1
|
Rigo YR, Benvenutti R, Portela LV, Strogulski NR. Neurogenic potential of NG2 in neurotrauma: a systematic review. Neural Regen Res 2024; 19:2673-2683. [PMID: 38595286 PMCID: PMC11168526 DOI: 10.4103/nrr.nrr-d-23-01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024] Open
Abstract
Regenerative approaches towards neuronal loss following traumatic brain or spinal cord injury have long been considered a dogma in neuroscience and remain a cutting-edge area of research. This is reflected in a large disparity between the number of studies investigating primary and secondary injury as therapeutic targets in spinal cord and traumatic brain injuries. Significant advances in biotechnology may have the potential to reshape the current state-of-the-art and bring focus to primary injury neurotrauma research. Recent studies using neural-glial factor/antigen 2 (NG2) cells indicate that they may differentiate into neurons even in the developed brain. As these cells show great potential to play a regenerative role, studies have been conducted to test various manipulations in neurotrauma models aimed at eliciting a neurogenic response from them. In the present study, we systematically reviewed the experimental protocols and findings described in the scientific literature, which were peer-reviewed original research articles (1) describing preclinical experimental studies, (2) investigating NG2 cells, (3) associated with neurogenesis and neurotrauma, and (4) in vitro and/or in vivo, available in PubMed/MEDLINE, Web of Science or SCOPUS, from 1998 to 2022. Here, we have reviewed a total of 1504 papers, and summarized findings that ultimately suggest that NG2 cells possess an inducible neurogenic potential in animal models and in vitro. We also discriminate findings of NG2 neurogenesis promoted by different pharmacological and genetic approaches over functional and biochemical outcomes of traumatic brain injury and spinal cord injury models, and provide mounting evidence for the potential benefits of manipulated NG2 cell ex vivo transplantation in primary injury treatment. These findings indicate the feasibility of NG2 cell neurogenesis strategies and add new players in the development of therapeutic alternatives for neurotrauma.
Collapse
Affiliation(s)
- Yuri R. Rigo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Luis V. Portela
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nathan R. Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Damschroder D, Sun J, McDonald KO, Buttitta L. Cell cycle re-entry in the aging Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609689. [PMID: 39253469 PMCID: PMC11383271 DOI: 10.1101/2024.08.26.609689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The brain is an organ comprised mostly of long-lived, quiescent cells that perform vital functions throughout an animal's life. Due to the brain's limited regenerative ability, these long-lived cells must engage unique mechanisms to cope with accumulated damage over time. We have shown that a subset of differentiated neuronal and glial cells in the fruit fly brain become polyploid during adulthood. Cell cycle re-entry in the brain has previously been associated with neurodegeneration, but there may be a more complex relationship between polyploidy and cell fitness in the brain. Here, we examine how known lifespan modifiers influence the accumulation of polyploidy in the aging fly brain. Flies aged at a low temperature, or with a low protein diet, accumulate polyploid cells in the brain more slowly than expected if this phenotype were solely regulated by lifespan mechanisms. Despite the slower accumulation of polyploid cells, animals under conditions that extend lifespan eventually reach similar levels of polyploidy in the brain as controls. Our work suggests known lifespan modifiers can influence the timing of cell cycle re-entry in the adult brain, indicating there is a flexible window of cell cycle plasticity in the aging brain.
Collapse
Affiliation(s)
| | - Jenny Sun
- University of Michigan, MCDB, Ann Arbor, MI 48109
| | | | | |
Collapse
|
3
|
Szegedi V, Tiszlavicz Á, Furdan S, Douida A, Bakos E, Barzo P, Tamas G, Szucs A, Lamsa K. Aging-associated weakening of the action potential in fast-spiking interneurons in the human neocortex. J Biotechnol 2024; 389:1-12. [PMID: 38697361 DOI: 10.1016/j.jbiotec.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.
