte and myelin dysfunction in this disease. Recent studies suggest that oligodendrocyte and myelin dysfunction leads to changes in synaptic formation and function, which could lead to cognitive dysfunction, a core symptom of schizophrenia. Furthermore, there is accumulating data linking oligodendrocyte and myelin dysfunction with dopamine and glutamate abnormalities, both of which are found in schizophrenia. These findings implicate oligodendrocyte and myelin dysfunction as a primary change in schizophrenia, not only as secondary consequences of the illness or treatment. Strategies targeting oligodendrocyte and myelin abnormalities could therefore provide therapeutic opportunities for patients suffering from schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Conte Center for the Neuroscience of Mental Disorders and the Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
31
|
Niu J, Mei F, Li N, Wang H, Li X, Kong J, Xiao L. Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell culturesThis paper is one of a selection of papers published in this special issue entitled “Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:611-20. [DOI: 10.1139/o09-178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Haloperidol is a commonly used, typical, antipsychotic drug (APD) that acts strongly against positive symptoms, but has fewer therapeutic effects on, or may even aggravate, negative symptoms and cognitive deficits in patients with schizophrenia. Loss of oligodendrocytes has been suggested as a factor associated with the negative symptoms of schizophrenia. Recent study shows that chronic haloperidol treatment induced down-regulation of oligodendrocyte-related genes in certain brain regions of mouse. In this study, we used primary oligodendrocyte progenitor cell cultures from 1- to 3-day-postnatal rats to investigate the direct effects of haloperidol on the proliferation and differentiation of oligodendrocyte progenitor cells. Our results showed that (i) haloperidol (0–10.0 µmol·L–1) facilitated the proliferation of oligodendrocyte progenitor cells, (ii) chronic haloperidol (0.5 µmol·L–1) treatment decreased the number of myelin basic protein positive oligodendrocytes and reduced the oligodendrocytes cells possessing myelin-like membranes, resulting in inhibition of the terminal differentiation of oligodendrocytes, and (iii) D3 receptor mRNA was detected in oligodendrocyte progenitor cells, and haloperidol treatment induced a down-regulation of D3 receptor mRNA. These results suggest that the typical antipsychotic drug haloperidol affects the development of oligodendrocyte progenitor cells, and that D3 receptor down regulation may be involved. Our observations provide new insight into possible cellular mechanisms responsible for the side effects of typical antipsychotic drugs and support the concept that abnormality of oligodendrocytes may be involved in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nan Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hanzhi Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinmin Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jiming Kong
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
32
|
Kerns D, Vong GS, Barley K, Dracheva S, Katsel P, Casaccia P, Haroutunian V, Byne W. Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia. Schizophr Res 2010; 120:150-8. [PMID: 20580881 DOI: 10.1016/j.schres.2010.04.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 12/15/2022]
Abstract
Deficits in the expression of oligodendrocyte (Ol) and myelin genes have been described in numerous brain regions in schizophrenia (SZ) in association with abnormalities of cell cycle markers. We have previously reported a SZ-associated decrease in the expression of genes expressed after, but not prior to, the terminal differentiation of Ols in the posterior limb of the internal capsule (ICp). This pattern of deficits could reflect a failure of Ol precursors to exit the cell cycle and differentiate to meet the demands imposed by the high rate of apoptosis among myelinating Ols. Here we explore this hypothesis using quantitative real time PCR to examine the mRNA expression of additional genes in the ICp of the previously examined sample of 14 subjects with SZ and 15 normal controls (NCs). The genes examined in the present study were chosen because they are associated with particular phases of the cell cycle (CCND1, CCND2, p21(Cip1), p27(Kip1), and p57(Kip2)), with DNA replication and repair (PCNA), apoptosis (CASP3), or the Notch signaling pathway (JAG1, HES1, HES5, andDTX1). The Notch pathway influences whether Ol precursors continue to proliferate or exit the cell cycle. We also determined the densities of Ols in the ICp. Genes associated with maintenance of the cell cycle tended to exhibit increased expression levels in SZ relative to NCs and to be negatively correlated with the expression levels of the previously assessed mature Ol genes. In contrast, genes associated with cell cycle arrest tended to show the opposite pattern (decreased expression in SZ and positive correlations with mature Ol genes). CASP3 and PCNA expression levels were significantly decreased in SZ and positively correlated with mature Ol genes, suggesting that myelinating Ols may turnover more rapidly in normal controls than in subjects with SZ. JAG1 expression was significantly increased in SZ and exhibited positive correlations with mediators of the canonical Notch pathway but negative correlations with mature Ol genes. Ol densities were significantly decreased in SZ. These data are consistent with the hypothesis that Ol and myelin deficits in SZ involve a failure of Ol precursors to appropriately exit the cell cycle in order to differentiate and mature into myelinating Ols.
