1
|
Liu W, Lv H, Zhou Y, Zuo X, Wang X. Comprehensive Analysis of the Gene Expression Profiles of Rat Brain Tissues under Environmental Exposure to Nicotine. Pak J Biol Sci 2024; 27:547-566. [PMID: 39551957 DOI: 10.3923/pjbs.2024.547.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
<b>Background and Objective:</b> Nicotine-relevant smoking causes many serious issues of environmental pollution and complicated harm to human health. The present study aimed to evaluate the experimental effects of exposure to nicotine on the gene expression profiles of rat brain tissues with differentially expressed genes (DEGs). <b>Materials and Methods:</b> The rat gene expression profiles of environmental exposure to nicotine were initially screened and retrieved from the microarray dataset GSE59895 in the GEO database. Next, it was analyzed with an integrated bioinformatics pipeline. The DEGs were analyzed in Limma and functional enrichment analyses of GO terms and KEGG pathways were performed with clusterProfiler. The STRING online tools and Cytoscape StringApp were subsequently employed to construct the protein-protein interaction (PPI) network, whereas key modules and hub genes were finally explored and visualized. <b>Results:</b> There was total of 382 shared DEGs between different case groups in the experiment, whereas 9 common shared DEGs were found among all three groups. The significant enrichments of 28 GO terms and 3 KEGG pathways were comprehensively analyzed with corresponding functionally enriched genes. Then, 3 key modules and 10 hub genes were further identified and explored in the resulted PPI network. In the disease-related signaling pathways, eleven potential neuropathic disease-related genes may complement the treatment of neurodegenerative diseases. <b>Conclusion:</b> The study found that chronic exposure to nicotine would result in the differential expression of the disease-related genes, whereas these DEGs might increase the environmental risks of Huntington's disease, Alzheimer's disease and other multiple neurodegenerative diseases.
Collapse
|
2
|
Brenna S, Glatzel M, Magnus T, Puig B, Galliciotti G. Neuroserpin and Extracellular Vesicles in Ischemic Stroke: Partners in Neuroprotection? Aging Dis 2024; 15:2191-2204. [PMID: 39191396 PMCID: PMC11346402 DOI: 10.14336/ad.2024.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 08/29/2024] Open
Abstract
Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint. Timely intervention is imperative, given that delayed thrombolysis increases tPA leakage into the brain parenchyma, causing harmful effects. Strategies to preserve tPA's vascular benefits while shielding brain cells from its toxicity have been explored. Notably, administering neuroserpin (Ns), a brain-specific tPA inhibitor, represents one such approach. Following ischemic stroke, Ns levels rise and correlate with favorable post-stroke outcomes. Studies in rodent models of focal cerebral ischemia have demonstrated the beneficial effects of Ns administration. Ns treatment maintains blood-brain barrier (BBB) integrity, reducing stroke volume. Conversely, Ns-deficient animals exhibit larger stroke injury, increased BBB permeability and enhanced microglia activation. Furthermore, Ns administration extends the therapeutic window for tPA intervention, underscoring its potential in stroke management. Remarkably, our investigation reveals the presence of Ns within extracellular vesicles (EVs), small membrane-surrounded particles released by all cells and critical for intercellular communication. EVs influence disease outcome following stroke through cargo transfer between cells. Clarifying the role of EVs containing NS could open up urgently needed novel therapeutic approaches to improve post-ischemic stroke outcome.
Collapse
Affiliation(s)
- Santra Brenna
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Berta Puig
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Wang LW, Hsiung CW, Chang CP, Lin MT, Chen SJ. Neuroserpin normalization by mesenchymal stem cell therapy after encephalopathy of prematurity in neonatal rats. Pediatr Res 2024:10.1038/s41390-024-03412-z. [PMID: 39085403 DOI: 10.1038/s41390-024-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Hypoxic-ischemia (HI), infection/inflammation and reperfusion injury are pathogenic factors of encephalopathy of prematurity, which involves maturational/neurotrophic disturbances in oligodendrocyte progenitor cells (OPC) and neurons/axons. Mesenchymal stem cells (MSCs) might facilitate neuroserpin production, which is neurotrophic for OPC/neurons. This study investigated MSC effects on developmental disturbances after lipopolysaccharide (LPS)-sensitized HI/reperfusion (LHIR) injury and the relation to neuroserpin expression. METHODS Postnatal day 2 (P2) rat pups received intraperitoneal LPS (5 µg/kg) injection followed by HI (unilateral common-carotid-artery ligation and 6.5% oxygen exposure for 90 min) and post-HI reperfusion (release of ligation). MSCs (5 × 104 cells) were injected into the left lateral ventricle at 24 h post-LHIR. Neurological tests and brain tissue examinations were performed between P5 and P56. RESULTS After LHIR injury, MSC therapy significantly reduced cell death in subplate neurons, attenuated axonal damage, and facilitated synaptophysin synthesis in the cortex. It also alleviated OPC maturation arrest and preserved the complexity of myelinated axons in the white matter, leading to cognitive, motor and behavioral functional improvements. These beneficial effects were linked to restored neuroserpin expression in subplate neurons. CONCLUSIONS MSC therapy ameliorated developmental disturbances after LHIR injury through protection of neuroserpin expression, serving as a promising approach for treating encephalopathy of prematurity. IMPACT Neuroserpin is secreted by subplate neurons and may regulate the development of neurons and oligodendrocyte-axon contact for myelination in the premature brain. LPS-sensitized hypoxic-ischemia/reperfusion (LHIR) injury caused the developmental disturbances of neurons/axons and oligodendrocytes, and lowered neuroserpin levels in a neonatal rat model simulating encephalopathy of prematurity. Mesenchymal stem cell therapy alleviated the developmental disturbances after LHIR injury through protection of neuroserpin expression in subplate neurons, offering a new perspective on potential treatment for encephalopathy of prematurity.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan, ROC.
