1
|
Sulaiman MY, Wicaksono S, Dirgantara T, Mahyuddin AI, Sadputranto SA, Oli'i EM. Influence of bite force and implant elastic modulus on mandibular reconstruction with particulate-cancellous bone marrow grafts healing: An in silico investigation. J Mech Behav Biomed Mater 2024; 157:106654. [PMID: 39042972 DOI: 10.1016/j.jmbbm.2024.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
This study aims to investigate tissue differentiation during mandibular reconstruction with particulate cancellous bone marrow (PCBM) graft healing using biphasic mechanoregulation theory under four bite force magnitudes and four implant elastic moduli to examine its implications on healing rate, implant stress distribution, new bone elastic modulus, mandible equivalent stiffness, and load-sharing progression. The finite element model of a half Canis lupus mandible, symmetrical about the midsagittal plane, with two marginal defects filled by PCBM graft and stabilized by porous implants, was simulated for 12 weeks. Eight different scenarios, which consist of four bite force magnitudes and four implant elastic moduli, were tested. It was found that the tissue differentiation pattern corroborates the experimental findings, where the new bone propagates from the superior side and the buccal and lingual sides in contact with the native bone, starting from the outer regions and progressing inward. Faster healing and quicker development of bone graft elastic modulus and mandible equivalent stiffness were observed in the variants with lower bite force magnitude and or larger implant elastic modulus. A load-sharing condition was found as the healing progressed, with M3 (Ti6Al4V) being better than M4 (stainless steel), indicating the higher stress shielding potentials of M4 in the long term. This study has implications for a better understanding of mandibular reconstruction mechanobiology and demonstrated a novel in silico framework that can be used for post-operative planning, failure prevention, and implant design in a better way.
Collapse
Affiliation(s)
- Muhammad Yusril Sulaiman
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Satrio Wicaksono
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia.
| | - Tatacipta Dirgantara
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Andi Isra Mahyuddin
- Dynamics and Control Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Seto Adiantoro Sadputranto
- Oral and Maxillofacial Medical Staff Group, Hasan Sadikin General Hospital, Jalan Pasteur 38, Bandung, 40161, West Java, Indonesia; Oral and Maxillofacial Department, Faculty of Dentistry, Universitas Padjajaran, Jalan Sekeloa Selatan 1, Bandung, 40132, West Java, Indonesia
| | - Eka Marwansyah Oli'i
- Oral and Maxillofacial Medical Staff Group, Hasan Sadikin General Hospital, Jalan Pasteur 38, Bandung, 40161, West Java, Indonesia; Oral and Maxillofacial Department, Faculty of Dentistry, Universitas Padjajaran, Jalan Sekeloa Selatan 1, Bandung, 40132, West Java, Indonesia; Mechanical Engineering Graduate Program, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| |
Collapse
|
2
|
Nakamichi R, Asahara H. The role of mechanotransduction in tendon. J Bone Miner Res 2024; 39:814-820. [PMID: 38795012 PMCID: PMC11301520 DOI: 10.1093/jbmr/zjae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
Tendons play an important role in the maintenance of motor function by connecting muscles and bones and transmitting forces. Particularly, the role of mechanical stress has primarily focused on the key mechanism of tendon homeostasis, with much research on this topic. With the recent development of molecular biological techniques, the mechanisms of mechanical stress sensing and signal transduction have been gradually elucidated with the identification of mechanosensor in tendon cells and the master regulator in tendon development. This review provides a comprehensive overview of the structure and function of tendon tissue, including the role for physical performance and the detailed mechanism of mechanotransduction in its regulation. An important lesson is that the role of mechanotransduction in tendon tissue is only partially clarified, indicating the complexity of the mechanisms of motor function and fueling increasing interest in uncovering these mechanisms.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Orthopaedic Surgery, Okayama University hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
3
|
Capobianco CA, Hankenson KD, Knights AJ. Temporal dynamics of immune-stromal cell interactions in fracture healing. Front Immunol 2024; 15:1352819. [PMID: 38455063 PMCID: PMC10917940 DOI: 10.3389/fimmu.2024.1352819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Bone fracture repair is a complex, multi-step process that involves communication between immune and stromal cells to coordinate the repair and regeneration of damaged tissue. In the US, 10% of all bone fractures do not heal properly without intervention, resulting in non-union. Complications from non-union fractures are physically and financially debilitating. We now appreciate the important role that immune cells play in tissue repair, and the necessity of the inflammatory response in initiating healing after skeletal trauma. The temporal dynamics of immune and stromal cell populations have been well characterized across the stages of fracture healing. Recent studies have begun to untangle the intricate mechanisms driving the immune response during normal or atypical, delayed healing. Various in vivo models of fracture healing, including genetic knockouts, as well as in vitro models of the fracture callus, have been implemented to enable experimental manipulation of the heterogeneous cellular environment. The goals of this review are to (1): summarize our current understanding of immune cell involvement in fracture healing (2); describe state-of-the art approaches to study inflammatory cells in fracture healing, including computational and in vitro models; and (3) identify gaps in our knowledge concerning immune-stromal crosstalk during bone healing.
Collapse
Affiliation(s)
- Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Knights
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Zhang C, Wen P, Xu Y, Fu Z, Ren G. Exploring Advanced Functionalities of Carbon Fiber-Graded PEEK Composites as Bone Fixation Plates Using Finite Element Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:414. [PMID: 38255583 PMCID: PMC10817601 DOI: 10.3390/ma17020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
This study aims to address the challenges associated with conventional metallic bone fixation plates in biomechanical applications, such as stainless steel and titanium alloys, including stress shielding, allergic reactions, corrosion resistance, and interference with medical imaging. The use of materials with a low elastic modulus is regarded as an effective approach to overcome these problems. In this study, the impact of different types of chopped carbon fiber-reinforced polyether ether ketone (CCF/PEEK) functionally graded material (FGM) bone plates on stress shielding under static and instantaneous dynamic loading was explored using finite element analysis (FEA). The FGM bone plate models were established using ABAQUS and the user's subroutine USDFLD and VUSDFLD, and each model was established with an equivalent overall elastic modulus and distinctive distributions. The results revealed that all FGM bone plates exhibited lower stress shielding effects compared to metal bone plates. Particularly, the FGM plate with an elastic modulus gradually increased from the centre to both sides and provided maximum stress stimulation and the most uniform stress distribution within the fractured area. These findings offer crucial insights for designing implantable medical devices that possess enhanced mechanical adaptability.
Collapse
Affiliation(s)
- Chenggong Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK;
| | - Pihua Wen
- Institute of Aeronautics and Astronautics, School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Yigeng Xu
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK;
| | - Zengxiang Fu
- Faculty of Life Science, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Guogang Ren
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
5
|
Rao J, Zhang J, Ye Z, Zhang L, Xu J. What is the stable internal fixation for the unstable and osteoporotic supracondylar femoral fractures: a finite element analysis. J Orthop Surg Res 2023; 18:759. [PMID: 37805559 PMCID: PMC10559610 DOI: 10.1186/s13018-023-04256-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Osteoporotic supracondylar femoral fractures (OSFF) have historically been managed by the lateral anatomical locking plate with reasonable success. However, for some kinds of unstable and osteoporotic supracondylar femoral fractures (UOSFF), especially with bone defects, unilateral locking plate (ULLP) fixation failed or resulted in implant breakage. This paper is going to explore what is the stable internal fixation for UOSFF by adding the bilateral locking plate (BLLP) fixation. METHODS OSFF models were divided into two groups according to the fracture line type, which would be further subdivided according to their angle of fracture line, presence of bone defect, location, and degree of bone defect. Thereafter, kinds of locking plate fixation were constructed. A 2010-N load was applied to the femoral head, and a 1086-N load was applied to the greater trochanter. In this condition, the maximum von Mises stress distribution of models were investigated. RESULTS Firstly, it was obviously found that the stress concentration in the BLLP group was more dispersed than that in the ULLP group. Secondly, according to the fracture line analysis, the stress value of fracture line type in "\" model group was higher than that of "/" model group. Moreover, with the increase in fracture line angle, the stress value of the model increased. Thirdly, from the bone defect analysis, the stress value of the medial bone defect (MBD) model group was higher than that of the lateral bone defect (LBD) model group. And as the degree of bone defect increased, the stress value increased gradually in the model group. CONCLUSION In the following four cases, lateral unilateral locking plate fixation cannot effectively stabilize the fracture end, and double locking plate internal fixation is a necessary choice. First, when the angle of the fracture line is large (30, 45). Second, when the fracture line type is "/." Third, when the bone defect is large. Fourth, when the bone defect is medial.
