1
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Iram T, Garcia MA, Amand J, Kaur A, Atkins M, Iyer M, Lam M, Ambiel N, Jorgens DM, Keller A, Wyss-Coray T, Kern F, Zuchero JB. SRF transcriptionally regulates the oligodendrocyte cytoskeleton during CNS myelination. Proc Natl Acad Sci U S A 2024; 121:e2307250121. [PMID: 38483990 PMCID: PMC10962977 DOI: 10.1073/pnas.2307250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/10/2024] [Indexed: 03/19/2024] Open
Abstract
Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.
Collapse
Affiliation(s)
- Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Miguel A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Jérémy Amand
- Department of Clinical Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland–Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken66123, Germany
- Clinical Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Achint Kaur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| | | | - Andreas Keller
- Department of Clinical Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland–Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken66123, Germany
- Clinical Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Fabian Kern
- Department of Clinical Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland–Helmholtz Centre for Infection Research, Saarland University Campus, Saarbrücken66123, Germany
- Clinical Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
3
|
Dustin E, Suarez-Pozos E, Stotesberry C, Qiu S, Palavicini JP, Han X, Dupree JL. Compromised Myelin and Axonal Molecular Organization Following Adult-Onset Sulfatide Depletion. Biomedicines 2023; 11:1431. [PMID: 37239102 PMCID: PMC10216104 DOI: 10.3390/biomedicines11051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
3-O-sulfogalactosylceramide, or sulfatide, is a prominent myelin glycosphingolipid reduced in the normal appearing white matter (NAWM) in Multiple Sclerosis (MS), indicating that sulfatide reduction precedes demyelination. Using a mouse model that is constitutively depleted of sulfatide, we previously demonstrated that sulfatide is essential during development for the establishment and maintenance of myelin and axonal integrity and for the stable tethering of certain myelin proteins in the sheath. Here, using an adult-onset depletion model of sulfatide, we employ a combination of ultrastructural, immunohistochemical and biochemical approaches to analyze the consequence of sulfatide depletion from the adult CNS. Our findings show a progressive loss of axonal protein domain organization, which is accompanied by axonal degeneration, with myelin sparing. Similar to our previous work, we also observe differential myelin protein anchoring stabilities that are both sulfatide dependent and independent. Most notably, stable anchoring of neurofascin155, a myelin paranodal protein that binds the axonal paranodal complex of contactin/Caspr1, requires sulfatide. Together, our findings show that adult-onset sulfatide depletion, independent of demyelination, is sufficient to trigger progressive axonal degeneration. Although the pathologic mechanism is unknown, we propose that sulfatide is required for maintaining myelin organization and subsequent myelin-axon interactions and disruptions in these interactions results in compromised axon structure and function.
Collapse
Affiliation(s)
- Elizabeth Dustin
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Edna Suarez-Pozos
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Camryn Stotesberry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shulan Qiu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juan Pablo Palavicini
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey L. Dupree
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| |
Collapse
|
4
|
Osorio MJ, Mariani JN, Zou L, Schanz SJ, Heffernan K, Cornwell A, Goldman SA. Glial progenitor cells of the adult human white and grey matter are contextually distinct. Glia 2023; 71:524-540. [PMID: 36334067 PMCID: PMC10100527 DOI: 10.1002/glia.24291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Genomic analyses have revealed heterogeneity among glial progenitor cells (GPCs), but the compartment selectivity of human GPCs (hGPCs) is unclear. Here, we asked if GPCs of human grey and white brain matter are distinct in their architecture and associated gene expression. RNA profiling of NG2-defined hGPCs derived from adult human neocortex and white matter differed in their expression of genes involved in Wnt, NOTCH, BMP and TGFβ signaling, suggesting compartment-selective biases in fate and self-renewal. White matter hGPCs over-expressed the BMP antagonists BAMBI and CHRDL1, suggesting their tonic suppression of astrocytic fate relative to cortical hGPCs, whose relative enrichment of cytoskeletal genes presaged their greater morphological complexity. In human glial chimeric mice, cortical hGPCs assumed larger and more complex morphologies than white matter hGPCs, and both were more complex than their mouse counterparts. These findings suggest that human grey and white matter GPCs comprise context-specific pools with distinct functional biases.
Collapse
Affiliation(s)
- Maria Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa Zou
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kate Heffernan
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Adam Cornwell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Zhang Q, Jiu Y. The regulation of host cytoskeleton during SARS-CoV-2 infection in the nervous system. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2023.9050004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The global economy and public health are currently under enormous pressure since the outbreak of COVID-19. Apart from respiratory discomfort, a subpopulation of COVID-19 patients exhibits neurological symptoms such as headache, myalgia, and loss of smell. Some have even shown encephalitis and necrotizing hemorrhagic encephalopathy. The cytoskeleton of nerve cells changes drastically in these pathologies, indicating that the cytoskeleton and its related proteins are closely related to the pathogenesis of nervous system diseases. In this review, we present the up-to-date association between host cytoskeleton and coronavirus infection in the context of the nervous system. We systematically summarize cytoskeleton-related pathogen-host interactions in both the peripheral and central nervous systems, hoping to contribute to the development of clinical treatment in COVID-19 patients.