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan, ROC.
- School of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC.
| | - Chien-Wei Hsiung
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, ROC
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - Shyi-Jou Chen
- Department of Pediatrics, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
5
|
D'Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G, Miranda E. Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 2021; 78:6409-6430. [PMID: 34405255 PMCID: PMC8558161 DOI: 10.1007/s00018-021-03907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.
Collapse
Affiliation(s)
- Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Visentin
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, I.R.C.C.S. Policlinico San Donato, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Fatima S, Ansari S, Bano S, Ahamad S, Ishqi HM, Tabish M, Gupta D, Rehman SU, Jairajpuri MA. Detection of truncated isoforms of human neuroserpin lacking the reactive center loop: Implications in noninhibitory role. IUBMB Life 2021; 73:941-952. [PMID: 33893722 DOI: 10.1002/iub.2475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
Neuroserpin is a serine protease inhibitor expressed mainly in the brain and at low levels in other tissues like the kidney, testis, heart, and spinal cord. It is involved in the inhibition of tissue plasminogen activator (tPA), plasmin, and to a lesser extent, urokinase-type plasminogen (uPA). Neuroserpin has also been shown to plays noninhibitory roles in the regulation of N-cadherin-mediated cell adhesion. It is involved in neuroprotection from seizure and stroke through tPA-mediated inhibition and also through its other protease targets. Mutations in critical domains of neuroserpin lead to its polymerization and neuronal death. In this study, a novel truncated isoform of human neuroserpin was identified in the brain and liver, which was confirmed by reverse transcriptase-PCR and DNA sequencing using exon-specific primers. Structural characterization of novel isoform using MD simulations studies indicated that it lacks the reactive center loop (RCL) but largely maintains its secondary structure fold. The novel truncated variant was cloned, expressed, and purified. A comparative intrinsic fluorescence and 4,4'-bis-1-anilino naphthalene 8-sulfonate studies revealed a decrease in fluorescence emission intensity and a more exposed hydrophobic surface as compared to the reported isoform. However, the novel isoform has lost its ability for tPA inhibition and complex formation. The absence of RCL indicates a noninhibitory role for the truncated isoform, prompting a detailed search and identification of two smaller isoforms in the human brain. With indications of the noninhibitory role of neuroserpin, identifying novel isoforms that appear to be without the tPA recognition domain is significant.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shoyab Ansari
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shadabi Bano
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Hassan Mubarak Ishqi
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
- Department of Biochemistry, Faculty of Life Sciences, Aligarh M. University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh M. University, Aligarh, Uttar Pradesh, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
7
|
Han S, Zhang D, Dong Q, Wang X, Wang L. Deficiency in Neuroserpin Exacerbates CoCl 2 Induced Hypoxic Injury in the Zebrafish Model by Increased Oxidative Stress. Front Pharmacol 2021; 12:632662. [PMID: 33737878 PMCID: PMC7960655 DOI: 10.3389/fphar.2021.632662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
Protective strategy against hypoxic-ischemic (H/I) induced injury has been intensively discussed. Neuroserpin, an inhibitor for tissue plasminogen activator (tPA), has been proved a vital neuroprotective agent in cerebral ischemia mouse model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell model. Neuroserpin is a promising therapeutic hint for neonatal hypoxic-ischemia injury. Here, we established a neuroserpin deficient zebrafish to study its role in CoCl2 chemically induced hypoxic injury. CoCl2 exposure was beginning at the embryonic stage. Development defects, neuronal loss, and vascular malformation was assessed by imaging microscopy. Neuroserpin deficient zebrafish showed more development defects, neuronal loss and vascular malformation compared to wide-type. Apoptosis and oxidative stress were evaluated to further identify the possible mechanisms. These findings indicate that neuroserpin could protective against CoCl2 induced hypoxic injury by alleviating oxidative stress.
Collapse
Affiliation(s)
- Sha Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongyang Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Research Institute Fudan University Shanghai Cancer Center, Shanghai, China
| | - Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Transl Psychiatry 2021; 11:106. [PMID: 33542194 PMCID: PMC7862349 DOI: 10.1038/s41398-021-01223-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorders (ASD), anorexia nervosa (AN), Alzheimer's disease (AD), and schizophrenia (SZ), are heterogeneous brain disorders with unknown etiology. Genome wide studies have revealed a wide variety of risk genes for these disorders, indicating a biological link between genetic signaling pathways and brain pathology. A unique risk gene is Contactin 4 (Cntn4), an Ig cell adhesion molecule (IgCAM) gene, which has been associated with several neuropsychiatric disorders including ASD, AN, AD, and SZ. Here, we investigated the Cntn4 gene knockout (KO) mouse model to determine whether memory dysfunction and altered brain plasticity, common neuropsychiatric symptoms, are affected by Cntn4 genetic disruption. For that purpose, we tested if Cntn4 genetic disruption affects CA1 synaptic transmission and the ability to induce LTP in hippocampal slices. Stimulation in CA1 striatum radiatum significantly decreased synaptic potentiation in slices of Cntn4 KO mice. Neuroanatomical analyses showed abnormal dendritic arborization and spines of hippocampal CA1 neurons. Short- and long-term recognition memory, spatial memory, and fear conditioning responses were also assessed. These behavioral studies showed increased contextual fear conditioning in heterozygous and homozygous KO mice, quantified by a gene-dose dependent increase in freezing response. In comparison to wild-type mice, Cntn4-deficient animals froze significantly longer and groomed more, indicative of increased stress responsiveness under these test conditions. Our electrophysiological, neuro-anatomical, and behavioral results in Cntn4 KO mice suggest that Cntn4 has important functions related to fear memory possibly in association with the neuronal morphological and synaptic plasticity changes in hippocampus CA1 neurons.