Collapse
Affiliation(s)
- Jianwei Rao
- Jiangshan People's Hospital, Jiangshan, 324100, China
| | - Junchao Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, People's Hospital, Quzhou, 324000, China
| | - Zhou Ye
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, People's Hospital, Quzhou, 324000, China
| | - Liguang Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, People's Hospital, Quzhou, 324000, China
| | - Jiangbao Xu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
6
|
Yue M, Liu Y, Zhang P, Li Z, Zhou Y. Integrative Analysis Reveals the Diverse Effects of 3D Stiffness upon Stem Cell Fate. Int J Mol Sci 2023; 24:9311. [PMID: 37298263 PMCID: PMC10253631 DOI: 10.3390/ijms24119311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The origin of life and native tissue development are dependent on the heterogeneity of pluripotent stem cells. Bone marrow mesenchymal stem cells (BMMSCs) are located in a complicated niche with variable matrix stiffnesses, resulting in divergent stem cell fates. However, how stiffness drives stem cell fate remains unknown. For this study, we performed whole-gene transcriptomics and precise untargeted metabolomics sequencing to elucidate the complex interaction network of stem cell transcriptional and metabolic signals in extracellular matrices (ECMs) with different stiffnesses, and we propose a potential mechanism involved in stem cell fate decision. In a stiff (39~45 kPa) ECM, biosynthesis of aminoacyl-tRNA was up-regulated, and increased osteogenesis was also observed. In a soft (7~10 kPa) ECM, biosynthesis of unsaturated fatty acids and deposition of glycosaminoglycans were increased, accompanied by enhanced adipogenic/chondrogenic differentiation of BMMSCs. In addition, a panel of genes responding to the stiffness of the ECM were validated in vitro, mapping out the key signaling network that regulates stem cells' fate decisions. This finding of "stiffness-dependent manipulation of stem cell fate" provides a novel molecular biological basis for development of potential therapeutic targets within tissue engineering, from both a cellular metabolic and a biomechanical perspective.
Collapse
Affiliation(s)
- Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
7
|
Zhou Z, Wang W, Wang J, Wang H, Xia Y, Zhang W, Lai Y, Lin X, Huang Y, Zou X, Stoddart MJ, Li Z, Tian W, Liu S, Wu X, Gao M, Li J, Yang L, Chen D. Function-oriented design: A novel strategy for advanced biomedical materials. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2023; 145:197-209. [DOI: 10.1016/j.jmst.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
8
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
9
|
Milan JL, Manifacier I, Rousseau N, Pithioux M. In silico modelling of long bone healing involving osteoconduction and mechanical stimulation. Comput Methods Biomech Biomed Engin 2023; 26:174-186. [PMID: 35312400 DOI: 10.1080/10255842.2022.2052051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A lot of evidence has shown the importance of stimulating cell mechanically during bone repair. In this study, we modeled the challenging fracture healing of a large bone defect in tibial diaphysis. To fill the fracture gap, we considered the implantation of a porous osteoconductive biomaterial made of poly-lactic acid wrapped by a hydrogel membrane mimicking osteogenic properties of the periosteum. We identified the optimal loading case that best promotes the formation and differentiation into bone tissue. Our results support the idea that a patient's rehabilitation program should be adapted to reproduce optimal mechanical stimulations.
Collapse
Affiliation(s)
- Jean-Louis Milan
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France
| | - Ian Manifacier
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France
| | - Nicolas Rousseau
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France.,Selenium Medical, La Rochelle, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Institute of Movement Science (ISM), Sainte Marguerite Hospital, IML, Department of Orthopedics and Traumatology, Marseille, France.,Aix Marseille University, Marseille Public University Hospital System (APHM), French National Center for Scientific Research (CNRS), Anatomic laboratory, Timone, Marseille, France.,Aix Marseille University, Mecabio Platform, French National Center for Scientific Research (CNRS), Marseille, France
| |
Collapse
|
10
|
Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol 2023; 19:78-95. [PMID: 36624263 DOI: 10.1038/s41584-022-00887-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However - despite much progress - a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.
Collapse
Affiliation(s)
- Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Nakamichi R, Ma S, Nonoyama T, Chiba T, Kurimoto R, Ohzono H, Olmer M, Shukunami C, Fuku N, Wang G, Morrison E, Pitsiladis YP, Ozaki T, D'Lima D, Lotz M, Patapoutian A, Asahara H. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci Transl Med 2022; 14:eabj5557. [PMID: 35648809 DOI: 10.1126/scitranslmed.abj5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1, a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan.,Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Hiroki Ohzono
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry and Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1965, Japan
| | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton BN2 4AT, UK
| | - Errol Morrison
- National Commission on Science and Technology, PCJ Building, 36 Trafalgar Road, Kingston 10, Jamaica
| | - Yannis P Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre of Stress and Age-related Disease, University of Brighton, Brighton BN2 4AT, UK
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Darryl D'Lima
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
12
|
Liu X, Miramini S, Patel M, Liao J, Shidid D, Zhang L. Influence of therapeutic grip exercises induced loading rates in distal radius fracture healing with volar locking plate fixation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106626. [PMID: 35051836 DOI: 10.1016/j.cmpb.2022.106626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Therapeutic exercises could potentially enhance the healing of distal radius fractures (DRFs) treated with volar locking plate (VLP). However, the healing outcomes are highly dependant on the patient-specific fracture geometries (e.g., gap size) and the loading conditions at the fracture site (e.g., loading frequency) resulted from different types of therapeutic exercises. The purpose of this study is to investigate the effects of different loading frequencies induced by therapeutic exercises on the biomechanical microenvironment of the fracture site and the transport of cells and growth factors within the fracture callus, ultimately the healing outcomes. This is achieved through numerical modelling and mechanical testing. METHODS Five radius sawbones specimens (Pacific Research Laboratories, Vashon, USA) fixed with VLP (VRP2.0+, Austofix) were mechanically tested using dynamic test instrument (INSTRON E3000, Norwood, MA). The loading protocol used in mechanical testing involved a series of cyclic axial compression tests representing hand and finger therapeutic exercises. The relationship between the dynamic loading rate (i.e., loading frequency) and dynamic stiffness of the construct was established and used as inputs to a developed numerical model for studying the dynamic loading induced cells and growth factors in fracture site and biomechanical stimuli required for healing. RESULTS There is a strong positive linear relationship between the loading rate and axial stiffness of the construct fixed with VLP. The loading rates induced by the moderate frequencies (i.e., 1-2 Hz) could promote endochondral ossification, whereas relatively high loading frequencies (i.e., over 3 Hz) may hinder the healing outcomes or lead to non-union. In addition, a dynamic loading frequency of 2 Hz in combination of a fracture gap size of 3 mm could produce a better healing outcome by enhancing the transport of cells and growth factors at the fracture site in comparison to free diffusion (i.e. without loading), and thereby produces a biomechanical microenvironment which is favourable for healing. CONCLUSION The experimentally validated numerical model presented in this study could potentially contribute to the design of effective patient-specific therapeutic exercises for better healing outcomes. Importantly, the model results demonstrate that therapeutic grip exercises induced dynamic loading could produce a better biomechanical microenvironment for healing without compromising the mechanical stability of the overall volar locking plate fixation construct.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening and Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacture, RMIT University, Melbourne, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
13
|
Abstract
Fracture healing is a complex, multistep process that is highly sensitive to mechanical signaling. To optimize repair, surgeons prescribe immediate weight-bearing as-tolerated within 24 hours after surgical fixation; however, this recommendation is based on anecdotal evidence and assessment of bulk healing outcomes (e.g., callus size, bone volume, etc.). Given challenges in accurately characterizing the mechanical environment and the ever-changing properties of the regenerate, the principles governing mechanical regulation of repair, including their cell and molecular basis, are not yet well defined. However, the use of mechanobiological rodent models, and their relatively large genetic toolbox, combined with recent advances in imaging approaches and single-cell analyses is improving our understanding of the bone microenvironment in response to loading. This review describes the identification and characterization of distinct cell populations involved in bone healing and highlights the most recent findings on mechanical regulation of bone homeostasis and repair with an emphasis on osteo-angio coupling. A discussion on aging and its impact on bone mechanoresponsiveness emphasizes the need for novel mechanotherapeutics that can re-sensitize skeletal stem and progenitor cells to physical rehabilitation protocols.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA
| | - Alesha B Castillo
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; Department of Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA.
| |
Collapse
|
14
|
Dixon DT, Gomillion CT. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater 2021; 13:1. [PMID: 35076518 PMCID: PMC8788550 DOI: 10.3390/jfb13010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Bone tissue engineering strategies attempt to regenerate bone tissue lost due to injury or disease. Three-dimensional (3D) scaffolds maintain structural integrity and provide support, while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. Through this, scaffolds that show great osteoinductive abilities as well as desirable mechanical properties have been studied. Recently, scaffolding for engineered bone-like tissues have evolved with the use of conductive materials for increased scaffold bioactivity. These materials make use of several characteristics that have been shown to be useful in tissue engineering applications and combine them in the hope of improved cellular responses through stimulation (i.e., mechanical or electrical). With the addition of conductive materials, these bioactive synthetic bone substitutes could result in improved regeneration outcomes by reducing current factors limiting the effectiveness of existing scaffolding materials. This review seeks to overview the challenges associated with the current state of bone tissue engineering, the need to produce new grafting substitutes, and the promising future that conductive materials present towards alleviating the issues associated with bone repair and regeneration.