Collapse
Affiliation(s)
- David Kerns
- J.J. Peters VA Medical Center, 130 West Kingsbridge Ave., Bronx, New York, NY 10468, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y, Arai M, Niizato K, Iritani S, Itokawa M, Inada T, Iwata N, Ozaki N, Ujike H, Kunugi H, Sasaki T, Takahashi M, Watanabe Y, Someya T, Kakita A, Takahashi H, Nawa H, Arinami T. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull 2010; 36:756-65. [PMID: 19011233 PMCID: PMC2894596 DOI: 10.1093/schbul/sbn160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chromosome 22q11 deletion syndrome (22q11DS) increases the risk of development of schizophrenia more than 10 times compared with that of the general population, indicating that haploinsufficiency of a subset of the more than 20 genes contained in the 22q11DS region could increase the risk of schizophrenia. In the present study, we screened for genes located in the 22q11DS region that are expressed at lower levels in postmortem prefrontal cortex of patients with schizophrenia than in those of controls. METHODS Gene expression was screened by Illumina Human-6 Expression BeadChip arrays and confirmed by real-time reverse transcription-polymerase chain reaction assays and Western blot analysis. RESULTS Expression of GNB1L was lower in patients with schizophrenia than in control subjects in both Australian (10 schizophrenia cases and 10 controls) and Japanese (43 schizophrenia cases and 11 controls) brain samples. TBX1 could not be evaluated due to its low expression levels. Expression levels of the other genes were not significantly lower in patients with schizophrenia than in control subjects. Association analysis of tag single-nucleotide polymorphisms in the GNB1L gene region did not confirm excess homozygosity in 1918 Japanese schizophrenia cases and 1909 Japanese controls. Haloperidol treatment for 50 weeks increased Gnb1l gene expression in prefrontal cortex of mice. CONCLUSIONS Taken together with the impaired prepulse inhibition observed in heterozygous Gnb1l knockout mice reported by the previous study, the present findings support assertions that GNB1L is one of the genes in the 22q11DS region responsible for increasing the risk of schizophrenia.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Minori Koga
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yasue Horiuchi
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Miyuki Morikawa
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yoshimi Suzuki
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Makoto Arai
- Department of Schizophrenia Research, Tokyo Institute of Psychiatry, Tokyo 156-8585, Japan
| | - Kazuhiro Niizato
- Tokyo Metropolitan Matsuzawa Hospital, Department of Psychiatry, Tokyo 156-0057, Japan
| | - Shyuji Iritani
- Tokyo Metropolitan Matsuzawa Hospital, Department of Psychiatry, Tokyo 156-0057, Japan
| | - Masanari Itokawa
- CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan,Tokyo Metropolitan Matsuzawa Hospital, Department of Psychiatry, Tokyo 156-0057, Japan
| | - Toshiya Inada
- Seiwa Hospital, Institute of Neuropsychiatry, Tokyo 162-0851, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University, School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Hiroshi Ujike
- Department of Neuropsychiatry, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Tsukasa Sasaki
- Health Service Center, University of Tokyo, Tokyo 113-0033, Japan
| | - Makoto Takahashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Akiyoshi Kakita
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan, Department of Pathology
| | - Hitoshi Takahashi
- Department of Pathological Neuroscience, Brain Research Institute, Niigta University, Niigata 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Pathology, Brain Research Institute, Niigta University, Niigata 951-8585, Japan
| | - Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
34
|
Wang H, Xu H, Niu J, Mei F, Li X, Kong J, Cai W, Xiao L. Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr Res 2010; 119:164-74. [PMID: 20346631 DOI: 10.1016/j.schres.2010.02.1068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
