1
|
Bensa A, Salerno M, Boffa A, de Girolamo L, Laver L, Magalon J, Sánchez M, Tischer T, Filardo G. Corticosteroid injections for the treatment of osteoarthritis present a wide spectrum of effects ranging from detrimental to disease-modifying: A systematic review of preclinical evidence by the ESSKA Orthobiologic Initiative. Knee Surg Sports Traumatol Arthrosc 2024; 32:2725-2745. [PMID: 38813889 DOI: 10.1002/ksa.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Aim of this systematic review of preclinical evidence was to determine the effects of intra-articular corticosteroid (CS) injections in joints affected by osteoarthritis (OA). METHODS A systematic review was performed on animal studies evaluating intra-articular CS injections for OA joints. The search was performed on PubMed, Cochrane, and Web of Science databases. A synthesis of the results was performed investigating CS effects by evaluating studies comparing CS with control groups. Morphological, histological, immunohistochemistry evaluations, clinical outcomes, biomarkers and imaging results were evaluated. The risk of bias was assessed according to the Systematic Review Centre for Laboratory Animal Experimentation's tool. RESULTS Thirty-two articles analysing CS effects in OA animal models were included (1079 joints), 18 studies on small and 14 on large animals. CS injections showed overall positive effects in at least one of the outcomes in 68% of the studies, while 16% reported a deleterious effect. CS improved cartilage and synovial outcomes in 68% and 60% of the studies, but detrimental effects were documented in 11% and 20% of the studies, respectively. Clinical parameters evaluated in terms of pain, lameness or joint swelling improved in 63% of the studies but deteriorated in 13%. Evidence is limited on imaging and biomarkers results, as well as on the best CS type, dose, formulation and injection protocol. The risk of bias assessment revealed a 28% low and an 18% high risk of bias. CONCLUSION Intra-articular CS injections induced a wide range of results on OA joints in experimental animal models, from disease-modifying and positive effects on pain and joint function at short-term evaluation to the lack of benefit or even negative effects. This underlines the need to identify more specific indications and treatment modalities to avoid possible detrimental effects while maximising the anti-inflammatory properties and the benefits of intra-articular CS in OA joints. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Alessandro Bensa
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland
| | - Manuela Salerno
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angelo Boffa
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lior Laver
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
- Arthrosport Clinic, Tel-Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (Israel Institute of Technology), Haifa, Israel
| | - Jérémy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
- INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France
- Regenerative Medicine Department of Excellence, Marseille, France
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
2
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Zhang D, Baker HP, Lee CS, Pathuri M, Reddy S, Strelzow J. Corticosteroid injection of the knee within one month prior to meniscus repair increases the risk of repair failure requiring meniscectomy. PHYSICIAN SPORTSMED 2024; 52:369-373. [PMID: 37811919 DOI: 10.1080/00913847.2023.2268604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Meniscal tears are common knee injuries with limited endogenous healing capacity. This study aimed to investigate the association between the timing and administration of preoperative intra-articular corticosteroid injections (CSIs) and the risk of subsequent meniscectomy following meniscus repair. METHODS Using a national insurance claims database, patients aged 18-40 years undergoing meniscus repair within six months of tear diagnosis were studied. Patients were categorized based on whether they received preoperative CSIs within three intervals prior to repair. Multivariable logistic regression was used to analyze the risk of follow-up meniscectomy while controlling for various patient-related variables. RESULTS Among 5,390 patients meeting inclusion criteria, 201 received preoperative CSIs. The CSI group was older and had higher rates of diabetes, obesity, and knee osteoarthritis. The overall rate of follow-up meniscectomy did not differ between groups. However, CSIs performed within one month prior to repair were associated with significantly higher odds of subsequent meniscectomy compared to CSIs performed between three and six months prior. Obesity, tobacco use, and knee osteoarthritis were also independently associated with higher risk, while increasing age was associated with lower risk. CONCLUSION The study highlights an increased risk of repair failure requiring follow-up meniscectomy for patients receiving intra-articular CSIs within one month prior to meniscus repair. These findings suggest caution when considering CSIs as a treatment option for patients scheduled for meniscus repair. Further research is needed to establish optimal timing guidelines for CSIs in relation to meniscus repair and to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Orthopaedic Surgery, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Hayden P Baker