Collapse
Affiliation(s)
- Damion T. Dixon
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA;
| | - Cheryl T. Gomillion
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Mori Y, Fujisawa H, Kamimura M, Kogure A, Tanaka H, Mori N, Masahashi N, Aizawa T. Acceleration of Fracture Healing in Mouse Tibiae Using Intramedullary Nails Composed of β-Type TiNbSn Alloy with Low Young's Modulus. TOHOKU J EXP MED 2021; 255:135-142. [PMID: 34657901 DOI: 10.1620/tjem.255.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The optimal Young's modulus of material of orthopedic devices for fracture treatment is still unknown. The purpose of present study was to evaluate the impacts of intramedullary nails composed of a titanium alloy with low Young's modulus, on accelerating fracture healing compared with stainless steel with high Young's modulus. A β-type TiNbSn alloy with a low Young's modulus close to that of human cortical bone was developed for clinical application. TiNbSn alloy with a Young's modulus of 45 GPa and stainless steel with a Young's modulus of 205 GPa were compared, with respect to the impacts on fracture healing. Fracture and fixation using intramedullary nail were performed on the right tibiae of C57BL/6 mice. The assessment of bone healing was performed via micro-computed tomography, histomorphometry, and quantitative reverse transcription polymerase chain reaction. In micro-computed tomography, larger bone volumes were observed in the fracture callus treated with TiNbSn alloy in comparison with those treated with stainless steel. Histological assessments confirmed accelerated cartilage absorption and new bone formation in the TiNbSn alloy group compared with the stainless steel group. The expression of Col1a1, Runx2, Dkk1, and Acp5 was higher in the TiNbSn alloy group, while that of Col2a1 and Col10a1 was lower in the late phase. The present study demonstrated that the fixation by intramedullary nails with TiNbSn alloy offered an accelerated fracture healing with promotion of bone formation via increased Runx2 expression. TiNbSn alloy might be a promising material for fracture treatment devices.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hirokazu Fujisawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine
| | | | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
16
|
García-Aznar JM, Nasello G, Hervas-Raluy S, Pérez MÁ, Gómez-Benito MJ. Multiscale modeling of bone tissue mechanobiology. Bone 2021; 151:116032. [PMID: 34118446 DOI: 10.1016/j.bone.2021.116032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/25/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Mechanical environment has a crucial role in our organism at the different levels, ranging from cells to tissues and our own organs. This regulatory role is especially relevant for bones, given their importance as load-transmitting elements that allow the movement of our body as well as the protection of vital organs from load impacts. Therefore bone, as living tissue, is continuously adapting its properties, shape and repairing itself, being the mechanical loads one of the main regulatory stimuli that modulate this adaptive behavior. Here we review some key results of bone mechanobiology from computational models, describing the effect that changes associated to the mechanical environment induce in bone response, implant design and scaffold-driven bone regeneration.
Collapse
Affiliation(s)
- José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain.
| | - Gabriele Nasello
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
17
|
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Rev Dis Primers 2021; 7:57. [PMID: 34354083 DOI: 10.1038/s41572-021-00289-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
The human skeleton has remarkable regenerative properties, being one of the few structures in the body that can heal by recreating its normal cellular composition, orientation and mechanical strength. When the healing process of a fractured bone fails owing to inadequate immobilization, failed surgical intervention, insufficient biological response or infection, the outcome after a prolonged period of no healing is defined as non-union. Non-union represents a chronic medical condition not only affecting function but also potentially impacting the individual's psychosocial and economic well-being. This Primer provides the reader with an in-depth understanding of our contemporary knowledge regarding the important features to be considered when faced with non-union. The normal mechanisms involved in bone healing and the factors that disrupt the normal signalling mechanisms are addressed. Epidemiological considerations and advances in the diagnosis and surgical therapy of non-union are highlighted and the need for greater efforts in basic, translational and clinical research are identified.
Collapse
Affiliation(s)
- Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany. .,Julius Wolff Institute and BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Ulm, Baden Württemberg, Germany
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, the University of Hong Kong, Hong Kong, Hong Kong
| | - Lisa A Taitsman
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - R Malcolm Smith
- Orthopedic trauma service, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rodrigo Pesántez
- Departamento de Ortopedia Y Traumatología Fundación Santa Fé de Bogotá - Universidad de los Andes, Bogotá, Colombia
| | | | | | - Jesse B Jupiter
- Department of Orthopaedic surgery, Massachussets General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Liu X, Miramini S, Patel M, Liao J, Shidid D, Zhang L. Balance Between Mechanical Stability and Mechano-Biology of Fracture Healing Under Volar Locking Plate. Ann Biomed Eng 2021; 49:2533-2553. [PMID: 34189632 DOI: 10.1007/s10439-021-02815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The application of volar locking plate (VLP) is promising in the treatment of dorsally comminuted and displaced fracture. However, the optimal balance between the mechanical stability of VLP and the mechanobiology at the fracture site is still unclear. The purpose of this study is to develop numerical models in conjunction with experimental studies to identify the favourable mechanical microenvironment for indirect healing, by optimizing VLP configuration and post-operative loadings for different fracture geometries. The simulation results show that the mechanical behaviour of VLP is mainly governed by the axial compression. In addition, the model shows that, under relatively large gap size (i.e., 3-5 mm), the increase of FWL could enhance chondrocyte differentiation while a large BPD could compromise the mechanical stability of VLP. Importantly, bending moment produced by wrist flexion/extension and torsion moment produced from forearm rotation could potentially hinder endochondral ossification at early stage of healing. The developed model could potentially assist orthopaedic surgeons in surgical pre-planning and designing post-operation physical therapy for treatment of distal radius fractures.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, VIC, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacture, RMIT University, Melbourne, VIC, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Paul GR, Wehrle E, Tourolle DC, Kuhn GA, Müller R. Real-time finite element analysis allows homogenization of tissue scale strains and reduces variance in a mouse defect healing model. Sci Rep 2021; 11:13511. [PMID: 34188165 PMCID: PMC8241979 DOI: 10.1038/s41598-021-92961-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical loading allows both investigation into the mechano-regulation of fracture healing as well as interventions to improve fracture-healing outcomes such as delayed healing or non-unions. However, loading is seldom individualised or even targeted to an effective mechanical stimulus level within the bone tissue. In this study, we use micro-finite element analysis to demonstrate the result of using a constant loading assumption for all mouse femurs in a given group. We then contrast this with the application of an adaptive loading approach, denoted real time Finite Element adaptation, in which micro-computed tomography images provide the basis for micro-FE based simulations and the resulting strains are manipulated and targeted to a reference distribution. Using this approach, we demonstrate that individualised femoral loading leads to a better-specified strain distribution and lower variance in tissue mechanical stimulus across all mice, both longitudinally and cross-sectionally, while making sure that no overloading is occurring leading to refracture of the femur bones.
Collapse
Affiliation(s)
- Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Duncan C Tourolle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
20
|
Strategies to Improve Bone Healing: Innovative Surgical Implants Meet Nano-/Micro-Topography of Bone Scaffolds. Biomedicines 2021; 9:biomedicines9070746. [PMID: 34203437 PMCID: PMC8301359 DOI: 10.3390/biomedicines9070746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Successful fracture healing is dependent on an optimal mechanical and biological environment at the fracture site. Disturbances in fracture healing (non-union) or even critical size bone defects, where void volume is larger than the self-healing capacity of bone tissue, are great challenges for orthopedic surgeons. To address these challenges, new surgical implant concepts have been recently developed to optimize mechanical conditions. First, this review article discusses the mechanical environment on bone and fracture healing. In this context, a new implant concept, variable fixation technology, is introduced. This implant has the unique ability to change its mechanical properties from “rigid” to “dynamic” over the time of fracture healing. This leads to increased callus formation, a more homogeneous callus distribution and thus improved fracture healing. Second, recent advances in the nano- and micro-topography of bone scaffolds for guiding osteoinduction will be reviewed, particularly emphasizing the mimicry of natural bone. We summarize that an optimal scaffold should comprise micropores of 50–150 µm diameter allowing vascularization and migration of stem cells as well as nanotopographical osteoinductive cues, preferably pores of 30 nm diameter. Next to osteoinduction, such nano- and micro-topographical cues may also reduce inflammation and possess an antibacterial activity to further promote bone regeneration.
