1
|
Roy SC, Sapkota S, Pasula MB, Bheemanapally K, Briski KP. Diazepam Binding Inhibitor Control of Eu- and Hypoglycemic Patterns of Ventromedial Hypothalamic Nucleus Glucose-Regulatory Signaling. ASN Neuro 2023; 15:17590914231214116. [PMID: 38031405 PMCID: PMC10687944 DOI: 10.1177/17590914231214116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.
Collapse
Affiliation(s)
- Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
2
|
Ali MH, Alshamrani AA, Briski KP. Hindbrain lactate regulation of hypoglycemia-associated patterns of catecholamine and metabolic-sensory biomarker gene expression in A2 noradrenergic neurons innervating the male versus female ventromedial hypothalamic nucleus. J Chem Neuroanat 2022; 122:102102. [PMID: 35483611 DOI: 10.1016/j.jchemneu.2022.102102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Caudal hindbrain A2 noradrenergic neurons provide critical metabolic-sensory input to the brain glucostatic circuitry. In males, insulin-induced hypoglycemia (IIH)-associated patterns of A2 cell dopamine-beta-hydroxylase (DβH) protein expression reflect diminution of the oxidizable fuel L-lactate, yet DβH exhibits sex-dimorphic responses to IIH. Here, retrograde tracing and combinatory single-cell laser-microdissection/multiplex qPCR techniques were used to examine whether lactate imposes sex-specific control of hypoglycemia-associated metabolic-sensory function and noradrenergic neurotransmission in A2 neurons that innervate the ventromedial hypothalamic nucleus (VMN), a key glucose-regulatory structure. VMN-projecting A2 neurons from each sex were characterized by presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunoreactivity (-ir). IIH caused lactate-reversible up- or down-regulation of DβH mRNA in male and female nGKRP-ir-positive A2 neurons, respectively, and stimulated glucokinase (GCK) and sulfonylurea receptor-1 (SUR-1) gene expression in these cells in each sex. Hypoglycemia did not alter DβH, GCK, and SUR-1 transcript profiles in nGKRP-ir-negative male or female A2 neurons innervating the VMN. Estrogen receptor (ER) gene profiles in nGKRP-ir-positive neurons showed sex-specific [ER-alpha; G-protein-coupled estrogen-receptor-1 (GPER)] or sex-monomorphic (ER-beta) transcriptional responses to IIH. Fewer ER gene profiles were affected by IIH in nGKRP-ir-negative A2 neurons from male or female rats. Results show that during IIH, VMN-projecting A2 neurons may deliver altered, sex-dependent (nGKRP-positive) or unaffected (nGKRP-negative) noradrenergic input to the VMN. In each sex, metabolic-sensory gene profiles were reactive to hypoglycemia in nGKRP-ir-positive, not -negative A2 cells. Further studies are needed to elucidate the role of GKRP in transduction of metabolic imbalance into noradrenergic signaling, and to determine if input by one or more ER variants establishes sex differences in DβH transcriptional sensitivity to IIH.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
3
|
Mahmood ASMH, Uddin MM, Ibrahim MMH, Briski KP. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Metabolic-Sensory Neuron 5'-AMP-Activated Protein Kinase Activity: Impact of Estradiol. Int J Mol Sci 2020; 21:ijms21062013. [PMID: 32188013 PMCID: PMC7139458 DOI: 10.3390/ijms21062013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022] Open
Abstract
The mediobasal hypothalamus (MBH) shapes the neural regulation of glucostasis by 5′-AMP-activated protein kinase (AMPK)-dependent mechanisms. Yet, the neurochemical identity and neuroanatomical distribution of MBH neurons that express glucoprivic-sensitive AMPK remain unclear. The neurotransmitters γ-aminobutyric acid (GABA) and nitric oxide (NO) act within the MBH to correspondingly inhibit or stimulate glucose counter-regulation. The current review highlights recent findings that GABA and NO, neurons located in the ventromedial hypothalamic nucleus (VMN), a distinct important element of the MBH, are direct targets of noradrenergic regulatory signaling, and thereby, likely operate under the control of hindbrain metabolic-sensory neurons. The ovarian hormone estradiol acts within the VMN to govern energy homeostasis. Discussed here is current evidence that estradiol regulates GABA and NO nerve cell receptivity to norepinephrine and moreover, controls the noradrenergic regulation of AMPK activity in each cell type. Future gains in insight on mechanisms underpinning estradiol’s impact on neurotransmitter communication between the hindbrain and hypothalamic AMPKergic neurons are expected to disclose viable new molecular targets for the therapeutic simulation of hormonal enhancement of neuro-metabolic stability during circumstances of diminished endogenous estrogen secretion or glucose dysregulation.