Collapse
|
9
|
Loef EJ, Brooks AES, Lorenz N, Birch NP, Dunbar PR. Neuroserpin regulates human T cell-T cell interactions and proliferation through inhibition of tissue plasminogen activator. J Leukoc Biol 2020; 107:145-158. [PMID: 31667914 DOI: 10.1002/jlb.2a1019-098rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/01/2023] Open
Abstract
T cells play a key role in mounting an adaptive immune response. T cells are activated upon recognition of cognate Ag presented by an APC. Subsequently, T cells adhere to other activated T cells to form activation clusters, which lead to directed secretion of cytokines between communicating cells. T cell activation clusters have been implicated in regulating activation, proliferation, and memory formation in T cells. We previously reported the expression of the protease inhibitor neuroserpin by human T cells and showed that expression and intracellular localization is regulated following T cell activation. To gain a better understanding of neuroserpin in the proteolytic environment postactivation we assessed its role in human T cell clustering and proliferation. Neuroserpin knockdown increased T cell proliferation and cluster formation following T cell activation. This increased cluster formation was dependent on the proteases tissue plasminogen activator (tPA) and plasmin. Furthermore, neuroserpin knockdown or plasmin treatment of T cells increased the cleavage of annexin A2, a known plasmin target that regulates the actin cytoskeleton. Live cell imaging of activated T cells further indicated a role of the actin cytoskeleton in T cell clustering. The inhibition of actin regulators myosin ATPase and Rho-associated protein kinase signaling completely reversed the neuroserpin knockdown-induced effects. The results presented in this study reveal a novel role for neuroserpin and the proteolytic environment in the regulation of T cell activation biology.
Collapse
Affiliation(s)
- Evert Jan Loef
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Natalie Lorenz
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Hermann M, Reumann R, Schostak K, Kement D, Gelderblom M, Bernreuther C, Frischknecht R, Schipanski A, Marik S, Krasemann S, Sepulveda-Falla D, Schweizer M, Magnus T, Glatzel M, Galliciotti G. Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Mol Cell Neurosci 2020; 102:103420. [PMID: 31805346 DOI: 10.1016/j.mcn.2019.103420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroserpin is a serine protease inhibitor of the nervous system required for normal synaptic plasticity and regulating cognitive, emotional and social behavior in mice. The high expression level of neuroserpin detected at late stages of nervous system formation in most regions of the brain points to a function in neurodevelopment. In order to evaluate the contribution of neuroserpin to brain development, we investigated developmental neurogenesis and neuronal differentiation in the hippocampus of neuroserpin-deficient mice. Moreover, synaptic reorganization and composition of perineuronal net were studied during maturation and stabilization of hippocampal circuits. We showed that absence of neuroserpin results in early termination of neuronal precursor proliferation and premature neuronal differentiation in the first postnatal weeks. Additionally, at the end of the critical period neuroserpin-deficient mice had changed morphology of dendritic spines towards a more mature phenotype. This was accompanied by increased protein levels and reduced proteolytic cleavage of aggrecan, a perineuronal net core protein. These data suggest a role for neuroserpin in coordinating generation and maturation of the hippocampus, which is essential for establishment of an appropriate neuronal network.
Collapse
Affiliation(s)
- Melanie Hermann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rebecca Reumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Schostak
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dilara Kement
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Renato Frischknecht
- Department of Biology and Animal Physiology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Angela Schipanski
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sergej Marik
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
11
|
Han W, Dang R, Xu P, Li G, Zhou X, Chen L, Guo Y, Yang M, Chen D, Jiang P. Altered fibrinolytic system in rat models of depression and patients with first-episode depression. Neurobiol Stress 2019; 11:100188. [PMID: 31417944 PMCID: PMC6692056 DOI: 10.1016/j.ynstr.2019.100188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease involved in cleavage of neurotrophic factors. In addition, tPA and neuroserpin can also directly bind to low density lipoprotein receptor-related protein 1 (LRP1), promoting neurogenesis and neurite outgrowth. Given both the cleavage and non-cleavage actions of the fibrinolytic system are crucial in neurological functions, the present study, for the first time, systematically detected the changes of fibrinolytic system factors in rats exposed to chronic unpredictable mild stress (CUMS) or lipopolysaccharide (LPS) and patients with depression. In general, our data demonstrated that both CUMS and LPS reduced tPA but elevated plasminogen activator inhibitor-1 (PAI-1; SERPINE1) mRNA expression. Intriguingly, decreased expression of neuroserpin and LRP1 was also observed in rats exposed to CUMS or LPS. The down-regulated neuroserpin and LRP1 signaling were confirmed by western blotting and immunoflurence data. Likewise, elevated PAI-1 but a significant reduction of neuroserpin and LRP1 mRNA expression were observed in the peripheral blood mononuclear cells (PBMCs) of patients with first-episode depression, and the mRNA levels of PAI-1, neuroserpin and LRP1 were correlated with the Beck Depression inventory (BDI) scores, further strengthening the clinical significance and involvement of the fibrinolytic system in depression. Collectively, the present study demonstrated the alterations of fibrinolytic system in stressed and inflamed brain and in patients with first-episode depression, firstly showing that not only the cleavage actions, but also the non-cleavage actions of the system may play an essential role in the development of depression.