Collapse
Affiliation(s)
- Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wan T, Au DWT, Mo J, Chen L, Cheung KM, Kong RYC, Seemann F. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac013. [PMID: 35769199 PMCID: PMC9233418 DOI: 10.1093/eep/dvac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
Previous studies have revealed that DNA methylation changes could serve as potential genomic markers for environmental benzo[a]pyrene (BaP) exposure and intergenerational inheritance of various physiological impairments (e.g. obesity and reproductive pathologies). As a typical aromatic hydrocarbon pollutant, direct BaP exposure has been shown to induce neurotoxicity. To unravel the inheritance mechanisms of the BaP-induced bone phenotype in freshwater medaka, we conducted whole-genome bisulfite sequencing of F1 sperm and identified 776 differentially methylated genes (DMGs). Ingenuity pathway analysis revealed that DMGs were significantly enriched in pathways associated with neuronal development and function. Therefore, it was hypothesized that parental BaP exposure (1 μg/l, 21 days) causes offspring neurotoxicity. Furthermore, the possibility for sperm methylation as an indicator for a neurotoxic phenotype was investigated. The F0 adult brains and F1 larvae were analyzed for BaP-induced direct and inherited toxicity. Acetylcholinesterase activity was significantly reduced in the larvae, together with decreased swimming velocity. Molecular analysis revealed that the marker genes associated with neuron development and growth (alpha1-tubulin, mbp, syn2a, shh, and gap43) as well as brain development (dlx2, otx2, and krox-20) were universally downregulated in the F1 larvae (3 days post-hatching). While parental BaP exposure at an environmentally relevant concentration could induce neurotoxicity in the developing larvae, the brain function of the exposed F0 adults was unaffected. This indicates that developmental neurotoxicity in larvae may result from impaired neuronal development and differentiation, causing delayed brain growth. The present study demonstrates that the possible adverse health effects of BaP in the environment are more extensive than currently understood. Thus, the possibility of multigenerational BaP toxicity should be included in environmental risk assessments.
Collapse
Affiliation(s)
- Teng Wan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Kwok-Ming Cheung
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- South Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Frauke Seemann
- *Correspondence address. Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA. Tel: +1-361-825-2683; Fax: +1 (361) 825-2742;
| |
Collapse
|
7
|
Domingues HS, Urbanski MM, Macedo-Ribeiro S, Almaktari A, Irfan A, Hernandez Y, Wang H, Relvas JB, Rubinstein B, Melendez-Vasquez CV, Pinto IM. Pushing myelination - developmental regulation of myosin expression drives oligodendrocyte morphological differentiation. J Cell Sci 2020; 133:jcs232264. [PMID: 32620697 PMCID: PMC7426197 DOI: 10.1242/jcs.232264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2020] [Indexed: 01/26/2023] Open
Abstract
Oligodendrocytes are the central nervous system myelin-forming cells providing axonal electrical insulation and higher-order neuronal circuitry. The mechanical forces driving the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes are largely unknown, but likely require the spatiotemporal regulation of the architecture and dynamics of the actin and actomyosin cytoskeletons. In this study, we analyzed the expression pattern of myosin motors during oligodendrocyte development. We report that oligodendrocyte differentiation is regulated by the synchronized expression and non-uniform distribution of several members of the myosin network, particularly non-muscle myosins 2B and 2C, which potentially operate as nanomechanical modulators of cell tension and myelin membrane expansion at different cell stages.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Helena Sofia Domingues
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Mateusz M Urbanski
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Amr Almaktari
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Azka Irfan
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Yamely Hernandez
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Haibo Wang
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Carmen V Melendez-Vasquez
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
- The Graduate Center, City University of New York (CUNY), New York, NY 10016, USA
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| |
Collapse
|
8
|
Lai WF, Wong WT. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev 2020; 58:101021. [PMID: 31968269 DOI: 10.1016/j.arr.2020.101021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
The integrity of the cytoskeleton is essential to diverse cellular processes such as phagocytosis and intracellular trafficking. Disruption of the organization and dynamics of the actin cytoskeleton leads to age-associated symptoms and diseases, ranging from cancer to neurodegeneration. In addition, changes in the integrity of the actin cytoskeleton disrupt the functioning of not only somatic and stem cells but also gametes, resulting in aberrant embryonic development. Strategies to preserve the integrity and dynamics of the cytoskeleton are, therefore, potentially therapeutic to age-related disorders. The objective of this article is to revisit the current understanding of the roles played by the actin cytoskeleton in aging, and to review the opportunities and challenges for the transition of basic research into intervention development. It is hoped that, with the snapshot of evidence regarding changes in actin dynamics with advanced age, insights into future research directions can be attained.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Shenzhen University, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China
| |
Collapse
|
9
|
A Role of Microtubules in Oligodendrocyte Differentiation. Int J Mol Sci 2020; 21:ijms21031062. [PMID: 32033476 PMCID: PMC7037135 DOI: 10.3390/ijms21031062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oligodendrocytes are specialized cells that myelinate axons in the central nervous system. Defects in oligodendrocyte function and failure to form or maintain myelin sheaths can cause a number of neurological disorders. Oligodendrocytes are differentiated from oligodendrocyte progenitor cells (OPCs), which extend several processes that contact, elaborate, and eventually wrap axonal segments to form multilayered myelin sheaths. These processes require extensive changes in the cytoarchitecture and must be regulated by reorganization of the cytoskeleton. Here, we established a simple protocol to isolate and differentiate mouse OPCs, and by using this method, we investigated a role of microtubules (MTs) in oligodendrocyte differentiation. Oligodendrocytes developed a complex network of MTs during differentiation, and treatment of differentiating oligodendrocytes with nanomolar concentrations of MT-targeting agents (MTAs) markedly affected oligodendrocyte survival and differentiation. We found that acute exposure to vincristine and nocodazole at early stages of oligodendrocyte differentiation markedly increased MT arborization and enhanced differentiation, whereas taxol and epothilone B treatment produced opposing outcomes. Furthermore, treatment of myelinating co-cultures of oligodendrocytes and neurons with nanomolar concentrations of MTAs at late stages of oligodendrocyte differentiation induced dysmyelination. Together, these results suggest that MTs play an important role in the survival, differentiation, and myelination of oligodendrocytes.
Collapse
|
10
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
11
|
Seixas AI, Azevedo MM, Paes de Faria J, Fernandes D, Mendes Pinto I, Relvas JB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 2019; 76:1-11. [PMID: 30302529 PMCID: PMC11105620 DOI: 10.1007/s00018-018-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023]
Abstract
The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes' biology and function. We also review "old and new" concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.