Collapse
|
4
|
Napit PR, Ali MH, Shakya M, Mandal SK, Bheemanapally K, Mahmood ASMH, Ibrahim MMH, Briski KP. Hindbrain Estrogen Receptor Regulation of Ventromedial Hypothalamic Glycogen Metabolism and Glucoregulatory Transmitter Expression in the Hypoglycemic Female Rat. Neuroscience 2019; 411:211-221. [PMID: 31085279 DOI: 10.1016/j.neuroscience.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
Neural substrates for estrogen regulation of glucose homeostasis remain unclear. Female rat dorsal vagal complex (DVC) A2 noradrenergic neurons are estrogen- and metabolic-sensitive. The ventromedial hypothalamic nucleus (VMN) is a key component of the brain network that governs counter-regulatory responses to insulin-induced hypoglycemia (IIH). Here, the selective estrogen receptor-alpha (ERα) or -beta (ERβ) antagonists MPP and PHTPP were administered separately to the caudal fourth ventricle to address the premise that these hindbrain ER variants exert distinctive control of VMN reactivity to IIH in the female sex. Data show that ERα governs hypoglycemic patterns of VMN astrocyte glycogen metabolic enzyme, e.g. glycogen synthase and phosphorylase protein expression, whereas ERβ mediates local glycogen breakdown. DVC ERs also regulate VMN neurotransmitter signaling of energy sufficiency [γ-aminobutyric acid] or deficiency [nitric oxide, steroidogenic factor-1] during IIH. Neither hindbrain ER mediates IIH-associated diminution of VMN norepinephrine (NE) content. Both ERs oppose hypoglycemic hyperglucagonemia, while ERβ contributes to reduced corticosterone output. Outcomes reveal that input from the female hindbrain to the VMN is critical for energy reserve mobilization, metabolic transmitter signaling, and counter-regulatory hormone secretion during hypoglycemia, and that ERs control those cues. Evidence that VMN NE content is not controlled by hindbrain ERα or -β implies that these receptors may regulate VMN function via NE-independent mechanisms, or alternatively, that other neurotransmitter signals to the VMN may control local substrate receptivity to NE.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Manita Shakya
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
5
|
Mandal SK, Briski KP. Hindbrain dorsal vagal complex AMPK controls hypothalamic gluco-regulatory transmitter and counter-regulatory hormone responses to hypoglycemia. Brain Res Bull 2018; 144:171-179. [PMID: 30481553 DOI: 10.1016/j.brainresbull.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Pharmacologic activation of the hindbrain dorsal vagal complex energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) causes site-specific adjustments in hypothalamic AMPK activity. DVC A2 noradrenergic neurons are a likely source of metabolo-sensory cues to downstream network components as they express substrate fuel-sensitive AMPK. This study investigated the hypothesis that DVC AMPK controls hypothalamic sensor, metabolic effector transmitter, and counter-regulatory hormone responses to insulin-induced hypoglycemia. Male rats were injected into the caudal fourth ventricle with the AMPK inhibitor compound C (Ccor vehicle before hypoglycemia. Arcuate (ARH), ventromedial (VMN), and dorsomedial (DMN) nuclei and lateral hypothalamic area (LHA) were micropunch-dissected for norepinephrine ELISA and Western blot analyses. Hypoglycemic stimulation of norepinephrine activity in each site was impeded by compound C. Hypoglycemia caused drug-revocable (ARH) or -refractory (VMN, DMN) reductions in AMPK, alongside hindbrain AMPK-dependent augmentation of phospho-AMPK expression in each location. Compound C prevented hypoglycemic augmentation of gluco-stimulatory ARH neuropeptide Y, VMN neuronal nitric oxide synthase, and LHA orexin-A expression, while hypoglycemic suppression of the catabolic neuron protein markers ARH pro-opiomelanocortin and VMN glutamate decarboxylase65/67 was respectively averted or unaffected by drug treatment. DMN RFamide-related peptide-1 and -3 profiles were correspondingly amplified or suppressed hindbrain AMPK-reliant mechanisms during hypoglycemia. Results show that DVC AMPK is required for hypoglycemic intensification of norepinephrine activity in characterized hypothalamic gluco-regulatory structures, and that this sensor regulates AMPK activation and metabolic effector transmission in those sites.