Collapse
|
21
|
Augat P, Hollensteiner M, von Rüden C. The role of mechanical stimulation in the enhancement of bone healing. Injury 2021; 52 Suppl 2:S78-S83. [PMID: 33041020 DOI: 10.1016/j.injury.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 02/02/2023]
Abstract
The biomechanical environment plays a dominant role in the process of fracture repair. Mechanical signals control biological activities at the fracture site, regulate the formation and proliferation of different cell types, and are responsible for the formation of connective tissues and the consolidation of the fractured bone. The mechanobiology at the fracture site can be easily manipulated by the design and configuration of the fracture fixation construct and by the loading of the extremity (weight-bearing prescription). Depending on the choice of fracture fixation, the healing response can be directed towards direct healing or towards indirect healing through callus formation. This manuscript summarizes the evidence from experimental studies and clinical observations on the effect of mechanical manipulation on the healing response. Parameters like fracture gap size, interfragmentary movement, interfragmentary strain, and axial and shear deformation will be explored with respect to their respective effects on fracture repair. Also, the role of externally applied movement on the potential enhancement on the fracture repair process will be explored. Factors like fracture gap size, type and amplitude of the mechanical deformation as well as the loading history and its timing will be discussed.
Collapse
Affiliation(s)
- Peter Augat
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics Paracelsus Medical University Salzburg, Salzburg, Austria.
| | - Marianne Hollensteiner
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christian von Rüden
- Institute for Biomechanics Paracelsus Medical University Salzburg, Salzburg, Austria; Department of Trauma Surgery, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| |
Collapse
|
22
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
23
|
Córdova LA, Reyes M, Soto R, Hernández M, Cortés JE. Dysregulated healing response participates in the pathophysiology of temporomandibular joint ankylosis. J Craniomaxillofac Surg 2021; 49:592-597. [PMID: 33750637 DOI: 10.1016/j.jcms.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022] Open
Abstract
This study aimed to characterize samples from patients diagnosed with TMJ ankylosis, using both clinical and histological data. Both clinical and histological analyses of retrieved tissue samples from patients with primary TMJ ankyloses were performed retrospectively (1980-2012). All patients had been subjected to primary arthroplasty. Our study analyzed connective tissue differentiation, ossification patterns, and bone resorption, using histology and immunohistochemistry. Fifteen case records, with a sex ratio of 4:1 (men:woman) and a median age of 8 years, were collected. Six patient samples reported a previous inflammatory event. Histologically, 15 samples exhibited fibrous tissue. Among these, 13 displayed bone at different stages of maturity (fibrous/bony ankylosis). Eleven samples showed aberrant cartilage, characterized by hypertrophic chondrocyte-like cells at the bone/cartilage interface. Four samples revealed inflammatory infiltrate; in one case, this was organized as a lymphoid follicle. Eleven samples showed bone resorption by attached osteoclasts. Interestingly, non-attached osteoclasts were detected, suggesting locally impaired bone remodeling. An association between the presence of mature/lamellar bone and the presence of osteoclasts was observed (p = 0.03). No association was found between previous history of either trauma or infection and the histological type of ankylosis (p = 0.74). There was no association between the histological presence of inflammation or infection and the type of ankylosis (p = 0.63 and p = 0.87, respectively). Retrieved TMJ ankylosis tissues displayed both aberrant ossification and reduced focal bone resorption, suggesting a dysregulated healing response.
Collapse
Affiliation(s)
- Luis A Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile; Department of Oral and Maxillofacial Surgery, Clínica Las Condes, Estoril 450, Las Condes, Santiago, Chile; Department of Oral and Maxillofacial Surgery, Complejo Hospitalario San José, San José 1196, Independencia, Santiago, Chile; Craniofacial Translational Research Laboratory, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| | - Montserrat Reyes
- Department of Oral Pathology and Medicine, Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| | - Rubén Soto
- Department of Oral Pathology and Medicine, Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| | - Marcela Hernández
- Department of Oral Pathology and Medicine, Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| | - Juan E Cortés
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile; Department of Oral and Maxillofacial Surgery, Complejo Hospitalario San Borja Arriarán, Av. Sta. Rosa 1234, Santiago, Chile.
| |
Collapse
|
24
|
Nakamichi R, Asahara H. Regulation of tendon and ligament differentiation. Bone 2021; 143:115609. [PMID: 32829041 PMCID: PMC7770025 DOI: 10.1016/j.bone.2020.115609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023]
Abstract
Tendons transmit power from muscles to bones, and ligaments maintain the stability of joints, thus producing smooth and flexible movements of articular joints. However, tendons have poor self-healing ability upon damage due to injuries, diseases, or aging. To maintain homeostasis or promote regeneration of the tendon/ligament, it is critical to understand the mechanism responsible for the coordination of tendon/ligament-specific gene expression and subsequent cell differentiation. In this review, we have discussed the core molecular mechanisms involved in the development and homeostasis of tendons and ligaments, with particular focus on transcription factors, signaling, and mechanical stress.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, , La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, , La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
25
|
Malhotra A, Walle M, Paul GR, Kuhn GA, Müller R. Application of subject-specific adaptive mechanical loading for bone healing in a mouse tail vertebral defect. Sci Rep 2021; 11:1861. [PMID: 33479260 PMCID: PMC7820598 DOI: 10.1038/s41598-021-81132-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Methods to repair bone defects arising from trauma, resection, or disease, continue to be sought after. Cyclic mechanical loading is well established to influence bone (re)modelling activity, in which bone formation and resorption are correlated to micro-scale strain. Based on this, the application of mechanical stimulation across a bone defect could improve healing. However, if ignoring the mechanical integrity of defected bone, loading regimes have a high potential to either cause damage or be ineffective. This study explores real-time finite element (rtFE) methods that use three-dimensional structural analyses from micro-computed tomography images to estimate effective peak cyclic loads in a subject-specific and time-dependent manner. It demonstrates the concept in a cyclically loaded mouse caudal vertebral bone defect model. Using rtFE analysis combined with adaptive mechanical loading, mouse bone healing was significantly improved over non-loaded controls, with no incidence of vertebral fractures. Such rtFE-driven adaptive loading regimes demonstrated here could be relevant to clinical bone defect healing scenarios, where mechanical loading can become patient-specific and more efficacious. This is achieved by accounting for initial bone defect conditions and spatio-temporal healing, both being factors that are always unique to the patient.
Collapse
Affiliation(s)
- Angad Malhotra
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Matthias Walle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
26
|
Abstract
The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented and general considerations when setting up an experiment using this model are described.
Collapse
|
27
|
Claes L. Improvement of clinical fracture healing - What can be learned from mechano-biological research? J Biomech 2020; 115:110148. [PMID: 33341439 DOI: 10.1016/j.jbiomech.2020.110148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the mechanical environment affects revascularisation and bone healing. Here the results of experimental and numerical mechano-biological studies on fracture healing are summarized to provide guidance toward clinical treatment of fractures. In experimental studies, isolated muscle crush appeared to only temporarily impair fracture healing, with no significant effect to the final bone healing, whereas a more severe muscle trauma significantly reduced callus formation and biomechanical properties of the healed bones. An intraoperative trauma can furthermore impede vascularization. Surgical removal of the haematoma or periosteum disturbs fracture healing. While reaming for intramedullary nailing reduced blood flow in the bone during the early phase of bone healing, it did not affect the stiffness or strength of the final bone healing. The optimal conditions for rapid vascularization and bone healing result from fracture fixation that minimizes shearing movements in the healing zone while allowing moderate compressive movements. Bone healing is increasingly delayed with increasing fracture gap size and critical-size defects do not heal sufficiently independent of the mechanical environment. The stiffness of fracture fixation systems like nails and external fixators applied in clinical treatments frequently display a too low stiffness, whereas plate systems often cause a too stiff fixation that suppresses bone healing.
