1
|
Sancerni T, Montel V, Dereumetz J, Cochon L, Coq JO, Bastide B, Canu MH. Enduring effects of acute prenatal ischemia in rat soleus muscle, and protective role of erythropoietin. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09684-6. [PMID: 39549147 DOI: 10.1007/s10974-024-09684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Motor disorders are considered to originate mainly from brain lesions. Placental dysfunction or maternal exposure to a persistently hypoxic environment is a major cause of further motor disorders such as cerebral palsy. Our main goal was to determine the long-term effects of mild intrauterine acute ischemic stress on rat soleus myofibres and whether erythropoietin treatment could prevent these changes. Rat embryos were subjected to ischemic stress at embryonic day E17. They then received an intraperitoneal erythropoietin injection at postnatal days 1-5. Soleus muscles were collected at postnatal day 28. Prenatal ischemic stress durably affected muscle structure, as indicated by the greater fiber cross-sectional area (+ 18%) and the greater number of mature vessels (i.e. vessels with mature endothelial cells) per myofibres (+ 43%), and muscle biochemistry, as shown by changes in signaling pathways involved in protein synthesis/degradation balance (-81% for 4EBP1; -58% for AKT) and Hif1α expression levels (+ 95%). Erythropoietin injection in ischemic pups had a weak protective effect: it increased muscle mass (+ 25% with respect to ischemic pups) and partially prevented the increase in muscle degradation pathways and mature vascularization, whereas it exacerbated the decrease in synthesis pathways. Hence, erythropoietin treatment after acute ischemic stress contributes to muscle adaptation to ischemic conditions.
Collapse
Affiliation(s)
- Tiphaine Sancerni
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Valérie Montel
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Julie Dereumetz
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Laetitia Cochon
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Jacques-Olivier Coq
- Institut des Sciences du Mouvement (ISM), Team 'Plasticité des Systèmes Nerveux et Musculaires', UMR 7287 CNRS, Aix-Marseille Université Faculté des Sports, Marseille Cedex 09, F-13288, France
| | - Bruno Bastide
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France
| | - Marie-Hélène Canu
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR7369, Lille, F-59000, France.
| |
Collapse
|
2
|
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024; 16:3428. [PMID: 39458423 PMCID: PMC11510680 DOI: 10.3390/nu16203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acute sarcopenia refers to the swift decline in muscle function and mass following acute events such as illness, surgery, trauma, or burns that presents significant challenges in hospitalized older adults. METHODS narrative review to describe the mechanisms and management of acute sarcopenia. RESULTS The prevalence of acute sarcopenia ranges from 28% to 69%, likely underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings. Systemic inflammation, immune-endocrine dysregulation, and anabolic resistance are identified as key pathophysiological factors. Interventions include early mobilization, resistance exercise, neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation, leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceuticals show variable efficacy. CONCLUSIONS Future research should prioritize serial monitoring of muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to improve outcomes and prevent long-term disability associated with acute sarcopenia.
Collapse
Affiliation(s)
- Sarah Damanti
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Eleonora Senini
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Aurora Merolla
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Simona Santoro
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Costanza Festorazzi
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Marco Messina
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Giordano Vitali
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Patrizia Rovere-Querini
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| |
Collapse
|
3
|
Guo Q, Luo Q, Song G. Control of muscle satellite cell function by specific exercise-induced cytokines and their applications in muscle maintenance. J Cachexia Sarcopenia Muscle 2024; 15:466-476. [PMID: 38375571 PMCID: PMC10995279 DOI: 10.1002/jcsm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024] Open
Abstract
Exercise is recognized to play an observable role in improving human health, especially in promoting muscle hypertrophy and intervening in muscle mass loss-related diseases, including sarcopenia. Recent rapid advances have demonstrated that exercise induces the release of abundant cytokines from several tissues (e.g., liver, muscle, and adipose tissue), and multiple cytokines improve the functions or expand the numbers of adult stem cells, providing candidate cytokines for alleviating a wide range of diseases. Muscle satellite cells (SCs) are a population of muscle stem cells that are mitotically quiescent but exit from the dormancy state to become activated in response to physical stimuli, after which SCs undergo asymmetric divisions to generate new SCs (stem cell pool maintenance) and commit to later differentiation into myocytes (skeletal muscle replenishment). SCs are essential for the postnatal growth, maintenance, and regeneration of skeletal muscle. Emerging evidence reveals that exercise regulates muscle function largely via the exercise-induced cytokines that govern SC potential, but this phenomenon is complicated and confusing. This review provides a comprehensive integrative overview of the identified exercise-induced cytokines and the roles of these cytokines in SC function, providing a more complete picture regarding the mechanism of SC homeostasis and rejuvenation therapies for skeletal muscle.
Collapse
Affiliation(s)
- Qian Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
4
|
Hoeger NS, Mittlmeier T, Vollmar B, Stratos I, Dobson GP, Rotter R. ALM Therapy Promotes Functional and Histologic Regeneration of Traumatized Peripheral Skeletal Muscle. BIOLOGY 2023; 12:870. [PMID: 37372154 DOI: 10.3390/biology12060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Skeletal muscle trauma is a common injury with a range of severity. Adenosine, lidocaine and Mg2+ (ALM) is a protective solution and improves tissue perfusion and coagulopathy. Male Wistar rats were anesthetized and subjected to standardized skeletal muscle trauma of the left soleus muscle with the protection of the neurovascular structures. Seventy animals were randomly assigned to saline control or ALM. Immediately after trauma, a bolus of ALM solution was applied intravenously, followed by a one-hour infusion. After 1, 4, 7, 14 and 42 days, the biomechanical regenerative capacity was examined using incomplete tetanic force and tetany, and immunohistochemistry was used to examine for proliferation and apoptosis characteristics. Biomechanical force development showed a significant increase following ALM therapy for incomplete tetanic force and tetany on days 4 and 7. In addition, the histological evaluation showed a significant increase in proliferative BrdU-positive cells with ALM therapy on days 1 and 14. Ki67 histology also detected significantly more proliferative cells on days 1, 4, 7, 14 and 42 in ALM-treated animals. Furthermore, a simultaneous decrease in the number of apoptotic cells was observed using the TUNEL method. ALM solution showed significant superiority in biomechanical force development and also a significant positive effect on cell proliferation in traumatized skeletal muscle tissue and reduced apoptosis.
Collapse
Affiliation(s)
- Nina Sarah Hoeger
- Department of Trauma and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Department of Trauma and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | - Ioannis Stratos
- Department of Orthopaedic Surgery, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Robert Rotter
- Department of Trauma and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
5
|
Dhall S, Park MS, Li C, Sathyamoorthy M. Regenerative Effects of Hypoxia Primed Flowable Placental Formulation in Muscle and Dermal Injury. Int J Mol Sci 2021; 22:7151. [PMID: 34281205 PMCID: PMC8267721 DOI: 10.3390/ijms22137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The placental tissue, due to its angiogenic, anti-inflammatory, antioxidative, antimicrobial, and anti-fibrotic properties, has become a compelling source towards a solution for several indications in regenerative medicine. However, methods to enhance and capture the therapeutic properties with formulations that can further the applications of viable placental tissue have not been explored. In this study, we investigated the regenerative effects of a hypoxia primed flowable placental formulation (FPF), composed of amnion/chorion and umbilical tissue, in two in vivo injury models. Laser Doppler data from rodent ischemia hindlimbs treated with FPF revealed significant tissue perfusion improvements compared to control ischemic hindlimbs. To further corroborate FPF's effects, we used a rodent ischemic bipedicle skin flap wound model. FPF treatment significantly increased the rate of wound closure and the quality of wound healing. FPF-treated wounds displayed reduced inflammation and an increase in angiogenesis. Furthermore, quantitative PCR and next-generation sequencing analysis confirmed these changes in the FPF-treated group at both the gene and transcriptional level. The observed modulation in miRNAs was associated with angiogenesis, regulation of inflammatory microenvironment, cell migration and apoptosis, reactive oxygen species generation, and restoring epithelial barrier function, all processes involved in impaired tissue healing. Taken together, these data validate the tissue regenerative properties of the flowable placental formulation configuration tested.
