1
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
2
|
Kosenko EA, Tikhonova LA, Montoliu C, Barreto GE, Aliev G, Kaminsky YG. Metabolic Abnormalities of Erythrocytes as a Risk Factor for Alzheimer's Disease. Front Neurosci 2018; 11:728. [PMID: 29354027 PMCID: PMC5760569 DOI: 10.3389/fnins.2017.00728] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive, neurodegenerative disorder of uncertain etiology. According to the amyloid cascade hypothesis, accumulation of non-soluble amyloid β peptides (Aβ) in the Central Nervous System (CNS) is the primary cause initiating a pathogenic cascade leading to the complex multilayered pathology and clinical manifestation of the disease. It is, therefore, not surprising that the search for mechanisms underlying cognitive changes observed in AD has focused exclusively on the brain and Aβ-inducing synaptic and dendritic loss, oxidative stress, and neuronal death. However, since Aβ depositions were found in normal non-demented elderly people and in many other pathological conditions, the amyloid cascade hypothesis was modified to claim that intraneuronal accumulation of soluble Aβ oligomers, rather than monomer or insoluble amyloid fibrils, is the first step of a fatal cascade in AD. Since a characteristic reduction of cerebral perfusion and energy metabolism occurs in patients with AD it is suggested that capillary distortions commonly found in AD brain elicit hemodynamic changes that alter the delivery and transport of essential nutrients, particularly glucose and oxygen to neuronal and glial cells. Another important factor in tissue oxygenation is the ability of erythrocytes (red blood cells, RBC) to transport and deliver oxygen to tissues, which are first of all dependent on the RBC antioxidant and energy metabolism, which finally regulates the oxygen affinity of hemoglobin. In the present review, we consider the possibility that metabolic and antioxidant defense alterations in the circulating erythrocyte population can influence oxygen delivery to the brain, and that these changes might be a primary mechanism triggering the glucose metabolism disturbance resulting in neurobiological changes observed in the AD brain, possibly related to impaired cognitive function. We also discuss the possibility of using erythrocyte biochemical aberrations as potential tools that will help identify a risk factor for AD.
Collapse
Affiliation(s)
- Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Lyudmila A Tikhonova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, INCLIVA Instituto Investigación Sanitaria, Valencia, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- GALLY International Biomedical Research Institute Inc., San Antonio, TX, United States
| | - Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
3
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Hirao K, Pontone GM, Smith GS. Molecular imaging of neuropsychiatric symptoms in Alzheimer's and Parkinson's disease. Neurosci Biobehav Rev 2015; 49:157-70. [PMID: 25446948 PMCID: PMC4806385 DOI: 10.1016/j.neubiorev.2014.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Abstract
Neuropsychiatric symptoms (NPS) are very common in neurodegenerative diseases and are a major contributor to disability and caregiver burden. There is accumulating evidence that NPS may be a prodrome and/or a "risk factor" of neurodegenerative diseases. The medications used to treat these symptoms in younger patients are not very effective in patients with neurodegenerative disease and may have serious side effects. An understanding of the neurobiology of NPS is critical for the development of more effective intervention strategies. Targeting these symptoms may also have implications for prevention of cognitive or motor decline. Molecular brain imaging represents a bridge between basic and clinical observations and provides many opportunities for translation from animal models and human post-mortem studies to in vivo human studies. Molecular brain imaging studies in Alzheimer's disease (AD) and Parkinson's disease (PD) are reviewed with a primary focus on positron emission tomography studies of NPS. Future directions for the field of molecular imaging in AD and PD to understand the neurobiology of NPS will be discussed.