Collapse
Affiliation(s)
- Lutz Claes
- Institute for Orthopaedic Research and Biomechanics, Center for Trauma Research, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany.
| |
Collapse
|
28
|
Travascio F, Buller LT, Milne E, Latta L. Mechanical performance and implications on bone healing of different screw configurations for plate fixation of diaphyseal tibia fractures: a computational study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:121-130. [PMID: 32725431 DOI: 10.1007/s00590-020-02749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Diaphyseal tibia fractures may require plate fixation for proper healing to occur. Currently, there is no consensus on the number of screws required for proper fixation or the optimal placement of the screws within the plate. Mechanical stability of the construct is a leading criterion for choosing plate and screws configuration. However, number and location of screws have implications on the mechanical environment at the fracture site and, consequently, on bone healing response: The interfragmentary motion attained with a specific plate and screw construct may elicit mechano-transduction signals influencing cell-type differentiation, which in turn affects how well the fracture heals. This study investigated how different screw configurations affect mechanical performance of a tibia plate fixation construct. Three configurations of an eight-hole plate were considered with the fracture in the center of the plate: eight screws-screws at first, fourth, fifth and eighth hole and screws at first, third, sixth and eighth hole. Constructs' stiffness was compared through biomechanical tests on bone surrogates. A finite element model of tibia diaphyseal fracture was used to conduct a stress analysis on the implanted hardware. Finally, the potential for bone regeneration of each screw configuration was assessed via the computational model through the evaluation of the magnitude of mechano-transduction signals at the bone callus. The results of this study indicate that having screws at fourth and fifth holes represents a preferable configuration since it provides mechanical properties similar to those attained by the stiffest construct (eight screws), and elicits an ideal bone regenerative response.
Collapse
Affiliation(s)
- Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Drive, Mc Arthur Engineering Building #276, Coral Gables, FL, USA. .,Department of Orthopaedic Surgery, University of Miami, Miami, FL, USA. .,Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA.
| | - Leonard T Buller
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Milne
- Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA
| | - Loren Latta
- Department of Orthopaedic Surgery, University of Miami, Miami, FL, USA.,Max Biedermann Institute for Biomechanics at Mount Sinai, Miami Beach, FL, USA
| |
Collapse
|
29
|
McDermott AM, Herberg S, Mason DE, Collins JM, Pearson HB, Dawahare JH, Tang R, Patwa AN, Grinstaff MW, Kelly DJ, Alsberg E, Boerckel JD. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med 2020; 11:11/495/eaav7756. [PMID: 31167930 DOI: 10.1126/scitranslmed.aav7756] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Large bone defects cannot form a callus and exhibit high complication rates even with the best treatment strategies available. Tissue engineering approaches often use scaffolds designed to match the properties of mature bone. However, natural fracture healing is most efficient when it recapitulates development, forming bone via a cartilage intermediate (endochondral ossification). Because mechanical forces are critical for proper endochondral bone development and fracture repair, we hypothesized that recapitulating developmental mechanical forces would be essential for large bone defect regeneration in rats. Here, we engineered mesenchymal condensations that mimic the cellular organization and lineage progression of the early limb bud in response to local transforming growth factor-β1 presentation from incorporated gelatin microspheres. We then controlled mechanical loading in vivo by dynamically tuning fixator compliance. Mechanical loading enhanced mesenchymal condensation-induced endochondral bone formation in vivo, restoring functional bone properties when load initiation was delayed to week 4 after defect formation. Live cell transplantation produced zonal human cartilage and primary spongiosa mimetic of the native growth plate, whereas condensation devitalization before transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose bone morphogenetic protein-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis and up-regulated pericellular matrix deposition and angiogenic gene expression. In vivo, mechanical loading regulated cartilage formation and neovascular invasion, dependent on load timing. This study establishes mechanical cues as key regulators of endochondral bone defect regeneration and provides a paradigm for recapitulating developmental programs for tissue engineering.
Collapse
Affiliation(s)
- Anna M McDermott
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Mechanical Engineering, Trinity Center for Bioengineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Devon E Mason
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph M Collins
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rui Tang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amit N Patwa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Daniel J Kelly
- Department of Mechanical Engineering, Trinity Center for Bioengineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA.,National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
URDEITX PAU, FARZANEH SOLMAZ, MOUSAVI SJAMALEDDIN, DOWEIDAR MOHAMEDH. ROLE OF OXYGEN CONCENTRATION IN THE OSTEOBLASTS BEHAVIOR: A FINITE ELEMENT MODEL. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519419500647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxygen concentration plays a key role in cell survival and viability. Besides, it has important effects on essential cellular biological processes such as cell migration, differentiation, proliferation and apoptosis. Therefore, the prediction of the cellular response to the alterations of the oxygen concentration can help significantly in the advances of cell culture research. Here, we present a 3D computational mechanotactic model to simulate all the previously mentioned cell processes under different oxygen concentrations. With this model, three cases have been studied. Starting with mesenchymal stem cells within an extracellular matrix with mechanical properties suitable for its differentiation into osteoblasts, and under different oxygen conditions to evaluate their behavior under normoxia, hypoxia and anoxia. The obtained results, which are consistent with the experimental observations, indicate that cells tend to migrate toward zones with higher oxygen concentration where they accelerate their differentiation and proliferation. This technique can be employed to control cell migration toward fracture zones to accelerate the healing process. Besides, as expected, to avoid cell apoptosis under conditions of anoxia and to avoid the inhibition of the differentiation and proliferation processes under conditions of hypoxia, the state of normoxia should be maintained throughout the entire cell-culture process.
Collapse
Affiliation(s)
- PAU URDEITX
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - SOLMAZ FARZANEH
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059, Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - S. JAMALEDDIN MOUSAVI
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059, Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - MOHAMED H. DOWEIDAR
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
31
|
Geniposide promotes the proliferation and differentiation of MC3T3-E1 and ATDC5 cells by regulation of microRNA-214. Int Immunopharmacol 2020; 80:106121. [PMID: 31972426 DOI: 10.1016/j.intimp.2019.106121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The research plans to make sure how Geniposide (GEN) functions in osteoblast proliferation and differentiation. The MC3T3-E1 and ATDC5 cells were treated with the GEN, XAV-939 and/or transfected with microRNA (miR)-214 mimic or corresponding control. Cell viability was detected with the CCK-8. The CyclinD1, Runx2, Osx, Ocn, Wnt3a and β-catenin were individually quantified via western blot. The cell cycle was tested by cell cycle analysis assay. The ALP activity was tested by ALP assay. qRT-PCR was used to examine the miR-214 expression level. The cell viability and the expressions of the CyclinD1, Runx2, Osx, Ocn Wnt3a and β-catenin, as well as the ALP activity were individually and significantly promoted by the GEN. Besides, miR-214 was down-regulated by the GEN. The XAV-939 or the miR-214 mimic destroyed the promotional effect of GEN on these elements above. In conclusion, GEN induced the proliferation and differentiation of the MC3T3-E1 and ATDC5 cells by targeting the miR-214 through Wnt/β-catenin activation.