Collapse
Affiliation(s)
- Viktor Szegedi
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Ádám Tiszlavicz
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Szabina Furdan
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Abdennour Douida
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Emoke Bakos
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Hungary
| | - Gabor Tamas
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Attila Szucs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Karri Lamsa
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary.
| |
Collapse
|
4
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
González-Cota AL, Martínez-Flores D, Rosendo-Pineda MJ, Vaca L. NMDA receptor-mediated Ca 2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024; 119:102856. [PMID: 38408411 DOI: 10.1016/j.ceca.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
Collapse
Affiliation(s)
- Ana L González-Cota
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Daniel Martínez-Flores
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
6
|
Alshebib Y, Hori T, Goel A, Fauzi AA, Kashiwagi T. Adult human neurogenesis: A view from two schools of thought. IBRO Neurosci Rep 2023; 15:342-347. [PMID: 38025659 PMCID: PMC10665662 DOI: 10.1016/j.ibneur.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 12/01/2023] Open
Abstract
Are we truly losing neurons as we grow older? If yes, why, and how can the lost neurons be replaced or compensated for? Is so-called adult neurogenesis (ANG) still a controversial process, particularly in the human cerebral cortex? How do adult-born neurons -if proven to exist- contribute to brain functions? Is adult neurogenesis a disease-relevant process, meaning that neural progenitor cells are dormant in adulthood, but they may be reactivated, for example, following stroke? Is the earnest hope to cure neurological diseases justifying the readiness to accept ANG claim uncritically? These are all fundamental issues that have not yet been firmly explained. Although it is completely understandable that some researchers believe that we can add new neurons to our inevitably deteriorating brain, the brain regeneration process still possesses intellectually and experimentally diverting views, as until now, there has been significant confusion about the concept of ANG. This paper is not intended to be an extensively analytical review distilling all findings and conclusions presented in the ANG literature. Instead, it is an attempt to discuss the commonly entertained opinions and then present our reflective insight concerning the current status quo of the field, which might help redirect research questions, avoid marketing an exaggerated hope, and more importantly, save the ever-limited resources, namely, intellectuals' time, facilities, and grants.
Collapse
Affiliation(s)
- Yasir Alshebib
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134–0088, Japan
| | - Tomokatsu Hori
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134–0088, Japan
| | - Atul Goel
- Department of Neurosurgery. K.E.M. Hospital and Seth G.S. Medical College, Parel, Mumbai 400 012, Maharashtra, India
| | - Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo 6–8, Surabaya, Indonesia
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
7
|
Denechaud M, Geurs S, Comptdaer T, Bégard S, Garcia-Núñez A, Pechereau LA, Bouillet T, Vermeiren Y, De Deyn PP, Perbet R, Deramecourt V, Maurage CA, Vanderhaegen M, Vanuytven S, Lefebvre B, Bogaert E, Déglon N, Voet T, Colin M, Buée L, Dermaut B, Galas MC. Tau promotes oxidative stress-associated cycling neurons in S phase as a pro-survival mechanism: Possible implication for Alzheimer's disease. Prog Neurobiol 2023; 223:102386. [PMID: 36481386 DOI: 10.1016/j.pneurobio.2022.102386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.
Collapse
Affiliation(s)
- Marine Denechaud
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Sarah Geurs
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Séverine Bégard
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Alejandro Garcia-Núñez
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Louis-Adrien Pechereau
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Thomas Bouillet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium.
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, eindendreef 1, 2020 Antwerpen, Belgium.
| | - Romain Perbet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Vincent Deramecourt
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Claude-Alain Maurage
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Michiel Vanderhaegen
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Bruno Lefebvre
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Elke Bogaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium; KU Leuven, Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium.
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
8
|
Shaka S, Carpo N, Tran V, Cepeda C, Espinosa-Jeffrey A. Space Microgravity Alters Neural Stem Cell Division: Implications for Brain Cancer Research on Earth and in Space. Int J Mol Sci 2022; 23:14320. [PMID: 36430810 PMCID: PMC9699585 DOI: 10.3390/ijms232214320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Considering the imminence of long-term space travel, it is necessary to investigate the impact of space microgravity (SPC-µG) in order to determine if this environment has consequences on the astronauts' health, in particular, neural and cognitive functions. Neural stem cells (NSCs) are the basis for the regeneration of the central nervous system (CNS) cell populations and learning how weightlessness impacts NSCs in health and disease provides a critical tool for the potential mitigation of specific mechanisms leading to neurological disorders. In previous studies, we found that exposure to SPC-µG resulted in enhanced proliferation, a shortened cell cycle, and a larger cell diameter of NSCs compared to control cells. Here, we report the frequent occurrence of abnormal cell division (ACD) including incomplete cell division (ICD), where cytokinesis is not successfully completed, and multi-daughter cell division (MDCD) of NSCs following SPC-µG as well as secretome exposure compared to ground control (1G) NSCs. These findings provide new insights into the potential health implications of space travel and have far-reaching implications for understanding the mechanisms leading to the deleterious effects of long-term space travel as well as potential carcinogenic susceptibility. Knowledge of these mechanisms could help to develop preventive or corrective measures for successful long-term SPC-µG exposure.