Collapse
Affiliation(s)
- Kentaro Hirao
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
5
|
Bigler ED, Stern Y. Traumatic brain injury and reserve. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:691-710. [DOI: 10.1016/b978-0-444-63521-1.00043-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Imaging neuroinflammation in Alzheimer's disease and other dementias: Recent advances and future directions. Alzheimers Dement 2014; 11:1110-20. [DOI: 10.1016/j.jalz.2014.08.105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
|
7
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
8
|
Abstract
In 1906, Alois Alzheimer first characterized the disease that bears his name. Despite intensive research, which has led to a better understanding of the pathology, there is no effective treatment for this disease. Of the drugs approved by the US FDA, none are disease modifying, only symptomatic. Unfortunately, there have been a number of failed clinical trials in the past 10 years where studies show either no cognitive improvement or, worse, serious side effects associated with treatment. Hence, there is a need for the field to look at alternative approaches to therapy. In this review, we will discuss how metal dyshomeostasis occurs in aging and Alzheimer's disease. Concomitantly, we will discuss how targeting this dyshomeostasis offers an effective and novel therapeutic approach. Thus far, compounds that mediate these effects have shown great potential in both preclinical animal studies as well as in early-stage clinical trials.
Collapse
|
9
|
Antunes IF, Doorduin J, Haisma HJ, Elsinga PH, van Waarde A, Willemsen ATM, Dierckx RA, de Vries EFJ. 18F-FEAnGA for PET of β-glucuronidase activity in neuroinflammation. J Nucl Med 2012; 53:451-8. [PMID: 22323774 DOI: 10.2967/jnumed.111.096388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Activation of microglia is a hallmark of inflammatory, infectious, and degenerative diseases of the central nervous system. Several studies have indicated that there is an increase in release of β-glucuronidase by activated microglia into the extracellular space at the site of neuroinflammation. β-glucuronidase is involved in the hydrolysis of glycosaminoglycans on the cell surface and the degradation of the extracellular matrix. Therefore, β-glucuronidase might be a biomarker for ongoing neurodegeneration induced by neuroinflammation. In this study, we investigated whether the PET tracer (18)F-FEAnGA was able to detect β-glucuronidase release during neuroinflammation in a rat model of herpes encephalitis. METHODS Male Wistar rats were intranasally inoculated with herpes simplex virus 1 (HSV-1) or phosphate-buffered saline as a control. (11)C-(R)-PK11195 and (18)F-FEAnGA small-animal PET scans were acquired for 60 min. Logan graphical analysis was used to calculate (18)F-FEAnGA distribution volumes (DV(Logan)) in various brain areas. RESULTS After administration of (18)F-FEAnGA, the area under the activity concentration-versus-time curve of the whole brain was 2 times higher in HSV-1-infected rats than in control rats. In addition, the DV(Logan) of (18)F-FEAnGA was most increased in the frontopolar cortex, frontal cortex, bulbus olfactorius, cerebral cortex, cerebellum, and brainstem of HSV-1-infected rats, when compared with control rats. The conversion of (18)F-FEAnGA to 4-hydroxy-3-nitrobenzyl alcohol was found to be 1.6 times higher in HSV-1-infected rats than in control rats and correlated with the DV(Logan) of (18)F-FEAnGA in the same areas of the brain. Furthermore, the DV(Logan) of (18)F-FEAnGA also correlated with β-glucuronidase activity in the same brain regions. In addition, DV(Logan) of (18)F-FEAnGA showed a tendency to correlate with (11)C-(R)-PK11195 uptake (marker for activated microglia) in the same brain regions. CONCLUSION Despite relatively low brain uptake, (18)F-FEAnGA was able to detect an increased release of β-glucuronidase during neuroinflammation.
Collapse
Affiliation(s)
- Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, Rembach A, Roberts B, Masters CL, Bush AI, Camakaris J. Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem 2010; 286:8252-8262. [PMID: 21177866 DOI: 10.1074/jbc.m110.128512] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation of the amyloid β peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid β peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells and primary cortical neurons, copper promoted a redistribution of APP from a perinuclear localization to a wider distribution, including neurites. Importantly, a change in APP localization was not attributed to an up-regulation of APP protein synthesis. Using live cell imaging and endocytosis assays, we found that copper promotes an increase in cell surface APP by increasing its exocytosis and reducing its endocytosis, respectively. This study identifies a novel mechanism by which copper regulates the localization and presumably the function of APP, which is of major significance for understanding the role of APP in copper homeostasis and the role of copper in Alzheimer disease.