Collapse
Affiliation(s)
- Wenxiu Han
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Ruili Dang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pengfei Xu
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Gongying Li
- Department of Mental Health, Jining Medical University, Jining, 272000, China
| | - Xueyuan Zhou
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Lei Chen
- Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Mengqi Yang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Dan Chen
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| |
Collapse
|
12
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
13
|
Reumann R, Vierk R, Zhou L, Gries F, Kraus V, Mienert J, Romswinkel E, Morellini F, Ferrer I, Nicolini C, Fahnestock M, Rune G, Glatzel M, Galliciotti G. The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior. Learn Mem 2017; 24:650-659. [PMID: 29142062 PMCID: PMC5688962 DOI: 10.1101/lm.045864.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023]
Abstract
The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses. In fact, studies in cell culture and mice point to a role for neuroserpin in dendritic branching, spine morphology, and modulation of behavior. In this study, we investigated the physiological role of neuroserpin in the regulation of synaptic density, synaptic plasticity, and behavior in neuroserpin-deficient mice. In the absence of neuroserpin, mice show a significant decrease in spine-synapse density in the CA1 region of the hippocampus, while expression of the key postsynaptic scaffold protein PSD-95 is increased in this region. Neuroserpin-deficient mice show decreased synaptic potentiation, as indicated by reduced long-term potentiation (LTP), whereas presynaptic paired-pulse facilitation (PPF) is unaffected. Consistent with altered synaptic plasticity, neuroserpin-deficient mice exhibit cognitive and sociability deficits in behavioral assays. However, although synaptic dysfunction is implicated in neuropsychiatric disorders, we do not detect alterations in expression of neuroserpin in fusiform gyrus of autism patients or in dorsolateral prefrontal cortex of schizophrenia patients. Our results identify neuroserpin as a modulator of synaptic plasticity, and point to a role for neuroserpin in learning and memory.
Collapse
Affiliation(s)
- Rebecca Reumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ricardo Vierk
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lepu Zhou
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frederice Gries
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Vanessa Kraus
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Julia Mienert
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eva Romswinkel
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, CIBERNED, 08907 Hospitalet de Llobregat, Spain
| | - Chiara Nicolini
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Gabriele Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
15
|
Fredriksson L, Lawrence DA, Medcalf RL. tPA Modulation of the Blood-Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS. Semin Thromb Hemost 2017; 43:154-168. [PMID: 27677179 PMCID: PMC5848490 DOI: 10.1055/s-0036-1586229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The plasminogen activation (PA) system is best known for its role in fibrinolysis. However, it has also been shown to regulate many nonfibrinolytic functions in the central nervous system (CNS). In particular, tissue-type plasminogen activator (tPA) is reported to have pleiotropic activities in the CNS, regulating events such as neuronal plasticity, excitotoxicity, and cerebrovascular barrier integrity, whereas urokinase-type plasminogen activator is mainly associated with tissue remodeling and cell migration. It has been suggested that the role tPA plays in controlling barrier integrity may provide a unifying mechanism for the reported diverse, and often opposing, functions ascribed to tPA in the CNS. Here we will review the possibility that the pleiotropic effects reported for tPA in physiologic and pathologic processes in the CNS may be a consequence of its role in the neurovascular unit in regulation of cerebrovascular responses and subsequently parenchymal homeostasis. We propose that this might offer an explanation for the ongoing debate regarding the neurotoxic versus neuroprotective roles of tPA.
Collapse
Affiliation(s)
- Linda Fredriksson
- Department of Medical Biochemistry & Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Lee TW, Tsang VWK, Loef EJ, Birch NP. Physiological and pathological functions of neuroserpin: Regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol 2017; 62:152-159. [PMID: 27639894 DOI: 10.1016/j.semcdb.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
It is 27 years since neuroserpin was first discovered in the nervous system and identified as a member of the serpin superfamily. Since that time potential roles for this serine protease inhibitor have been identified in neuronal and non-neuronal systems. Many are linked to inhibition of neuroserpin's principal enzyme target, tissue plasminogen activator (tPA), although some have been suggested to involve alternate non-inhibitory mechanisms. This review focuses mainly on the inhibitory roles of neuroserpin and discusses the evidence supporting tPA as the physiological target. While the major sites of neuroserpin expression are neural, endocrine and immune tissues, most progress on characterizing functional roles for neuroserpin have been in the brain. Roles in emotional behaviour, synaptic plasticity and neuroprotection in stroke and excitotoxicity models are discussed. Current knowledge on three neurological diseases associated with neuroserpin mutation or activity, Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), Alzheimer's disease and brain metastasis is presented. Finally, we consider mechanistic studies that have revealed a distinct inhibitory mechanism for neuroserpin and its possible implications for neuroserpin function.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| | - Vicky W K Tsang
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Brain Research New Zealand, Rangahau Roro Aotearoa, Auckland, New Zealand.