Collapse
|
32
|
Peña Fernández M, Black C, Dawson J, Gibbs D, Kanczler J, Oreffo ROC, Tozzi G. Exploratory Full-Field Strain Analysis of Regenerated Bone Tissue from Osteoinductive Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E168. [PMID: 31906343 PMCID: PMC6981952 DOI: 10.3390/ma13010168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/02/2019] [Accepted: 12/28/2019] [Indexed: 12/25/2022]
Abstract
Biomaterials for bone regeneration are constantly under development, and their application in critical-sized defects represents a promising alternative to bone grafting techniques. However, the ability of all these materials to produce bone mechanically comparable with the native tissue remains unclear. This study aims to explore the full-field strain evolution in newly formed bone tissue produced in vivo by different osteoinductive strategies, including delivery systems for BMP-2 release. In situ high-resolution X-ray micro-computed tomography (microCT) and digital volume correlation (DVC) were used to qualitatively assess the micromechanics of regenerated bone tissue. Local strain in the tissue was evaluated in relation to the different bone morphometry and mineralization for specimens (n = 2 p/treatment) retrieved at a single time point (10 weeks in vivo). Results indicated a variety of load-transfer ability for the different treatments, highlighting the mechanical adaptation of bone structure in the early stages of bone healing. Although exploratory due to the limited sample size, the findings and analysis reported herein suggest how the combination of microCT and DVC can provide enhanced understanding of the micromechanics of newly formed bone produced in vivo, with the potential to inform further development of novel bone regeneration approaches.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK;
| | - Cameron Black
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - Jon Dawson
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - David Gibbs
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
- School of Maritime Science and Engineering, Solent University, Southampton SO14 0YN, UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - Richard O. C. Oreffo
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - Gianluca Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK;
| |
Collapse
|
33
|
Hung CC, Chaya A, Liu K, Verdelis K, Sfeir C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater 2019; 98:246-255. [PMID: 31181262 DOI: 10.1016/j.actbio.2019.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Magnesium (Mg)-based implants have become of interest to both academia and the medical industry. The attraction largely is due to Mg's biodegradability and ability to enhance bone healing and formation. However, the underlying mechanism of how Mg regulates osteogenesis is still unclear. Based on our previous in vivo and molecular signaling work demonstrating the osteogenic effect of Mg, the current study aims to extend this work at the molecular level especially that we also observed and quantified mineral deposits in the bone marrow space in a rabbit ulna fracture model with Mg plates and screws. Histological analysis and quantitative results of micro-CT showed mineralized deposition and a significant increase in bone volume at 8 weeks and 16 weeks post-operative. These in vivo results led us to focus on studying the effect of Mg2+ on human bone marrow stromal cells (hBMSCs). The data presented in this manuscript demonstrate the activation of the canonical Wnt signaling pathway in hBMSCs when treated with 10 mM Mg2+. With additional Mg2+ present, the protein expression of active β-catenin was significantly increased to a level similar to that of the positive control. Immunocytochemistry and the increased expression of LEF1 and Dkk1, downstream target genes that are controlled directly by active β-catenin, demonstrated the protein translocation and the activation of transcription. Taken together, these data suggest that Mg2+ induces an osteogenic effect in the bone marrow space by activating the canonical Wnt signaling pathway, which in turn causes BMSCs to differentiate toward the osteoblast lineage. STATEMENT OF SIGNIFICANCE: Magnesium (Mg)-based alloys are being studied to be used in the field of implantable medical devices due to its natural biodegradability and the potential ability to promote bone regeneration. Despite many in vivo studies that demonstrated an increased new bone growth by implanting Mg-based devices, the underlying mechanism of this effect is still unclear. In order to safely use Mg-based implants on human and better control the osteogenic effect, it is necessary to understand the corresponding cellular response in the targeted area. The present study provides the rationale to study Mg ions on bone marrow stromal cells and shows the activation of canonical Wnt signaling pathway that promotes osteogenesis by in vivo and in vitro approaches.
Collapse
Affiliation(s)
- Chu-Chih Hung
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Chaya
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Liu
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Verdelis
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Endodontics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Sfeir
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Lee C, Richtsmeier JT, Kraft RH. A coupled reaction-diffusion-strain model predicts cranial vault formation in development and disease. Biomech Model Mechanobiol 2019; 18:1197-1211. [PMID: 31006064 PMCID: PMC6625897 DOI: 10.1007/s10237-019-01139-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
How cells utilize instructions provided by genes and integrate mechanical forces generated by tissue growth to produce morphology is a fundamental question of biology. Dermal bones of the vertebrate cranial vault are formed through the direct differentiation of mesenchymal cells on the neural surface into osteoblasts through intramembranous ossification. Here we join a self-organizing Turing mechanism, computational biomechanics, and experimental data to produce a 3D representative model of the growing cerebral surface, cranial vault bones, and sutures. We show how changes in single parameters regulating signaling during osteoblast differentiation and bone formation may explain cranial vault shape variation in craniofacial disorders. A key result is that toggling a parameter in our model results in closure of a cranial vault suture, an event that occurred during evolution of the cranial vault and that occurs in craniofacial disorders. Our approach provides an initial and important step toward integrating biomechanics into the genotype phenotype map to explain the production of variation in head morphology by developmental mechanisms.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Mechanical Engineering, Pennsylvania State University, 341 Leonhard Building, University Park, PA, 16802, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA, 16802, USA
| | - Reuben H Kraft
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 320 Leonhard Building, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Cyberscience, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
35
|
Far Cortical Locking Fixation of Distal Femur Fractures is Dominated by Shear at Clinically Relevant Bridge Spans. J Orthop Trauma 2019; 33:92-96. [PMID: 30299380 DOI: 10.1097/bot.0000000000001341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Far cortical locking (FCL) constructs have been shown to increase axial interfragmentary displacement while limiting shear and have been specifically recommended in the treatment of distal femur fractures. However, there is no available data regarding their mechanical behavior within the range of bridge spans typically used for comminuted distal femur fractures. This biomechanical study of distal femur locked plate fixation assessed 4 methods of diaphyseal fixation for associated axial and shear displacement at bridge spans typically used in clinical practice. METHODS Distal femur locking plates were used to bridge simulated fractures in femur surrogates with 4 different methods of diaphyseal fixation (bicortical locking, bicortical nonlocking, near cortical locking, and FCL). Axial and shear displacement were assessed at 5 different bridge spans for each fixation method. RESULTS Diaphyseal fixation type was associated with the amount of shear (P = 0.04), but not the amount of axial displacement (P = 0.39). Specifically, FCL constructs demonstrated greater shear than bicortical locking (median 4.57 vs. 2.94 mm, P = 0.02) and bicortical nonlocking (median 4.57 vs. 3.41 mm, P = 0.02) constructs. CONCLUSIONS Unexpectedly, FCL constructs demonstrated greater shear than bicortical locking and nonlocking constructs and similar axial displacement for all fixation methods. Bridge span had a dominant effect on displacement that interacted negatively with more flexible FCL diaphyseal fixation. Potentially interactive construct features are best studied in concert. Given the complexity of these relationships, computational modeling will likely play an integral role in future mechanotransduction research.
Collapse
|
36
|
Lesciotto KM, Richtsmeier JT. Craniofacial skeletal response to encephalization: How do we know what we think we know? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168 Suppl 67:27-46. [PMID: 30680710 PMCID: PMC6424107 DOI: 10.1002/ajpa.23766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull.
Collapse
Affiliation(s)
- Kate M Lesciotto
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
37
|
Liu C, Carrera R, Flamini V, Kenny L, Cabahug-Zuckerman P, George BM, Hunter D, Liu B, Singh G, Leucht P, Mann KA, Helms JA, Castillo AB. Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone 2018; 108:145-155. [PMID: 29305998 PMCID: PMC8262576 DOI: 10.1016/j.bone.2017.12.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/30/2022]
Abstract
Mechanical loading is an important aspect of post-surgical fracture care. The timing of load application relative to the injury event may differentially regulate repair depending on the stage of healing. Here, we used a novel mechanobiological model of cortical defect repair that offers several advantages including its technical simplicity and spatially confined repair program, making effects of both physical and biological interventions more easily assessed. Using this model, we showed that daily loading (5N peak load, 2Hz, 60 cycles, 4 consecutive days) during hematoma consolidation and inflammation disrupted the injury site and activated cartilage formation on the periosteal surface adjacent to the defect. We also showed that daily loading during the matrix deposition phase enhanced both bone and cartilage formation at the defect site, while loading during the remodeling phase resulted in an enlarged woven bone regenerate. All loading regimens resulted in abundant cellular proliferation throughout the regenerate and fibrous tissue formation directly above the defect demonstrating that all phases of cortical defect healing are sensitive to physical stimulation. Stress was concentrated at the edges of the defect during exogenous loading, and finite element (FE)-modeled longitudinal strain (εzz) values along the anterior and posterior borders of the defect (~2200με) was an order of magnitude larger than strain values on the proximal and distal borders (~50-100με). It is concluded that loading during the early stages of repair may impede stabilization of the injury site important for early bone matrix deposition, whereas loading while matrix deposition and remodeling are ongoing may enhance stabilization through the formation of additional cartilage and bone.
Collapse
Affiliation(s)
- Chao Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA; Department of Orthopaedic Surgery, New York University Langone Health, NYU Langone Orthopedic Hospital, NY, USA; Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Robert Carrera
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Vittoria Flamini
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA
| | - Lena Kenny
- Department of Orthopaedic Surgery, New York University Langone Health, NYU Langone Orthopedic Hospital, NY, USA
| | - Pamela Cabahug-Zuckerman
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA; Department of Orthopaedic Surgery, New York University Langone Health, NYU Langone Orthopedic Hospital, NY, USA; Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Benson M George
- Department of Surgery, Division of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Daniel Hunter
- Department of Surgery, Division of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Bo Liu
- Department of Surgery, Division of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Gurpreet Singh
- Department of Surgery, Division of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Philipp Leucht
- Department of Orthopaedic Surgery, New York University Langone Health, NYU Langone Orthopedic Hospital, NY, USA; Department of Cell Biology, New York University, New York, NY, USA
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jill A Helms
- Department of Surgery, Division of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Alesha B Castillo
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA; Department of Orthopaedic Surgery, New York University Langone Health, NYU Langone Orthopedic Hospital, NY, USA; Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA.
