1
|
Yuguchi M, Yamazaki Y, Honjo B, Isokawa K. Skeletal muscle activity affects the deformity of long bone morphology in lathyritic chick embryo. Anat Rec (Hoboken) 2024. [PMID: 39223934 DOI: 10.1002/ar.25571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Embryonic muscle activity is involved in various aspects of bone morphogenesis and growth. Normal mechanical stimuli of muscle contraction are important in most cases, and when the muscles are immobilized, the developing bones are abnormally shaped. In chick embryos, a characteristic curved deformity is reproducibly induced in the developing tibiotarsus using the bone-weakening agent, beta-aminopropionitrile (bAPN). In this study, we applied decamethonium bromide (DMB), a well-established neuromuscular blocking agent, to embryos treated with bAPN, to test the hypothesis that the deformity is triggered and formed depending on the balance between the decrease in stiffness of the bAPN-affected tibiotarsus and the normal physiological increase in embryonic skeletal muscle activity. The occurrence of curved morphology induced by bAPN administered at 4 or 8 days of incubation (embryonic day [ED]) was temporally consistent with the posterior displacement of the leg muscles, which occurred just before ED8. The displaced muscles were assumed to exert a contraction force comparable to that of untreated normal muscles. When treated with DMB at ED8, the muscles atrophied and exhibited degenerative changes, and the degree of curved morphology was alleviated and reduced to 50% or more in the morphometric evaluation at ED10. These findings indicated that the coordinated development of skeletal element stiffness and muscle activity must be temporally regulated, particularly during the early stages of skeletogenesis.
Collapse
Affiliation(s)
- Maki Yuguchi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Yosuke Yamazaki
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Bin Honjo
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| |
Collapse
|
2
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Coveney CR, Samvelyan HJ, Miotla-Zarebska J, Carnegie J, Chang E, Corrin CJ, Coveney T, Stott B, Parisi I, Duarte C, Vincent TL, Staines KA, Wann AK. Ciliary IFT88 Protects Coordinated Adolescent Growth Plate Ossification From Disruptive Physiological Mechanical Forces. J Bone Miner Res 2022; 37:1081-1096. [PMID: 35038201 PMCID: PMC9304194 DOI: 10.1002/jbmr.4502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
Compared with our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programs, including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signaling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl ) in the juvenile and adolescent skeleton using a cartilage-specific, inducible Cre (AggrecanCreERT2 Ift88fl/fl ). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption, and mineralization. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. Although normal patterns of hedgehog signaling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity, and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilization inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Clarissa R Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hasmik J Samvelyan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Jadwiga Miotla-Zarebska
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Josephine Carnegie
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Emer Chang
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - C Jonty Corrin
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Trystan Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Bryony Stott
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ida Parisi
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Claudia Duarte
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Katherine A Staines
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Angus Kt Wann
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Hoyle DJ, Dranow DB, Schilling TF. Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton. Development 2022; 149:dev199826. [PMID: 34919126 PMCID: PMC8917414 DOI: 10.1242/dev.199826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022]
Abstract
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
Collapse
Affiliation(s)
| | | | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92693, USA
| |
Collapse
|
5
|
Pierantoni M, Le Cann S, Sotiriou V, Ahmed S, Bodey AJ, Jerjen I, Nowlan NC, Isaksson H. Muscular loading affects the 3D structure of both the mineralized rudiment and growth plate at early stages of bone formation. Bone 2021; 145:115849. [PMID: 33454374 DOI: 10.1016/j.bone.2021.115849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Fetal immobilization affects skeletal development and can lead to severe malformations. Still, how mechanical load affects embryonic bone formation is not fully elucidated. This study combines mechanobiology, image analysis and developmental biology, to investigate the structural effects of muscular loading on embryonic long bones. We present a novel approach involving a semi-automatic workflow, to study the spatial and temporal evolutions of both hard and soft tissues in 3D without any contrast agent at micrometrical resolution. Using high-resolution phase-contrast-enhanced X-ray synchrotron microtomography, we compare the humeri of Splotch-delayed embryonic mice lacking skeletal muscles with healthy littermates. The effects of skeletal muscles on bone formation was studied from the first stages of mineral deposition (Theiler Stages 23 and 24) to just before birth (Theiler Stage 27). The results show that muscle activity affects both growth plate and mineralized regions, especially during early embryonic development. When skeletal muscles were absent, there was reduced mineralization, altered tuberosity size and location, and, at early embryonic stages, decreased chondrocyte density, size and elongation compared to littermate controls. The proposed workflow enhances our understanding of mechanobiology of early bone formation and could be implemented for the study of other complex biological tissues.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | - Iwan Jerjen
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Rolfe RA, Scanlon O'Callaghan D, Murphy P. Joint development recovery on resumption of embryonic movement following paralysis. Dis Model Mech 2021; 14:dmm048913. [PMID: 33771841 PMCID: PMC8084573 DOI: 10.1242/dmm.048913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Fetal activity in utero is a normal part of pregnancy and reduced or absent movement can lead to long-term skeletal defects, such as Fetal Akinesia Deformation Sequence, joint dysplasia and arthrogryposis. A variety of animal models with decreased or absent embryonic movements show a consistent set of developmental defects, providing insight into the aetiology of congenital skeletal abnormalities. At developing joints, defects include reduced joint interzones with frequent fusion of cartilaginous skeletal rudiments across the joint. At the spine, defects include shortening and a spectrum of curvature deformations. An important question, with relevance to possible therapeutic interventions for human conditions, is the capacity for recovery with resumption of movement following short-term immobilisation. Here, we use the well-established chick model to compare the effects of sustained immobilisation from embryonic day (E)4-10 to two different recovery scenarios: (1) natural recovery from E6 until E10 and (2) the addition of hyperactive movement stimulation during the recovery period. We demonstrate partial recovery of movement and partial recovery of joint development under both recovery conditions, but no improvement in spine defects. The joints examined (elbow, hip and knee) showed better recovery in hindlimb than forelimb, with hyperactive mobility leading to greater recovery in the knee and hip. The hip joint showed the best recovery with improved rudiment separation, tissue organisation and commencement of cavitation. This work demonstrates that movement post paralysis can partially recover specific aspects of joint development, which could inform therapeutic approaches to ameliorate the effects of human fetal immobility. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
7
|
Yadav P, Fernández MP, Gutierrez-Farewik EM. Influence of loading direction due to physical activity on proximal femoral growth tendency. Med Eng Phys 2021; 90:83-91. [PMID: 33781483 DOI: 10.1016/j.medengphy.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Longitudinal bone growth is regulated by mechanical forces arising from physical activity, whose directions and magnitudes depend on activity kinematics and intensity. This study aims to investigate the influence of common physical activities on proximal femoral morphological tendency due to growth at the femoral head growth plate. A subject-specific femur model based on magnetic resonance images of one able-bodied 6-year old child was developed, and the directions of hip contact force were described as load samples at a constant magnitude. Finite element analysis was performed to predict growth rate and growth direction, and expected changes in neck-shaft angle and femoral anteversion were computed corresponding to circa 4 months of growth. For most loading conditions, neck-shaft angle and femoral anteversion decreased during growth, corresponding to the femur's natural course during normal growth. The largest reduction in neck-shaft angle and femoral anteversion was approximately 0.25° and 0.15°. Our results suggest that most common physical activities induce the expected morphological changes in normal growth in able-bodied children. Understanding the influence of contact forces during less common activities on proximal femoral development might provide improved guidelines and treatment planning for children who have or are at risk of developing a femoral deformity.