| |
Collapse
|
17
|
Cheng Y, Loh YP, Birch NP. Neuroserpin Attenuates H 2O 2-Induced Oxidative Stress in Hippocampal Neurons via AKT and BCL-2 Signaling Pathways. J Mol Neurosci 2017; 61:123-131. [PMID: 27510267 DOI: 10.1007/s12031-016-0807-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
Abstract
Oxidative stress plays a critical role in neuronal injury and is associated with various neurological diseases. Here, we explored the potential protective effect of neuroserpin against oxidative stress in primary cultured hippocampal neurons. Our results show that neuroserpin inhibits H2O2-induced neurotoxicity in hippocampal cultures as measured by WST, LDH release, and TUNEL assays. We found that neuroserpin enhanced the activation of AKT in cultures subjected to oxidative stress and that the AKT inhibitor Ly294002 blocked this neuroprotective effect. Neuroserpin increased the expression of the anti-apoptotic protein BCL-2 and blocked the activation of caspase-3. Neuroserpin did not increase the level of neuroprotection over levels seen in neurons transduced with a BCL-2 expression vector, and an inhibitor of Trk receptors, K252a, did not block neuroserpin's effect. Taken together, our study demonstrates that neuroserpin protects against oxidative stress-induced dysfunction and death of primary cultured hippocampal neurons through the AKT-BCL-2 signaling pathway through a mechanism that does not involve the Trk receptors and leads to inhibition of caspase-3 activation.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nigel P Birch
- School of Biological Sciences, Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, 3a Symonds Street 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
18
|
Lorenz N, Loef EJ, Kelch ID, Verdon DJ, Black MM, Middleditch MJ, Greenwood DR, Graham ES, Brooks AE, Dunbar PR, Birch NP. Plasmin and regulators of plasmin activity control the migratory capacity and adhesion of human T cells and dendritic cells by regulating cleavage of the chemokine CCL21. Immunol Cell Biol 2016; 94:955-963. [PMID: 27301418 DOI: 10.1038/icb.2016.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/18/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
The homeostatic chemokine CCL21 has a pivotal role in lymphocyte homing and compartment localisation within the lymph node, and also affects adhesion between immune cells. The effects of CCL21 are modulated by its mode of presentation, with different cellular responses seen for surface-bound and soluble forms. Here we show that plasmin cleaves surface-bound CCL21 to release the C-terminal peptide responsible for CCL21 binding to glycosaminoglycans on the extracellular matrix and cell surfaces, thereby generating the soluble form. Loss of this anchoring peptide enabled the chemotactic activity of CCL21 and reduced cell tethering. Tissue plasminogen activator did not cleave CCL21 directly but enhanced CCL21 processing through generation of plasmin from plasminogen. The tissue plasminogen activator inhibitor neuroserpin prevented processing of CCL21 and blocked the effects of soluble CCL21 on cell migration. Similarly, the plasmin-specific inhibitor α2-antiplasmin inhibited CCL21-mediated migration of human T cells and dendritic cells and tethering of T cells to APCs. We conclude that the plasmin system proteins plasmin, tissue plasminogen activator and neuroserpin regulate CCL21 function in the immune system by controlling the balance of matrix- and cell-bound CCL21.
Collapse
Affiliation(s)
- Natalie Lorenz
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Inken D Kelch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Daniel J Verdon
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Moyra M Black
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Martin J Middleditch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Auckland Science Analytical Services, University of Auckland, Auckland, New Zealand
| | - David R Greenwood
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E Scott Graham
- Centre for Brain Research, Rangahau Roro, Aotearoa, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Anna Es Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Rangahau Roro, Aotearoa, New Zealand
- Brain Research New Zealand, Rangahau Roro, Aotearoa, New Zealand
| |
Collapse
|
19
|
Lee TW, Tsang VWK, Birch NP. Physiological and pathological roles of tissue plasminogen activator and its inhibitor neuroserpin in the nervous system. Front Cell Neurosci 2015; 9:396. [PMID: 26528129 PMCID: PMC4602146 DOI: 10.3389/fncel.2015.00396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/22/2015] [Indexed: 12/03/2022] Open
Abstract
Although its roles in the vascular space are most well-known, tissue plasminogen activator (tPA) is widely expressed in the developing and adult nervous system, where its activity is believed to be regulated by neuroserpin, a predominantly brain-specific member of the serpin family of protease inhibitors. In the normal physiological state, tPA has been shown to play roles in the development and plasticity of the nervous system. Ischemic damage, however, may lead to excess tPA activity in the brain and this is believed to contribute to neurodegeneration. In this article, we briefly review the physiological and pathological roles of tPA in the nervous system, which includes neuronal migration, axonal growth, synaptic plasticity, neuroprotection and neurodegeneration, as well as a contribution to neurological disease. We summarize tPA's multiple mechanisms of action and also highlight the contributions of the inhibitor neuroserpin to these processes.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Vicky W K Tsang
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland Auckland, New Zealand ; Brain Research New Zealand, Rangahau Roro Aotearoa Auckland, New Zealand
| |
Collapse
|
20
|
Gu RP, Fu LL, Jiang CH, Xu YF, Wang X, Yu J. Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator. PLoS One 2015; 10:e0130440. [PMID: 26176694 PMCID: PMC4503687 DOI: 10.1371/journal.pone.0130440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
The purpose of the present study was to investigate the potential neuroprotective effect of neuroserpin (NSP) on acute retinal ischemic/reperfusion-induced (IR) injury. An IR injury model was established by elevating intraocular pressure (IOP) for 60 minutes in wild type and tPA-deficient (tPA-/-) mice. Prior to IR injury, 1 μL of 20 μmol/L NSP or an equal volume of bovine serum albumin (BSA) was intravitreally administered. Retinal function was evaluated by electroretinograph (ERG) and the number of apoptotic neurons was determined via TUNEL labeling. Caspase-3, -8, -9,poly (ADP-ribose) polymerase (PARP)and their cleaved forms were subsequently analyzed. It was found that IR injury significantly damaged retinal function, inducing apoptosis in the retina, while NSP attenuated the loss of retinal function and significantly reduced the number of apoptotic neurons in both wild type and tPA-/- mice. The levels of cleaved caspase-3, cleaved PARP (the substrate of caspase-3) and caspase-9 (the modulator of the caspase-3), which had increased following IR injury, were significantly inhibited by NSP in both wild type and tPA-/- mice. NSP increased ischemic tolerance in the retina at least partially by inhibiting the intrinsic cell death signaling pathway of caspase-3. It was therefore concluded that the protective effect of neuroserpin maybe independent from its canonical interaction with a tissue-type plasminogen activator.