Collapse
Affiliation(s)
- Sandeep Dhall
- Smith & Nephew Plc., Columbia, MD 21046, USA; (C.L.); (M.S.)
| | - Min Sung Park
- Smith & Nephew Plc., Columbia, MD 21046, USA; (C.L.); (M.S.)
| | | | | |
Collapse
|
6
|
Talukder MAH, Lee JI, Hegarty JP, Gurjar AA, O'Brien M, Karuman Z, Wandling GD, Govindappa PK, Elfar JC. Obligatory role of Schwann cell-specific erythropoietin receptors in erythropoietin-induced functional recovery and neurogenic muscle atrophy after nerve injury. Muscle Nerve 2020; 63:268-272. [PMID: 33205838 DOI: 10.1002/mus.27121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Erythropoietin (EPO) promotes myelination and functional recovery in rodent peripheral nerve injury (PNI). While EPO receptors (EpoR) are present in Schwann cells, the role of EpoR in PNI recovery is unknown because of the lack of EpoR antagonists or Schwann cell-specific EpoR knockout animals. METHODS Using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EpoR (MpzCre-EpoRflox/flox , Mpz-EpoR-KO). Mpz-EpoR-KO and control mice were assigned to sciatic nerve crush injury followed by EPO treatment. RESULTS EPO treatment significantly accelerated functional recovery in control mice in contrast to significantly reduced functional recovery in Mpz-EpoR-KO mice. Significant muscle atrophy was found in the injured hindlimb of EPO-treated Mpz-EpoR-KO mice but not in EPO-treated control mice. CONCLUSIONS These preliminary findings provide direct evidence for an obligatory role of Schwann-cell specific EpoR for EPO-induced functional recovery and muscle atrophy following PNI.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jung Il Lee
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zara Karuman
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Grant D Wandling
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Oztermeli A, Karaca S, Yucel I, Midi A, Sen EI, Ozturk BY. The effect of erythropoietin on rat rotator cuff repair model: An experimental study. J Orthop Surg (Hong Kong) 2020; 27:2309499019856389. [PMID: 31234725 DOI: 10.1177/2309499019856389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine whether erythropoietin (EPO) can enhance rotator cuff healing in rats as measured by histological analysis and biomechanical testing. METHODS A total of 72 rats were included in this study. In the control group (n = 24), repair was performed without EPO injection. In the local group (n = 24) EPO was injected in the repair site. In the systemic group (n = 24) EPO was administered as an intraperitoneal injection every day for 10 days after repair. Rats were euthanized on day 10 (n = 12 from each group) and day 28 (n = 12 from each group). Histopathological (n = 6) and biomechanical examinations (n = 6) were done. RESULTS Biomechanical results reveal that the maximum load to failure values of the early control group were statistically lower than those of the early systemic group (p = 0.006). Comparing the the total Bonar values histopathologically reveal that the early systemic group was statistically higher than those of the early local group (p = 0.043). The late control group was statistically higher than those of the late local group (p = 0.003) and the late systemic group (p = 0.034). The late systemic group was statistically higher than those of the late local group (p = 0.003). CONCLUSIONS EPO application had a positive effect biomechanically in the early euthanized group and histopathologically in the late euthanized group.
Collapse
Affiliation(s)
- Ahmet Oztermeli
- 1 Department of Orthopaedics and Traumatology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Sinan Karaca
- 1 Department of Orthopaedics and Traumatology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Istemi Yucel
- 1 Department of Orthopaedics and Traumatology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Midi
- 2 Department of Pathology, Bahcesehir University Faculty of Medicine, Istanbul, Turkey
| | - Elif Itir Sen
- 2 Department of Pathology, Bahcesehir University Faculty of Medicine, Istanbul, Turkey
| | - Burak Yagmur Ozturk
- 1 Department of Orthopaedics and Traumatology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci 2020; 17:33-44. [PMID: 31929736 PMCID: PMC6945565 DOI: 10.7150/ijms.38590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO could attenuate burn-induced muscle fiber atrophy. Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn. Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the level of the protective effect was no significant difference between two EPO-treated groups (p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated burn group but not weekly EPO group. Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chee-Yin Chai
- Departments of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Zhang Y, Chen L, Wu P, Lang J, Chen L. Intervention with erythropoietin in sarcopenic patients with femoral intertrochanteric fracture and its potential effects on postoperative rehabilitation. Geriatr Gerontol Int 2019; 20:150-155. [PMID: 31837195 DOI: 10.1111/ggi.13845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
AIM To explore the intervention with erythropoietin (EPO) in sarcopenic patients with femoral intertrochanteric fractures, and its potential effects on postoperative rehabilitation. METHODS A total of 141 patients with femoral intertrochanteric fracture were selected from January 2018 to January 2019. Patients (aged ≥60 years) with indications for EPO use, but without significant medical history, were selected in the present study. All patients were screened for sarcopenia, and divided into the intervention group and control group according to whether they took EPO. The intervention groups received EPO postoperatively every day for 10 days, whereas the control groups received an equal dose of normal saline. Patients' handgrip strength, appendicular skeletal muscle, duration of hospitalization and postoperative infection rate were assessed by analysis. RESULTS Among sarcopenic women, the handgrip strength was higher in the intervention group than in the control group after a week (P < 0.05). However, no significant effect was found in men (P > 0.05). The appendicular skeletal muscle increment of the intervention group with sarcopenia was markedly increased regardless of sex (P < 0.001). In addition, the postoperative infection rate was lower in the intervention group than the control group (P < 0.05), accompanied by a shorter hospital stay due to EPO administration (P < 0.05). CONCLUSIONS EPO can improve the muscle strength of female patients with sarcopenia during the perioperative period, and increase muscle mass both of women and men. It can improve the symptoms of sarcopenia, but cannot reverse sarcopenia. Additionally, it can reduce the postoperative complications of patients with hip fracture and shorten the length of hospital stay. Therefore, postoperative administration of EPO might potentially promote rapid postoperative rehabilitation. Geriatr Gerontol Int 2020; 20: 150-155.
Collapse
Affiliation(s)
- Yiou Zhang
- Wenzhou Medical University Affiliated Cixi Hospital, Ningbo, China
| | - Li Chen
- University of Melbourne Medical School, Melbourne, Victoria, Australia
| | - Peng Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
11
|
Pan Y, Yang XH, Guo LL, Gu YH, Qiao QY, Jin HM. Erythropoietin Reduces Insulin Resistance via Regulation of Its Receptor-Mediated Signaling Pathways in db/db Mice Skeletal Muscle. Int J Biol Sci 2017; 13:1329-1340. [PMID: 29104499 PMCID: PMC5666531 DOI: 10.7150/ijbs.19752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Erythropoietin (EPO) can reduce insulin resistance (IR) in adipocytes; however, it is unknown whether EPO can decrease IR in skeletal muscle. Here we investigated whether EPO could reduce IR in type 2 diabetic mouse skeletal muscle and its possible signaling mechanisms of action. Twelve-week-old db/db diabetic mice were employed in this study. Systemic use of EPO improved glucose profiles in type 2 diabetic mice after 4 and 8 weeks treatment. EPO up-regulated EPOR protein expression in skeletal muscle, and subsequently activated downstream signaling molecules such as JAK2, IRS-1, PI3K, AKT, and eNOS. We next constructed lentivirally-delivered shRNAs against EPOR and transfected skeletal muscle cells to knockdown EPOR. EPOR knockdown inhibited EPO induced JAK2, IRS-1, PI3K, AKT, eNOS signaling transduction, autophagy and Glut 4 translocation, as well as promoted apoptosis in skeletal muscle. Thus, EPO reduces skeletal muscle IR in type 2 diabetic mice via its specific receptor, EPOR. Possible mechanisms involved in its action may include increased autophagy and reduced apoptosis in type 2 diabetic skeletal muscles, which provides a new strategy for the treatment of IR.
Collapse
Affiliation(s)
- Yu Pan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu Hong Yang
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Li Li Guo
- Hemodialysis Center, Baoshan Branch of Shanghai No.1 People's Hospital, Shanghai, China
| | - Yan Hong Gu
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qing Yan Qiao
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hui Min Jin
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
12
|
Mintz EL, Passipieri JA, Lovell DY, Christ GJ. Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair. J Vis Exp 2016. [PMID: 27768064 PMCID: PMC5092182 DOI: 10.3791/54487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational development of improved therapeutics for muscle repair and regeneration.