Collapse
Affiliation(s)
- Priti Yadav
- KTH MoveAbility Lab, Department of Engineering Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Osquars Backe 18, 10044 Stockholm, Sweden; KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden
| | - Marta Peña Fernández
- KTH MoveAbility Lab, Department of Engineering Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Osquars Backe 18, 10044 Stockholm, Sweden; KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden
| | - Elena M Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Osquars Backe 18, 10044 Stockholm, Sweden; KTH BioMEx Center, Royal Institute of Technology, Stockholm, Sweden; Department of Women's & Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Bridglal DL, Boyle CJ, Rolfe RA, Nowlan NC. Quantifying the tolerance of chick hip joint development to temporary paralysis and the potential for recovery. Dev Dyn 2020; 250:450-464. [PMID: 32776603 DOI: 10.1002/dvdy.236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Abnormal fetal movements are implicated in joint pathologies such as arthrogryposis and developmental dysplasia of the hip (DDH). Experimentally induced paralysis disrupts joint cavitation and morphogenesis leading to postnatal abnormalities. However, the developmental window(s) most sensitive to immobility-and therefore the best time for intervention-have never been identified. Here, we systematically vary the timing and duration of paralysis during early chick hip joint development. We then test whether external manipulation of immobilized limbs can mitigate the effects of immobility. RESULTS Timing of paralysis affected the level of disruption to joints, with paralysis periods between embryonic days 4 and 7 most detrimental. Longer paralysis periods produced greater disruption in terms of failed cavitation and abnormal femoral and acetabular geometry. External manipulation of an immobilized limb led to more normal morphogenesis and cavitation compared to un-manipulated limbs. CONCLUSIONS Temporary paralysis is detrimental to joint development, particularly during days 4 to 7. Developmental processes in the very early stages of joint development may be critical to DDH, arthrogryposis, and other joint pathologies. The developing limb has the potential to recover from periods of immobility, and external manipulation provides an innovative avenue for prevention and treatment of developmental joint pathologies.
Collapse
Affiliation(s)
- Devi L Bridglal
- Department of Bioengineering, Imperial College London, London, UK
| | - Colin J Boyle
- Department of Bioengineering, Imperial College London, London, UK
| | - Rebecca A Rolfe
- Department of Bioengineering, Imperial College London, London, UK.,Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
9
|
A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth. PLoS One 2020; 15:e0235966. [PMID: 32702015 PMCID: PMC7377390 DOI: 10.1371/journal.pone.0235966] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations.
Collapse
|
10
|
Dixit NN, McFarland DC, Fisher MB, Cole JH, Saul KR. Integrated iterative musculoskeletal modeling predicts bone morphology following brachial plexus birth injury (BPBI). J Biomech 2020; 103:109658. [PMID: 32089271 PMCID: PMC7141945 DOI: 10.1016/j.jbiomech.2020.109658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023]
Abstract
Brachial plexus birth injury (BPBI) is the most common nerve injury among children. The glenohumeral joint of affected children can undergo severe osseous deformation and altered muscle properties, depending on location of the injury relative to the dorsal root ganglion (preganglionic or postganglionic). Preganglionic injury results in lower muscle mass and shorter optimal muscle length compared to postganglionic injury. We investigated whether these changes to muscle properties over time following BPBI provide a mechanically-driven explanation for observed differences in bone deformity between preganglionic and postganglionic BPBI. We developed a computational framework integrating musculoskeletal modeling to represent muscle changes over time and finite element modeling to simulate bone growth in response to mechanical and biological stimuli. The simulations predicted that the net glenohumeral joint loads in the postganglionic injury case were nearly 10.5% greater than in preganglionic. Predicted bone deformations were more severe in the postganglionic case, with the glenoid more declined (pre: -43.8°, post: -51.0°), flatter with higher radius of curvature (pre: 3.0 mm, post: 3.7 mm), and anteverted (pre: 2.53°, post: 4.93°) than in the preganglionic case. These simulated glenoid deformations were consistent with previous experimental studies. Thus, we concluded that the differences in muscle mass and length between the preganglionic and postganglionic injuries are critical mechanical drivers of the altered glenohumeral joint shape.