Collapse
Affiliation(s)
- Ana Isabel Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | - Maria Manuela Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana Paes de Faria
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Diogo Fernandes
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - João Bettencourt Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal
| |
Collapse
|
12
|
Azevedo MM, Domingues HS, Cordelières FP, Sampaio P, Seixas AI, Relvas JB. Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia 2018; 66:1826-1844. [DOI: 10.1002/glia.23342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maria M. Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Helena S. Domingues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Fabrice P. Cordelières
- Bordeaux Imaging Centre, UMS 3420 CNRS, CNRS-INSERM, University of Bordeaux; Bordeaux France
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Ana I. Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - João B. Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto campus; Porto Portugal
| |
Collapse
|
13
|
Domingues HS, Cruz A, Chan JR, Relvas JB, Rubinstein B, Pinto IM. Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 2017; 66:5-14. [PMID: 28940651 DOI: 10.1002/glia.23206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
In the central nervous system, oligodendrocyte precursor cells are exclusive in their potential to differentiate into myelinating oligodendrocytes. Oligodendrocyte precursor cells migrate within the parenchyma and extend cell membrane protrusions that ultimately evolve into myelinating sheaths able to wrap neuronal axons and significantly increase their electrical conductivity. The subcellular force generating mechanisms driving morphological and functional transformations during oligodendrocyte differentiation and myelination remain elusive. In this review, we highlight the mechanical processes governing oligodendrocyte plasticity in a dynamic interaction with the extracellular matrix.
Collapse
Affiliation(s)
| | - Andrea Cruz
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, United States of America
| | - João B Relvas
- Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - I3S, Universidade do Porto, Porto, Portugal
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| |
Collapse
|
14
|
Tripathi A, Parikh ZS, Vora P, Frost EE, Pillai PP. pERK1/2 Peripheral Recruitment and Filopodia Protrusion Augment Oligodendrocyte Progenitor Cell Migration: Combined Effects of PDGF-A and Fibronectin. Cell Mol Neurobiol 2017; 37:183-194. [PMID: 26993510 DOI: 10.1007/s10571-016-0359-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/29/2016] [Indexed: 01/02/2023]
Abstract
Oligodendrocyte progenitor cell (OPC) migration is critical for effective myelination of the central nervous system. Not only during normal myelination but also during remyelination, the growth factors (GFs) and extracellular matrix (ECM) protein affect the OPC migration. Studies showed the altered levels of GFs and ECM in the demyelinating lesions. In our earlier studies, we have shown that the effect of platelet-derived growth factor alpha (PDGF-A) on OPC migration is dose- and time-dependent. In that we have shown that the physiological concentration (1 ng/ml) of PDGF-A was unable to induce OPC migration at transient exposure (30 min). However, the involvement of ECM in the regulation of PDGF-A mediated OPC migration was not clear. In the present study, we have used fibronectin (FN) as ECM. PDGF-A and FN have similar and overlapping intracellular signaling pathways including the extracellular regulated kinases 1 and 2 (ERK1/2). Here we demonstrate how physiological concentration of PDGF-A combines with FN to augment OPC migration in vitro. The present study is first of its kind to show the importance of the synergistic effects of PDGF-A and FN on peripheral recruitment of phosphorylated/activated ERK1/2 (pERK1/2), actin-pERK1/2 co-localization, and filopodia formation, which are essential for the enhanced OPC migration. These findings were further confirmed by ERK1/2 inhibition studies, using the pharmacological inhibitor U0126. An understanding of these complex interactions may lead to additional strategies for transplanting genetically modified OPCs to repair widespread demyelinated lesions.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Parvez Vora
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | | | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390 002, India.
| |
Collapse
|
15
|
Inducible Expression of a Truncated Form of Tau in Oligodendrocytes Elicits Gait Abnormalities and a Decrease in Myelin: Implications for Selective CNS Degenerative Diseases. Neurochem Res 2015; 40:2188-99. [DOI: 10.1007/s11064-015-1707-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
|
16
|
Nawaz S, Sánchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C, Brückner BR, Alexopoulos I, Czopka T, Jung SY, Rhee JS, Janshoff A, Witke W, Schaap IA, Lyons DA, Simons M. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 2015; 34:139-151. [PMID: 26166299 PMCID: PMC4736019 DOI: 10.1016/j.devcel.2015.05.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 12/15/2022]
Abstract
During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/cofilin1, which mediates high F-actin turnover rates, as an essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading.
Collapse
Affiliation(s)
- Schanila Nawaz
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Paula Sánchez
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
- III. Physics Institute, Faculty of Physics, University of Göttingen, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sebastian Schmitt
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Nicolas Snaidero
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Mišo Mitkovski
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Caroline Velte
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Bastian R. Brückner
- Institute for Physical Chemistry, University of Göttingen, 37075 Göttingen, Germany
| | | | - Tim Czopka
- Centre for Neuroregeneration, Chancellor’s Building, GU 507B, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sang Y. Jung
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong S. Rhee
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, University of Göttingen, 37075 Göttingen, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Iwan A.T. Schaap
- III. Physics Institute, Faculty of Physics, University of Göttingen, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - David A. Lyons
- Centre for Neuroregeneration, Chancellor’s Building, GU 507B, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
17
|
Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C, Leonoudakis D, Leonoudakus D, Lariosa-Willingham K, Kronenberg G, Gertz K, Soderling SH, Miller RH, Barres BA. CNS myelin wrapping is driven by actin disassembly. Dev Cell 2015; 34:152-67. [PMID: 26166300 PMCID: PMC4519368 DOI: 10.1016/j.devcel.2015.06.011] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.
Collapse
Affiliation(s)
- J Bradley Zuchero
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adiljan Ibrahim
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Olson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anita Zaremba
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Sophia Wienbar
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew V Caprariello
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher Kantor
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | - Golo Kronenberg
- Klinik für Psychiatrie und Psychotherapie, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, 10117 Berlin, Germany; Klinik und Poliklinik für Neurologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karen Gertz
- Klinik und Poliklinik für Neurologie, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Scott H Soderling
- Departments of Cell Biology and Neurobiology, Duke University Medical School, Durham, NC 27710, USA
| | - Robert H Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Yang ML, Shin J, Kearns CA, Langworthy MM, Snell H, Walker MB, Appel B. CNS myelination requires cytoplasmic dynein function. Dev Dyn 2015; 244:134-45. [PMID: 25488883 DOI: 10.1002/dvdy.24238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration, and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. RESULTS We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. CONCLUSIONS In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination.