Collapse
Affiliation(s)
| | - Ya Hui Hung
- the Centre for Neuroscience, and; the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | | | - Qiao-Xin Li
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; the Department of Pathology
| | - Katrina Laughton
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; the Department of Pathology
| | - Krutika Wikhe
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Alan Rembach
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and; Commonwealth Scientific and Research Organization (CSIRO) Molecular and Health Technologies, Parkville, Victoria 3052, Australia
| | - Blaine Roberts
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Colin L Masters
- the Centre for Neuroscience, and; the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | - Ashley I Bush
- the Mental Health Research Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and
| | | |
Collapse
|
11
|
Abstract
RésuméL'eorganisation anatomique et chimique du cerveau humain subit de nombreux changements au cours du vieillissement. Certains neurons meurent, d'autres s'atrophient et ily a une réduction marquée du nombre de synapses dans des régions spécifiques du cerveau. Des diminutions du métabolisme du glucose et des effets pré- et post-synaptiques des neurotransmetteurs ont aussi été rapportées. À l'exception de certaines structures sous-corticales, il existe cependant une controverse quant à la sévérité des changements dans l'ensemble du cerveau. De plus, les effets du vieillissement sont très variables d'une région du cerveau à l'autre ainsi que d'un individu à l'autre. Certains phénomènes observès dans le vieillissement normal, tels la perte des neurones dopaminergique de la substance noire et celle des neurones cholinergiques du prosencé;phale basal, apparaissent sous une forme grandement exacerbées dans diverses pathologies neurodégénératives comme les maladies de Parkinson et d'Alzeimer. Les faibles altérations qui surviennent au niveau de ces systémes lors du vieillissement normal pourraient étre responsables des troubles d'équilibre, de la pauvreté de mouvement et des pertes de mémoires que l'on observent chez les gens âgés. Cependant, l'inflammation chronique du cerveau semble être une caractéristique typique des individus atteints de maladies neurodégénératives. L'hypothèse voulant que cette inflammation puisse être ralentie par un traitement avec des agents anti-inflammatoires a été supportée par les résultats de 19 études épidémiologiques ainsi que par un essai clinique de moindre envergure. Cependant, d'Autres études cliniques devront ètre réalisées et une attention particulière devra être portée aux effets secondaires de la thérapie anti-inflammatoire conventionnelle afin d'en arriver à une conclusion définitive.
Collapse
|
12
|
Abstract
The concept of reserve has been proposed to account for the disjunction between the degree of brain damage and its clinical outcome. This paper attempts to produce a coherent theoretical account the reserve in general and of cognitive reserve in particular. It reviews epidemiologic data supporting the concept of cognitive reserve, with a particular focus of its implications for aging and dementia. It then focuses on methodologic issues that are important when attempting to elucidate the neural underpinnings of cognitive reserve using imaging studies, and reviews some of our group's work in order to demonstrate these issues.
Collapse
Affiliation(s)
- Yaakov Stern
- Cognitive Neuroscience Division of the Taub Institute, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States.
| |
Collapse
|
13
|
Bica L, Crouch PJ, Cappai R, White AR. Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer’s disease. ACTA ACUST UNITED AC 2009; 5:134-42. [DOI: 10.1039/b816577g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Noble JM, Scarmeas N. Application of pet imaging to diagnosis of Alzheimer's disease and mild cognitive impairment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 84:133-49. [PMID: 19501716 DOI: 10.1016/s0074-7742(09)00407-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Alzheimer disease (AD) is the most common type of dementia and will become increasingly prevalent with the growing elderly population. Despite established clinical diagnostic tools, the workup for dementia among primary caregivers can be complicated and specialist referral may not be readily available. A host of AD diagnostic tests has been proposed to aid in diagnosis, including functional neuroimaging such as positron emission tomography (PET). We review the basis for FDG-PET and PiB-PET, as well as available operating statistics. From this we advise scenarios for use of PET in primary settings and referral centers, approach to its interpretation, and outline a clinical prediction model based on findings.