Recent human studies suggest that abnormal development of oligodendrocytes (OLs) is an important component in the pathophysiology of schizophrenia. However, less information is available regarding effects of antipsychotics on OLs' development. In the present study, young adult C57BL/6 mice were given haloperidol (HAL; 2mg/kg/day) in their drinking water for three or six weeks. At the conclusion of the drug treatment, mice were sacrificed and the numbers of NG2- and Olig2-expressing cells in the brain regions of the corpus callosum, hippocampus and cerebral cortex were quantified. NG2 is a specific marker for oligodendroglia precursor cells (OPCs); Olig2 marks glial progenitors. HAL treatment for three weeks increased the number of NG2-expressing cells in the corpus callosum; HAL treatment for three and six weeks increased the numbers of Olig2-expressing cells in all three brain regions and increased the levels of Olig2 expression in the same brain regions. These results suggest that HAL treatment activates adult OPCs, which divide infrequently under normal conditions but respond to a variety of insulting factors by proliferation and differentiation. However, our further observations showed no changes in the number of mature OLs and the amount of myelin basic protein in HAL-treated mice, suggesting the drug treatment has no effect on the maturation of OLs. In addition, HAL treatment did not increase the numbers of GFAP- and CD68-expressing cells, suggesting that no gliosis and inflammatory responses occurred while the drug activated the quiescent OPCs in adult brain. These results suggest that HAL treatment may target the development of OLs.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hayashi-Takagi A, Sawa A. Disturbed synaptic connectivity in schizophrenia: convergence of genetic risk factors during neurodevelopment. Brain Res Bull 2010; 83:140-6. [PMID: 20433911 DOI: 10.1016/j.brainresbull.2010.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 02/07/2010] [Accepted: 04/19/2010] [Indexed: 12/13/2022]
Abstract
The pathological mechanisms underlying schizophrenia are unclear. Although genetic susceptibility factors for schizophrenia likely influence neurodevelopmental processes, the onset of the disease is in adolescence and young adulthood. Here we review recent literatures implicating neurodevelopmental deficits in schizophrenia and discuss how genetic factors are involved in the processes toward onset of the disease. We emphasize the importance of postnatal glutamate synapse development in the pathology of the disorder. These genetic risk factors contribute to the process possibly in a synergistic manner. The notion of signal pathways involving more than one genetic factor is in accord with the multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | | |
Collapse
|
36
|
Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 2009; 112:54-64. [PMID: 19447584 DOI: 10.1016/j.schres.2009.04.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 12/11/2022]
Abstract
Deficits in the expression of oligodendrocyte and myelin genes have been described in numerous cortical regions in schizophrenia and affective disorders; however, relatively little attention has been paid to subcortical structures. Here we employed quantitative real time PCR to examine the mRNA expression of 17 genes that are expressed by oligodendrocyte precursors (OLPs) and their derivatives, including astrocytes. Four subcortical regions were examined (the anteroventral (AV) and mediodorsal thalamic nuclei (MDN), internal capsule (IC) and putamen (Put)) in postmortem material from subjects (age 25-68 at time of death) with no known psychiatric history (NCs) as well as in subjects with schizophrenia (SZ), major depressive disorder (MDD), and bipolar disorder (BPD). In all regions examined, genes expressed after the terminal differentiation of oligodendrocytes tended to have lower levels of mRNA expression in subjects with SZ compared to NCs. These differences were statistically significant across regions for four genes (CNP, GALC, MAG and MOG) and approached significance for TF. No genes were under expressed in MDD. Only TF was under expressed in BPD and only in the IC. In contrast, two astrocyte-associated genes (GFAP and ALDH1L1) had higher mean expression levels across regions in all psychiatric groups relative to NCs. These differences reached statistical significance for SZ and MDD relative to NCs. There were no age by diagnosis interactions. The majority of age regressions had negative slopes for the expression of oligodendrocyte-associated genes. GFAP but not ALDH1L1 expression was significantly and positively correlated with age in the MDN, AV and Put. Across subject groups the expression of both astrocyte genes was highly correlated with cumulative neuroleptic exposure in all regions except the Put. Significant positive correlations were also observed in some regions between cumulative neuroleptic exposure and the expression of genes associated with mature oligodendrocytes as well as with bipotential OLPs. Multiple negative correlations were observed between the mRNA expression of astrocyte genes and genes expressed by terminally differentiated oligodendrocytes. These data are discussed in the context of myelin turnover and potential effects of psychiatric illness as well as medications on the developmental fate of OLPs.