Collapse
|
19
|
Boggs JM, Homchaudhuri L, Ranagaraj G, Liu Y, Smith GST, Harauz G. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Res Notes 2014; 7:387. [PMID: 24956930 PMCID: PMC4078013 DOI: 10.1186/1756-0500-7-387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14–21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and multi-functional, having interactions with numerous proteins such as Ca2+-calmodulin, and with actin, tubulin, and proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP. Results To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1 (ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles. The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association. Conclusions These results provide more direct evidence for association of the predominant 18.5-kDa MBP isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during membrane and cytoskeletal extension and remodeling in OLGs.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Burda JE, Radulovic M, Yoon H, Scarisbrick IA. Critical role for PAR1 in kallikrein 6-mediated oligodendrogliopathy. Glia 2013; 61:1456-70. [PMID: 23832758 DOI: 10.1002/glia.22534] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/10/2022]
Abstract
Kallikrein 6 (KLK6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of KLK6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke, and glioblastoma. Taken with recent evidence establishing KLK6 as a CNS-endogenous activator of protease-activated receptors (PARs), we hypothesized that KLK6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1-deficient mice and the murine oligodendrocyte cell line, Oli-neu, were used to demonstrate that Klk6 (rodent form) mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1-dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1-activating peptides (PAR1-APs). Klk6 also exacerbated ATP-mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1-mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1-APs, into the dorsal column white matter of PAR1(+/+) but not PAR1(-/-) mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC-1(+) oligodendrocytes. These results demonstrate a functional role for Klk6-PAR1 signaling in oligodendroglial pathophysiology and suggest that antagonists of PAR1 or its protease agonists may represent new modalities to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease.
Collapse
Affiliation(s)
- Joshua E Burda
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
21
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
22
|
Chiba Y, Takei S, Kawamura N, Kawaguchi Y, Sasaki K, Hasegawa-Ishii S, Furukawa A, Hosokawa M, Shimada A. Immunohistochemical localization of aggresomal proteins in glial cytoplasmic inclusions in multiple system atrophy. Neuropathol Appl Neurobiol 2013; 38:559-71. [PMID: 22013984 DOI: 10.1111/j.1365-2990.2011.01229.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Multiple system atrophy (MSA) is pathologically characterized by the formation of α-synuclein-containing glial cytoplasmic inclusions (GCIs) in oligodendrocytes. However, the mechanisms of GCI formation are not fully understood. Cellular machinery for the formation of aggresomes has been linked to the biogenesis of the Lewy body, a characteristic α-synuclein-containing inclusion of Parkinson's disease and dementia with Lewy bodies. Here, we examined whether GCIs contain the components of aggresomes by immunohistochemistry. METHODS Sections from five patients with MSA were stained immunohistochemically with antibodies against aggresome-related proteins and analysed in comparison with sections from five patients with no neurological disease. We evaluated the presence or absence of aggresome-related proteins in GCIs by double immunofluorescence and immunoelectron microscopy. RESULTS GCIs were clearly immunolabelled with antibodies against aggresome-related proteins, such as γ-tubulin, histone deacetylase 6 (HDAC6) and 20S proteasome subunits. Neuronal cytoplasmic inclusions (NCIs) were also immunopositive for these aggresome-related proteins. Double immunofluorescence staining and quantitative analysis demonstrated that the majority of GCIs contained these proteins, as well as other aggresome-related proteins, such as Hsp70, Hsp90 and 62-kDa protein/sequestosome 1 (p62/SQSTM1). Immunoelectron microscopy demonstrated immunoreactivities for γ-tubulin and HDAC6 along the fibrils comprising GCIs. CONCLUSIONS Our results indicate that GCIs, and probably NCIs, share at least some characteristics with aggresomes in terms of their protein components. Therefore, GCIs and NCIs may be another manifestation of aggresome-related inclusion bodies observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Y Chiba
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Myelin Proteome Analysis: Methods and Implications for the Myelin Cytoskeleton. THE CYTOSKELETON 2013. [DOI: 10.1007/978-1-62703-266-7_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Microtubules and Associated Proteins in Oligodendrocytes, the Myelin Forming Cells of the Central Nervous System. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-62703-266-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
25
|
Smolders I, Smets I, Maier O, vandeVen M, Steels P, Ameloot M. Simvastatin interferes with process outgrowth and branching of oligodendrocytes. J Neurosci Res 2011; 88:3361-75. [PMID: 20857509 DOI: 10.1002/jnr.22490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins have attracted interest as a treatment option for multiple sclerosis (MS) because of their pleiotropic antiinflammatory and immunomodulatory effects. However, contradictory results have been described when they are applied to oligodendrocytes (OLGs), the cell type predominantly affected in MS. In this study we focus on the in vitro effect of statins on process outgrowth in OLN-93 cells, a well-characterized OLG-derived cell line, and primary cultures of neonatal rat OLGs. Application of the lipophilic simvastatin, as low as 0.1-1 μM, disturbs process formation of both cell types, leading to less ramified cells. We show that both protein isoprenylation and cholesterol synthesis are required for the normal differentiation of OLGs. It is further demonstrated that the expression of 2',3'-cyclic-nucleotide-3' phosphodiesterase (CNP) and tubulin is lowered, concomitant with a reduction of membrane-bound CNP as well as tubulin. Therefore, we propose that lack of isoprenylation of CNP could help to explain the altered morphological and biochemical differentiation state of treated OLGs. Moreover, expression of specific myelin markers, such as myelin basic protein, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein, was compromised after treatment. We conclude that simvastatin treatment has detrimental effects on OLG process outgrowth, the prior step in (re)myelination, thereby mortgaging long-term healing of MS lesions.