Collapse
Affiliation(s)
- James M Noble
- Department of Neurology, Harlem Hospital Center, Columbia University College of Physicians and Surgeons, New York 10037, USA
| | | |
Collapse
|
15
|
Crouch PJ, White AR, Bush AI. The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer's disease. FEBS J 2007; 274:3775-83. [PMID: 17617225 DOI: 10.1111/j.1742-4658.2007.05918.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The postmortem Alzheimer's disease brain is characterized histochemically by the presence of extracellular amyloid plaques and neurofibrillary tangles. Also consistent with the disease is evidence for chronic oxidative damage within the brain. Considerable research data indicates that these three critical aspects of Alzheimer's disease are interdependent, raising the possibility that they share some commonality with respect to the ever elusive initial factor(s) that triggers the development of Alzheimer's disease. Here, we discuss reports that show a loss of metal homeostasis is also an important event in Alzheimer's disease, and we identify how metal dyshomeostasis may contribute to development of the amyloid-beta, tau and oxidative stress biology of Alzheimer's disease. We propose that therapeutic agents designed to modulate metal bio-availability have the potential to ameliorate several of the dysfunctional events characteristic of Alzheimer's disease. Metal-based therapeutics have already provided promising results for the treatment of Alzheimer's disease, and new generations of pharmaceuticals are being developed. In this review, we focus on copper dyshomeostasis in Alzheimer's disease, but we also discuss zinc and iron.
Collapse
Affiliation(s)
- Peter J Crouch
- Department of Pathology and Centre for Neuroscience, The University of Melbourne, Australia
| | | | | |
Collapse
|
16
|
Abstract
Epidemiologic evidence suggests that individuals with higher IQ, education, occupational attainment, or participation in leisure activities have a reduced risk of developing Alzheimer disease (AD). The concept of cognitive reserve (CR) posits that individual differences in how tasks are processed provide differential reserve against brain pathology or age-related changes. This may take 2 forms. In neural reserve, preexisting brain networks that are more efficient or have greater capacity may be less susceptible to disruption. In neural compensation, alternate networks may compensate for pathology's disruption of preexisting networks. Imaging studies have begun to identify the neural substrate of CR. Because CR may modulate the clinical expression of AD pathology, it is an important consideration in studies of "preclinical" AD and treatment studies. There is also the possibility that directly enhancing CR may help forestall the diagnosis of AD.
Collapse
Affiliation(s)
- Yaakov Stern
- Cognitive Neuroscience Division of the Taub Institute, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
17
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by neuronal dysfunction and the formation of amyloid plaques in the brain. Although the pathological processes resulting in the onset and progression of AD are not well understood, there is a growing body of evidence to support a central role for biometals in many critical aspects of the illness. Recent reports have described the exciting development of potential therapeutic agents based on the modulation of metal bioavailability. The metal ligand, clioquinol has demonstrated promising results in animal models and small clinical trials and a new generation of metal ligand-based therapeutics are currently under development. However, further research is necessary to fully understand the complex and interdependent pathways of biometal homeostasis and amyloid metabolism in AD. This information will be vital for the development of safe and effective metal-based pharmaceuticals for the treatment of AD and, potentially, other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anthony R White
- The University of Melbourne, Department of Pathology, Victoria 3010, Australia.
| | | | | |
Collapse
|
18
|
Abstract
Epidemiologic evidence suggests that individuals with higher IQ, education, occupational attainment, or participation in leisure activities have a reduced risk of developing Alzheimer disease (AD). The concept of cognitive reserve (CR) posits that individual differences in how tasks are processed provide differential reserve against brain pathology or age-related changes. This may take 2 forms. In neural reserve, preexisting brain networks that are more efficient or have greater capacity may be less susceptible to disruption. In neural compensation, alternate networks may compensate for pathology's disruption of preexisting networks. Imaging studies have begun to identify the neural substrate of CR. Because CR may modulate the clinical expression of AD pathology, it is an important consideration in studies of "preclinical" AD and treatment studies. There is also the possibility that directly enhancing CR may help forestall the diagnosis of AD.