Collapse
Affiliation(s)
- R. P. Gu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - L. L. Fu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C. H. Jiang
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Department of Ophthalmology, No. 5 people’s Hospital of Shanghai, Shanghai, 200240, China
| | - Y. F. Xu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - X. Wang
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - J. Yu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| |
Collapse
|
21
|
Caccia S, Ricagno S, Bolognesi M. Molecular bases of neuroserpin function and pathology. Biomol Concepts 2015; 1:117-30. [PMID: 25961991 DOI: 10.1515/bmc.2010.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serpins build a large and evolutionary widespread protein superfamily, hosting members that are mainly Ser-protease inhibitors. Typically, serpins display a conserved core domain composed of three main β-sheets and 9-10 α-helices, for a total of approximately 350 amino acids. Neuroserpin (NS) is mostly expressed in neurons and in the central and peripheral nervous systems, where it targets tissue-type plasminogen activator. NS activity is relevant for axogenesis, synaptogenesis and synaptic plasticity. Five (single amino acid) NS mutations are associated with severe neurodegenerative disease in man, leading to early onset dementia, epilepsy and neuronal death. The functional aspects of NS protease inhibition are linked to the presence of a long exposed loop (reactive center loop, RCL) that acts as bait for the incoming partner protease. Large NS conformational changes, associated with the cleavage of the RCL, trap the protease in an acyl-enzyme complex. Contrary to other serpins, this complex has a half-life of approximately 10 min. Conformational flexibility is held to be at the bases of NS polymerization leading to Collins bodies intracellular deposition and neuronal damage in the pathological NS variants. Two main general mechanisms of serpin polymerization are currently discussed. Both models require the swapping of the RCL among neighboring serpin molecules. Specific differences in the size of swapped regions, as well as differences in the folding stage at which polymerization can occur, distinguish the two models. The results provided by recent crystallographic and biophysical studies allow rationalization of the functional and pathological roles played by NS based on the analysis of four three-dimensional structures.
Collapse
|
22
|
Lorenz N, Loef EJ, Verdon DJ, Chen CJJ, Mansell CJ, Angel CE, Brooks AES, Dunbar PR, Birch NP. Human T cell activation induces synaptic translocation and alters expression of the serine protease inhibitor neuroserpin and its target protease. J Leukoc Biol 2015; 97:699-710. [PMID: 25670787 DOI: 10.1189/jlb.1a0814-392r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Contact between T cells and APCs and activation of an effective immune response trigger cellular polarization and the formation of a structured interface known as the immunological synapse. Interactions across the synapse and secretion of T cell and APC-derived factors into the perisynaptic compartment regulate synapse formation and activation of T cells. We report that the serine protease inhibitor neuroserpin, an axonally secreted protein thought to play roles in the formation of the neuronal synapse and refinement of synaptic activity, is expressed in human naïve effector memory and central memory subsets of CD4(+) and CD8(+) T cells, as well as monocytes, B cells, and NK cells. Neuroserpin partially colocalized with a TGN38/LFA-1-positive vesicle population in T cells and translocates to the immunological synapse upon activation with TCR antibodies or antigen-pulsed APCs. Activation of T cells triggered neuroserpin secretion, a rapid, 8.4-fold up-regulation of the serine protease tissue plasminogen activator, the protease target for neuroserpin, and a delayed, 6.25-fold down-regulation of neuroserpin expression. Evidence of polarization and regulated neuroserpin expression was also seen in ex vivo analyses of human lymph nodes and blood-derived T cells. Increased neuroserpin expression was seen in clusters of T cells in the paracortex of human lymph nodes, with some showing polarization to areas of cell:cell interaction. Our results support a role for neuroserpin and tissue plasminogen activator in activation-controlled proteolytic cleavage of proteins in the synaptic or perisynaptic space to modulate immune cell function.
Collapse
Affiliation(s)
- Natalie Lorenz
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Evert Jan Loef
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Daniel J Verdon
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Chun-Jen J Chen
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Claudia J Mansell
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Catherine E Angel
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Anna E S Brooks
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - P Rod Dunbar
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| | - Nigel P Birch
- *School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, Centre for Brain Research, Brain Research New Zealand, University of Auckland, New Zealand
| |
Collapse
|
23
|
Ma J, Tong Y, Yu D, Mao M. Tissue plasminogen activator-independent roles of neuroserpin in the central nervous system. Neural Regen Res 2015; 7:146-51. [PMID: 25767491 PMCID: PMC4354132 DOI: 10.3969/j.issn.1673-5374.2012.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/19/2011] [Indexed: 11/18/2022] Open
Abstract
A number of studies have confirmed the existence of tissue-type plasminogen activator-independent roles of neuroserpin, a member of the serine protease inhibitor superfamily. In this review article, we aim to clarify this role. These unique roles of neuroserpin are involved in its neuroprotective effect during ischemic brain injury, its regulation of tumorigenesis, and the mediation of emotion and cognition through the inhibition of urokinase-type plasminogen activator and fibrinolysin, modification of Th cells, reducing plaque formation, promoting process growth and intracellular adhesion, and altering the expression of cadherin and nuclear factor kappa B.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
24
|
Tsang VWK, Young D, During MJ, Birch NP. AAV-mediated overexpression of neuroserpin in the hippocampus decreases PSD-95 expression but does not affect hippocampal-dependent learning and memory. PLoS One 2014; 9:e91050. [PMID: 24608243 PMCID: PMC3946662 DOI: 10.1371/journal.pone.0091050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/07/2014] [Indexed: 01/06/2023] Open
Abstract
Neuroserpin is a serine protease inhibitor, or serpin, that is expressed in the nervous system and inhibits the protease tissue plasminogen activator (tPA). Neuroserpin has been suggested to play a role in learning and memory but direct evidence for such a role is lacking. Here we have used an adeno-associated virus (AAV) vector expression system to investigate the effect of neuroserpin on hippocampal-dependent learning and memory in the young adult rat. A FLAG-tagged neuroserpin construct was initially characterized by in vitro transcription/translation and transfection into HEK293 cells and shown to interact with tPA and be targeted to the secretory pathway. Targeted injection of a chimeric AAV1/2 vector expressing FLAG-neuroserpin resulted in localized overexpression in the dorsal hippocampus. Neuroserpin overexpression led to the appearance of an unstable neuroserpin:tPA complex in zymographic assays consistent with interaction with endogenous tPA in vivo. Rats overexpressing neuroserpin also showed a significant decrease in the levels of postsynaptic density protein 95, a major postsynaptic scaffolding protein. Three weeks after injection, a range of behavioural tests was performed to measure spatial and associative learning and memory, as well as innate and acquired fear. These tests provided no evidence of a role for neuroserpin in hippocampal-dependent learning and memory. In summary this study does not support a role for neuroserpin in hippocampal-dependent learning and memory in young adult rats but does suggest an involvement of neuroserpin in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Vicky W. K. Tsang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Deborah Young
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Matthew J. During
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, United States of America
| | - Nigel P. Birch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Uddin RK, Singh SM. Hippocampal gene expression meta-analysis identifies aging and age-associated spatial learning impairment (ASLI) genes and pathways. PLoS One 2013; 8:e69768. [PMID: 23874995 PMCID: PMC3715497 DOI: 10.1371/journal.pone.0069768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated spatial learning impairment (ASLI) in the hippocampus in animal models, with varying results. Data from such studies were never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction, migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal aging related non-syndromic learning or spatial learning impairments such as ASLI.