Collapse
|
37
|
Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Souza GHMF, Marangoni S, Novello JC, Turck CW, Dias-Neto E. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 2009; 43:978-86. [PMID: 19110265 DOI: 10.1016/j.jpsychires.2008.11.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/08/2008] [Accepted: 11/13/2008] [Indexed: 12/15/2022]
Abstract
Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann's Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients' dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee PR, Fields RD. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons. Front Neuroanat 2009; 3:4. [PMID: 19521541 PMCID: PMC2694662 DOI: 10.3389/neuro.05.004.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/19/2009] [Indexed: 01/04/2023] Open
Abstract
Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.
Collapse
Affiliation(s)
- Philip R Lee
- National Institutes of Health, NICHD Bethesda, MD, USA
| | | |
Collapse
|
39
|
Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2009; 259:151-63. [PMID: 19165527 DOI: 10.1007/s00406-008-0847-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/19/2008] [Indexed: 01/20/2023]
Abstract
Schizophrenia is a complex disease, likely to be caused by a combination of serial alterations in a number of genes and environmental factors. The dorsolateral prefrontal cortex (Brodmann's Area 46) is involved in schizophrenia and executes high-level functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts and attitudes, correct social behavior and personality expression. Global proteomic analysis of post-mortem dorsolateral prefrontal cortex samples from schizophrenia patients and non-schizophrenic individuals was performed using stable isotope labeling and shotgun proteomics. The analysis resulted in the identification of 1,261 proteins, 84 of which showed statistically significant differential expression, reinforcing previous data supporting the involvement of the immune system, calcium homeostasis, cytoskeleton assembly, and energy metabolism in schizophrenia. In addition a number of new potential markers were found that may contribute to the understanding of the pathogenesis of this complex disease.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratório de Neurociências, Instituto de Psiquiatria, Universidade de São Paulo, Rua. Dr. Ovidio Pires de Campos, no 785, Consolação, São Paulo, SP 05403-010, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia. Acta Neuropathol 2009; 117:385-94. [PMID: 18438678 DOI: 10.1007/s00401-008-0379-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 12/15/2022]
Abstract
It has been proposed that schizophrenia results partly from altered brain connectivity. Gene microarray analyses performed in gray matter have indicated that several myelin-related genes normally expressed in oligodendrocytes have decreased expression levels in schizophrenia. These data suggest that oligodendrocytes may be involved in the deficits of schizophrenia and may be decreased in number in the case of disease. The anterior cingulate cortex in particular has been demonstrated to be affected in schizophrenia, with studies reporting altered neuronal arrangement, decreased anisotropy in diffusion tensor images, and hypometabolism. We used a stereologic nearest-neighbor estimator of spatial distribution to investigate oligodendrocytes in the anterior cingulum bundle using postmortem tissue from 13 chronic schizophrenics and 13 age-matched controls. Using a spatial point pattern analysis, we measured the degree of oligodendrocyte clustering by comparing the probability of finding a nearest-neighbor at a given distance in schizophrenics and controls. At the same time, we also estimated the number and density of oligodendrocytes in the region of interest. In the present study, we found no significant differences in the oligodendrocyte distribution or density in the cingulum bundle between the two groups, in contrast to earlier data from the prefrontal subcortical white matter. These results suggest that a subtler oligodendrocyte or myelin anomaly may underlie the structural deficits observed by brain imaging in the cingulum bundle in schizophrenia.