Collapse
Affiliation(s)
- Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, United States.
| |
Collapse
|
6
|
Mandal SK, Shrestha PK, Alenazi FSH, Shakya M, Alhamami HN, Briski KP. Effects of estradiol on lactoprivic signaling of the hindbrain upon the contraregulatory hormonal response and metabolic neuropeptide synthesis in hypoglycemic female rats. Neuropeptides 2018; 70:37-46. [PMID: 29779845 PMCID: PMC6057805 DOI: 10.1016/j.npep.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/27/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Caudal dorsomedial hindbrain detection of hypoglycemia-associated lactoprivation regulates glucose counter-regulation in male rats. In females, estradiol (E) determines hypothalamic neuroanatomical and molecular foci of hindbrain energy sensor activation. This study investigated the hypothesis that E signal strength governs metabolic neuropeptide and counter-regulatory hormone responses to hindbrain lactoprivic stimuli in hypoglycemic female rats. METHODS Ovariectomized animals were implanted with E-filled silastic capsules [30 (E-30) or 300 μg (E-300)/mL] to replicate plasma concentrations at estrous cycle nadir versus peak levels. E-30 and E-300 rats were injected with insulin or vehicle following initiation of continuous caudal fourth ventricular L-lactate infusion. RESULTS Hypoglycemic hypercorticosteronemia was greater in E-30 versus E-300 animals. Glucagon and corticosterone outflow was correspondingly fully or partially reversed by hindbrain lactate infusion. Insulin-injected rats exhibited lactate-reversible augmentation of norepinephrine (NE) accumulation in all preoptic/hypothalamic structures examined, excluding the dorsomedial hypothalamic nucleus (DMH) where hindbrain lactate infusion either suppressed (E-30) or enhanced (E-300) NE content. Expression profiles of hypoglycemia-reactive metabolic neuropeptides were normalized (with greater efficacy in E-300 animals) by lactate infusion. DMH RFamide-related peptide-1 and -3, arcuate neuropeptide Y and kisspeptin, and ventromedial nucleus nitric oxide synthase protein responses to hypoglycemia were E dosage-dependent. CONCLUSIONS Distinct physiological patterns of E secretion characteristic of the female rat estrous cycle elicit differential corticosterone outflow during hypoglycemia, and establish both common and different hypothalamic metabolic neurotransmitter targets of hindbrain lactate deficit signaling. Outcomes emphasize a need for insight on systems-level organization, interaction, and involvement of E signal strength-sensitive neuropeptides in counter-regulatory functions.
Collapse
Affiliation(s)
- Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
7
|
Shakya M, Shrestha PK, Briski KP. Hindbrain 5'-Adenosine Monophosphate-activated Protein Kinase Mediates Short-term Food Deprivation Inhibition of the Gonadotropin-releasing Hormone-Luteinizing Hormone Axis: Role of Nitric Oxide. Neuroscience 2018; 383:46-59. [PMID: 29746990 DOI: 10.1016/j.neuroscience.2018.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Hindbrain-derived stimuli restrain the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) reproductive neuroendocrine axis during energy insufficiency. Interruption of food intake, planned or unplanned, is emblematic of modern life. This study investigated the premise that the hindbrain energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibits reproductive neuroendocrine function in short term, e.g. 18-h food-deprived (FD) estradiol (E)-implanted ovariectomized female rats. Intra-caudal fourth ventricular administration of the AMPK inhibitor Compound C (Cc) reversed FD-induced inhibition of rostral preoptic (rPO) GnRH protein expression and LH release in animals given E to replicate proestrus (high-E dose-, but not metestrus (low-E dose)-stage plasma steroid levels. FD caused Cc-reversible augmentation or diminution of preoptic norepinephrine (NE) activity in high- versus low-E rats, respectively, and AMPK-independent reductions in hypothalamic NE accumulation in the latter. Nitric oxide (NO) and kisspeptin are key stimulatory signals for the preovulatory LH surge. Here, FD inhibited rPO neuronal nitric oxide synthase protein expression in high-, but not low-E-dosed animals. Lateral ventricular delivery of the NO donor 3-morpholinosydnonimine (SIN-1) reversed inhibitory GnRH and LH responses to FD in high-E rats, and normalized rPO Vglut2, anteroventral periventricular KiSS1, and dorsomedial hypothalamic RFRP-3 mRNA and/or protein profiles. Data show that FD curtails reproductive neuroendocrine outflow by hindbrain AMPK-dependent mechanisms in the presence of peak estrous cycle E levels. Results indicate that neural networks linking this sensor to GnRH neurons likely involve NO signaling, which may function upstream of one or more neurotransmitters identified here by SIN-1-reversible inhibitory responses to FD.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
8
|