Collapse
Affiliation(s)
- Inge Smolders
- Biomedical Research Institute, School of Life Sciences, Hasselt University and Transnational University Limburg, Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Boggs JM, Rangaraj G, Heng YM, Liu Y, Harauz G. Myelin basic protein binds microtubules to a membrane surface and to actin filaments in vitro: effect of phosphorylation and deimination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:761-73. [PMID: 21185260 DOI: 10.1016/j.bbamem.2010.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 12/16/2022]
Abstract
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, the Hospital for Sick Children, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
27
|
Ahmed MAM, Bamm VV, Shi L, Steiner-Mosonyi M, Dawson JF, Brown L, Harauz G, Ladizhansky V. Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin. Biophys J 2010; 96:180-91. [PMID: 19134474 DOI: 10.1016/j.bpj.2008.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/07/2008] [Indexed: 11/27/2022] Open
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
Collapse
|
28
|
The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2010; 2:e00027. [PMID: 20017732 PMCID: PMC2814326 DOI: 10.1042/an20090051] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca2+ regulation, cytoskeletal rearrangements and signal transduction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development.
Collapse
|
29
|
Novel approaches for scanning near-field optical microscopy imaging of oligodendrocytes in culture. Neuroimage 2010; 49:517-24. [DOI: 10.1016/j.neuroimage.2009.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/15/2009] [Indexed: 11/22/2022] Open
|
30
|
Younes-Rapozo V, Felgueiras LOR, Viana NL, Fierro IM, Barja-Fidalgo C, Manhães AC, Barradas PC. A role for the MAPK/ERK pathway in oligodendroglial differentiation in vitro: stage specific effects on cell branching. Int J Dev Neurosci 2009; 27:757-68. [PMID: 19729058 DOI: 10.1016/j.ijdevneu.2009.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/22/2009] [Accepted: 08/24/2009] [Indexed: 01/14/2023] Open
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is important for both long-term survival and timing of the progression of oligodendrocyte differentiation. Oligodendroglial cells treated with MEK inhibitor were distinguished by using stage specific markers: NG2 proteoglycan, A2B5, 2'3'nucleotide-cyclic 3'phosphodiesterase (CNPase) and myelin basic protein (MBP), and classified according to their morphology into different developmental stages. Treatment significantly increased the number of cells with more immature morphologies and decreased the number of mature cells. Furthermore, it increased the number of rounded cells that could not be classified into any of the oligodendroglial developmental stages. The strongest effects were usually observed shortly after treatment. Rounded cells were CNPase/MBP positive and they were not stained by anti-NG2 or A2B5, indicating that they were mature cells unable either to extend and/or to maintain their processes. These data showed an effect of the MAPK/ERK pathway on oligodendroglial branching, with possible consequences for the formation of the myelin sheath.
Collapse
Affiliation(s)
- V Younes-Rapozo
- Depto. Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, UERJ, 20551-030, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Harauz G, Ladizhansky V, Boggs JM. Structural Polymorphism and Multifunctionality of Myelin Basic Protein. Biochemistry 2009; 48:8094-104. [DOI: 10.1021/bi901005f] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Joan M. Boggs
- Department of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| |
Collapse
|
32
|
Haber M, Vautrin S, Fry EJ, Murai KK. Subtype-specific oligodendrocyte dynamics in organotypic culture. Glia 2009; 57:1000-13. [DOI: 10.1002/glia.20824] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Gordon D, Kidd GJ, Smith R. Antisense suppression of tau in cultured rat oligodendrocytes inhibits process formation. J Neurosci Res 2009; 86:2591-601. [PMID: 18500753 DOI: 10.1002/jnr.21719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microtubule-associated protein tau is integral to neuronal process development and has a role in the pathogenesis of several neurodegenerative conditions. We examined possible roles for tau in cultured oligodendrocyte process formation by using antisense oligonucleotide treatment. Inhibition of tau synthesis with single oligonucleotides resulted in decreased tau protein levels and significantly shorter cellular processes. Simultaneous use of two nonoverlapping oligonucleotides caused a major reduction in tau levels and severely inhibited process outgrowth. The timing of oligonucleotide addition to oligodendrocyte cultures was important, with addition of antisense at the time of plating into culture having the most significant effect on morphology through reduction of tau expression.
Collapse
Affiliation(s)
- David Gordon
- Department of Biochemistry and Molecular Biology, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
34
|
Musse AA, Gao W, Rangaraj G, Boggs JM, Harauz G. Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neurosci Lett 2009; 450:32-6. [DOI: 10.1016/j.neulet.2008.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
35
|
Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: Relevance to the pharmacotherapy of brain HIV-1 infection. Glia 2008; 56:1711-35. [DOI: 10.1002/glia.20725] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Musse AA, Gao W, Homchaudhuri L, Boggs JM, Harauz G. Myelin basic protein as a "PI(4,5)P2-modulin": a new biological function for a major central nervous system protein. Biochemistry 2008; 47:10372-82. [PMID: 18767817 DOI: 10.1021/bi801302b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is multifunctional and has previously been shown to have structural and phenomenological similarities with domains of other membrane- and cytoskeleton-associated proteins such as MARCKS (myristoylated alanine-rich C kinase substrate). Here, we have investigated whether 18.5 kDa MBP can sequester phosphatidylinositol-(4,5)-bis-phosphate (PI(4,5)P 2) in membranes, like MARCKS and other "PIPmodulins" do. Using fluorescence-quenching and electron paramagnetic resonance (EPR) spectroscopy, and model membranes containing BODIPY-FL- or proxyl-labeled PI(4,5)P 2, respectively, we have demonstrated that MBP laterally sequesters PI(4,5)P 2. The MBP-PI(4,5)P 2 interactions are electrostatic, partially cholesterol-dependent, and sensitive to phosphorylation, deimination, and Ca (2+)-CaM binding. Confocal microscopy of cultured oligodendrocytes also revealed patched colocalization of MBP and PI(4,5)P 2, indicating the spatial clustering of PI(4,5)P 2 in the plasma membrane. On the basis of these findings as well as the overwhelming convergence of functional properties, modifying enzymes, and interaction partners, we propose that MBP is mechanistically related to GAP-43, MARCKS, and CAP-23. During myelinogenesis, it may mediate calcium and phosphorylation-sensitive plasma membrane availability of PI(4,5)P 2. This regulation of PI(4,5)P 2 availability at the cell cortex may be coupled to the elaboration and outgrowth of the membranous cellular processes by oligodendrocytes.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | |
Collapse
|
37
|
Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel. J Membr Biol 2008; 222:115-25. [DOI: 10.1007/s00232-008-9104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
|
38
|
Richter-Landsberg C. The cytoskeleton in oligodendrocytes. Microtubule dynamics in health and disease. J Mol Neurosci 2007; 35:55-63. [PMID: 18058074 DOI: 10.1007/s12031-007-9017-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 09/20/2007] [Indexed: 01/05/2023]
Abstract
Oligodendrocytes have a complex cytoarchitecture and are characterized by an elaborate network of microtubules. They provide the tracks for organelle trafficking and the intracellular translocation of myelin-specific gene products. The integrity of the cytoskeleton is an essential determinant of the function and survival of oligodendrocytes. Microtubule growth and stability are regulated by microtubule-associated proteins. Oligodendrocytes contain a number of microtubule-associated proteins, including the tau proteins, which are developmentally regulated and especially prominent in the branching points of the cellular processes. Process outgrowth is regulated by the interaction of Fyn kinase with the cytoskeleton and by microtubule-severing proteins, such as stathmin. Alterations or disruption of the cytoskeleton and abundant abnormal aggregates of cytoskeletal proteins often accompany neurodegenerative diseases, and inclusion bodies, resembling protein aggregates found in neurons, are prominent in oligodendroglial lesions in white matter pathology. This review emphasizes the role of the cytoskeleton, particularly of microtubules and their associated proteins, in oligodendrocytes during developmental processes. Furthermore, recent data on protein aggregate formation in oligodendroglial cells, which might occur during aging and disease processes, are summarized.