Collapse
Affiliation(s)
- Yaakov Stern
- Cognitive Neuroscience Division of the Taub Institute, New York, NY 10032, USA.
| |
Collapse
|
19
|
Abstract
Mounting evidence is demonstrating roles for the amyloid precursor protein (APP) and its proteolytic product Abeta in metal homeostasis. Furthermore, aberrant metal homeostasis is observed in patients with Alzheimer's disease (AD), and this may contribute to AD pathogenesis, by enhancing the formation of reactive oxygen species and toxic Abeta oligomers and facilitating the formation of the hallmark amyloid deposits in AD brain. Indeed, zinc released from synaptic activity has been shown to induce parenchymal and cerebrovascular amyloid in transgenic mice. On the other hand, abnormal metabolism of APP and Abeta may impair brain metal homeostasis as part of the AD pathogenic process. Abeta and APP expression have both been shown to decrease brain copper (Cu) levels, whereas increasing brain Cu availability results in decreased levels of Abeta and amyloid plaque formation in transgenic mice. Lowering Cu concentrations can downregulate the transcription of APP, strengthening the hypothesis that APP and Abeta form part of the Cu homeostatic machinery in the brain. This is a complex pathway, and it appears that when the sensitive metal balance in the brain is sufficiently disrupted, it can lead to the self-perpetuating pathogenesis of AD. Clinical trials are currently studying agents that can remedy abnormal Abeta-metal interactions.
Collapse
Affiliation(s)
- Christa J Maynard
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| | - Ashley I Bush
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
- Laboratory for Oxidation Biology, Genetics and Ageing Research Unit, Massachusetts General HospitalCharlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Massachusetts General HospitalCharlestown, MA, USA
| | - Colin L Masters
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| | - Qiao-Xin Li
- Department of Pathology, The University of MelbourneParkville, Victoria, Australia
- The Mental Health Research Institute of VictoriaParkville, Victoria, Australia
| |
Collapse
|
20
|
Scarmeas N, Habeck CG, Zarahn E, Anderson KE, Park A, Hilton J, Pelton GH, Tabert MH, Honig LS, Moeller JR, Devanand DP, Stern Y. Covariance PET patterns in early Alzheimer's disease and subjects with cognitive impairment but no dementia: utility in group discrimination and correlations with functional performance. Neuroimage 2004; 23:35-45. [PMID: 15325350 PMCID: PMC3026571 DOI: 10.1016/j.neuroimage.2004.04.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 03/20/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022] Open
Abstract
Although multivariate analytic techniques might identify diagnostic patterns that are not captured by univariate methods, they have rarely been used to study the neural correlates of Alzheimer's disease (AD) or cognitive impairment. Nonquantitative H2(15)O PET scans were acquired during rest in 17 probable AD subjects selected for mild severity [mean-modified Mini Mental Status Examination (mMMS) 46/57; SD 5.1], 16 control subjects (mMMS 54; SD 2.5) and 23 subjects with minimal to mild cognitive impairment but no dementia (mMMS 53; SD 2.8). Expert clinical reading had low success in discriminating AD and controls. There were no significant mean flow differences among groups in traditional univariate SPM Noxel-wise analyses or region of interest (ROI) analyses. A covariance pattern was identified whose mean expression was significantly higher in the AD as compared to controls (P = 0.03; sensitivity 76-94%; specificity 63-81%). Sites of increased concomitant flow included insula, cuneus, pulvinar, lingual, fusiform, superior occipital and parahippocampal gyri, whereas decreased concomitant flow was found in cingulate, inferior parietal lobule, middle and inferior frontal, supramarginal and precentral gyri. The covariance analysis-derived pattern was then prospectively applied to the cognitively impaired subjects: as compared to subjects with Clinical Dementia Rating (CDR) = 0, subjects with CDR = 0.5 had significantly higher mean covariance pattern expression (P = 0.009). Expression of this pattern correlated inversely with Selective Reminding Test total recall (r = -0.401, P = 0.002), delayed recall (r = -0.351, P = 0.008) and mMMS scores (r = -0.401, P = 0.002) in all three groups combined. We conclude that patients with AD may differentially express resting cerebral blood flow covariance patterns even at very early disease stages. Significant alterations in expression of resting flow covariance patterns occur even for subjects with cognitive impairment. Expression of covariance patterns correlates with cognitive and functional performance measures, holding promise for meaningful associations with underlying biopathological processes.