Collapse
Affiliation(s)
| | | | - Daniel Y Lovell
- Department of Biomedical Engineering, University of Virginia
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia; Department of Orthopaedic Surgery, University of Virginia;
| |
Collapse
|
13
|
Lamon S, Zacharewicz E, Arentson-Lantz E, Gatta PAD, Ghobrial L, Gerlinger-Romero F, Garnham A, Paddon-Jones D, Russell AP. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults. Front Physiol 2016; 7:292. [PMID: 27458387 PMCID: PMC4937030 DOI: 10.3389/fphys.2016.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 01/07/2023] Open
Abstract
Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways.
Collapse
Affiliation(s)
- Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Evelyn Zacharewicz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Emily Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch Galveston, TX, USA
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Lobna Ghobrial
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Frederico Gerlinger-Romero
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Andrew Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch Galveston, TX, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| |
Collapse
|
14
|
Bilal O, Guney A, Kalender AM, Kafadar IH, Yildirim M, Dundar N. The effect of erythropoietin on biomechanical properties of the Achilles tendon during the healing process: an experimental study. J Orthop Surg Res 2016; 11:55. [PMID: 27125266 PMCID: PMC4850695 DOI: 10.1186/s13018-016-0390-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this study was to examine the potential biomechanical and histological benefits of systemic erythropoietin administration during the healing of Achilles tendon injury in a rat experimental model. Methods Eighty Sprague-Dawley female rats were included in this study. Animals were randomly assigned into two groups with 40 animals in each: erythropoietin group and control group. Then each group was further divided into four subgroups corresponding to four time points with 10 animals in each. A full-thickness cut was made on the Achilles tendon of each animal and then the tendon was sutured with modified Kessler method. Erythropoietin groups received intraperitoneal erythropoietin (500 IU/kg/day) every day at same time throughout the study period, and the control groups received saline in a similar manner. Animals were sacrificed at four time points, and tensile test was performed on each tendon sample to assess maximum load for each sample. In addition, histopathological examination and scoring was done. Results Both groups had improvement on tensile test (maximum load) over time. However, groups did not differ with regard to maximum load in any of the time points. Similarly, groups did not differ with regard to any of the histopathological scores over time. Conclusions The findings of this study do not support the benefit of systemic erythropoietin administration in Achilles tendon healing process. Further evidence from larger experimental studies is required to justify any such potential benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13018-016-0390-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Okkes Bilal
- Department of Orthopaedics and Traumatology, Sutcu Imam University Medical Faculty, Kahramanmaras, Turkey.
| | - Ahmet Guney
- Department of Orthopaedics and Traumatology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ali Murat Kalender
- Department of Orthopaedics and Traumatology, Sutcu Imam University Medical Faculty, Kahramanmaras, Turkey
| | - Ibrahim Halil Kafadar
- Department of Orthopaedics and Traumatology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Muzaffer Yildirim
- Department of Pathology, The Ministry of Justice, Council of Forensic Medicine, Istanbul, Turkey
| | - Nuh Dundar
- Department of Orthopaedics and Traumatology, Sutcu Imam University Medical Faculty, Kahramanmaras, Turkey
| |
Collapse
|
15
|
Pichon A, Jeton F, El Hasnaoui-Saadani R, Hagström L, Launay T, Beaudry M, Marchant D, Quidu P, Macarlupu JL, Favret F, Richalet JP, Voituron N. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice. HYPOXIA 2016; 4:29-39. [PMID: 27800506 PMCID: PMC5085313 DOI: 10.2147/hp.s83540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection.
Collapse
Affiliation(s)
- Aurélien Pichon
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris; Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France
| | - Florine Jeton
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | | | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil
| | - Thierry Launay
- Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole , University Sorbonne-Paris-Cité, Paris, France
| | - Michèle Beaudry
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Dominique Marchant
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Patricia Quidu
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Jose-Luis Macarlupu
- High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fabrice Favret
- Laboratory "Mitochondrie, Stress Oxydant et Protection Musculaire" EA 3072, University of Strasbourg, Strasbourg, France
| | - Jean-Paul Richalet
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | - Nicolas Voituron
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| |
Collapse
|
16
|
Hoedt A, Christensen B, Nellemann B, Mikkelsen UR, Hansen M, Schjerling P, Farup J. Satellite cell response to erythropoietin treatment and endurance training in healthy young men. J Physiol 2015; 594:727-43. [PMID: 26607845 DOI: 10.1113/jp271333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINT Erythropoietin (Epo) treatment may induce myogenic differentiation factor (MyoD) expression and prevent apoptosis in satellite cells (SCs) in murine and in vitro models. Endurance training stimulates SC proliferation in vivo in murine and human skeletal muscle. In the present study, we show, in human skeletal muscle, that treatment with an Epo-stimulating agent (darbepoetin-α) in vivo increases the content of MyoD(+) SCs in healthy young men. Moreover, we report that Epo receptor mRNA is expressed in adult human SCs, suggesting that Epo may directly target SCs through ligand-receptor interaction. Moreover, endurance training, but not Epo treatment, increases the SC content in type II myofibres, as well as the content of MyoD(+) SCs. Collectively, our results suggest that Epo treatment can regulate human SCs in vivo, supported by Epo receptor mRNA expression in human SCs. In effect, long-term Epo treatment during disease conditions involving anaemia may impact SCs and warrants further investigation. Satellite cell (SC) proliferation is observed following erythropoitin treatment in vitro in murine myoblasts and endurance training in vivo in human skeletal muscle. The present study aimed to investigate the effects of prolonged erythropoiesis-stimulating agent (ESA; darbepoetin-α) treatment and endurance training, separately and combined, on SC quantity and commitment in human skeletal muscle. Thirty-five healthy, untrained men were randomized into four groups: sedentary-placebo (SP, n = 9), sedentary-ESA (SE, n = 9), training-placebo (TP, n = 9) or training-ESA (TE, n = 8). ESA/placebo was injected once weekly and training consisted of ergometer cycling three times a week for 10 weeks. Prior to and following the intervention period, blood samples and muscle biopsies were obtained and maximal oxygen uptake (V̇O2, max) was measured. Immunohistochemical analyses were used to quantify fibre type specific SCs (Pax7(+)), myonuclei and active SCs (Pax7(+)/MyoD(+)). ESA treatment led to elevated haematocrit, whereas endurance training increased V̇O2, max. Endurance training led to an increase in SCs associated with type II fibres (P < 0.05), whereas type I fibres showed no changes. Both ESA treatment and endurance training increased Pax7(+)/MyoD(+) cells, whereas only ESA treatment increased the total content of MyoD(+) cells. Epo-R mRNA presence in adult SC was tested with real-time RT-PCR using fluorescence-activated cell sorting (CD56(+)/CD45(-)/CD31(-)) to isolate cells from a human rectus abdominis muscle and was found to be considerably higher than in whole muscle. In conclusion, endurance training and ESA treatment may separately stimulate SC commitment to the myogenic program. Furthermore, ESA-treatment may alter SC activity by direct interaction with the Epo-R expressed on SCs.
Collapse
Affiliation(s)
- Andrea Hoedt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Ramer Mikkelsen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Centre for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Centre for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean Farup
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Caillaud C, Mechta M, Ainge H, Madsen AN, Ruell P, Mas E, Bisbal C, Mercier J, Twigg S, Mori TA, Simar D, Barrès R. Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats. J Endocrinol 2015; 225:77-88. [PMID: 25767056 DOI: 10.1530/joe-15-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 12/21/2022]
Abstract
Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle cell cultures with EPO failed to induce AKT phosphorylation and had no effect on glucose uptake or glycogen synthesis. We found that the EPO receptor gene was expressed in myotubes, but was undetectable in soleus. Together, our results indicate that EPO treatment improves glucose tolerance but does not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism.