Collapse
Affiliation(s)
| | | | | | | | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
10
|
Frisk JH, Örn S, Pejler G, Eriksson S, Wang L. Differential expression of enzymes in thymidylate biosynthesis in zebrafish at different developmental stages: implications for dtymk mutation-caused neurodegenerative disorders. BMC Neurosci 2022; 23:19. [PMID: 35346037 PMCID: PMC8962455 DOI: 10.1186/s12868-022-00704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. Results Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. Conclusions Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00704-0.
Collapse
|
11
|
Voss L, Bartos M, Elgueta C, Sauer JF. Interneuron function and cognitive behavior are preserved upon postnatal removal of Lhx6. Sci Rep 2022; 12:4923. [PMID: 35318414 PMCID: PMC8941127 DOI: 10.1038/s41598-022-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
LIM homeobox domain transcription factor 6 (Lhx6) is crucial for the prenatal specification and differentiation of hippocampal GABAergic interneuron precursors. Interestingly, Lhx6 remains to be expressed in parvalbumin-positive hippocampal interneurons (PVIs) long after specification and differentiation have been completed, the functional implications of which remain elusive. We addressed the role of adult-expressed Lhx6 in the hippocampus by knocking down Lhx6 in adult mice (> 8 weeks old) using viral or transgenic expression of Cre-recombinase in Lhx6loxP/loxP mice. Late removal of Lhx6 did not affect the number of PVIs and had no impact on the morphological and physiological properties of PVIs. Furthermore, mice lacking Lhx6 in PVIs displayed normal cognitive behavior. Loss of Lhx6 only partially reduced the expression of Sox6 and Arx, downstream transcription factors that depend on Lhx6 during embryonic development of PVIs. Our data thus suggest that while Lhx6 is vitally important to drive interneuron transcriptional networks during early development, it becomes uncoupled from downstream effectors during postnatal life.
Collapse
Affiliation(s)
- Lars Voss
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Abstract
Reactive oxygen species (ROS) have emerged as regulators of key processes supporting neuronal growth, function, and plasticity across lifespan. At normal physiological levels, ROS perform important roles as secondary messengers in diverse molecular processes such as regulating neuronal differentiation, polarization, synapse maturation, and neurotransmission. In contrast, high levels of ROS are toxic and can ultimately lead to cell death. Excitable cells, such as neurons, often require high levels of metabolic activity to perform their functions. As a consequence, these cells are more likely to produce high levels of ROS, potentially enhancing their susceptibility to oxidative damage. In addition, because neurons are generally post-mitotic, they may be subject to accumulating oxidative damage. Thus, maintaining tight control over ROS concentration in the nervous system is essential for proper neuronal development and function. We are developing a more complete understanding of the cellular and molecular mechanisms for control of ROS in these processes. This review focuses on ROS regulation of the developmental and functional properties of neurons, highlighting recent in vivo studies. We also discuss the current evidence linking oxidative damage to pathological conditions associated with neurodevelopmental and neurodegenerative disorders.