Collapse
Affiliation(s)
- Nikolaos Scarmeas
- Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Scarmeas N, Zarahn E, Anderson KE, Hilton J, Flynn J, Van Heertum RL, Sackeim HA, Stern Y. Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. Neuroimage 2003; 19:1215-27. [PMID: 12880846 PMCID: PMC3026568 DOI: 10.1016/s1053-8119(03)00074-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cognitive reserve (CR) is the ability of an individual to cope with advancing brain pathology so that he remains free of symptomatology. Epidemiological evidence and in vivo neurometabolic data suggest that CR may be mediated through education or IQ. The goal of this study was to investigate CR-mediated differential brain activation in 17 healthy young adults and 19 healthy elders. Using nonquantitative H(2)(15)O PET scanning, we assessed relative regional cerebral blood flow while subjects performed a serial recognition memory task under two conditions: nonmemory control (NMC), in which one shape was presented in each study trial; and titrated demand (TD), in which study list length was adjusted so that each subject recognized shapes at approximately 75% accuracy. A factor score that summarized years of education and scores on two IQ indices was used as an index of CR. Voxel-wise, multiple regression analyses were performed with TD minus NMC difference PET counts as the dependent variable and the CR variable as the independent variable of interest. We identified brain regions where regression slopes were different from zero in each separate group, and also those where regression slopes differed between the two age groups. The slopes were significantly more positive in the young in the right inferior temporal gyrus, right postcentral gyrus, and cingulate, while the elderly had a significantly more positive slope in left cuneus. Brain regions where systematic relationships between CR and brain activation differ as a function of aging are loci where compensation for aging has occurred. They may mediate differential ability to cope with brain changes in aging.
Collapse
Affiliation(s)
- Nikolaos Scarmeas
- Cognitive Neuroscience Division of the Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Eric Zarahn
- Cognitive Neuroscience Division of the Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Karen E. Anderson
- Department of Psychiatry, University of Maryland, Baltimore, MD 21201, USA
| | - John Hilton
- Cognitive Neuroscience Division of the Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA
| | - Joseph Flynn
- Cognitive Neuroscience Division of the Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA
| | - Ronald L. Van Heertum
- Department of Radiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Harold A. Sackeim
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
- Department of Radiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division of the Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, New York, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| |
Collapse
|
23
|
Scarmeas N, Zarahn E, Anderson KE, Habeck CG, Hilton J, Flynn J, Marder KS, Bell KL, Sackeim HA, Van Heertum RL, Moeller JR, Stern Y. Association of life activities with cerebral blood flow in Alzheimer disease: implications for the cognitive reserve hypothesis. ARCHIVES OF NEUROLOGY 2003; 60:359-65. [PMID: 12633147 PMCID: PMC3028534 DOI: 10.1001/archneur.60.3.359] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Regional cerebral blood flow (CBF), a good indirect index of cerebral pathologic changes in Alzheimer disease (AD), is more severely reduced in patients with higher educational attainment and IQ when controlling for clinical severity. This has been interpreted as suggesting that cognitive reserve allows these patients to cope better with the pathologic changes in AD. OBJECTIVE To evaluate whether premorbid engagement in various activities may also provide cognitive reserve. DESIGN We evaluated intellectual, social, and physical activities in 9 patients with early AD and 16 healthy elderly controls who underwent brain H(2)(15)O positron emission tomography. In voxelwise multiple regression analyses that controlled for age and clinical severity, we investigated the association between education, estimated premorbid IQ, and activities, and CBF. RESULTS In accordance with previous findings, we replicated an inverse association between education and CBF and IQ and CBF in patients with AD. In addition, there was a negative correlation between previous reported activity score and CBF in patients with AD. When both education and IQ were added as covariates in the same model, a higher activity score was still associated with more prominent CBF deficits. No significant associations were detected in the controls. CONCLUSIONS At any given level of clinical disease severity, there is a greater degree of brain pathologic involvement in patients with AD who have more engagement in activities, even when education and IQ are taken into account. This may suggest that interindividual differences in lifestyle may affect cognitive reserve by partially mediating the relationship between brain damage and the clinical manifestation of AD.