Collapse
Affiliation(s)
- Nikhil N Dixit
- North Carolina State University, Raleigh, NC, United States
| | | | - Matthew B Fisher
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | - Jacqueline H Cole
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
11
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
12
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Dixit NN, McFarland DC, Saul KR. Computational analysis of glenohumeral joint growth and morphology following a brachial plexus birth injury. J Biomech 2019; 86:48-54. [PMID: 30797561 DOI: 10.1016/j.jbiomech.2019.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 02/02/2023]
Abstract
Children affected with brachial plexus birth injury (BPBI) undergo muscle paralysis. About 33% of affected children experience permanent osseous deformities of the glenohumeral joint. Recent evidence suggests that some cases experience restricted muscle longitudinal growth in addition to paralysis and reduced range of motion at the shoulder and elbow. It is unknown whether altered loading due to paralysis, muscle growth restriction and contracture, or static loading due to disuse is the primary driver of joint deformity after BPBI. This study uses a computational framework integrating finite element analysis and musculoskeletal modeling to examine the mechanical factors contributing to changes in bone growth and morphometry following BPBI. Simulations of 8 weeks of glenohumeral growth in a rat model of BPBI predicted that static loading of the joint is primarily responsible for joint deformation consistent with experimental measures of bone morphology, whereas dynamic loads resulted in normal bone growth. Under dynamic loading, glenoid version angle (GVA), glenoid inclination angle (GIA), and glenoid radius of curvature (GRC) (-1.3°, 38.2°, 2.5 mm respectively) were similar to the baseline values (-1.8°, -38°, 2.1 mm respectively). In the static case with unrestricted muscle growth, these measures increased in magnitude (5.2°, -48°, 3.5 mm respectively). More severe joint deformations were observed in GIA and GRC when muscle growth was restricted (GVA: 3.6°, GIA: -55°, GRC: 4.0 mm). Predicted morphology was consistent with literature reports of in vivo glenoid morphology following postganglionic BPBI. This growth model provides a framework for understanding the most influential mechanical factors driving glenohumeral deformity following BPBI.
Collapse
Affiliation(s)
- Nikhil N Dixit
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Daniel C McFarland
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| | - Katherine R Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
14
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
15
|
Okech W, Kuo CK. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 920:63-77. [PMID: 27535249 DOI: 10.1007/978-3-319-33943-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.
Collapse
Affiliation(s)
- William Okech
- Department of Biomedical Engineering, University of Rochester, 215 Robert B. Goergen Hall, 270168, Rochester, NY, 14627-0168, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, 215 Robert B. Goergen Hall, 270168, Rochester, NY, 14627-0168, USA. .,Department of Orthopaedics, University of Rochester, 215 Robert B. Goergen Hall, 270168, Rochester, NY, 14627-0168, USA. .,Center for Musculoskeletal Research, University of Rochester, 215 Robert B. Goergen Hall, 270168, Rochester, NY, 14627-0168, USA.
| |
Collapse
|
16
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Abstract
Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups’ activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups—hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors—to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.1 {^{\circ }}$$\end{document}0.1∘ over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}∼0.01\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${^{\circ }}$$\end{document}∘–0.04\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${^{\circ }})$$\end{document}∘) and FA (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}∼0.004\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${^{\circ }}$$\end{document}∘–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.2{^{\circ }}$$\end{document}0.2∘), except hip extensors and hip adductors, which showed a tendency to increase the FA (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}∼0.004\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${^{\circ }}$$\end{document}∘–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.02{^{\circ }}$$\end{document}0.02∘). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.
Collapse
|
18
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
19
|
Limb proportions show developmental plasticity in response to embryo movement. Sci Rep 2017; 7:41926. [PMID: 28165010 PMCID: PMC5292730 DOI: 10.1038/srep41926] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development.
Collapse
|
20
|
Pollard AS, Boyd S, McGonnell IM, Pitsillides AA. The role of embryo movement in the development of the furcula. J Anat 2016; 230:435-443. [PMID: 27921302 DOI: 10.1111/joa.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 11/27/2022] Open
Abstract
The pectoral girdle is a complex structure which varies in its morphology between species. A major component in birds is the furcula, which can be considered equivalent to a fusion of the paired clavicles found in many mammals, and the single interclavicle found in many reptiles. These elements are a remnant of the dermal skeleton and the only intramembranous bones in the trunk. Postnatally, the furcula plays important mechanical roles by stabilising the shoulder joint and acting as a mechanical spring during flight. In line with its mechanical role, previous studies indicate that, unlike many other intramembranous bones, furcula growth during development can be influenced by mechanical stimuli. This study investigated the response of individual aspects of furcula growth to both embryo immobilisation and hypermotility in the embryonic chicken. The impact of altered incubation temperature, which influences embryo motility, on crocodilian interclavicle development was also explored. We employed whole-mount bone and cartilage staining and 3D imaging by microCT to quantify the impact of rigid paralysis, flaccid paralysis and hypermobility on furcula growth in the chicken, and 3D microCT imaging to quantify the impact of reduced temperature (32-28 °C) and motility on interclavicle growth in the crocodile. This revealed that the growth rates of the clavicular and interclavicular components of the furcula differ during normal development. Total furcula area was reduced by total unloading produced by flaccid paralysis, but not by rigid paralysis which maintains static loading of embryonic bones. This suggests that dynamic loading, which is required for postnatal bone adaptation, is not a requirement for prenatal furcula growth. Embryo hypermotility also had no impact on furcula area or arm length. Furcula 3D shape did, however, differ between groups; this was marked in the interclavicular component of the furcula, the hypocleideum. Hypocleideum length was reduced by both methods of immobilisation, and interclavicle area was reduced in crocodile embryos incubated at 28 °C, which are less motile than embryos incubated at 32 °C. These data suggest that the clavicular and interclavicle components of the avian furcula respond differently to alterations in embryo movement, with the interclavicle requiring both the static and dynamic components of movement-related loading for normal growth, while static loading preserved most aspects of clavicle growth. Our data suggest that embryo movement, and the mechanical loading this produces, is important in shaping these structures during development to suit their postnatal mechanical roles.