Collapse
|
41
|
Jiang L, Saetre P, Jazin E, Carlström EL. Haloperidol changes mRNA expression of a QKI splice variant in human astrocytoma cells. BMC Pharmacol 2009; 9:6. [PMID: 19335891 PMCID: PMC2676266 DOI: 10.1186/1471-2210-9-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 03/31/2009] [Indexed: 11/19/2022] Open
Abstract
Background The quaking homolog, KH domain RNA binding (mouse) (QKI) is a candidate gene for schizophrenia. Disturbed QKI mRNA expression is observed in the prefrontal cortex of patients, and some of these changes correlate to treatment with antipsychotic drugs. To test if low doses of antipsychotic drugs can modify QKI mRNA expression, human astrocytoma (U343) and oligodendroglioma (HOG) cell lines were treated with five different antipsychotic drugs including Haloperidol, Aripiprazole, Clozapine, Olanzapine and Risperidone. Messenger RNA expression levels of splice variants QKI-5, QKI-6 and QKI-7 were measured by Real-Time PCR. Results Haloperidol treatment (0.2 μM) doubled QKI-7 mRNA levels in U343 cells after 6 hours (p-value < 0.02). The effect was dose dependent, and cells treated with ten times higher concentration (2 μM) responded with a five-fold and three-fold increase in QKI-7, 6 and 24 hours after treatment, respectively (p-values < 0.0001). Conclusion The results in U343 cells suggest that QKI-7 mRNA expression in human astrocytes is induced by Haloperidol, at concentrations similar to plasma levels relevant to clinical treatment of schizophrenia. The molecular mechanism of action of antipsychotic drugs after binding to receptors is not well known. We hypothesize that QKI regulation is involved in this mechanism.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Development and Genetics, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
42
|
Byne W, Tatusov A, Yiannoulos G, Vong GS, Marcus S. Effects of mental illness and aging in two thalamic nuclei. Schizophr Res 2008; 106:172-81. [PMID: 18835520 PMCID: PMC2629743 DOI: 10.1016/j.schres.2008.08.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 08/06/2008] [Accepted: 08/11/2008] [Indexed: 12/15/2022]
Abstract
We previously reported a schizophrenia associated reduction of neuronal and oligodendrocyte number in the anterior principal thalamic nucleus (APN) in a cohort of severely impaired elderly subjects with schizophrenia (SZ) relative to age matched nonpsychiatric controls (NCs). The present study was undertaken to determine 1) if those findings could be replicated in an independent sample of less chronically impaired subjects with SZ and NCs stratified across a broader age range; 2) if the findings are specific to SZ or are also seen in unipolar major depressive (MDD) or bipolar disorder (BPD); and 3) if the findings are specific to the APN or also seen in another thalamic nucleus. Computer assisted stereological methods were employed to determine the number of neurons and oligodendrocytes in the APN and centromedian nucleus (CMN) of the Nissl-stained thalamic sections maintained by the Stanley Foundation Brain Bank. This collection includes specimens from NCs and age matched subjects with diagnoses of SZ, MDD, or BPD who died between the ages of 25 and 68. Data were analyzed by mixed-effects linear regressions adjusting for demographic variables and known history of exposure to psychotropic medications. Oligodendrocyte number was decreased in both nuclei relative to NCs in subjects with SZ and in that subset of subjects with BPD who had experienced psychotic episodes. Compared to NCs both of these patient groups also exhibited an attenuation of an age-related increase in the number of oligodendrocytes. Contrary to our previous report, we did not detect a SZ-associated deficit in neuronal number in the APN. A history of exposure to neuroleptics, however, was associated with a decrease in neuronal number in both nuclei, but this decrease did not vary in relation to cumulative lifetime neuroleptic exposure in fluphenazine equivalents. Among subjects with psychiatric diagnoses, exposure to lithium was associated with an increase in the number of oligodendrocytes. No effects were detected for exposure to anticonvulsants or for abuse of alcohol or other substances.