Alhamami HN, Uddin MM, Mahmood ASMH, Briski KP. Lateral but not Medial Hypothalamic AMPK Activation Occurs at the Hypoglycemic Nadir in Insulin-injected Male Rats: Impact of Caudal Dorsomedial Hindbrain Catecholamine Signaling. Neuroscience 2018. [PMID: 29534973 DOI: 10.1016/j.neuroscience.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hypothalamic energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulator of counter-regulatory responses to hypoglycemia, responds to pharmacological manipulation of hindbrain AMPK activity. Dorsomedial hindbrain A2 noradrenergic neurons express hypoglycemia-sensitive metabolo-sensory biomarkers, including AMPK. Here, adult male rats were pretreated by intra-caudal fourth ventricular administration of the selective neurotoxin 6-hydroxydopamine (6-OHDA) to determine if catecholamine signaling from the aforesaid site governs hypothalamic AMPK activation during insulin-induced hypoglycemia (IIH). Micropunched arcuate (ARH), ventromedial (VMH), paraventricular (PVH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissues were obtained at the neutral protamine Hagedorn insulin-induced hypoglycemic nadir, coincident with A2 AMPK activation, for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant metabolic neuropeptides. ARH, VMH, LHA, and DMH norepinephrine levels were altered according to insulin dose; 6-OHDA-mediated reversal of these responses was site-specific. IIH elevated LHA and reduced VMH pAMPK protein, profiles that were respectively unchanged or increased by 6-OHDA. PVH and ARH pAMPK was resistant to IIH, but augmented in ARH of neurotoxin- plus insulin-treated rats. ARH neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) proteins were correspondingly increased or refractory to IIH; 6-OHDA pretreatment normalized NPY and elevated POMC expression after insulin injection. Results demonstrate site-specific bi-directional adjustments in hypothalamic AMPK reactivity to hypoglycemia. Intensification of ARH/VMH pAMPK by 6-OHDA implies dorsomedial hindbrain improvement of energy balance in those sites during IIH. Neurotoxin-mediated augmentation versus suppression of basal catabolic (ARH POMC/VMH steroidogenic factor-1) or IIH-associated anabolic (ARH NPY) neuropeptide profiles, respectively, may involve local AMPK-dependent against independent mechanisms.
Collapse
Affiliation(s)
- Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Main Uddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
9
|
Briski KP, Alhamami HN, Alshamrani A, Mandal SK, Shakya M, Ibrahim MHH. Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:359-383. [PMID: 29224103 DOI: 10.1007/978-3-319-70178-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body's far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ayed Alshamrani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Mostafa H H Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
10
|
Briski KP, Shrestha PK. Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience 2016; 331:62-71. [PMID: 27316550 DOI: 10.1016/j.neuroscience.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Hindbrain dorsal vagal complex A2 noradrenergic signaling represses the pre-ovulatory luteinizing hormone (LH) surge in response to energy deficiency. Insulin-induced hypoglycemia augments A2 neuron adenosine 5'-monophosphate-activated protein kinase (AMPK) activity and estrogen receptor-beta (ERβ) expression, coincident with LH surge suppression. We hypothesized that ERβ is critical for hypoglycemia-associated patterns of LH secretion and norepinephrine (NE) activity in key reproduction-relevant forebrain structures. The neural mechanisms responsible for tight coupling of systemic energy balance and procreation remain unclear; here, we investigated whether ERβ-dependent hindbrain signals also control glucose counter-regulatory responses to hypoglycemia. Gonadal steroid-primed ovariectomized female rats were pretreated by caudal fourth ventricular administration of the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP) or vehicle before insulin injection at LH surge onset. Western blot analysis of laser-microdissected A2 neurons revealed hypoglycemic intensification of AMPK activity and dopamine-β-hydroxylase protein expression; the latter response was attenuated by PHTPP pretreatment. PHTPP regularized LH release, but not preoptic GnRH-I precursor protein expression in insulin-injected rats, and reversed hypoglycemic stimulation of glucagon and corticosterone secretion. Hypoglycemia caused PHTPP-reversible changes in NE and prepro-kisspeptin protein content in the hypothalamic arcuate (ARH), but not anteroventral periventricular nucleus. Results provide novel evidence for ERβ-dependent caudal hindbrain regulation of LH and counter-regulatory hormone secretion during hypoglycemia. Observed inhibition of LH likely involves mechanisms at the axon terminal that impede GnRH neurotransmission. Data also show that caudal hindbrain ERβ exerts site-specific control of NE activity in forebrain projection sites during hypoglycemia, including the ARH where prepro-kisspeptin may be a target of that signaling.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71291, United States.