Collapse
Affiliation(s)
| | - S Boyd
- Royal Veterinary College, London, UK
| | | | | |
Collapse
|
21
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
22
|
Yadav P, Shefelbine SJ, Gutierrez-Farewik EM. Effect of growth plate geometry and growth direction on prediction of proximal femoral morphology. J Biomech 2016; 49:1613-1619. [DOI: 10.1016/j.jbiomech.2016.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/17/2023]
|
23
|
Shea CA, Rolfe RA, Murphy P. The importance of foetal movement for co-ordinated cartilage and bone development in utero : clinical consequences and potential for therapy. Bone Joint Res 2015; 4:105-16. [PMID: 26142413 PMCID: PMC4602203 DOI: 10.1302/2046-3758.47.2000387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement in
utero is reduced or restricted and who subsequently suffer
from joint dysplasia (including joint contractures) and thin hypo-mineralised
bones, demonstrate that embryonic movement is crucial for appropriate
skeletogenesis. This has been confirmed in mouse, chick, and zebrafish
animal models, where reduced or eliminated movement consistently yields
similar malformations and which provide the possibility of experimentation
to uncover the precise disturbances and the mechanisms by which
movement impacts molecular regulation. Molecular genetic studies have
shown the important roles played by cell communication signalling
pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone
morphogenetic protein. These pathways regulate cell behaviours such
as proliferation and differentiation to control maturation of the
skeletal elements, and are affected when movement is altered. Cell
contacts to the extra-cellular matrix as well as the cytoskeleton
offer a means of mechanotransduction which could integrate mechanical
cues with genetic regulation. Indeed, expression of cytoskeletal
genes has been shown to be affected by immobilisation. In addition
to furthering our understanding of a fundamental aspect of cell control
and differentiation during development, research in this area is
applicable to the engineering of stable skeletal tissues from stem
cells, which relies on an understanding of developmental mechanisms
including genetic and physical criteria. A deeper understanding
of how movement affects skeletogenesis therefore has broader implications
for regenerative therapeutics for injury or disease, as well as
for optimisation of physical therapy regimes for individuals affected
by skeletal abnormalities. Cite this article: Bone Joint Res 2015;4:105–116
Collapse
Affiliation(s)
- C A Shea
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| | | | - P Murphy
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| |
Collapse
|
24
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
25
|
Rot C, Stern T, Blecher R, Friesem B, Zelzer E. A mechanical Jack-like Mechanism drives spontaneous fracture healing in neonatal mice. Dev Cell 2015; 31:159-70. [PMID: 25373776 DOI: 10.1016/j.devcel.2014.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/22/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Treatment of fractured bones involves correction of displacement or angulation, known as reduction. However, angulated long-bone fractures in infants often heal and regain proper morphology spontaneously, without reduction. To study the mechanism underlying spontaneous regeneration of fractured bones, we left humeral fractures induced in newborn mice unstabilized, and rapid realignment of initially angulated bones was seen. This realignment was surprisingly not mediated by bone remodeling, but instead involved substantial movement of the two fragments prior to callus ossification. Analysis of gene expression profiles, cell proliferation, and bone growth revealed the formation of a functional, bidirectional growth plate at the concave side of the fracture. This growth plate acts like a mechanical jack, generating opposing forces that straighten the two fragments. Finally, we show that muscle force is important in this process, as blocking muscle contraction disrupts growth plate formation, leading to premature callus ossification and failed reduction.
Collapse
Affiliation(s)
- Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Ronen Blecher
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Ben Friesem
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Guan Y, Yang X, Yang W, Charbonneau C, Chen Q. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. FASEB J 2014; 28:4470-81. [PMID: 25002119 DOI: 10.1096/fj.14-252783] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanical stress regulates development by modulating cell signaling and gene expression. However, the cytoplasmic components mediating mechanotransduction remain unclear. In this study, elimination of muscle contraction during chicken embryonic development resulted in a reduction in the activity of mammalian target of rapamycin (mTOR) in the cartilaginous growth plate. Inhibition of mTOR activity led to significant inhibition of chondrocyte proliferation, cartilage tissue growth, and expression of chondrogenic genes, including Indian hedgehog (Ihh), a critical mediator of mechanotransduction. Conversely, cyclic loading (1 Hz, 5% matrix deformation) of embryonic chicken growth plate chondrocytes in 3-dimensional (3D) collagen scaffolding induced sustained activation of mTOR. Mechanical activation of mTOR occurred in serum-free medium, indicating that it is independent of growth factor or nutrients. Treatment of chondrocytes with Rapa abolished mechanical activation of cell proliferation and Ihh gene expression. Cyclic loading of chondroprogenitor cells deficient in SH2-containing protein tyrosine phosphatase 2 (Shp2) further enhanced mechanical activation of mTOR, cell proliferation, and chondrogenic gene expression. This result suggests that Shp2 is an antagonist of mechanotransduction through inhibition of mTOR activity. Our data demonstrate that mechanical activation of mTOR is necessary for cell proliferation, chondrogenesis, and cartilage growth during bone development, and that mTOR is an essential mechanotransduction component modulated by Shp2 in the cytoplasm.
Collapse
Affiliation(s)
- Yingjie Guan
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA; and
| | - Xu Yang
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA; and Department of Orthopaedics, Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Wentian Yang
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA; and
| | - Cherie Charbonneau
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA; and
| | - Qian Chen
- Cell and Molecular Biology Laboratory, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA; and
| |
Collapse
|
27
|
Pollard AS, McGonnell IM, Pitsillides AA. Mechanoadaptation of developing limbs: shaking a leg. J Anat 2014; 224:615-23. [PMID: 24635640 DOI: 10.1111/joa.12171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
The proportion of total limb length taken up by the individual skeletal elements (limb proportionality), varies widely between species. These diverse skeletal forms have evolved to allow for a range of limb uses and they first emerge as the embryo develops, to achieve the characteristic skeletal architecture of each species. During this time, the developing skeleton experiences mechanical loading as a result of embryonic muscle contraction. The possibility that adaptation to such mechanical input may allow embryos to coordinate the appearance of skeletal design with their expanding range of movements has so far received little attention. This is surprising, given the critical role exerted by embryo movement in normal skeletal development; stage-specific in ovo immobilisation of embryonic chicks results in joint contractures and a reduction in longitudinal bone growth in the limbs. Epigenetic mechanisms allow for selective activation of genes in response to environmental signals, resulting in the production of phenotypic complexity in morphogenesis; mechanical loading of bone during movement appears to be one such signal. It may be that 'mechanosensitive' genes under regulation of mechanical input adjust proportionality along the bone's proximo-distal axis, introducing a level of phenotypic plasticity. If this hypothesis is upheld, species with more elongated distal limb elements will have a greater dependence on mechanical input for the differences in their growth, and mechanosensitive bone growth in the embryo may have evolved as an additional source of phenotypic diversity during skeletal development.