Collapse
Affiliation(s)
- Corinne Caillaud
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Mie Mechta
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Heidi Ainge
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Andreas N Madsen
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, N
| | - Patricia Ruell
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Emilie Mas
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Catherine Bisbal
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Jacques Mercier
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, N
| | - Stephen Twigg
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Trevor A Mori
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - David Simar
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Romain Barrès
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Christensen B, Nellemann B, Thorsen K, Nielsen MM, Pedersen SB, Ornstrup MJ, JØrgensen JOL, Jessen N. Prolonged erythropoietin treatment does not impact gene expression in human skeletal muscle. Muscle Nerve 2015; 51:554-61. [PMID: 25088500 DOI: 10.1002/mus.24355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
INTRODUCTION We tested for the presence of erythropoietin receptor (Epo-R) in human skeletal muscle and alterations in gene expression after prolonged use of an erythropoiesis-stimulating agent (ESA). METHODS Nine healthy men were treated with ESA for 10 weeks (darbepoietin alfa). Muscle biopsies were collected before and after treatment. Alterations in gene expression were evaluated by gene array. Western blot and PCR analysis were used to test for Epo-R presence in human skeletal muscle. RESULTS Very low Epo-R mRNA levels were found, but a new and sensitive antibody did not identify Epo-R protein in human skeletal muscle. The between-subject variation in skeletal muscle gene expression was greater than that observed in response to prolonged ESA treatment. CONCLUSIONS Erythropoietin is unlikely to exert direct effects in human skeletal muscle due to a lack of Epo-R protein. Furthermore, prolonged ESA treatment does not seem to exert either direct or indirect effects on skeletal muscle gene expression.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark; Medical Research Laboratories, Aarhus University, Aarhus, Denmark; Section of Sports Sciences, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Feder D, Rugollini M, Santomauro A, Oliveira LP, Lioi VP, Santos RD, Ferreira LG, Nunes MT, Carvalho MH, Delgado PO, Carvalho AAS, Fonseca FLA. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice. ACTA ACUST UNITED AC 2014. [PMID: 25296358 PMCID: PMC4230286 DOI: 10.1590/1414-431x20143858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone
regulating red blood cell production by inhibiting apoptosis of erythrocyte
progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and
skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of
skeletal and cardiac muscle. In this study, we tested the possible therapeutic
beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total
strength was measured using a force transducer coupled to a computer. Gene expression
for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α
(TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin
expression was significantly decreased in quadriceps from mdx mice treated with rhEPO
(rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant
effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α
(rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the
direct actions of EPO on skeletal muscle.
Collapse
Affiliation(s)
- D Feder
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - M Rugollini
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - A Santomauro
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - L P Oliveira
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - V P Lioi
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - R dos Santos
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L G Ferreira
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M T Nunes
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M H Carvalho
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P O Delgado
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | | | - F L A Fonseca
- Faculdade de Medicina do ABC, Santo André, SP, Brasil
| |
Collapse
|
20
|
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 2014; 15:10296-333. [PMID: 24918289 PMCID: PMC4100153 DOI: 10.3390/ijms150610296] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mawadda Alnaeeli
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA.
| | - Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruifeng Teng
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Lamon S, Zacharewicz E, Stephens AN, Russell AP. EPO-receptor is present in mouse C2C12 and human primary skeletal muscle cells but EPO does not influence myogenesis. Physiol Rep 2014; 2:e00256. [PMID: 24760510 PMCID: PMC4002236 DOI: 10.1002/phy2.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role and regulation of the pleiotropic cytokine erythropoietin (EPO) in skeletal muscle are controversial. EPO exerts its effects by binding its specific receptor (EPO‐R), which activates intracellular signaling and gene transcription in response to internal and external stress signals. EPO is suggested to play a direct role in myogenesis via the EPO‐R, but several studies have questioned the effect of EPO treatment in muscle in vitro and in vivo. The lack of certainty surrounding the use of nonspecific EPO‐R antibodies contributes to the ambiguity of the field. Our study demonstrates that the EPO‐R gene and protein are expressed at each stage of mouse C2C12 and human skeletal muscle cell proliferation and differentiation and validates a specific antibody for the detection of the EPO‐R protein. However, in our experimental conditions, EPO treatment had no effect on mouse C2C12 and human muscle cell proliferation, differentiation, protein synthesis or EPO‐R expression. While an increase in Akt and MAPK phosphorylation was observed, we demonstrate that this effect resulted from the stress caused by changing medium and not from EPO treatment. We therefore suggest that skeletal muscle EPO‐R might be present in a nonfunctional form, or too lowly expressed to play a role in muscle cell function. The EPO‐R is expressed at the gene and protein level in mouse and human myoblasts and myotubes. However, EPO treatment does not seem to activate the EPO‐R and its downstream signaling pathways in skeletal muscle cells, questioning its functionality.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Erythropoietin and the heart: physiological effects and the therapeutic perspective. Int J Cardiol 2013; 171:116-25. [PMID: 24377712 DOI: 10.1016/j.ijcard.2013.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Erythropoietin (Epo) has been thought to act exclusively on erythroid progenitor cells. The identification of Epo receptor (EpoR) in non-haematopoietic cells and tissues including neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells, as well as cells of myocardium, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle indicates that Epo has pleiotropic actions. Epo shows signals through protein kinases, anti-apoptotic proteins and transcription factors. In light of interest of administering recombinant human erythropoietin (rhEpo) and its analogues for limiting infarct size and left ventricular (LV) remodelling after acute myocardial infarction (AMI) in humans, the foremost studies utilising rhEpo are reviewed. The putative mechanisms involved in Epo-induced cardioprotection are related to the antiapoptotic, anti-inflammatory and angiogenic effects of Epo. Thus, cardioprotective potentials of rhEpo are reviewed in this article by focusing on clinical applicability. An overview of non-haematopoietic Epo analogues, which are a reliable alternative to the classic EpoR agonists and may prevent undesired side effects, is also provided.
Collapse
|
23
|
Joshi D, Abraham D, Shiwen X, Baker D, Tsui J. Potential role of erythropoietin receptors and ligands in attenuating apoptosis and inflammation in critical limb ischemia. J Vasc Surg 2013; 60:191-201, 201.e1-2. [PMID: 24055514 DOI: 10.1016/j.jvs.2013.06.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Managing critical limb ischemia (CLI) is challenging. Furthermore, ischemic myopathy prevents good functional outcome after revascularization. Hence, we have focused on limiting the tissue damage rather than angiogenesis, which has traditionally been the motivation to develop nonsurgical treatments for CLI. Erythropoietin (EPO) protects ischemic tissue, and this property may also benefit CLI. The objective of this study was to examine the expression of the tissue-protective EPO receptor complex (EPOR-CD131 [β-chain of interleukin (IL)-3/IL-5/granulocyte macrophage colony-stimulating factor receptor]) in skeletal muscle obtained from humans with CLI. Because native EPO is thrombogenic, the antiapoptotic and anti-inflammatory effects of a nonhematopoietic helix-B peptide of EPO (ARA 290) were investigated on ischemic myotubes in vitro. METHODS Tissue was obtained from gastrocnemius muscle of 12 patients undergoing amputation for CLI and from 12 patients without limb ischemia. The expression of EPOR and CD131 was demonstrated by immunohistochemistry and Western blot. A validated in vitro model of myotube ischemia was used in which mature C2C12 myotubes were cultured 6 to 12 hours in a depleted media and gas mixture (20% CO2 and 80% N2). The myotubes were pretreated with EPO or ARA 290 before exposure to simulated ischemia. Apoptosis and cell death were determined by cleaved caspase-3 assay and lactate dehydrogenase release assay. Enzyme-linked immunosorbent assay measured the inflammatory cytokines. RESULTS EPOR and CD131 were expressed and significantly upregulated in CLI (average optical density [OD] in Western blot [control vs CLI] EPOR, 0.05 U vs 0.1 U; CD131, 0.10 U vs 0.22 U; P < .01). There was colocalization of EPOR and CD131 in the sarcolemma (cell membrane) of the skeletal myofiber. There was no difference in the distribution of colocalization between the CLI and the normal muscle. The ischemic myotubes treated by ARA 290 in vitro had a significantly decreased number of apoptotic cells (ischemia vs ischemia plus ARA 290: 71.1% vs 55.1%; P < .01), cleaved caspase-3 (OD of ischemia vs ischemia plus ARA 290: 0.15 U vs 0.02 U; P < .01), lactate dehydrogenase release (ischemia vs ischemia plus ARA 290: 32.5 U/L vs 21.3 U/L; P < .01), and IL-6 release (OD at 450 nm, ischemia vs ischemia plus ARA 290: 0.18 vs 0.13; P < .01). CONCLUSIONS This study demonstrates the expression and the upregulation of EPOR and CD131 in CLI and also shows that EPOR and CDI are colocalized in the cell membrane of both ischemic and control muscle fiber. The in vitro experiments demonstrate that ARA 290 decreases inflammation and apoptosis of ischemic myotubes. ARA 290 may potentially be used as adjunctive treatment for CLI.