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71291, United States
| |
Collapse
|
11
|
Alenazi FSH, Ibrahim BA, Al-Hamami H, Shakiya M, Briski KP. Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience 2015; 314:35-46. [PMID: 26628404 DOI: 10.1016/j.neuroscience.2015.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/10/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
This study addressed the hypothesis that dorsomedial hindbrain adenosine 5'-monophosphate-activated protein kinase (AMPK) imposes inherent estradiol-dependent control of hypothalamic AMPK, neuropeptide, and norepinephrine (NE) activity and feeding in the female rat. Estradiol (E)- or oil (O)-implanted ovariectomized rats were injected with the AMPK inhibitor compound c (Cc) or vehicle into the caudal fourth ventricle (CV4) prior to micropunch-dissection of individual hypothalamic metabolic loci or assessment of food intake. Cc decreased hindbrain dorsal vagal complex phosphoAMPK (pAMPK) in both E and O; tissue ATP levels were reduced by this treatment in O only. In E/Cc, pAMPK expression was diminished in the lateral hypothalamic area (LHA) and ventromedial (VMH) and paraventricular (PVH) nuclei; only PVH pAMPK was suppressed by this treatment in O/Cc. Cc decreased PVH corticotropin-releasing hormone and arcuate (ARH) proopiomelanocortin (POMC) and neuropeptide Y in O, but suppressed only POMC in E. O/Cc exhibited both augmented (PVH, VMH) and decreased (LHA, ARH) hypothalamic NE content, whereas Cc treatment of E elevated preoptic and dorsomedial hypothalamic nucleus NE. Cc completely or incompletely repressed feeding in E versus O, respectively. Results implicate dorsomedial hindbrain AMPK in physiological stimulus-induced feeding in females. Excepting POMC, hypothalamic neuropeptide responses to this sensor may be contingent on estrogen. Estradiol likely designates hypothalamic targets of altered NE signaling due to hindbrain AMPK activation. Divergent changes in NE content of hypothalamic loci in O/Cc uniquely demonstrate sensor-induced bimodal catecholamine signaling to those sites.
Collapse
Affiliation(s)
- F S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - B A Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - H Al-Hamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - M Shakiya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
12
|
Alenazi FSH, Ibrahim BA, Briski KP. Re-purposing of histological tissue sections for corroborative western blot analysis of hypothalamic metabolic neuropeptide expression following delineation of transactivated structures by Fos immuno-mapping. Neuropeptides 2015; 50:29-33. [PMID: 25796089 DOI: 10.1016/j.npep.2015.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/17/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Fos immunocytochemistry is a valuable anatomical mapping tool for distinguishing cells within complex tissues that undergo genomic activation, but it is seldom paired with corroborative molecular analytical techniques. Due to preparatory requirements that include protein cross-linking for specimen sectioning, histological tissue sections are regarded as unsuitable for those methods. Our studies show that pharmacological activation of the hindbrain energy sensor AMPK by AICAR elicits estradiol (E)-dependent patterns of Fos immunolabeling of hypothalamic metabolic loci. Here, Western blotting was applied to hypothalamic tissue removed from histological sections of E- versus oil (O)-implanted ovariectomized (OVX) female rat brain to measure levels of metabolic transmitters associated with Fos-positive structures. In both E and O rats, AICAR treatment elicited alterations in pro-opiomelanocortin, neuropeptide Y, SF-1, and orexin-A neuropeptide expression that coincided with patterns of Fos labeling of structures containing neurons that synthesize these neurotransmitters, e.g. arcuate and ventromedial nuclei and lateral hypothalamic area. O, but not E animals also exhibited parallel augmentation of tissue corticotropin-releasing hormone neuropeptide levels and paraventricular nucleus Fos staining. Data demonstrate the utility of immunoblot analysis as a follow-through technique to capitalize on Fos mapping of transactivation sites in the brain. Findings that induction of Fos immunoreactivity coincides with adjustments in hypothalamic metabolic neuropeptide expression affirms that this functional indicator reflects changes in neurotransmission in pathways governing metabolic outflow.
Collapse
Affiliation(s)
- Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana, Monroe, LA 71201, USA
| | - Baher A Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana, Monroe, LA 71201, USA
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana, Monroe, LA 71201, USA.
| |
Collapse
|