| |
Collapse
|
38
|
Giordano V, Santos ALGD, Belangero WD, Pires RES, Labronici PJ, Koch HA. Mind the gap between the fracture line and the length of the working area: a 2-D finite element analysis using an extramedullary fixation model. Rev Bras Ortop 2018; 53:88-93. [PMID: 29367912 PMCID: PMC5771796 DOI: 10.1016/j.rboe.2017.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/09/2017] [Indexed: 11/23/2022] Open
Abstract
Objective To determine the ideal working area for a simple transverse fracture line treated with a bridge plate. Methods A 2-D finite element analysis of a hypothetical femur was performed for the quantitative evaluation of a large-fragment titanium alloy locking plate based on the precept of relative stability in a case of a simple transverse diaphyseal fracture. Two simulations (one case of strain and another case of stress distribution) were analyzed in three unique situations according to the von Mises stress theory. Load distributions were observed when the bone was subjected to a single vertical load of 1000 N. Results The longer the length of the implant flexion, which coincided with the working area of the plate, the greater the flexion of the implant. The highest concentrations of stress on the plate occurred in the region around the screws closest to the bone gap. The closer the screws to the fracture site, the greater the demands on the plate. Conclusion When using a large-fragment titanium alloy locking plate to stabilize a simple transverse fracture based on the precept of relative stability (bridge plate), there must be considerable distance between the proximal and distal screws closest to the fracture line. The farther away this fixation is, the lower the stress on the plate and the greater the dissipation of force in the form of deflection.
Collapse
Affiliation(s)
- Vincenzo Giordano
- Serviço de Ortopedia e Traumatologia Prof. Nova Monteiro, Hospital Municipal Miguel Couto, Rio de Janeiro, RJ, Brazil
| | | | - William Dias Belangero
- Disciplina de Ortopedia e Traumatologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Pedro José Labronici
- Departamento de Ortopedia e Traumatologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hilton Augusto Koch
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Fujisawa H, Mori Y, Kogure A, Tanaka H, Kamimura M, Masahashi N, Hanada S, Itoi E. Effects of intramedullary nails composed of a new β-type Ti-Nb-Sn alloy with low Young's modulus on fracture healing in mouse tibiae. J Biomed Mater Res B Appl Biomater 2018; 106:2841-2848. [PMID: 29360240 DOI: 10.1002/jbm.b.34064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/27/2017] [Accepted: 12/02/2017] [Indexed: 11/05/2022]
Abstract
The influence of Young's moduli of materials on the fracture healing process remains unclear. This study aimed to assess the effects of intramedullary nails composed of materials with low Young's moduli on fracture repair. We previously developed a β-type Ti-Nb-Sn alloy with low Young's modulus close to that of human cortical bone. Here, we prepared two Ti-Nb-Sn alloys with Young's moduli of 45 and 78 GPa by heat treatment, and compared their effects on fracture healing. Fracture and nailing were performed in the right tibiae of C57BL/6 mice. The bone healing process was evaluated by microcomputed tomography (micro-CT), histomorphometry, and RT-PCR. We found larger bone volumes of fracture callus in the mice treated with the 45-GPa Ti-Nb-Sn alloy as compared with the 78-GPa Ti-Nb-Sn alloy in micro-CT analyses. This was confirmed with histology at day 14, with accelerated new bone formation and cartilage absorption in the 45-GPa Ti-Nb-Sn group compared with the 78-GPa Ti-Nb-Sn group. Acp5 expression was lower in the 45-GPa Ti-Nb-Sn group than in the 78-GPa Ti-Nb-Sn group at day 10. These findings indicate that intramedullary fixation with nails with a lower Young's modulus offer a greater capacity for fracture repair. Our 45-GPa Ti-Nb-Sn alloy is a promising material for fracture treatment implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2841-2848, 2018.
Collapse
Affiliation(s)
- Hirokazu Fujisawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kogure
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hidetatsu Tanaka
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoya Masahashi
- Institute for Material Research, Tohoku University, Sendai, Miyagi, Japan
| | - Shuji Hanada
- Institute for Material Research, Tohoku University, Sendai, Miyagi, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
40
|
Giordano V, Santos ALGD, Belangero WD, Pires RES, Labronici PJ, Koch HA. Observe a distância entre a linha de fratura e o comprimento da área de trabalho: análise bidimensional de elementos finitos em modelo de fixação extramedular. Rev Bras Ortop 2018. [DOI: 10.1016/j.rbo.2017.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Wang G, Cao Y, Wu T, Duan C, Wu J, Hu J, Lu H. Genetic factors of cervical spondylotic myelopathy-a systemic review. J Clin Neurosci 2017; 44:89-94. [PMID: 28734792 DOI: 10.1016/j.jocn.2017.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cervical spondylotic myelopathy (CSM) is a degenerative disorder of the neck. Recent studies have reported the roles of single nucleotide polymorphisms and abnormal gene expression in the etiology and development of CSM. However, a systemic review of these findings is currently unavailable. METHODS A systemic review of genetic factors of CSM was conducted through searching PubMed and EMbase databases. A total of 9 studies were included in this study, which included 8 genes: brain derived neurotrophic factor (BDNF), osteopontin (OPN), bone morphogenic protein (BMP) 4, collagen IX, vitamin D receptor (VDR), apolipoprotein E (ApoE), hypoxia-inducible factor α (HIF-1α), and cyclooxygenase 2 (COX-2). RESULTS The polymorphisms of 6 genes (OPN, BMP-4, collagen IX, VDR, HIF-1α) showed significant association with the susceptibility to or risk of CSM. The polymorphisms of 3 genes (BMP-4, ApoE4, HIF-1α) were significantly associated with the postoperative outcome. The polymorphism of BDNF, VDR, and expression of COX-2 were associated with the severity of disease. CONCLUSION This review demonstrates that 8 genes were associated with CSM although there is no repeated study. This review also suggests that large scale and high quality studies are needed to provide more reliable evidence for future evaluation.
Collapse
Affiliation(s)
- Guohua Wang
- Department of Spine Surgery, The First Affiliated Hospital (Hunan Provincial People's Hospital), Hunan Normal University, Changsha, Hunan 410005, People's Republic of China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jianhuang Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.
| | - Hongbin Lu
- Department of Sport Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
42
|
LEE CHANYOUNG, RICHTSMEIER JOANT, KRAFT REUBENH. A COMPUTATIONAL ANALYSIS OF BONE FORMATION IN THE CRANIAL VAULT USING A COUPLED REACTION-DIFFUSION-STRAIN MODEL. J MECH MED BIOL 2017; 17:1750073. [PMID: 29225392 PMCID: PMC5722272 DOI: 10.1142/s0219519417500737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bones of the murine cranial vault are formed by differentiation of mesenchymal cells into osteoblasts, a process that is primarily understood to be controlled by a cascade of reactions between extracellular molecules and cells. We assume that the process can be modeled using Turing's reaction-diffusion equations, a mathematical model describing the pattern formation controlled by two interacting molecules (activator and inhibitor). In addition to the processes modeled by reaction-diffusion equations, we hypothesize that mechanical stimuli of the cells due to growth of the underlying brain contribute significantly to the process of cell differentiation in cranial vault development. Structural analysis of the surface of the brain was conducted to explore the effects of the mechanical strain on bone formation. We propose a mechanobiological model for the formation of cranial vault bones by coupling the reaction-diffusion model with structural mechanics. The mathematical formulation was solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data that provide precise three dimensional (3D) measures of murine cranial geometry and cranial vault bone formation for specific embryonic time points. The results of this study suggest that mechanical strain contributes information to specific aspects of bone formation. Our mechanobiological model predicts some key features of cranial vault bone formation that were verified by experimental observations including the relative location of ossification centers of individual vault bones, the pattern of cranial vault bone growth over time, and the position of cranial vault sutures.
Collapse
Affiliation(s)
- CHANYOUNG LEE
- The Penn State Computational Biomechanics Group, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 341 Leonhard Building, University Park, PA 16802
| | - JOAN T. RICHTSMEIER
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802
| | - REUBEN H. KRAFT
- The Penn State Computational Biomechanics Group, Department of Mechanical and Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, 320 Leonhard Building, University Park, PA 16802
| |
Collapse
|
43
|
Dex S, Alberton P, Willkomm L, Söllradl T, Bago S, Milz S, Shakibaei M, Ignatius A, Bloch W, Clausen-Schaumann H, Shukunami C, Schieker M, Docheva D. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load. EBioMedicine 2017; 20:240-254. [PMID: 28566251 PMCID: PMC5478207 DOI: 10.1016/j.ebiom.2017.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd) is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues. Tnmd is a mechanosensitive gene and its protein is co-localized with collagen I fibers in the ECM of tendons. Tnmd knockout mice fail in endurance running tests, a phenotype that worsens with training. Tnmd knockout tendons had significantly thicker and stiffer collagen I fibers and altered crosslinking gene expression.