Collapse
Affiliation(s)
- Dhiraj Joshi
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Disease, University College London, London, United Kingdom
| | - Xu Shiwen
- Centre for Rheumatology and Connective Tissue Disease, University College London, London, United Kingdom
| | - Daryl Baker
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Janice Tsui
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, University College London, London, United Kingdom.
| |
Collapse
|
24
|
Penna F, Busquets S, Toledo M, Pin F, Massa D, López-Soriano FJ, Costelli P, Argilés JM. Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. J Lipid Res 2013; 54:3045-51. [PMID: 23966665 DOI: 10.1194/jlr.m038406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated cachexia is characterized, among other symptoms, by a dramatic loss of both muscle and fat. In addition, the cachectic syndrome is often associated with anemia. The object of the present investigation was to assess the effects of erythropoietin (EPO) treatment on experimental cancer cachexia models. The results clearly show that, in addition to the improvement of the hematocrit, EPO treatment promoted a partial preservation of adipose tissue while exerting negligible effects on muscle loss. Administration of EPO to tumor-bearing animals resulted in a significant increase of lipoprotein lipase (LPL) activity in adipose tissue, suggesting that the treatment favored triacylglycerol (TAG) accumulation in the adipose tissue. In vitro experiments using both adipose tissue slices and 3T3-L1 adipocytes suggests that EPO is able to increase the lipogenic rate through the activation of its specific receptor (EPOR). This metabolic pathway, in addition to TAG uptake by LPL, may contribute to the beneficial effects of EPO on fat preservation in cancer cachexia.
Collapse
Affiliation(s)
- Fabio Penna
- Departament de Bioquímica i Biologia Molecular and Institut de Biomedicina (IBUB)
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lamon S, Russell AP. The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 2013; 4:176. [PMID: 23874302 PMCID: PMC3710958 DOI: 10.3389/fphys.2013.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin (EPO) primarily activates erythroid cell proliferation and growth and is active in several types of non-hematopoietic cells via its interaction with the EPO-receptor (EPO-R). This review focuses on the role of EPO in skeletal muscle. The EPO-R is expressed in skeletal muscle cells and EPO may promote myoblast differentiation and survival via the activation of the same signaling cascades as in hematopoietic cells, such as STAT5, MAPK and Akt. Inconsistent results exist with respect to the detection of the EPO-R mRNA and protein in muscle cells, tissue and across species and the use of non-specific EPO-R antibodies contributes to this problem. Additionally, the inability to reproducibly detect an activation of the known EPO-induced signaling pathways in skeletal muscle questions the functionality of the EPO-R in muscle in vivo. These equivocal findings make it difficult to distinguish between a direct effect of EPO on skeletal muscle, via the activation of its receptor, and an indirect effect resulting from a better oxygen supply to the muscle. Consequently, the precise role of EPO in skeletal muscle and its regulatory mechanism/s remain to be elucidated. Further studies are required to comprehensively establish the importance of EPO and its function in skeletal muscle health.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | | |
Collapse
|
26
|
Sanchis-Gomar F, Perez-Quilis C, Lippi G. Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease. Mol Med 2013; 19:62-4. [PMID: 23615965 DOI: 10.2119/molmed.2013.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear-to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson's and Alzheimer's disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia, Research Foundation of the University Clinic Hospital of Valencia/INCLIVA, Valencia, Spain.
| | | | | |
Collapse
|
27
|
Mittlmeier T, Stratos I. Muscle and Ligament Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Stratos I, Li Z, Herlyn P, Rotter R, Behrendt AK, Mittlmeier T, Vollmar B. Vitamin D increases cellular turnover and functionally restores the skeletal muscle after crush injury in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:895-904. [PMID: 23260772 DOI: 10.1016/j.ajpath.2012.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/23/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
Insufficient skeletal muscle regeneration after injury often impedes the healing process and is accompanied by functional deficiencies or pain. The aim of our study was to provide evidence that vitamin D improves muscle healing after muscle injury. Therefore, we used male rats and induced an injury of the soleus muscle. After crush injury, animals received either 8.3 mg/kg (332,000 IU/kg) body weight vitamin D or vehicle solution, s.c. After assessment of muscle force at days 1, 4, 14, and 42 after injury, sampling of muscle tissue served for analysis of proliferation, apoptosis, satellite cells, and prolyl-4-hydroxylase-β expression. Vitamin D application caused a significant increase in cell proliferation and a significant inhibition of apoptosis at day 4 after injury compared to control animals. The numbers of satellite cells were not influenced by the vitamin D application, but there was an increase in prolyl-4-hydroxylase-β expression, indicative of increased extracellular matrix proteins. This cellular turnover resulted in a faster recovery of contraction forces at day 42 in the vitamin D group. Current data support the hypothesis that vitamin D promotes the regenerative process in injured muscle. Thus, vitamin D treatment may represent a promising therapy to optimize recovery after injury.
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Rölfing JHD, Bendtsen M, Jensen J, Stiehler M, Foldager CB, Hellfritzsch MB, Bünger C. Erythropoietin augments bone formation in a rabbit posterolateral spinal fusion model. J Orthop Res 2012; 30:1083-8. [PMID: 22144136 DOI: 10.1002/jor.22027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/17/2011] [Indexed: 02/04/2023]
Abstract
We tested the hypothesis that erythropoietin (EPO) enhances bone formation after posterolateral spinal fusion (PLF) in a rabbit model. Thirty-four adult rabbits underwent posterolateral intertransverse arthrodesis at the L5-L6 level using 2.0 g autograft per side. The animals were randomly divided into two groups receiving subcutaneous daily injections of either EPO or saline for 20 days. Treatment commenced 2 days preoperatively. Hemoglobin was monitored at baseline and 2, 4, and 6 weeks after fusion surgery. After euthanasia 6 weeks postoperatively, manual palpation, radiographic, and histomorphometric examinations were performed. Bone volume of the fusion mass was estimated by CT after 6 weeks. EPO increased bone fusion volume to 3.85 ccm (3.66-4.05) compared with 3.26 ccm (2.97-3.55) in the control group (p<0.01). EPO treatment improved vascularization of the fusion mass and increased hemoglobin levels (p<0.01). Fusion rate tended to be higher in the EPO group based on manual palpation, CT, and radiographic examinations. For the first time EPO has shown to augment bone formation after autograft PLF in a rabbit model. Increased vascularization provides a partial explanation for the efficacy of EPO as a bone autograft enhancer.
Collapse
|
30
|
Stratos I, Li Z, Rotter R, Herlyn P, Mittlmeier T, Vollmar B. Inhibition of caspase mediated apoptosis restores muscle function after crush injury in rat skeletal muscle. Apoptosis 2012; 17:269-77. [PMID: 22089165 PMCID: PMC3279634 DOI: 10.1007/s10495-011-0674-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although muscle regeneration after injury is accompanied by apoptotic cell death, prolonged apoptosis inhibits muscle restoration. The goal of our study was to provide evidence that inhibition of apoptosis improves muscle function following blunt skeletal muscle injury. Therefore, 24 rats were used for induction of injury to the left soleus muscle using an instrumented clamp. All animals received either 3.3 mg/kg i.p. of the pan-caspase inhibitor Z-valinyl-alanyl-DL: -aspartyl-fluoromethylketone (z-VAD.fmk) (n = 12 animals) or equivalent volumes of the vehicle solution DMSO (n = 12 animals) at 0 and 48 h after trauma. After assessment of the fast twitch and tetanic contraction capacity of the muscle at days 4 and 14 post injury, sampling of muscle tissue served for analysis of cell apoptosis (cleaved caspase 3 immunohistochemistry), cell proliferation (BrdU immunohistochemistry) as well as of muscle tissue area and myofiber diameter (HE planimetric analysis). Muscle strength analysis after 14 days in the z-VAD.fmk treated group revealed a significant increase in relative muscle strength when compared to the DMSO treated group. In contrast to the DMSO treated injured muscle, showing a transient switch towards a fast-twitching muscle phenotype (significant increase of the twitch-to-tetanic force ratio), z-VAD.fmk treated animals showed an enhanced healing process with a faster restoration of the twitch-to-tetanic force ratio towards the physiological slow-twitching muscle phenotype. This enhancement of muscle function was accompanied by a significant decrease of cell apoptosis and cell proliferation at day 4 as well as by a significant increase of muscle tissue area at day 4. At day 14 after injury z-VAD.fmk treated animals presented with a significant increase of myofiber diameter compared to the DMSO treated animals. Thus, z-VAD.fmk could provide a promising option in the anti-apoptotic therapy of muscle injury.