Collapse
|
39
|
Dennis J, White MA, Forrest AD, Yuelling LM, Nogaroli L, Afshari FS, Fox MA, Fuss B. Phosphodiesterase-Ialpha/autotaxin's MORFO domain regulates oligodendroglial process network formation and focal adhesion organization. Mol Cell Neurosci 2007; 37:412-24. [PMID: 18164210 DOI: 10.1016/j.mcn.2007.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/23/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022] Open
Abstract
Development of a complex process network by maturing oligodendrocytes is a critical but currently poorly characterized step toward myelination. Here, we demonstrate that the matricellular oligodendrocyte-derived protein phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX) and especially its MORFO domain are able to promote this developmental step. In particular, the single EF hand-like motif located within PD-Ialpha/ATX's MORFO domain was found to stimulate the outgrowth of higher order branches but not process elongation. This motif was also observed to be critical for the stimulatory effect of PD-Ialpha/ATX's MORFO domain on the reorganization of focal adhesions located at the leading edge of oligodendroglial protrusions. Collectively, our data suggest that PD-Ialpha/ATX promotes oligodendroglial process network formation and expansion via the cooperative action of multiple functional sites located within the MORFO domain and more specifically, a novel signaling pathway mediated by the single EF hand-like motif and regulating the correlated events of process outgrowth and focal adhesion organization.
Collapse
Affiliation(s)
- Jameel Dennis
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
A product of myosin Va mutations, Griscelli's syndrome type 1 (GS1) is characterized by several neurologic deficits including quadraparesis, mental retardation, and seizures. Although multiple studies have not clearly established a cause for the neurologic deficits linked with GS1, a few reports suggest that GS1 is associated with abnormal myelination, which could cause the neurologic deficits seen with GS1. In this report, we investigate whether myosin Va is critical to oligodendrocyte morphology and to myelination in vivo. We found that myosin Va-null mice exhibit significantly impaired myelination of the brain, optic nerve, and spinal cord. Oligodendrocytes express myosin Va and loss of myosin Va function resulted in significantly smaller lamellas and decreased process number, length, and branching of oligodendrocytes. Loss of myosin Va function also blocked distal localization of vesicle-associated membrane protein 2 (VAMP2), which is known to associate with myosin Va. When VAMP2 function was disrupted, oligodendrocytes exhibited similar morphologic deficits to what is seen with functional ablation of myosin Va. Our findings establish a role for both myosin Va and VAMP2 in oligodendrocyte function as it relates to myelination.
Collapse
|
41
|
Lee J, Gravel M, Zhang R, Thibault P, Braun PE. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. ACTA ACUST UNITED AC 2007; 170:661-73. [PMID: 16103231 PMCID: PMC2171497 DOI: 10.1083/jcb.200411047] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes (OLs) extend arborized processes that are supported by microtubules (MTs) and microfilaments. Little is known about proteins that modulate and interact with the cytoskeleton during myelination. Several lines of evidence suggest a role for 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) in mediating process formation in OLs. In this study, we report that tubulin is a major CNP-interacting protein. In vitro, CNP binds preferentially to tubulin heterodimers compared with MTs and induces MT assembly by copolymerizing with tubulin. CNP overexpression induces dramatic morphology changes in both glial and nonglial cells, resulting in MT and F-actin reorganization and formation of branched processes. These morphological effects are attributed to CNP MT assembly activity; branched process formation is either substantially reduced or abolished with the expression of loss-of-function mutants. Accordingly, cultured OLs from CNP-deficient mice extend smaller outgrowths with less arborized processes. We propose that CNP is an important component of the cytoskeletal machinery that directs process outgrowth in OLs.
Collapse
Affiliation(s)
- John Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
42
|
Jiang S, Seng S, Avraham HK, Fu Y, Avraham S. Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem 2007; 282:12319-29. [PMID: 17324934 DOI: 10.1074/jbc.m701019200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated by progenitor cells that are committed to differentiating into myelin-forming cells of the central nervous system. Rearrangement of the cytoskeleton leading to the extension of cellular processes is essential for the myelination of axons by OLGs. Here, we have characterized a new member of the Kelch-related protein family termed MRP2 (for Mayven-related protein 2) that is specifically expressed in brain. MRP2/KLHL1 is expressed in oligodendrocyte precursors and mature OLGs, and its expression is up-regulated during OLG differentiation. MRP2/KLHL1 expression was abundant during the specific stages of oligodendrocyte development, as identified by A2B5-, O4-, and O1-specific oligodendrocyte markers. MRP2/KLHL1 was localized in the cytoplasm and along the cell processes. Moreover, a direct endogenous association of MRP2/KLHL1 with actin was observed, which was significantly increased in differentiated OLGs compared with undifferentiated OLGs. Overexpression of MRP2/KLHL1 resulted in a significant increase in the process extension of rat OLGs, whereas MRP2/KLHL1 antisense reduced the process length of primary rat OLGs. Furthermore, murine OLGs isolated from MRP2/KLHL1 transgenic mice showed a significant increase in the process extension of OLGs compared with control wild-type murine OLGs. These studies provide insights into the role of MRP2/KLHL1, through its interaction with actin, in the process elongation of OLGs.