Collapse
|
13
|
Liu DD, Luo P, Gu L, Zhang Q, Gao P, Zhu Y, Chen X, Guo Q, Zhang J, Ma N, Wang J. Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion. J Neuroinflammation 2021; 18:174. [PMID: 34372857 PMCID: PMC8353826 DOI: 10.1186/s12974-021-02216-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celastrol (cel) was one of the earliest isolated and identified chemical constituents of Tripterygium wilfordii Hook. f. Based on a cel probe (cel-p) that maintained the bioactivity of the parent compound, the targets of cel in cerebral ischemia-reperfusion (I/R) injury were comprehensively analyzed by a quantitative chemical proteomics method. METHODS We constructed an oxygen-glucose deprivation (OGD) model in primary rat cortical neurons and a middle cerebral artery occlusion (MCAO) model in adult rats to detect the direct binding targets of cel in cerebral I/R. By combining various experimental methods, including tandem mass tag (TMT) labeling, mass spectrometry, and cellular thermal shift assay (CETSA), we revealed the targets to which cel directly bound to exert neuroprotective effects. RESULTS We found that cel inhibited the proinflammatory activity of high mobility group protein 1 (HMGB1) by directly binding to it and then blocking the binding of HMGB1 to its inflammatory receptors in the microenvironment of ischemia and hypoxia. In addition, cel rescued neurons from OGD injury in vitro and decreased cerebral infarction in vivo by targeting HSP70 and NF-κB p65. CONCLUSION Cel exhibited neuroprotective and anti-inflammatory effects by targeting HSP70 and NF-κB p65 and directly binding to HMGB1 in cerebral I/R injury.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Piao Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yongping Zhu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,School of Pharmacy, Jinan University, Guangzhou , 510632, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Central People's Hospital of Zhanjiang, Zhanjiang, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China. .,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China. .,Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 518020, Shenzhen, China.
| |
Collapse
|
14
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Head SA, Hernandez-Alias X, Yang JS, Ciampi L, Beltran-Sastre V, Torres-Méndez A, Irimia M, Schaefer MH, Serrano L. Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers. PLoS Biol 2021; 19:e3001138. [PMID: 33621242 PMCID: PMC7935315 DOI: 10.1371/journal.pbio.3001138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 03/05/2021] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
RNA splicing is widely dysregulated in cancer, frequently due to altered expression or activity of splicing factors (SFs). Microexons are extremely small exons (3–27 nucleotides long) that are highly evolutionarily conserved and play critical roles in promoting neuronal differentiation and development. Inclusion of microexons in mRNA transcripts is mediated by the SF Serine/Arginine Repetitive Matrix 4 (SRRM4), whose expression is largely restricted to neural tissues. However, microexons have been largely overlooked in prior analyses of splicing in cancer, as their small size necessitates specialized computational approaches for their detection. Here, we demonstrate that despite having low expression in normal nonneural tissues, SRRM4 is further silenced in tumors, resulting in the suppression of normal microexon inclusion. Remarkably, SRRM4 is the most consistently silenced SF across all tumor types analyzed, implying a general advantage of microexon down-regulation in cancer independent of its tissue of origin. We show that this silencing is favorable for tumor growth, as decreased SRRM4 expression in tumors is correlated with an increase in mitotic gene expression, and up-regulation of SRRM4 in cancer cell lines dose-dependently inhibits proliferation in vitro and in a mouse xenograft model. Further, this proliferation inhibition is accompanied by induction of neural-like expression and splicing patterns in cancer cells, suggesting that SRRM4 expression shifts the cell state away from proliferation and toward differentiation. We therefore conclude that SRRM4 acts as a proliferation brake, and tumors gain a selective advantage by cutting off this brake. Using data from The Cancer Genome Atlas, this study shows that the splicing factor SRRM4 and its program of differentiation-promoting microexons are downregulated across tumor types with remarkable consistency, providing tumors with a proliferative advantage.
Collapse
Affiliation(s)
- Sarah A. Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- * E-mail: (SAH); (MHS); (LS)
| | - Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Violeta Beltran-Sastre
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Méndez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Martin H. Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- * E-mail: (SAH); (MHS); (LS)
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (SAH); (MHS); (LS)
| |
Collapse
|
16
|
Majd S, Power J, Majd Z. Alzheimer's Disease and Cancer: When Two Monsters Cannot Be Together. Front Neurosci 2019; 13:155. [PMID: 30881282 PMCID: PMC6407038 DOI: 10.3389/fnins.2019.00155] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and cancer are among the leading causes of human death around the world. While neurodegeneration is the main feature of AD, the most important characteristic of malignant tumors is cell proliferation, placing these two diseases in opposite sides of cell division spectrum. Interestingly, AD and cancer's pathologies consist of a remarkable common feature and that is the presence of active cell cycle in both conditions. In an in vitro model of primary adult neuronal culture, we previously showed that treating cell with beta amyloid forced neurons to start a cell cycle. Instead of cell division, however, neuronal cell cycle was aborted and a massive neurodegeneration was left behind as the consequence. A high level of cell cycle entry, which is a requirement for cancer pathogenesis, was reported in clinically diagnosed cases of AD, leading to neurodegeneration. The diverse clinical manifestation of a similar etiology, have puzzled researchers for many years. In fact, the evidence showed an inverse association between AD and cancer prevalence, suggesting that switching pathogenesis toward AD protects patients against cancer and vice versa. In this mini review, we discussed the possibility of involvement of cell proliferation and survival dysregulation as the underlying mechanism of neurodegeneration in AD, and the leading event to develop both disorders' pathology. As examples, the role of phosphoinositide 3 kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in cell cycle re-entry and blocking autophagy are discussed as potential common intracellular components between AD and cancer pathogenesis, with diverse clinical diagnosis.