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute of Experimental Surgery, University of Rostock, Schillingallee 69a 18057, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Erythropoietin enhances the regeneration of traumatized tissue after combined muscle-nerve injury. J Trauma Acute Care Surg 2012; 72:1567-75. [DOI: 10.1097/ta.0b013e318246498f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Three weeks of erythropoietin treatment hampers skeletal muscle mitochondrial biogenesis in rats. J Physiol Biochem 2012; 68:593-601. [PMID: 22627788 DOI: 10.1007/s13105-012-0178-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 12/23/2022]
Abstract
The blood O(2)-carrying capacity is maintained by the O(2)-regulated production of erythropoietin (Epo), which stimulates the proliferation and survival of red blood cell progenitors. Epo has been thought to act exclusively on erythroid progenitor cells. However, recent studies have identified the erythropoietin receptor (EpoR) in other cells, such as neurons, astrocytes, microglia, heart, cancer cell lines, and skeletal muscle provides evidence for a potential role of Epo in other tissues. In this study we aimed to determine the effect of recombinant human erythropoietin (rHuEpo) on skeletal muscle adaptations such as mitochondrial biogenesis, myogenesis, and angiogenesis in different muscle fibre types. Fourteen male Wistar rats were randomly divided into two experimental groups, and saline or rHuEpo (300 IU) was administered subcutaneously three times a week for 3 weeks. We evaluated the protein expression of intermediates involved in the mitochondrial biogenesis cascade, the myogenic cascade, and in angiogenesis in the oxidative soleus muscle and in the glycolytic gastrocnemius muscle. Contrary to our expectations, rHuEpo significantly hampered the mitochondrial biogenesis pathway in gastrocnemius muscle (PGC-1α, mTFA and cytochrome c). We did not find any effect of the treatment on cellular signals of myogenesis (MyoD and Myf5) or angiogenesis (VEGF) in either soleus or gastrocnemius muscles. Finally, we found no significant effect on the maximal aerobic velocity at the end of the experiment in the rHuEpo-treated animals. Our findings suggest that 3 weeks of rHuEpo treatment, which generates an increase of oxygen carrying capacity, can affect mitochondrial biogenesis in a muscle fibre-specific dependent manner.
Collapse
|
33
|
Jia Y, Suzuki N, Yamamoto M, Gassmann M, Noguchi CT. Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage. FASEB J 2012; 26:2847-58. [PMID: 22490927 DOI: 10.1096/fj.11-196618] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Erythropoietin acts by binding to its cell surface receptor on erythroid progenitor cells to stimulate erythrocyte production. Erythropoietin receptor expression in nonhematopoietic tissue, including skeletal muscle progenitor cells, raises the possibility of a role for erythropoietin beyond erythropoiesis. Mice with erythropoietin receptor restricted to hematopoietic tissue were used to assess contributions of endogenous erythropoietin to promote skeletal myoblast proliferation and survival and wound healing in a mouse model of cardiotoxin induced muscle injury. Compared with wild-type controls, these mice had fewer skeletal muscle Pax-7(+) satellite cells and myoblasts that do not proliferate in culture, were more susceptible to skeletal muscle injury and reduced maximum load tolerated by isolated muscle. In contrast, mice with chronic elevated circulating erythropoietin had more Pax-7(+) satellite cells and myoblasts with increased proliferation and survival in culture, decreased muscle injury, and accelerated recovery of maximum load tolerated by isolated muscle. Skeletal muscle myoblasts also produced endogenous erythropoietin that increased at low O(2). Erythropoietin promoted proliferation, survival, and wound recovery in myoblasts via the phosphoinositide 3-kinase/AKT pathway. Therefore, endogenous and exogenous erythropoietin contribute to increasing satellite cell number following muscle injury, improve myoblast proliferation and survival, and promote repair and regeneration in this mouse induced muscle injury model independent of its effect on erythrocyte production.
Collapse
Affiliation(s)
- Yi Jia
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1822, USA
| | | | | | | | | |
Collapse
|
34
|
Christensen B, Lundby C, Jessen N, Nielsen TS, Vestergaard PF, Møller N, Pilegaard H, Pedersen SB, Kopchick JJ, Jørgensen JOL. Evaluation of functional erythropoietin receptor status in skeletal muscle in vivo: acute and prolonged studies in healthy human subjects. PLoS One 2012; 7:e31857. [PMID: 22384088 PMCID: PMC3285196 DOI: 10.1371/journal.pone.0031857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/18/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cheon S, Park I, Kim M. Pulsed Electromagnetic Field Elicits Muscle Recovery via Increase of HSP 70 Expression after Crush Injury of Rat Skeletal Muscle. J Phys Ther Sci 2012. [DOI: 10.1589/jpts.24.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Songhee Cheon
- Department of Physical Therapy, College of Health Science, Youngsan University
| | - Inah Park
- Department of Life Science, Faculty of Art and Science, University of Toronto
| | - Minhee Kim
- Department of Physical Therapy, College of Health Science, Eulji University
| |
Collapse
|
36
|
Stratos I, Richter N, Rotter R, Li Z, Zechner D, Mittlmeier T, Vollmar B. Melatonin restores muscle regeneration and enhances muscle function after crush injury in rats. J Pineal Res 2012; 52:62-70. [PMID: 21790777 DOI: 10.1111/j.1600-079x.2011.00919.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of this study was to provide evidence that melatonin improves muscle healing following blunt skeletal muscle injury. For this purpose, we used 56 rats and induced an open muscle injury. After injury, all animals received either daily melatonin or vehicle solution intraperitoneally. Subsequent observations were performed at day 1, 4, 7, and 14 after injury. After assessment of fast twitch and tetanic muscle force, we analyzed leukocyte infiltration, satellite cell number, and cell apoptosis. We further quantified the expression of the melatonin receptor and the activation of extracellular-signal-regulated kinase (ERK). Chronic treatment with melatonin significantly increased the twitch and tetanic force of the injured muscle at day 4, 7, and 14. At day 1, melatonin significantly reduced the leukocyte infiltration and significantly increased the number of satellite cells when compared to the control group. Consistent with this observation, melatonin significantly reduced the number of apoptotic cells at day 4. Furthermore, phosphorylation of ERK reached maximal values in the melatonin group at day 1 after injury. Additionally, we detected the MT1a receptor in the injured muscle and showed a significant up-regulation of the MT1a mRNA in the melatonin group at day 4. These data support the hypothesis that melatonin supports muscle restoration after muscle injury, inhibits apoptosis via modulation of apoptosis-associated signaling pathways, increases the number of satellite cells, and reduces inflammation.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Carboxylic Ester Hydrolases/metabolism
- Caspase 3/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Immunohistochemistry
- Male
- Melatonin/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/injuries
- Muscle, Skeletal/physiology
- Musculoskeletal Physiological Phenomena/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Regeneration/drug effects
- Satellite Cells, Skeletal Muscle/chemistry
- Satellite Cells, Skeletal Muscle/metabolism
- Wound Healing/drug effects
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Stratos I, Madry H, Rotter R, Weimer A, Graff J, Cucchiarini M, Mittlmeier T, Vollmar B. Fibroblast Growth Factor-2–Overexpressing Myoblasts Encapsulated in Alginate Spheres Increase Proliferation, Reduce Apoptosis, Induce Adipogenesis, and Enhance Regeneration Following Skeletal Muscle Injury in Rats. Tissue Eng Part A 2011; 17:2867-77. [DOI: 10.1089/ten.tea.2011.0239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
- Department of Trauma and Reconstructive Surgery, University of Rostock, Rostock, Germany
| | - Henning Madry
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University Medical Center, Homburg, Germany
| | - Robert Rotter
- Department of Trauma and Reconstructive Surgery, University of Rostock, Rostock, Germany
| | - Anja Weimer
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University Medical Center, Homburg, Germany
| | - Johannes Graff
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - Magali Cucchiarini
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University Medical Center, Homburg, Germany
| | - Thomas Mittlmeier
- Department of Trauma and Reconstructive Surgery, University of Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| |
Collapse
|
38
|
Speck K, Schneider BSP, Deashinta N. A Rodent Model to Advance the Field Treatment of Crush Muscle Injury During Earthquakes and Other Natural Disasters. Biol Res Nurs 2011; 15:17-25. [DOI: 10.1177/1099800411414698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Approximately 170 earthquakes of 6.0 or higher magnitude occur annually worldwide. Victims often suffer crush muscle injuries involving impaired blood flow to the affected muscle and damage to the muscle fiber membrane. Current rescue efforts are directed toward preventing acute kidney injury (AKI), which develops upon extrication and muscle reperfusion. But field-usable, muscle-specific interventions may promote muscle regeneration and prevent or minimize the pathologic changes of reperfusion. Although current rodent crush injury models involve reperfusion upon removal of the crush stimulus, an analysis of their methodological aspects is needed to ensure adequate simulation of the earthquake-related crush injury. The objectives of this systematic review are to (a) describe rodent crush muscle injury models, (b) discuss the benefits and limitations of these models, and (c) offer a recommendation for animal models that would increase our understanding of muscle recovery processes after an earthquake-induced crush muscle injury. The most commonly used rodent model uses a clamping or pressing crush stimulus directly applied to murine hindlimb muscle. This model has increased our understanding of muscle regeneration but its open approach does not adequately represent the earthquake-related crush injury. The model we recommend for developing field-usable, muscle-specific interventions is a closed approach that involves a nonclamping crush stimulus. Findings from studies employing this recommended model may have greater relevance for developing interventions that lessen the earthquake’s devastating impact on individual and community health and quality of life, especially in developing countries.