Collapse
Affiliation(s)
- Nikolaos Scarmeas
- Cognitive Neuroscience Division of the Taub Institute for Research in Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cerebral perfusion abnormalities in patients with established Alzheimer's disease (AD) are most commonly seen in the temporoparietal cortex. As the disease progresses, this perfusion pattern is increasingly prevalent. Recently, investigators have begun to examine the patterns of perfusion among individuals at risk for AD. To date, such studies have been conducted either in individuals who have a progressive memory difficulty but do not yet meet clinical criteria for AD, or in individuals with a genetic risk factor or family history of AD, either with or without a memory problem. These latter studies suggest that a set of brain regions show decreased perfusion during the prodromal phase of AD, and that a brain network or networks with multiple nodes is affected early in the course of AD. These perfusion abnormalities may also shed light on how AD progresses during the prodromal phase of disease and may ultimately lead to improved diagnosis or methods of monitoring response to treatment.
Collapse
Affiliation(s)
- K A Johnson
- Departments of Neurology and Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA.
| | | |
Collapse
|
25
|
Wong-Riley M, Antuono P, Ho KC, Egan R, Hevner R, Liebl W, Huang Z, Rachel R, Jones J. Cytochrome oxidase in Alzheimer's disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res 1997; 37:3593-608. [PMID: 9425533 DOI: 10.1016/s0042-6989(96)00210-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Defects in oxidative metabolism have been implicated in Alzheimer's disease (AD). The present study evaluated the level of cytochrome oxidase (C.O.), an indicator of neuronal oxidative capacity, in various brain regions of post-mortem AD and control patients. We found a statistically significant reduction in C.O. levels in all cortical areas examined, including the primary and secondary visual cortices. In addition, all layers of the dorsal lateral geniculate nucleus and sublaminae of the primary visual cortex in AD cases examined suffered a reduction in their relative C.O. activity and protein amount. Our results suggest a generalized suppression of oxidative metabolism throughout the cortex, as well as in a major subcortical visual center in AD. Such hypometabolism may form the basis for not only deficits in higher cortical functions, but also a variety of visual dysfunctions known to occur in AD.
Collapse
Affiliation(s)
- M Wong-Riley
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chapter VIII Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer's disease. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0924-8196(97)80010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Mielke R, Schröder R, Fink GR, Kessler J, Herholz K, Heiss WD. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer's disease. Acta Neuropathol 1996; 91:174-9. [PMID: 8787151 DOI: 10.1007/s004010050410] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In four patients with an antemortem diagnosis of probable Alzheimer's disease (AD) regional cerebral glucose metabolism (rCMRGl) was studied prospectively by positron emission tomography (PET) and compared with postmortem semiquantitative neuropathology. The interval between the last PET study and autopsy was 1.3 +/- 0.8 years. In comparison with age-matched controls, the AD patients showed predominant temporoparietal hypometabolism spreading to other cortical and subcortical regions during serial PET scans. All patients had neuropathological findings typical for AD. There was a significant relationship between rCMRGl and density of senile plaques (SP) in one patient (tau b = -0.86, P < 0.05). SP were distributed quite homogeneously in all regions examined. Neurofibrillary tangles (NFT) were concentrated focally in the hippocampus-amygdala-entorhinal complex. In the context of widespread developing cortical hypometabolism, the predilection of NFT for involvement in limbic areas suggests a disruption of projection neurons as the pathogenetic process of cortical dysfunction.