Collapse
Affiliation(s)
- Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - John Power
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Zohreh Majd
- Psychosomatische Tagesklinik, Passau, Germany
| |
Collapse
|
17
|
Aranda-Anzaldo A, Dent MA. Landscaping the epigenetic landscape of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:155-174. [DOI: 10.1016/j.pbiomolbio.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
|
18
|
The stress response HPA-axis hormone, glucocorticoid, reduces cellular SKA complex gene expression. Psychiatry Res 2018; 260:428-431. [PMID: 29268205 DOI: 10.1016/j.psychres.2017.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/23/2017] [Accepted: 12/10/2017] [Indexed: 11/22/2022]
Abstract
The Spindle- and Kinetochore-Associated (SKA) complex has been proven to be involved in many human mental behavioral disorders. Glucocorticoid, a hypothalamic-pituitary-adrenal (HPA) axis hormone, is a critical mediator of stress response in neurons. However, the underlying mechanisms of glucocorticoid's effects on human neuronal cells remain unclear. This study demonstrates that increased extracellular glucocorticoid levels significantly reduce neuronal cell SKA complex genes' expression levels, followed by altered neuronal cell viability and neurite development. The results suggest that the abnormality of this HPA-axis hormone could impact the neuronal cell functions through the alternation of SKA complex functions, which might induce cell death.
Collapse
|
19
|
Fernández-Ruiz J, Gómez-Ruiz M, García C, Hernández M, Ramos JA. Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies. Methods Enzymol 2017; 593:175-198. [PMID: 28750802 DOI: 10.1016/bs.mie.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increase in lifespan during the last 50 years, mainly in developed countries, has originated a progressive elevation in the incidence of chronic neurodegenerative disorders, for which aging is the key risk factor. This fact will definitively become the major biomedical challenge during the present century, in part because the expectation of a persisting elevation in the population older than 65 years over the whole population and, on the other hand, because the current lack of efficacious therapies to control these disorders despite years of intense research. This chapter will address this question and will stress the urgency of developing better neuroprotective and neurorepair strategies that may delay/arrest the progression of these disorders, reviewing the major needs to solve the causes proposed for the permanent failures experienced in recent years, e.g., to develop multitarget strategies, to use more predictive experimental models, and to identify early disease biomarkers. This chapter will propose the cannabinoids and their classic (e.g., endocannabinoid receptors and enzymes) and nonclassic (e.g., peroxisome proliferator-activated receptors, transcription factors) targets as a useful strategy for developing novel therapies for these disorders, based on their broad-spectrum neuroprotective profile, their activity as an endogenous protective system, the location of the endocannabinoid targets in cell substrates critical for neuronal survival, and their ability to serve for preservation and rescue, but also for repair and/or replacement, of neurons and glial cells against cytotoxic insults.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mariluz Hernández
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
20
|
Golloshi R, Sanders JT, McCord RP. Genome organization during the cell cycle: unity in division. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28510289 DOI: 10.1002/wsbm.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
21
|
Silva-Santiago E, Rivera-Mulia JC, Aranda-Anzaldo A. The Set of Structural DNA-Nuclear Matrix Interactions in Neurons Is Cell-Type Specific and Rather Independent of Functional Constraints. J Cell Biochem 2017; 118:2151-2160. [DOI: 10.1002/jcb.25852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Evangelina Silva-Santiago
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| | - Juan Carlos Rivera-Mulia
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| | - Armando Aranda-Anzaldo
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| |
Collapse
|