Collapse
Affiliation(s)
- Raihan K. Uddin
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Shiva M. Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Yamanaka S, Olaru AV, An F, Luvsanjav D, Jin Z, Agarwal R, Tomuleasa C, Popescu I, Alexandrescu S, Dima S, Chivu M, Montgomery EA, Torbenson M, Meltzer SJ, Selaru FM. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig Liver Dis 2012; 44:589-96. [PMID: 22464652 PMCID: PMC3360813 DOI: 10.1016/j.dld.2012.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/16/2012] [Accepted: 02/24/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND A thorough understanding of gastric cancer at the molecular level is urgently needed. One prominent oncogenic microRNA, miR-21, was previously reported to be upregulated in gastric cancer. METHODS We performed an unbiased search for downstream messenger RNA targets of miR-21, based on miR-21 dysregulation, by using human tissue specimens and the MKN28 human gastric carcinoma cell line. Molecular techniques include microRNA microarrays, cDNA microarrays, qRT-PCR for miR and mRNA expression, transfection of MKN28 with miR-21 inhibitor or Serpini1 followed by Western blotting, cell cycle analysis by flow cytometry and luciferase reporter assay. RESULTS This search identified Serpini1 as a putative miR-21 target. Luciferase assays demonstrated direct interaction between miR-21 and Serpini1 3'UTR. miR-21 and Serpini1 expression levels were inversely correlated in a subgroup of gastric cancers, suggesting a regulatory mechanism that included both of these molecules. Furthermore, Serpini1 induced growth retardation of MKN28 and induced vigorous G1/S arrest suggesting its potential tumour-suppressive function in the stomach. CONCLUSION Taken together, these data suggest that in a subgroup of gastric cancers, miR-21 is upregulated, inducing downregulation of Serpini1, which in turn releases the G1-S transition checkpoint, with the end result being increased tumour growth.
Collapse
Affiliation(s)
- Sumitaka Yamanaka
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandru V. Olaru
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fangmei An
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Delgermaa Luvsanjav
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Jin
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachana Agarwal
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Department of Cancer Immunology, Prof. Dr. Ion Chiricuta Comprehensive Cancer Center and Iuliu Hatieganu University of Medicine and Pharmacy, Romania
| | - Irinel Popescu
- Clinic of General Surgery and Liver Transplantation "Dan Setlacec", Fundeni Clinical Institute of Digestive Diseases and Liver Transplantation, Bucharest, Romania
| | - Sorin Alexandrescu
- Clinic of General Surgery and Liver Transplantation "Dan Setlacec", Fundeni Clinical Institute of Digestive Diseases and Liver Transplantation, Bucharest, Romania
| | - Simona Dima
- Clinic of General Surgery and Liver Transplantation "Dan Setlacec", Fundeni Clinical Institute of Digestive Diseases and Liver Transplantation, Bucharest, Romania
| | - Mihaela Chivu
- Clinic of General Surgery and Liver Transplantation "Dan Setlacec", Fundeni Clinical Institute of Digestive Diseases and Liver Transplantation, Bucharest, Romania
| | | | - Michael Torbenson
- Department of Pathology, Johns Hopkins University Hospital, Baltimore, MD, USA
| | - Stephen J. Meltzer
- Department of Pathology, Johns Hopkins University Hospital, Baltimore, MD, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Lee TW, Montgomery JM, Birch NP. The serine protease inhibitor neuroserpin regulates the growth and maturation of hippocampal neurons through a non-inhibitory mechanism. J Neurochem 2012; 121:561-74. [PMID: 22191421 DOI: 10.1111/j.1471-4159.2011.07639.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuroserpin is a brain-specific serine protease inhibitor that is expressed in the developing and adult nervous system. Its expression profile led to suggestions that it played roles in neuronal growth and connectivity. In this study, we provide direct evidence to support a role for neuroserpin in axon and dendritic growth. We report that axon growth is enhanced while axon and dendrite diameter are reduced following neuroserpin treatment of hippocampal neurons. More complex effects are seen on dendritic growth and branching with neuroserpin-stimulating dendritic growth and branching in young neurons but switching to an inhibitory response in older neurons. The protease inhibitory activity of neuroserpin is not required to activate changes in neuronal morphology and a proportion of responses are modulated by an antagonist to the LRP1 receptor. Collectively, these findings support a key role for neuroserpin as a regulator of neuronal development through a non-inhibitory mechanism and suggest a basis for neuroserpin's effects on complex emotional behaviours and recent link to schizophrenia.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
28
|
Wu J, Echeverry R, Guzman J, Yepes M. Neuroserpin protects neurons from ischemia-induced plasmin-mediated cell death independently of tissue-type plasminogen activator inhibition. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2576-84. [PMID: 20864675 PMCID: PMC2966813 DOI: 10.2353/ajpath.2010.100466] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2010] [Indexed: 11/20/2022]
Abstract