Collapse
Affiliation(s)
- A S Pollard
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | | |
Collapse
|
28
|
Giorgi M, Carriero A, Shefelbine SJ, Nowlan NC. Mechanobiological simulations of prenatal joint morphogenesis. J Biomech 2014; 47:989-95. [DOI: 10.1016/j.jbiomech.2014.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/06/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
|
29
|
Informing tendon tissue engineering with embryonic development. J Biomech 2014; 47:1964-8. [PMID: 24484642 DOI: 10.1016/j.jbiomech.2013.12.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 11/23/2022]
Abstract
Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.
Collapse
|
30
|
Shwartz Y, Blitz E, Zelzer E. One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation 2013; 86:104-11. [DOI: 10.1016/j.diff.2013.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
|
31
|
Abstract
Development of the various components of a normal skeleton requires highly regulated signalling systems that co-ordinate spatial and temporal patterns of cell division, cell differentiation, and morphogenesis. Much work in recent decades has revealed cascades of molecular signalling, acting through key transcription factors to regulate, for example, organized chondrogenic and osteogenic differentiation. It is now clear that mechanical stimuli are also required for aspects of skeletogenesis but very little is known about how the mechanical signals are integrated with classic biochemical signalling. Spatially organized differentiation is vital to the production of functionally appropriate tissues contributing to precise, region specific morphologies, for example transient chondrogenesis of long bone skeletal rudiments, which prefigures osteogenic replacement of the cartilage template, compared with the production of permanent cartilage at the sites of articulation. Currently a lack of understanding of how these tissues are differentially regulated hampers efforts to specifically regenerate stable bone and cartilage. Here, we review current research revealing the influence of mechanical stimuli on specific aspects of skeletal development and refer to other developing systems to set the scene for current and future work to uncover the molecular mechanisms involved. We integrate this with a brief overview of the effects of mechanical stimulation on stem cells in culture bringing together developmental and tissue engineering aspects of mechanoregulation of cell behavior. A better understanding of the molecular mechanisms that link mechanical stimuli to transcriptional control guiding cell differentiation will lead to new ideas about how to effectively prime stem cells for tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Rebecca Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
32
|
Oznurlu Y, Celik I, Sur E, Ozaydın T, Oğuz H, Altunbaş K. Determination of the effects of aflatoxin B1givenin ovoon the proximal tibial growth plate of broiler chickens: histological, histometric and immunohistochemical findings. Avian Pathol 2012; 41:469-77. [DOI: 10.1080/03079457.2012.712673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Fiaz AW, Léon-Kloosterziel KM, Gort G, Schulte-Merker S, van Leeuwen JL, Kranenbarg S. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio). PLoS One 2012; 7:e34072. [PMID: 22529905 PMCID: PMC3329525 DOI: 10.1371/journal.pone.0034072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis.
Collapse
Affiliation(s)
- Ansa W Fiaz
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Carriero A, Jonkers I, Shefelbine SJ. Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy. Comput Methods Biomech Biomed Engin 2011; 14:253-62. [PMID: 20229379 DOI: 10.1080/10255841003682505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Roddy KA, Kelly GM, van Es MH, Murphy P, Prendergast PJ. Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint. J Biomech 2011; 44:143-9. [DOI: 10.1016/j.jbiomech.2010.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/25/2022]
|
36
|
Kurtoğlu F, Kurtoğlu V, Celik I, Keçeci T, Nizamlioğlu M. Effects of dietary boron supplementation on some biochemical parameters, peripheral blood lymphocytes, splenic plasma cells and bone characteristics of broiler chicks given diets with adequate or inadequate cholecalciferol (vitamin D3) content. Br Poult Sci 2010; 46:87-96. [PMID: 15835257 DOI: 10.1080/00071660400024001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
(1) The effects of 5 and 25 mg/kg boron supplementation of diets with inadequate (6.25 microg/kg) or adequate (50 microg/kg) cholecalciferol (vitamin D3) content on some biochemical parameters, tibia characteristics, peripheral blood lymphocyte and splenic plasma cell counts of broilers were investigated. (2) Supplementation of the diet with boron affected plasma concentrations of boron, iron, copper and zinc and also tibia boron, zinc and calcium concentrations but did not have any effect on tibia iron or copper concentrations or tibia ash and tibia weight values. (3) Boron supplementation caused significant increases in splenic plasma cell count but decreased the proximal and distal tibia growth plate widths. There was no effect of boron supplementation on peripheral blood alpha-naphthyl acetate esterase (ANAE) content. Whole blood haematocrit and haemoglobin counts were significantly increased by boron supplementation but there were no effects on leucocyte ratios such as eosinophil, basophil, monocyte, lymphocyte and thrombocyte. (4) In general, the findings of the present study support the hypothesis that boron has an important biological role that affects the mineral metabolism of animals by influencing both biochemical and haematological mechanisms.
Collapse
Affiliation(s)
- F Kurtoğlu
- Department of Biochemistry, University of Selçuk, Faculty of Veterinary Medicine, Kampüs, Konya, Turkey.
| | | | | | | | | |
Collapse
|
37
|
Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: Insights from animal models. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:203-13. [PMID: 20860060 PMCID: PMC4794623 DOI: 10.1002/bdrc.20184] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A range of clinical conditions in which fetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, particularly the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, whereas genetically modified mice with nonfunctional or absent skeletal muscle offer a valuable tool for examining the interplay between muscle forces and skeletogenesis in mammals. This article reviews the body of research on animal models of bone or joint formation in vivo in the presence of an altered or abnormal mechanical environment. In both immobilized chicks and "muscleless limb" mice, a range of effects are seen, such as shorter rudiments with less bone formation, changes in rudiment and joint shape, and abnormal joint cavitation. However, although all bones and synovial joints are affected in immobilized chicks, some rudiments and joints are unaffected in muscleless mice. We propose that extrinsic mechanical forces from movements of the mother or littermates impact on skeletogenesis in mammals, whereas the chick embryo is reliant on intrinsic movement for mechanical stimulation. The insights gained from animal models into the mechanobiology of embryonic skeletal development could provide valuable cues to prospective tissue engineers of cartilage and bone and contribute to new or improved treatments to minimize the impact on skeletal development of reduced movement in utero.