Collapse
Affiliation(s)
- Kirsten Speck
- School of Nursing, University of Nevada, Las Vegas, NV, USA
| | | | | |
Collapse
|
39
|
Gehrig SM, Lynch GS. Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opin Emerg Drugs 2011; 16:163-82. [DOI: 10.1517/14728214.2010.524743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
41
|
Köllensperger M, Krismer F, Pallua A, Stefanova N, Poewe W, Wenning GK. Erythropoietin is neuroprotective in a transgenic mouse model of multiple system atrophy. Mov Disord 2011; 26:507-515. [PMID: 21462262 DOI: 10.1002/mds.23474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 06/16/2010] [Accepted: 09/13/2010] [Indexed: 11/05/2022] Open
Abstract
Multiple system atrophy is a rapidly progressive neurodegenerative disorder with a markedly reduced life expectancy. Failure of symptomatic treatment raises an urgent need for disease-modifying strategies. We have investigated the neuroprotective potential of erythropoietin in (proteolipid protein)-α-synuclein transgenic mice exposed to 3-nitropropionic acid featuring multiple system atrophy-like pathology including oligodendroglial α-synuclein inclusions and selective neuronal degeneration. Mice were treated with erythropoietin starting before (early erythropoietin) and after (late erythropoietin) intoxication with 3-nitropropionic acid. Nonintoxicated animals receiving erythropoietin and intoxicated animals treated with saline served as control groups. Behavioral tests included pole test, open field activity, and motor behavior scale. Immunohistochemistry for tyrosine hydroxylase and dopamine and cyclic adenosine monophosphate-regulated phosphoprotein (DARPP-32) was analyzed stereologically. Animals receiving erythropoietin before and after 3-nitropropionic acid intoxication scored significantly lower on the motor behavior scale and they performed better in the pole test than controls with no significant difference between early and late erythropoietin administration. Similarly, rearing scores were worse in 3-nitropropionic acid-treated animals with no difference between the erythropoietin subgroups. Immunohistochemistry revealed significant attenuation of 3-nitropropionic acid-induced loss of tyrosine hydroxylase and DARPP-32 positive neurons in substantia nigra pars compacta and striatum, respectively, in both erythropoietin-treated groups without significant group difference in the substantia nigra. However, at striatal level, a significant difference between early and late erythropoietin administration was observed. In the combined (proteolipid protein)-α-synuclein 3-nitropropionic acid multiple system atrophy mouse model, erythropoietin appears to rescue dopaminergic and striatal gabaergic projection neurons. This effect is associated with improved motor function. Further studies are warranted to develop erythropoietin as a potential interventional therapy in multiple system atrophy.
Collapse
Affiliation(s)
- Martin Köllensperger
- Division of Clinical Neurobiology, Department of Neurology, Medical University, Innsbruck, Austria
| | - Florian Krismer
- Division of Clinical Neurobiology, Department of Neurology, Medical University, Innsbruck, Austria
| | - Anton Pallua
- Division of Clinical Neurobiology, Department of Neurology, Medical University, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Clinical Neurobiology, Department of Neurology, Medical University, Innsbruck, Austria
| | - Werner Poewe
- Division of Clinical Neurobiology, Department of Neurology, Medical University, Innsbruck, Austria
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University, Innsbruck, Austria
| |
Collapse
|
42
|
Muscle and Ligament Regeneration. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Nikolopoulos DD, Spiliopoulou C, Theocharis SE. Doping and musculoskeletal system: short-term and long-lasting effects of doping agents. Fundam Clin Pharmacol 2010; 25:535-63. [PMID: 21039821 DOI: 10.1111/j.1472-8206.2010.00881.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Doping is a problem that has plagued the world of competition and sports for ages. Even before the dawn of Olympic history in ancient Greece, competitors have looked for artificial means to improve athletic performance. Since ancient times, athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A Prohibited List of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β₂-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. Apart from the unethical aspect of doping, as it abrogates fair-play's principle, it is extremely important to consider the hazards it presents to the health and well-being of athletes. The referred negative effects for the athlete's health have to do, on the one hand, by the high doses of the performance-enhancing agents and on the other hand, by the relentless, superhuman strict training that the elite or amateur athletes put their muscles, bones, and joints. The purpose of this article is to highlight the early and the long-lasting consequences of the doping abuse on bone and muscle metabolism.
Collapse
Affiliation(s)
- Dimitrios D Nikolopoulos
- Department of Forensic Medicine and Toxicology University of Athens, Medical School, Athens, Greece
| | | | | |
Collapse
|
44
|
Stratos I, Graff J, Rotter R, Mittlmeier T, Vollmar B. Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair. J Orthop Res 2010; 28:950-7. [PMID: 20069568 DOI: 10.1002/jor.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insufficiency of skeletal muscle regeneration is often accompanied with functional deficiencies. The goal of our study was to assess the restoration of peripheral muscle upon injury of different severity. Blunt crush injury of the soleus muscle in rats was induced by a clamp and stepwise amplified in severity by rising the locking level of the clamp, resulting in three different groups (1x lock; 2x lock; 3x lock; n = 30 animals per group). After assessment of the fast twitch and tetanic contraction capacity at days 1, 4, 7, 14, and 42 postinjury sampling of muscle tissue served for analysis of cell proliferation, including satellite cells, apoptosis, and leukocyte infiltration. Contraction force analysis demonstrated significantly higher values of relative muscle strength in the 1x lock group compared to the two other groups over 42 days. Calculation of the twitch-to-tetanic force ratio revealed significantly higher mean values at days 1, 7, and 14 in the animals of group 2x lock and 3x lock, indicating a transformation toward a fast-twitching muscular phenotype. Moreover, cell proliferation during the first 4 days was found dependent on the severity of muscle injury in that the higher the severity the higher the proliferation. At the same time, cell apoptosis was found increased, and at day 1 the local leukocyte infiltration was significantly higher in the 3x lock compared to the 1x lock group. These data indicate that severity of injury correlates with local repair responses, which, however, are not necessarily sufficient to fully restore muscle function.