Collapse
Affiliation(s)
- Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
43
|
DeBruin LS, Haines JD, Bienzle D, Harauz G. Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosisThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:993-1005. [PMID: 17215885 DOI: 10.1139/o06-180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have characterized the lipid rafts in myelin from a spontaneously demyelinating mouse line (ND4), and from control mice (CD1 background), as a function of age and severity of disease. Myelin was isolated from the brains of CD1 and ND4 mice at various ages, and cold lysed with 1.5% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulphonate). The lysate was separated by low-speed centrifugation into supernatant and pellet fractions, which were characterized by Western blotting for myelin basic protein (MBP) isoforms and their post-translationally modified variants. We found that, with maturation and with disease progression, there was a specific redistribution of the 14–21.5 kDa MBP isoforms (classic exon-II-containing vs exon-II-lacking) and phosphorylated forms into the supernatant and pellet. Further fractionation of the supernatant to yield detergent-resistant membranes (DRMs), representing coalesced lipid rafts, showed these to be highly enriched in exon-II-lacking MBP isoforms, and deficient in methylated MBP variants, in mice of both genotypes. The DRMs from the ND4 mice appeared to be enriched in MBP phosphorylated by MAP kinase at Thr95 (murine 18.5 kDa numbering). These studies indicate that different splice isoforms and post-translationally modified charge variants of MBP are targeted to different microdomains in the myelin membrane, implying multifunctionality of this protein family in myelin maintenance.
Collapse
Affiliation(s)
- Lillian S DeBruin
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
44
|
Debruin LS, Harauz G. White Matter Rafting––Membrane Microdomains in Myelin. Neurochem Res 2006; 32:213-28. [PMID: 17031566 DOI: 10.1007/s11064-006-9137-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2006] [Indexed: 02/08/2023]
Abstract
The myelin membrane comprises a plethora of regions that are compositionally, ultrastructurally, and functionally distinct. Biochemical dissection of oligodendrocytes, Schwann cells, and central and peripheral nervous system myelin by means such as cold-detergent extraction and differential fractionation has led to the identification of a variety of detergent-resistant membrane assemblies, some of which represent putative signalling platforms. We review here the different microdomains that have hitherto been identified in the myelin membrane, particularly lipid rafts, caveolae, and cellular junctions such as the tight junctions that are found in the radial component of the CNS myelin sheath.
Collapse
Affiliation(s)
- Lillian S Debruin
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, ON, Canada.
| | | |
Collapse
|
45
|
Galiano MR, Andrieux A, Deloulme JC, Bosc C, Schweitzer A, Job D, Hallak ME. Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes. J Neurosci Res 2006; 84:534-41. [PMID: 16773649 DOI: 10.1002/jnr.20960] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelin basic protein (MBP) is an oligodendrocyte-specific protein essential for oligodendrocyte morphogenesis at late stages of cell differentiation. There is evidence that the morphogenetic function of MBP is mediated by MBP interaction with the cytoskeleton. Thus, an MBP/cytoplasmic microtubule association has been reported, and MBP has Ca(2+)/calmodulin-regulated microtubule cold-stabilizing activity in vitro. However, the unambiguous demonstration of a microtubule-stabilizing activity for MBP in cells has been difficult because oligodendrocytes contain variants of STOP (stable tubule only polypeptide) proteins, which are responsible for microtubule cold stability in different cell types. Herein, we have used genetic mouse models and RNA interference to assay independently the microtubule cold-stabilizing activities of MBP and of STOP in developing oligodendrocytes. In wild-type oligodendrocytes, microtubules were cold stable throughout maturation, which is consistent with the presence of STOP proteins from early stages of differentiation. In contrast, in oligodendrocytes from STOP-deficient mice, microtubules were cold labile in the absence of MBP expression or when MBP expression was restricted to the cell body and became stable in fully differentiated oligodendrocytes, where MBP is expressed in cell extensions. The suppression of MBP by RNA interference in STOP-deficient oligodendrocytes suppressed microtubule cold stability. Additionally, STOP suppression in oligodendrocytes derived from shiverer mice that lack MBP led to the complete suppression of microtubule cold stability at all stages of cell differentiation. These results demonstrate that both STOP and MBP function as microtubule-stabilizing proteins in differentiating oligodendrocytes and could be important for the morphogenetic function of MBP.
Collapse
Affiliation(s)
- M R Galiano
- CIQUIBIC-Dpto. Química Biológica, Facultad Ciencias Químicas, Haya de la Torre S/N, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP, Vartanian TK. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci 2006; 26:5849-59. [PMID: 16723544 PMCID: PMC6675261 DOI: 10.1523/jneurosci.4921-05.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myelin formation involves the outgrowth of an oligodendrocyte cell process that can be regarded as a giant lamellipodium because it is an actively growing structure with extruded cytoplasm. The actin cytoskeleton is critical to morphogenesis, but little is known about regulation of actin dynamics in oligodendrocytes. Wiskott-Aldrich syndrome protein family verprolin homologous (WAVE) proteins mediate lamellipodia formation; thus, we asked whether these proteins function in oligodendrocyte process formation and myelination. Here, we show that WAVE1 is expressed by oligodendrocytes and localizes to the lamella leading edge where actin polymerization is actively regulated. CNS WAVE1 expression increases at the onset of myelination. Expression of dominant-negative WAVE1 impaired process outgrowth and lamellipodia formation in cultured oligodendrocytes. Similarly, oligodendrocytes isolated from mice lacking WAVE1 had fewer processes compared with controls, whereas neurons and astrocytes exhibited normal morphology. In white matter of WAVE1-/- mice, we found regional hypomyelination in the corpus callosum and to a lesser extent in the optic nerve. In optic nerve from WAVE1-/- mice, there were fewer nodes of Ranvier but nodal morphology was normal, implicating a defect in myelin formation. Our in vitro findings support a developmentally dynamic and cell-autonomous role for WAVE1 in regulating process formation in oligodendrocytes. Additionally, WAVE1 function during CNS myelination appears to be linked to regional cues. Although its loss can be compensated for in many CNS regions, WAVE1 is clearly required for normal amounts of myelin to form in corpus callosum and optic nerve. Together, these data demonstrate a role for WAVE1 in oligodendrocyte morphogenesis and myelination.