We performed a multidisciplinary approach to decipher the role of tenomodulin, a gene marker for the mature tendon lineage, in tendon functional performance. Loss-of-function in mice led to significantly inferior endurance running and detailed analyses revealed that tenomodulin is involved in the regulation of collagen I fiber structural and biomechanical properties in response to exercise. Our study expands the current view on the complex structural-functional relationships of tendon tissues, and tenomodulin expression levels may indicate whether an individual is suitable for a certain sport.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Lena Willkomm
- Department of Molecular and Cellular Sports Medicine, German Sport University, 50933 Cologne, Germany
| | - Thomas Söllradl
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Sandra Bago
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Stefan Milz
- Department of Anatomy, Ludwig-Maximilian University (LMU), 80336 Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilian University (LMU), 80336 Munich, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University, 50933 Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 734-8553 Hiroshima, Japan
| | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; Novartis Institute for Biomedical Research (NIBR), Translational Medicine Musculoskeletal Disease, 4056 Basel, Switzerland
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany.
| |
Collapse
|
44
|
Horner CB, Hirota K, Liu J, Maldonado M, Hyle Park B, Nam J. Magnitude‐dependent and inversely‐related osteogenic/chondrogenic differentiation of human mesenchymal stem cells under dynamic compressive strain. J Tissue Eng Regen Med 2017; 12:e637-e647. [DOI: 10.1002/term.2332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Koji Hirota
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - Junze Liu
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - Maricela Maldonado
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - B. Hyle Park
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| | - Jin Nam
- Department of BioengineeringUniversity of California Riverside CA 92521 USA
| |
Collapse
|
45
|
Mouthuy PA, Carr A. Growing tissue grafts on humanoid robots: A future strategy in regenerative medicine? Sci Robot 2017; 2:2/4/eaam5666. [DOI: 10.1126/scirobotics.aam5666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/18/2017] [Indexed: 11/02/2022]
|
46
|
Slotplates revisited - A retrospective analysis. J Craniomaxillofac Surg 2016; 45:171-177. [PMID: 27956141 DOI: 10.1016/j.jcms.2016.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/11/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
CONTEXT Slotplates were specifically designed to meet the special requirements of corrective surgeries of the facial skeleton. This design enables small readjustments of bone fragments in the midface and chin area during surgery without complete removal of plates and screws. OBJECTIVE, DESIGN, AND SETTING The aim of this study was to compare morbidity rates of slotplates versus meshplates after Le Fort I osteotomy, genioplasty and/or zygoma 'sandwich' osteotomy performed in a tertiary care centre. RESULTS The investigators analyzed chart records of 190 patients, including a total of 257 surgeries. Slotplates were used in 109 patients, meshplates in 81 patients. Plate infection rates were 9.2% in the slotplate group and 7.4% in the meshplate group. Twelve patients (11.0%) from the slotplate group underwent plate removal versus four patients (4.9%) from the meshplate group. In total, there were two cases of delayed union, both in the slotplate group, one progressed to non-union. CONCLUSION Due to the low study power significant differences between the two types of plates could not be detected. However, there is a slight tendency towards higher morbidity associated with the use of slotplates. The probability of mechanical weakness of the configuration being responsible for the fatigue fractures is also discussed in this article.
Collapse
|
47
|
|
48
|
Mousavi SJ, Doweidar MH. Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:106-117. [PMID: 27208526 DOI: 10.1016/j.cmpb.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell migration, differentiation, proliferation and apoptosis are the main processes in tissue regeneration. Mesenchymal Stem Cells have the potential to differentiate into many cell phenotypes such as tissue- or organ-specific cells to perform special functions. Experimental observations illustrate that differentiation and proliferation of these cells can be regulated according to internal forces induced within their Extracellular Matrix. The process of how exactly they interpret and transduce these signals is not well understood. METHODS A previously developed three-dimensional (3D) computational model is here extended and employed to study how force-free substrates and force-induced substrate control cell differentiation and/or proliferation during the mechanosensing process. Consistent with experimental observations, it is assumed that cell internal deformation (a mechanical signal) in correlation with the cell maturation state directly triggers cell differentiation and/or proliferation. The Extracellular Matrix is modeled as Neo-Hookean hyperelastic material assuming that cells are cultured within 3D nonlinear hydrogels. RESULTS In agreement with well-known experimental observations, the findings here indicate that within neurogenic (0.1-1kPa), chondrogenic (20-25kPa) and osteogenic (30-45kPa) substrates, Mesenchymal Stem Cells differentiation and proliferation can be precipitated by inducing the substrate with an internal force. Therefore, cells require a longer time to grow and maturate within force-free substrates than within force-induced substrates. In the instance of Mesenchymal Stem Cells differentiation into a compatible phenotype, the magnitude of the net traction force increases within chondrogenic and osteogenic substrates while it reduces within neurogenic substrates. This is consistent with experimental studies and numerical works recently published by the same authors. However, in all cases the magnitude of the net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. CONCLUSIONS The present model provides new perspectives to delineate the role of force-induced substrates in remotely controlling the cell fate during cell-matrix interaction, which open the door for new tissue regeneration methodologies.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
49
|
Abstract
Mechanical loading is a potent anabolic regulator of bone mass, and the first line of defense for bone loss is weight-bearing exercise. Likewise, protected weight bearing is the first prescribed physical therapy following orthopedic reconstructive surgery. In both cases, enhancement of new bone formation is the goal. Our understanding of the physical cues, mechanisms of force sensation, and the subsequent cellular response will help identify novel physical and therapeutic treatments for age- and disuse-related bone loss, delayed- and nonunion fractures, and significant bony defects. This review highlights important new insights into the principles and mechanisms governing mechanical adaptation of the skeleton during homeostasis and repair and ends with a summary of clinical implications stemming from our current understanding of how bone adapts to biophysical force.
Collapse
|
50
|
Elkins J, Marsh JL, Lujan T, Peindl R, Kellam J, Anderson DD, Lack W. Motion Predicts Clinical Callus Formation: Construct-Specific Finite Element Analysis of Supracondylar Femoral Fractures. J Bone Joint Surg Am 2016; 98:276-84. [PMID: 26888675 PMCID: PMC5141368 DOI: 10.2106/jbjs.o.00684] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Mechanotransduction is theorized to influence fracture-healing, but optimal fracture-site motion is poorly defined. We hypothesized that three-dimensional (3-D) fracture-site motion as estimated by finite element (FE) analysis would influence callus formation for a clinical series of supracondylar femoral fractures treated with locking-plate fixation. METHODS Construct-specific FE modeling simulated 3-D fracture-site motion for sixty-six supracondylar femoral fractures (OTA/AO classification of 33A or 33C) treated at a single institution. Construct stiffness and directional motion through the fracture were investigated to assess the validity of construct stiffness as a surrogate measure of 3-D motion at the fracture site. Callus formation was assessed radiographically for all patients at six, twelve, and twenty-four weeks postoperatively. Univariate and multivariate linear regression analyses examined the effects of longitudinal motion, shear (transverse motion), open fracture, smoking, and diabetes on callus formation. Construct types were compared to determine whether their 3-D motion profile was associated with callus formation. RESULTS Shear disproportionately increased relative to longitudinal motion with increasing bridge span, which was not predicted by our assessment of construct stiffness alone. Callus formation was not associated with open fracture, smoking, or diabetes at six, twelve, or twenty-four weeks. However, callus formation was associated with 3-D fracture-site motion at twelve and twenty-four weeks. Longitudinal motion promoted callus formation at twelve and twenty-four weeks (p = 0.017 for both). Shear inhibited callus formation at twelve and twenty-four weeks (p = 0.017 and p = 0.022, respectively). Titanium constructs with a short bridge span demonstrated greater longitudinal motion with less shear than did the other constructs, and this was associated with greater callus formation (p < 0.001). CONCLUSIONS In this study of supracondylar femoral fractures treated with locking-plate fixation, longitudinal motion promoted callus formation, while shear inhibited callus formation. Construct stiffness was found to be a poor surrogate of fracture-site motion. Future implant design and operative fixation strategies should seek to optimize 3-D fracture-site motion rather than rely on surrogate measures such as axial stiffness.
Collapse
Affiliation(s)
- Jacob Elkins
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - J. Lawrence Marsh
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Trevor Lujan
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho
| | - Richard Peindl
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - James Kellam
- Department of Orthopaedic Surgery, University of Texas Health Science Center, Houston, Texas
| | - Donald D. Anderson
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - William Lack
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, Illinois
| |
Collapse
|