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
45
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
46
|
Joshi D, Tsui J, Ho TK, Selvakumar S, Abraham DJ, Baker DM. Review of the Role of Erythropoietin in Critical Leg Ischemia. Angiology 2010; 61:541-50. [DOI: 10.1177/0003319709358697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a need to develop alternative treatment strategies for the 30% of patients with critical leg ischemia (CLI) for whom conventional modes of revascularization fail. The efficacy erythropoietin (EPO) in this regard has been verified in preclinical models. Erythropoietin receptors are expressed in the human skeletal muscle and possibly, upregulated in CLI. Furthermore, EPO induces angiogenesis and prevents apoptosis in the ischemic skeletal muscle. The use of EPO in conjunction with autologous bone marrow cells or gene-induced angiogenesis with vascular endothelial growth factor may be more effective in inducing angiogenesis and protecting the critically ischemic leg than EPO alone. The recently synthesized nonhemopoietic derivatives of EPO (eg, asialo erythropoietin and carbamylated erythropoietin) allow higher doses to be administered to achieve tissue protective effects, without an unwanted increase in hematocrit. This may allow translation of preclinical studies into clinical trials.
Collapse
Affiliation(s)
- Dhiraj Joshi
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - Janice Tsui
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - Teik K. Ho
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - Sadasivam Selvakumar
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom
| | - David J. Abraham
- Centre for Rheumatology; University College London (Royal Free campus), London, United Kingdom
| | - Daryll M. Baker
- Vascular Unit, Department of Surgery; University College London (Royal Free campus), London, United Kingdom,
| |
Collapse
|
47
|
Epo is relevant neither for microvascular formation nor for the new formation and maintenance of mice skeletal muscle fibres in both normoxia and hypoxia. J Biomed Biotechnol 2010; 2010:137817. [PMID: 20414335 PMCID: PMC2855079 DOI: 10.1155/2010/137817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/28/2010] [Accepted: 02/09/2010] [Indexed: 11/21/2022] Open
Abstract
Erythropoietin (Epo) and vascular growth factor (VEGF) are known to be involved in the regulation of cellular activity when oxygen transport is reduced as in anaemia or hypoxic conditions. Because it has been suggested that Epo could play a role in skeletal muscle development, regeneration, and angiogenesis, we aimed to assess Epo deficiency in both normoxia and hypoxia by using an Epo-deficient transgenic mouse model (Epo-TAgh). Histoimmunology, ELISA and real time RT-PCR did not show any muscle fiber atrophy or accumulation of active HIF-1α but an improvement of microvessel network and an upregulation of VEGFR2 mRNA in Epo-deficient gastrocnemius compared with Wild-Type one. In hypoxia, both models exhibit an upregulation of VEGF120 and VEGFR2 mRNA but no accumulation of Epo protein. EpoR mRNA is not up-regulated in both Epo-deficient and hypoxic gastrocnemius. These results suggest that muscle deconditioning observed in patients suffering from renal failure is not due to Epo deficiency.
Collapse
|
48
|
Launay T, Hagström L, Lottin-Divoux S, Marchant D, Quidu P, Favret F, Duvallet A, Darribère T, Richalet JP, Beaudry M. Blunting effect of hypoxia on the proliferation and differentiation of human primary and rat L6 myoblasts is not counteracted by Epo. Cell Prolif 2010; 43:1-8. [PMID: 20070732 DOI: 10.1111/j.1365-2184.2009.00648.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate whether hypoxia and/or erythropoietin would be able to modulate proliferation/differentiation processes of rat and human myoblasts. MATERIALS AND METHODS Rat L6 and primary human myoblasts were grown in 21% or 1% O(2) in the presence or absence of recombinant human erythropoietin (RhEpo). Presence of erythropoietin receptors (EpoR) was assayed using RT-PCR and Western blotting techniques. Cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. Cell differentiation was analysed by determining myogenic fusion index using antibodies against the myosin heavy chain. Expression of myogenin and myosin heavy chain (MHC) proteins were evaluated using the Western blotting technique. RESULTS After 96 h culture in growth medium for 2.5 and 9 h, doubling time of L6 and human primary myoblasts respectively, had increased in 1% O(2) conditions (P < 0.01). Kinetics of culture showed alteration in proliferation at 72 h in L6 myoblast cultures and at 4 days in human primary myoblasts. The myogenic fusion index had reduced by 30% in L6 myoblasts and by 20% in human myoblasts (P < 0.01). Expression of myogenin and MHC had reduced by around 50%. Despite presence of EpoR mRNA and protein, RhEpo did not counteract the effects of hypoxia either in L6 cells or in human myoblasts. CONCLUSIONS The data show that exposure to hypoxic conditions (1% O(2)) of rat and human myoblasts altered their proliferation and differentiation processes. They also show that Epo is not an efficient growth factor to counteract this deleterious effect.
Collapse
Affiliation(s)
- T Launay
- Laboratoire Réponses cellulaires et fonctionnelles à l'hypoxie, Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Skeletal muscle intrinsic functional properties are preserved in a model of erythropoietin deficient mice exposed to hypoxia. Pflugers Arch 2010; 459:713-23. [PMID: 20119684 DOI: 10.1007/s00424-009-0775-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022]
Abstract
Erythropoietin (Epo)-induced polycythemia is the main factor of adaptation to hypoxia. In this study, we analysed the effects of Epo deficiency on intrinsic functional properties of slow and fast twitch muscles in a model of erythropoietin deficient mice (Epo-TAg(h)) exposed to hypoxia. We hypothesised that Epo deficiency would be deleterious for skeletal muscle structure and phenotype, which could change its functional properties and alters the adaptive response to ambient hypoxia. Wild-type (WT) and Epo-TAg(h) mice were left in hypobaric chamber at 420 mm Hg pressure for 14 days. Soleus (SOL) and extensor digitorum longus (EDL) were analysed in vitro by mechanical measurements, immunohistological and biochemical analyses. The results were compared to those obtained in corresponding muscles of age-matched normoxic groups. Our data did not show any difference between the groups whatever the Epo deficiency and/or hypoxic conditions for twitch force, tetanic force, fatigue, typology and myosin heavy chain composition. Normoxic Epo-TAg(h) mice exhibit improved capillary-to-fibre ratio compared to WT mice in both SOL and EDL whereas no angiogenic effects of hypoxia or combined Epo-deficiency/hypoxia were observed. These results suggest that skeletal muscles possess a great capacity of adaptation to Epo deficiency. Then Epo deficiency is not a sufficient factor to modify intrinsic functional properties of skeletal muscles.
Collapse
|
50
|
Erythropoietin-induced upregulation of endothelial nitric oxide synthase but not vascular endothelial growth factor prevents musculocutaneous tissue from ischemic damage. J Transl Med 2010; 90:40-51. [PMID: 19901910 DOI: 10.1038/labinvest.2009.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent findings have attested the protective effects of erythropoietin (EPO) in ischemically challenged organs. We therefore aimed at elaborating the underlying mechanism of EPO-mediated protection in musculocutaneous tissue undergoing persistent ischemia after acute injury. Mice were assigned to five experimental groups equipped with a randomly perfused flap fixed in a dorsal skinfold chamber, whereas the sixth group did not undergo flap preparation: EPO, L-Name, EPO and L-Name, EPO and bevacizumab, untreated flap, and nonischemic chamber (control). Intravital fluorescence microscopic analysis of microhemodynamics, apoptotic cell death, macromolecular leakage and angiogenesis was carried out over a 10-day period. Further, immunohistochemical analysis was used to study the protein expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). Increased expression of eNOS in EPO-administered mice correlated with significant arteriolar dilation and thus increased blood flow resulting in a maintained functional capillary density (FCD) at day 10. In addition, EPO induced a VEGF upregulation, which was associated with newly formed capillaries. In addition, EPO was able to reduce ischemia-induced apoptotic cell death and finally to significantly reduce flap necrosis. In contrast, coadministration of L-Name abolished EPO-mediated tissue protection by abrogating the dilatory effect resulting in reduced FCD and tissue survival, without counteracting angiogenesis and apoptotic cell death, whereas additional administration of bevacizumab did not influence the beneficial effect of EPO on flap survival despite abrogating angiogenesis. Macromolecular leakage was found to be increased in all treatment groups. This study shows that EPO administration prevents musculocutaneous tissue from ischemic necrosis as a consequence of an eNOS-dependent arteriolar hyperperfusion maintaining capillary perfusion, thus representing a promising approach to pharmacologically protect ischemically challenged tissue.
Collapse
|