Collapse
Affiliation(s)
- R Mielke
- Max-Planck-Institut für Neurologische Forschung, Köln, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Assessment of regional phosphate-activated glutaminase (PAG) activity and kinetics in adult and aged Fischer-344 rats. J Am Aging Assoc 1994. [DOI: 10.1007/bf02434895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wallace DR, Dawson R. Regional differences in glutaminase activation by phosphate and calcium in rat brain: impairment in aged rats and implications for regional glutaminase isozymes. Neurochem Res 1993; 18:1271-9. [PMID: 8272193 DOI: 10.1007/bf00975047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regional regulation of glutaminase by phosphate and calcium was examined in the temporal cortex (TCX), striatum (STR) and hippocampus (HIPP) from adult and aged male F344 rats. Phosphate-dependent glutaminase activity in adult rats was significantly lower (35-43%) in the HIPP (100 and 150 mM) and STR (150 mM) compared to PAG activity in the TCX. Phosphate activation in aged rats was 50-60% lower in the HIPP at concentrations greater than 25 mM compared to the aged TCX or STR. PAG activity in the TCX and STR was unaffected by age, but was significantly reduced (30-50%) in the HIPP from aged rats at phosphate concentrations of 25 mM and greater when compared to adult rats. In adult rats at concentrations of CaCl2 above 1 mM, PAG activity was significantly lower (60-75%) in the STR and HIPP when compared to the TCX. In aged rats, PAG activity (1 mM CaCl2) in the HIPP was significantly less (50%) than STR PAG activity in aged rats. Diminished PAG activity was seen only in the TCX (2.5 mM; 32%), and the HIPP (0.5 mM; 25% and 1 mM; 38%) at higher calcium concentrations compared to adult. Phosphate-independent calcium activation of PAG occurred in the HIPP but not in either the TCX or the STR. Addition of phosphate resulted in a synergistic activation of PAG in the STR and TCX, but not in the HIPP. These findings suggest that PAG is regionally regulated by phosphate and calcium, and this regulation is impaired in aged rats. These data also support the hypothesis that isozymes of PAG exist with different regulatory properties.
Collapse
Affiliation(s)
- D R Wallace
- University of Kentucky, Department of Pharmacology MS305, Lexington 40536-0084
| | | |
Collapse
|
30
|
Abstract
Brain imaging techniques will in the future play an important role in the assessment of patients with neurogenerative disorders such as Alzheimer's disease (AD). An early diagnosis of AD is today hampered by lack of reliable diagnostic markers. Positron emission tomography (PET) permits the quantification and three-dimensional imaging of physiological variables. This provides the clinician with a non-invasive imaging technique which allows in vivo quantification of physiological processes in AD underlying dysfunction of cognition. PET studies regarding changes in cerebral blood flow and metabolism are rather consistent at least in moderate/advanced cases of AD. How early in the progress of the disease deficits in these parameters can be observed is still an open question. Longitudinal studies will here be important and especially in individuals with a family history of AD. Since deficits in cholinergic neurotransmission have been measured in autopsy AD brains attempts have also been made to visualized cholinergic activity in vivo. Nicotinic and muscarinic receptors have been visualized in normal and AD brains. A reduced uptake and binding of [11C]nicotine in the temporal and frontal cortices have been measured in AD patients by PET. Few treatment studies in AD have been evaluated by PET. Long-term treatment with the cholinesterase inhibitor tacrine increase the uptake of [11C]nicotine. Significant reduction in uptake between the two enantiomers (S)(-) and (R)(+)-[11C]nicotine has been observed compatible with a restoration of nicotinic receptors. Tacrine also significantly increased the glucose metabolism. PET studies indicate that long-term tacrine treatment in AD patients with mild dementia improves functional activities in brain. When an AD patient with moderate dementia was treated with nerve growth factor (NGF) PET studies revealed increase in cortical blood flow and nicotinic receptors. PET studies will in the future play an important role in the evaluation of new therapeutic drug strategies in AD.
Collapse
Affiliation(s)
- A Nordberg
- Department of Geriatric Medicine, Karolinska Institute, Huddinge University, Hospital, Sweden
| |
Collapse
|