Collapse
|
38
|
Raczkowski JW, Daniszewska B, Zolynski K. Functional scoliosis caused by leg length discrepancy. Arch Med Sci 2010; 6:393-8. [PMID: 22371777 PMCID: PMC3282518 DOI: 10.5114/aoms.2010.14262] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 11/20/2009] [Accepted: 12/06/2009] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Leg length discrepancy (LLD) causes pelvic obliquity in the frontal plane and lumbar scoliosis with convexity towards the shorter extremity. Leg length discrepancy is observed in 3-15% of the population. Unequalized lower limb length discrepancy leads to posture deformation, gait asymmetry, low back pain and discopathy. MATERIAL AND METHODS In the years 1998-2006, 369 children, aged 5 to 17 years (209 girls, 160 boys) with LLD-related functional scoliosis were treated. An external or internal shoe lift was applied. RESULTS Among 369 children the discrepancy of 0.5 cm was observed in 27, 1 cm in 329, 1.5 cm in 9 and 2 cm in 4 children. During the first follow-up examination, within 2 weeks, the adjustment of the spine to new static conditions was noted and correction of the curve in 316 examined children (83.7%). In 53 children (14.7%) the correction was observed later and was accompanied by slight low back pain. The time needed for real equalization of limbs was 3 to 24 months. The time needed for real equalization of the discrepancy was 11.3 months. CONCLUSIONS Leg length discrepancy equalization results in elimination of scoliosis. Leg length discrepancy < 2 cm is a static disorder; that is why measurements should be performed in a standing position using blocks of adequate thickness and the position of the posterior superior iliac spine should be estimated.
Collapse
Affiliation(s)
- Jan W Raczkowski
- 1 Department of Orthopaedics and Rehabilitation, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
39
|
Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. Bone 2010; 46:1275-85. [PMID: 19948261 PMCID: PMC2860222 DOI: 10.1016/j.bone.2009.11.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 10/19/2009] [Accepted: 11/20/2009] [Indexed: 12/03/2022]
Abstract
Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two 'muscleless' mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5(nlacZ/nlacZ):MyoD(-/-) and Pax3(Sp/Sp) (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5(nlacZ/nlacZ):MyoD(-/-) mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3(Sp/Sp) mutants. We also examined skeletal development in a 'reduced muscle' model, the Myf5(nlacZ/+):MyoD(-/-) mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location-specific regulatory factors affecting bone and joint development.
Collapse
Affiliation(s)
- Niamh C. Nowlan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | - Céline Bourdon
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | - Gérard Dumas
- Stem Cells & Development, Department of Developmental Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental Biology, Institut Pasteur, Paris, France
| | - Patrick J. Prendergast
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
- Corresponding author. Fax: +353 677 8094.
| |
Collapse
|
40
|
Abstract
Macroradiographs of 30 human fetal and neonatal ilia were analysed to investigate the early pattern of trabecular bone organization prior to the influences of direct weight-bearing locomotion. Consistent and well-defined patterns of internal organization were identified within the fetal and neonatal ilium, which correspond with previously recognized regions that have been attributed directly to forces associated with bipedal locomotion. This study proposes that patterns previously attributed to weight-bearing locomotive responses are present in the earliest stages of the development of this bone. It is suggested that the rudimentary scaffold seen in the fetal and neonatal ilium could indicate a predetermined template upon which locomotive influences may be superimposed and perhaps reinforced at a later age. Alternatively, this early pattern may mimic the adult form due to the effects of in-utero limb movement activity even though it is not weight bearing. This is a preliminary study that will be supported in a further communication with three-dimensional micro-computed trabecular analysis.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, College of Life Sciences, University of Dundee, Scotland, UK.
| | | |
Collapse
|
41
|
Wilsman NJ, Bernardini ES, Leiferman E, Noonan K, Farnum CE. Age and pattern of the onset of differential growth among growth plates in rats. J Orthop Res 2008; 26:1457-65. [PMID: 18404738 PMCID: PMC2954232 DOI: 10.1002/jor.20547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Differential growth is the phenomenon whereby growth plates in the same individual at the same time all have uniquely different axial growth velocities. Differential growth is clearly present in the adolescent skeleton. In this study we ask two questions. When and by what pattern does the phenomenon of differential growth begin? Second, to what extent are the development of differential growth velocities correlated with changes in hypertrophic chondrocyte volume and/or with changes in chondrocytic production/turnover? Four growth plates (proximal and distal radial; proximal and distal tibial) were studied at 24 different time points in Long-Evans rats between the 17th gestational day (when differential growth does not exist) and postnatal day 27 (when differential growth is well established). Growth velocities were measured using fluorochrome labeling. Using stereological methodology, multiple chondrocytic kinetic parameters were measured for all growth plates. Elongation of the proximal radial growth plate decreases relative to elongation in the other three growth plates in the late fetal phase. Differential growth is fully expressed at postnatal day 13 when the other three growth plates start to decrease daily elongation at different rates. Differential growth is primarily associated with differences in hypertrophic cell volume manifested when growth deceleration occurs. This study also illustrates that differential growth is superimposed on systemic regulators that affect all growth plates simultaneously. The most dramatic illustration of this is the sharp decline in growth velocity in all four growth plates that occurs perinatally.
Collapse
Affiliation(s)
| | | | | | - Ken Noonan
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53706
| | | |
Collapse
|
42
|
Abstract
Considerable evidence exists to support the hypothesis that mechanical forces have an essential role in healthy embryonic skeletal development. Clinical observations and experimental data indicate the importance of muscle contractions for limb development. However, the influence of these forces is seldom referred to in biological descriptions of bone development, and perhaps this is due to the fact that the hypothesis that mechanical forces are essential for normal embryonic skeletal development is difficult to test and elaborate experimentally in vivo, particularly in humans. Computational modeling has the potential to address this issue by simulating embryonic growth under a range of loading conditions but the potential of such models has yet to be fully exploited. In this article, we review the literature on mechanobiology of limb development in three main sections: (a) experimental alteration of the mechanical environment, (b) mechanical properties of embryonic tissues, and (c) the use of computational models. Then we analyze the main issues, and suggest how experimental and computational fields could work closer together to enhance our understanding of mechanobiology of the embryonic skeleton.