The serine proteinase tissue-type plasminogen activator (tPA) and the serine proteinase inhibitor neuroserpin are both expressed in areas of the brain with the highest vulnerability to hypoxia/ischemia. In vitro studies show that neuroserpin inhibits tPA and, to a lesser extent, urokinase-type plasminogen activator and plasmin. Experimental middle cerebral artery occlusion (MCAO) increases tPA activity and neuroserpin expression in ischemic tissue, and genetic deficiency of tPA or either treatment with or overexpression of neuroserpin decreases the volume of the ischemic lesion following MCAO. These findings have led to the hypothesis that neuroserpin's neuroprotection is mediated by inhibition of tPA's alleged neurotoxic effect. Ischemic preconditioning is a natural adaptive process whereby exposure to a sublethal insult induces tolerance against a subsequent lethal ischemic injury. Here we demonstrate that exposure to sublethal hypoxia/ischemia increases the neuroserpin expression in the hippocampal CA1 layer and cerebral cortex, and that neuroserpin induces ischemic tolerance and decreases the volume of the ischemic lesion following MCAO in wild-type and tPA-deficient (tPA-/-) neurons and mice. Plasmin induces neuronal death, and this effect is abrogated by either neuroserpin or the NMDA receptor antagonist MK-801. Neuroserpin also attenuated kainic acid-induced neuronal death. Our data indicate that the neuroprotective effect of neuroserpin is due to inhibition of plasmin-mediated excitotoxin-induced cell death and is independent of neuroserpin's ability to inhibit tPA activity.
Collapse
Affiliation(s)
- Jialing Wu
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael St, Suite 505J, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
29
|
Borges VM, Lee TW, Christie DL, Birch NP. Neuroserpin regulates the density of dendritic protrusions and dendritic spine shape in cultured hippocampal neurons. J Neurosci Res 2010; 88:2610-7. [PMID: 20648651 DOI: 10.1002/jnr.22428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroserpin is a member of the serpin superfamily that is expressed principally in neurons of the central and peripheral nervous systems. Neuroserpin's spatial-temporal expression during development and in the adult brain suggests possible roles in synaptogenesis and synaptic plasticity. This is supported by behavioral changes in transgenic mice overexpressing neuroserpin. We have used an embryonic rat primary hippocampal neuron culture model to investigate whether neuroserpin can regulate elements of synaptic morphology that may be involved in these changes in cognitive function. Neuroserpin localized to axonal and dendritic compartments in cultured neurons and accumulated in synapsin-positive presynaptic terminals. Increased expression of neuroserpin resulted in an increase in the density of dendritic protrusions and alterations in dendritic spine shape. Our results identify neuroserpin as a new regulator of structural plasticity and suggest a cellular mechanism that may contribute to neuroserpin's effects on cognition.
Collapse
Affiliation(s)
- Victor M Borges
- School of Biological Sciences and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
30
|
Synaptic plasticity-associated proteases and protease inhibitors in the brain linked to the processing of extracellular matrix and cell adhesion molecules. ACTA ACUST UNITED AC 2009; 4:223-34. [DOI: 10.1017/s1740925x09990172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Research on the molecular and cellular basis of learning and memory has focused on the mechanisms that underlie the induction and expression of synaptic plasticity. There is increasing evidence that structural changes at the synapse are associated with synaptic plasticity and that extracellular matrix (ECM) components and cell adhesion molecules are associated with these changes. The functions of both groups of molecules can be regulated by proteolysis. In this article we review the roles of selected proteases and protease inhibitors in perisynaptic proteolysis of the ECM and synaptic adhesion proteins and the impact of proteolysis on synaptic modification and cognitive function.
Collapse
|
31
|
Ricagno S, Caccia S, Sorrentino G, Antonini G, Bolognesi M. Human neuroserpin: structure and time-dependent inhibition. J Mol Biol 2009; 388:109-21. [PMID: 19265707 DOI: 10.1016/j.jmb.2009.02.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/23/2022]
Abstract
Human neuroserpin (hNS) is a protein serine protease inhibitor expressed mainly in the nervous system, where it plays key roles in neural development and plasticity by primarily targeting tissue plasminogen activator (tPA). Four hNS mutations are associated to a form of autosomal dominant dementia, known as familial encephalopathy with neuroserpin inclusion bodies. The medical interest in and the lack of structural information on hNS prompted us to study the crystal structure of native and cleaved hNS, reported here at 3.15 and 1.85 A resolution, respectively. In the light of the three-dimensional structures, we focus on the hNS reactive centre loop in its intact and cleaved conformations relative to the current serpin polymerization models and discuss the protein sites hosting neurodegenerative mutations. On the basis of homologous serpin structures, we suggest the location of a protein surface site that may stabilize the hNS native (metastable) form. In parallel, we present the results of kinetic studies on hNS inhibition of tPA. Our data analysis stresses the instability of the hNS-tPA complex with a dissociation half-life of minutes compared to a half-life of weeks observed for other serpin-cognate protease complexes.
Collapse
Affiliation(s)
- Stefano Ricagno
- Department of Biomolecular Sciences and Biotechnology, CNR-INFM and CIMAINA, University of Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|