Collapse
|
47
|
Boggs JM, Rangaraj G, Gao W, Heng YM. Effect of phosphorylation of myelin basic protein by MAPK on its interactions with actin and actin binding to a lipid membrane in vitro. Biochemistry 2006; 45:391-401. [PMID: 16401070 DOI: 10.1021/bi0519194] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to bind it to a negatively charged membrane.
Collapse
Affiliation(s)
- Joan M Boggs
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | |
Collapse
|
48
|
Hill CMD, Libich DS, Harauz G. Assembly of tubulin by classic myelin basic protein isoforms and regulation by post-translational modification. Biochemistry 2006; 44:16672-83. [PMID: 16342957 DOI: 10.1021/bi050646+] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myelin basic protein (MBP), a highly cationic protein that maintains the structure of the myelin sheath, associates with tubulin in vivo. The in vitro assembly of tubulin by MBP was examined here using several assays. The unmodified C1 component of 18.5 kDa bovine MBP (bC1) assembled tubulin into microtubules in a dose-dependent manner via filamentous intermediates, and was able simultaneously to promote the formation of microtubule bundles. The critical tubulin concentration in the presence of bC1 was 0.69 +/- 0.05 microM. The effects of post-translational modifications (such as deamidation and phosphorylation) were assayed by comparing the bC1-bC6 components of 18.5 kDa bovine MBP; an increasing level of modification enhanced the ability of MBP to assemble tubulin. The effects of charge reduction via deimination were examined using recombinant murine isoforms emulating the unmodified C1 and deiminated C8 isoforms of 18.5 kDa MBP; both rmC1 and rmC8 exhibited a comparable ability to assemble tubulin. The effects of alternate exon recombination of the classic MBP variants were tested using the recombinant murine 21.5, 17.22, and 14 kDa isoforms. The isoforms containing regions derived from exon II of the classic MBP gene, 21.5 and 17.22 kDa MBP, showed no substantial difference in the extent of tubulin polymerization and bundling when compared to those of 18.5 kDa MBP. The 14 kDa isoform and two terminal deletion mutants of rmC1 were able to induce microtubule polymerization, but not bundling, to the same degree as the longer proteins. Finally, bC1 was shown to disrupt and aggregate planar sheets of crystalline tubulin stabilized by paclitaxel, establishing that these structures are not suitable substrates for the formation of MBP cocrystals.
Collapse
Affiliation(s)
- Christopher M D Hill
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
49
|
Brockschnieder D, Sabanay H, Riethmacher D, Peles E. Ermin, a myelinating oligodendrocyte-specific protein that regulates cell morphology. J Neurosci 2006; 26:757-62. [PMID: 16421295 PMCID: PMC6675369 DOI: 10.1523/jneurosci.4317-05.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, thereby allowing rapid propagation of action potentials. Despite the considerable clinical importance of myelination, little is known about the molecular mechanisms that enable oligodendrocytes to generate their specialized membrane wrapping. Here, we used microarray expression profiling of oligodendrocyte-ablated mutant mice to identify new glial molecules that are involved in CNS myelination. This effort resulted in the identification of Ermin, a novel cytoskeletal molecule that is exclusively expressed by oligodendrocytes. Ermin appears at a late stage during myelination, and in the mature nerves, it is localized to the outer cytoplasmic lip of the myelin sheath and the paranodal loops. In cultured oligodendrocytes, Ermin becomes visible in well differentiated MBP-positive cells, where it is concentrated at the tip of F-actin-rich processes (termed "Ermin spikes"). Ectopic expression of Ermin, but not of a mutant protein lacking its actin-binding domain, induced the formation of numerous cell protrusions and a pronounced change in cell morphology. Our results demonstrate that Ermin is a novel marker of myelinating oligodendroglia and suggest that it plays a role in cytoskeletal rearrangements during the late wrapping and/or compaction phases of myelinogenesis.
Collapse
Affiliation(s)
- Damian Brockschnieder
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
50
|
Gielen E, Baron W, Vandeven M, Steels P, Hoekstra D, Ameloot M. Rafts in oligodendrocytes: Evidence and structure–function relationship. Glia 2006; 54:499-512. [PMID: 16927294 DOI: 10.1002/glia.20406] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plasma membrane of eukaryotic cells exhibits lateral inhomogeneities, mainly containing cholesterol and sphingomyelin, which provide liquid-ordered microdomains (lipid "rafts") that segregate membrane components. Rafts are thought to modulate the biological functions of molecules that become associated with them, and as such, they appear to be involved in a variety of processes, including signal transduction, membrane sorting, cell adhesion and pathogen entry. Although still a matter of ongoing debate, evidence in favor of the presence of these microdomains is gradually accumulating but a consensus on issues like their size, lifetime, composition, and biological significance has yet to be reached. Here, we provide an overview of the evidence supporting the presence of rafts in oligodendrocytes, the myelin-producing cells of the central nervous system, and discuss their functional significance. The myelin membrane differs fundamentally from the plasma membrane, both in lipid and protein composition. Moreover, since myelin membranes are unusually enriched in glycosphingolipids, questions concerning the biogenesis and functional relevance of microdomains thus appear of special interest in oligodendrocytes. The current picture of rafts in oligodendrocytes is mainly based on detergent methods. The robustness of such data is discussed and alternative methods that may provide complementary data are indicated.
Collapse
Affiliation(s)
- Ellen Gielen
- Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|