Collapse
Affiliation(s)
- Niamh C Nowlan
- Trinity Centre for Bioengineering, School of Engineering, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
43
|
Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G. Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling. ACTA ACUST UNITED AC 2006; 12:3285-305. [PMID: 17518670 DOI: 10.1089/ten.2006.12.3285] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This article contains the collective views expressed at the second session of the workshop "Tissue Engineering--The Next Generation,'' which was devoted to the tools of tissue engineering: scaffolds, bioreactors, and molecular and physical signaling. Lisa E. Freed and Farshid Guilak discussed the integrated use of scaffolds and bioreactors as tools to accelerate and control tissue regeneration, in the context of engineering mechanically functional cartilage and cardiac muscle. Edward Guo focused on the opportunities that tissue engineering generates for studies of mechanobiology and on the need for tissue engineers to learn about mechanical forces during tissue and organ genesis. Martha L. Gray focused on the potential of biomedical imaging for noninvasive monitoring of engineered tissues and on the opportunities biomedical imaging can generate for the development of new markers. Robert Tranquillo reviewed the approach to tissue engineering of a spectrum of avascular habitually loaded tissues- blood vessels, heart valves, ligaments, tendons, cartilage, and skin. Jeffrey W. Holmes offered the perspective of a "reverse paradigm''--the use of tissue constructs in quantitative studies of cell-matrix interactions, cell mechanics, matrix mechanics, and mechanobiology. Milica Radisic discussed biomimetic design of tissue-engineering systems, on the example of synchronously contractile cardiac muscle. Michael V. Sefton proposed a new, simple approach to the vascularization of engineered tissues. This session stressed the need for advanced scaffolds, bioreactors, and imaging technologies and offered many enlightening examples on how these advanced tools can be utilized for functional tissue engineering and basic research in medicine and biology.
Collapse
Affiliation(s)
- Lisa E Freed
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
It has long been appreciated that studying the embryonic chick in ovo provides a variety of advantages, including the potential to control the embryo's environment and its movement independently of maternal influences. This allowed early workers to identify movement as a pivotal factor in the development of the locomotor apparatus. With an increasing focus on the earliest detectable movements, we have exploited this system by developing novel models and schemes to examine the influence of defined periods of movement during musculoskeletal development. Utilizing drugs with known neuromuscular actions to provoke hyperactivity (4-aminopyridine, AP) and either rigid (decamethonium bromide, DMB) or flaccid (pancuronium bromide, PB) paralysis, we have examined the role of movement in joint, osteochondral and muscle development. Our initial studies focusing on the joint showed that AP-induced hyperactivity had little, if any, effect on the timing or scope of joint cavity elaboration, suggesting that endogenous activity levels provide sufficient stimulus, and additional mobilization is without effect. By contrast, imposition of either rigid or flaccid paralysis prior to cavity formation completely blocked this process and, with time, produced fusion of cartilaginous elements and formation of continuous single cartilaginous rods across locations where joints would ordinarily form. The effect of these distinct forms of paralysis differed, however, when treatment was initiated after formation of an overt cavity; rigid, but not flaccid, paralysis partly conserved precavitated joints. This observation suggests that 'static' loading derived from 'spastic' rigidity can act to preserve joint cavities. Another facet of these studies was the observation that DMB-induced rigid paralysis produces a uniform and specific pattern of limb deformity whereas PB generated a diverse range of fixed positional deformities. Both also reduced limb growth, with different developmental periods preferentially modifying specific osteochondral components. Changes in cartilage and bone growth induced by 3-day periods of flaccid immobilization, imposed at distinct developmental phases, provides support for a diminution in cartilage elaboration at an early phase and for a relatively delayed influence of movement on osteogenesis, invoking critical periods during which the developing skeleton becomes receptive to the impact of movement. Immobilization also exerts differential impact along the proximo-distal axis of the limb. Finally, our preliminary results support the possibility that embryonic hyperactivity influences the potential for postnatal muscle growth.
Collapse
|
45
|
Sawamura C, Takahashi M, McCarthy KJ, Shen Z, Fukai N, Rodriguez EK, Snyder BD. Effect of in ovo immobilization on development of chick hind-limb articular cartilage: An evaluation using micro-MRI measurement of delayed gadolinium uptake. Magn Reson Med 2006; 56:1235-41. [PMID: 17089363 DOI: 10.1002/mrm.21021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To examine the effect of immobilization on the development of articular cartilage, we assessed glycosaminoglycan (GAG) content in the chick articular surface by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Chick embryos were paralyzed by decamethonium bromide (DMB) from day 10 to either day 13 or day 16. The GAG content of the chick knee was compared with that of nonparalyzed chick embryos. Histologic analysis was unable to quantify GAG content; however, dGEMRIC demonstrated that GAG content was higher in the femoral condyles of the nonparalyzed embryos on day 13, and on day 16 the GAG content was lower in both the femoral condyles and the tibial plateaus of the nonparalyzed embryos. These results suggest that paralysis delays embryonic hind-limb development. Osteoblastic activity at the cartilage canal, as demonstrated by staining for alkaline phosphatase (ALP), was present only in the nonparalyzed chick embryos on day 16. The GAG content of the cartilage decreased when the cartilage canals began to form on day 16. The effect of immobilization on hind-limb development was indicated by the differences in the GAG content of the cartilage anlage measured by dGEMRIC in the developing knee joint of paralyzed and nonparalyzed embryonic chicks.
Collapse
Affiliation(s)
- Chigusa Sawamura
- Orthopaedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lamb KJ, Lewthwaite JC, Lin JP, Simon D, Kavanagh E, Wheeler-Jones CPD, Pitsillides AA. Diverse range of fixed positional deformities and bone growth restraint provoked by flaccid paralysis in embryonic chicks. Int J Exp Pathol 2003; 84:191-9. [PMID: 14632633 PMCID: PMC2517559 DOI: 10.1046/j.1365-2613.2003.00353.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancuronium bromide (PB) is used in neonates and pregnant women to induce limp, flaccid paralysis in order to allow mechanical ventilation during intensive care. Such non-depolarizing neuromuscular blocking drugs are administered to 0.1% of all human births in the UK. In this study, we examined PB effects on skeletal development in chick embryos. PB treatment produced skeletal deformities associated with significant reduction in longitudinal growth of all appendicular elements. This was associated with greater cartilage to bone ratios, indicating a preferential reduction in osteogenesis. PB also increased the incidence of knee joint flexion and tibiotarsal joint hyperextension. In addition to limb, spinal and craniofacial deformities, flaccid immobility appears to convert the normal geometric pattern of weight gain to a simple arithmetic accretion. This novel study highlights the potentially harmful effects of pharmacologically induced flaccid immobility on chick embryonic skeletal development. Whilst in ovo avian development clearly differs from human, our findings may have implications for the fetus, premature and term neonate receiving such non-depolarizing neuromuscular blocking drugs.