Collapse
Affiliation(s)
- William Byne
- Division of Basic and Laboratory Research, Bronx Veterans Affairs Medical Center, Bronx, NY 10467, United States.
| | | | | | | | | |
Collapse
|
43
|
Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm (Vienna) 2008; 116:275-89. [DOI: 10.1007/s00702-008-0156-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/29/2008] [Indexed: 12/15/2022]
|
44
|
Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W, Li X, Dyck LE, Devon RM, Deng Y, Li XM. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry 2008; 13:697-708. [PMID: 17684494 DOI: 10.1038/sj.mp.4002064] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent neuroimaging and postmortem studies have reported abnormalities in white matter of schizophrenic brains, suggesting the involvement of oligodendrocytes in the etiopathology of schizophrenia. This view is being supported by gene microarray studies showing the downregulation of genes related to oligodendrocyte function and myelination in schizophrenic brain compared to control subjects. However, there is currently little information available on the response of oligodendrocytes to antipsychotic drugs (APDs), which could be invaluable for corroborating the oligodendrocyte hypothesis. In this study we found: (1) quetiapine (QUE, an atypical APD) treatment in conjunction with addition of growth factors increased the proliferation of neural progenitors isolated from the cerebral cortex of embryonic rats; (2) QUE directed the differentiation of neural progenitors to oligodendrocyte lineage through extracellular signal-related kinases; (3) addition of QUE increased the synthesis of myelin basic protein and facilitated myelination in rat embryonic cortical aggregate cultures; (4) chronic administration of QUE to C57BL/6 mice prevented cortical demyelination and concomitant spatial working memory impairment induced by cuprizone, a neurotoxin. These findings suggest a new neural mechanism of antipsychotic action of QUE, and help to establish a role for oligodendrocytes in the etiopathology and treatment of schizophrenia.
Collapse
Affiliation(s)
- L Xiao
- Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, Lipska BK. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008; 98:129-38. [PMID: 17964117 PMCID: PMC2259271 DOI: 10.1016/j.schres.2007.09.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/20/2007] [Accepted: 09/24/2007] [Indexed: 11/28/2022]
Abstract
Prior studies have found decreased mRNA expression of oligodendrocyte-associated genes in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. However, it is unclear which specific genes are affected and whether the changes occur in the cortical white or grey matter. We assessed the mRNA expression levels of four oligodendrocyte-related genes: myelin-associated basic protein (MOBP), myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and oligodendrocyte-lineage transcription factor 2 (OLIG2) in DLPFC white and grey matter using quantitative-PCR (approximately 70 controls and approximately 30 patients with schizophrenia). We also examined the effects of high-risk polymorphisms in CNP and OLIG2 on mRNA levels of these genes. We found that genetic polymorphisms in CNP (rs2070106) and OLIG2 (rs1059004 and rs9653711), previously associated with schizophrenia, predicted low expression of these genes. Expression of MAG, CNP and OLIG2 did not differ between patients with schizophrenia and controls in the grey or white matter but MOBP mRNA levels were increased in the DLPFC white matter in patients with a history of substance abuse. MOBP and CNP protein in the white matter was not altered. Although previously reported reductions in the expression of myelin-related genes in the DLPFC were not detected, we show that individuals carrying risk-associated alleles in oligodendrocyte-related genes had relatively lower transcript levels. These data illustrate the importance of genetic background in gene expression studies in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Barbara K. Lipska
- *Corresponding Author: Barbara K. Lipska, 10 Center Drive, Room 4N306, Bethesda, MD 20892-1385, phone: (301) 496-9501, Fax (301) 402-2751, e-mail:
| |
Collapse
|