Collapse
Affiliation(s)
- Katherine J Lamb
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Case ND, Duty AO, Ratcliffe A, Müller R, Guldberg RE. Bone Formation on Tissue-Engineered Cartilage Constructsin Vivo: Effects of Chondrocyte Viability and Mechanical Loading. ACTA ACUST UNITED AC 2003; 9:587-96. [PMID: 13678438 DOI: 10.1089/107632703768247296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interactions between bone and cartilage formation are critical during growth and fracture healing and may influence the functional integration of osteochondral repair constructs. In this study, the ability of tissue-engineered cartilage constructs to support bone formation under controlled mechanical loading conditions was evaluated using a lapine hydraulic bone chamber model. Articular chondrocytes were seeded onto polymer disks, cultured for 4 weeks in vitro, and then transferred to empty bone chambers previously implanted into rabbit femoral metaphyses. The effects of chondrocyte viability within the implanted constructs and in vivo mechanical loading on bone formation were tested in separate experiments. After 4 weeks in vivo, biopsies from the chambers consisted of a complex composite of bone, cartilage, and fibrous tissue, with bone forming in direct apposition to the cartilage constructs. Microcomputed tomography imaging of the chamber biopsies revealed that the implantation of viable constructs nearly doubled the bone volume fraction of the chamber tissue from 0.9 to 1.6% as compared with the implantation of devitalized constructs in contralateral control chambers. The application of an intermittent cyclic mechanical load was found to increase the bone volume fraction of the chamber tissue from 0.4 to 3.6% as compared with no-load control biopsies. The results of these experiments demonstrate that tissue-engineered cartilage constructs implanted into a well-vascularized bone defect will support direct appositional bone formation and that bone formation is significantly influenced by the viability of chondrocytes within the constructs and the local mechanical environment in vivo.
Collapse
Affiliation(s)
- Natasha D Case
- Schools of Mechanical and Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA
| | | | | | | | | |
Collapse
|
48
|
Shum L, Coleman CM, Hatakeyama Y, Tuan RS. Morphogenesis and dysmorphogenesis of the appendicular skeleton. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:102-22. [PMID: 12955856 DOI: 10.1002/bdrc.10012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.
Collapse
Affiliation(s)
- Lillian Shum
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1503, MSC 8022, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
49
|
Wang X, Mao JJ. Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli. J Bone Miner Res 2002; 17:1843-50. [PMID: 12369788 DOI: 10.1359/jbmr.2002.17.10.1843] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How mechanical stimuli modulate chondral growth is not well understood. To test a hypothesis that chondral growth is accelerated by oscillatory mechanical stimuli rather than the peak magnitude of mechanical force, we delivered 2-N tensile forces with static (frequency = 0 Hz) and cyclic (f = 1 Hz) profiles noninvasively to the maxillae of growing New Zealand white rabbits for 20 minutes/day over 12 days. Computerized histomorphometry revealed significantly greater maximum height of the cranial base growth plate (GP) treated with cyclic forces (870 +/- 130 microm) than static forces (654 +/- 29 microm) and sham controls (566 +/- 47 microm). In addition, the average total GP area treated with cyclic forces (2.63 +/- 0.17 mm2) was significantly greater than static forces (2.12 +/- 0.99 mm2) and sham controls (1.65 +/- 0.13 mm2). The proliferating zone of GPs treated with cyclic forces (158 +/- 38.5 microm) was significantly longer than the corresponding zones of static forces (117 +/- 8.6 microm) and sham controls (54 +/- 14.9 microm). The average number of chondrocytes in the proliferating zone treated with cyclic forces (1045 +/- 127) was significantly greater than static forces (632 +/- 85) and sham controls (632 +/- 60) in standardized grids. Like natural GPs, the cartilage matrix treated with cyclic and static tensile forces consisted of abundant aggrecan-like proteoglycans. These findings indicate that oscillatory components of mechanical force rather than its peak magnitude are potent anabolic stimulus for chondral growth. A cascade of oscillatory mechanical stimuli is likely capable of engineering chondral growth beyond naturally occurring chondrogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthodontics, University of Illinois at Chicago, 60612-7211, USA
| | | |
Collapse
|
50
|
Wu Q, Zhang Y, Chen Q. Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J Biol Chem 2001; 276:35290-6. [PMID: 11466306 DOI: 10.1074/jbc.m101055200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Indian hedgehog (Ihh), a member of the vertebrate hedgehog morphogen family, is a key signaling molecule that controls chondrocyte proliferation and differentiation. In this study, we show a novel function of Ihh. Namely, it acts as an essential mediator of mechanotransduction in cartilage. Cyclic mechanical stress greatly induces the expression of Ihh by chondrocytes. This induction is abolished by gadolinium, an inhibitor of stretch-activated channels. This suggests that the IHH gene is mechanoresponsive. The mechano-induction of Ihh is essential for stimulating chondrocyte proliferation by mechanical loading. The presence of an Ihh functional blocking antibody during loading completely abolishes the stimulatory effect of mechanical load on proliferation. Furthermore, Ihh mediates the mechanotransduction process in a bone morphogenic protein (BMP)-dependent and parathyroid hormone-related peptide-independent manner. BMP 2/4 are up-regulated by mechanical stress through the induction of Ihh, and BMP antagonist noggin inhibits mechanical stimulation of chondrocyte proliferation. This suggests BMP lies downstream of Ihh in mechanotransduction pathway. Our data suggest that Ihh may transduce mechanical signals during cartilage growth and repair processes.
Collapse
Affiliation(s)
- Q Wu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|