- Department of Orthopaedic Surgery and Rehabilitative Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Cody S Lee
- Department of Orthopaedic Surgery and Rehabilitative Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Manish Pathuri
- Department of Orthopaedic Surgery, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Sai Reddy
- Department of Orthopaedic Surgery, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jason Strelzow
- Department of Orthopaedic Surgery and Rehabilitative Medicine, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Logli AL, Evans CH, Duryea J, Larson DR, Bakri K, Carlsen BT, Dennison DG, Karim KE, Pulos NA, Rhee PC, Rizzo M, Shin AY, Elhassan BT, Kakar S. Investigation Into the Effects of Intra-Articular Steroid on Post-Traumatic Osteoarthritis in Distal Radius Fractures: A Randomized Controlled Pilot Study. J Hand Surg Am 2024; 49:757-765. [PMID: 38180412 DOI: 10.1016/j.jhsa.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The aim of this prospective, randomized, controlled, double-blinded pilot study was to determine the rates of post-traumatic osteoarthritis and assess joint space width in the presence or absence of a single intra-articular injection of corticosteroid after an acute, intra-articular distal radius fracture (DRF). METHODS Forty patients received a single, intra-articular, radiocarpal joint injection of 4 mg of dexamethasone (DEX) (n = 19) or normal saline placebo (n = 21) within 2 weeks of a surgically or nonsurgically treated intra-articular DRF. The primary outcome measure was minimum radiocarpal joint space width (mJSW) on noncontrast computed tomography scans at 2 years postinjection. Secondary outcomes were obtained at 3 months, 6 months, 1 year, and 2 years postinjection and included Disabilities of the Arm, Shoulder, and Hand; Michigan Hand Questionnaire; Patient-Rated Wrist Evaluation; wrist range of motion; and grip strength. RESULTS At 2-year follow-up, there was no difference in mean mJSW between the DEX group (2.2 mm; standard deviation, 0.6; range, 1.4-3.2) and the placebo group (2.3 mm; standard deviation, 0.7; range, 0.9-3.9). Further, there were no differences in any secondary outcome measures at any postinjection follow-up interval. CONCLUSIONS Radiocarpal joint injection of corticosteroid within 2 weeks of an intra-articular DRF does not appear to affect the development of post-traumatic osteoarthritis within 2 years follow-up in a small pilot cohort. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic II.
Collapse
Affiliation(s)
| | | | - Jeffrey Duryea
- Department of Orthopedic Radiology, Harvard Medical School, Boston, MA
| | - Dirk R Larson
- Department of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Karim Bakri
- Department of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN
| | - Brian T Carlsen
- Department of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN
| | | | - Kristin E Karim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Peter C Rhee
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Marco Rizzo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Bassem T Elhassan
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
5
|
Fongsodsri K, Tiyasatkulkovit W, Chaisri U, Reamtong O, Adisakwattana P, Supasai S, Kanjanapruthipong T, Sukphopetch P, Aramwit P, Ampawong S. Sericin promotes chondrogenic proliferation and differentiation via glycolysis and Smad2/3 TGF-β signaling inductions and alleviates inflammation in three-dimensional models. Sci Rep 2024; 14:11553. [PMID: 38773312 PMCID: PMC11109159 DOI: 10.1038/s41598-024-62516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-β signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1β, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-β signaling pathways, and exhibiting anti-inflammatory properties.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Marshall BP, Ashinsky BG, Ferrer XE, Kunes JA, Innis AC, Luzzi AJ, Forrester LA, Burt KG, Lee AJ, Song L, Lisiewski LE, Soni RK, Hung CT, Levine WN, Kovacevic D, Thomopoulos S. The subacromial bursa modulates tendon healing after rotator cuff injury in rats. Sci Transl Med 2024; 16:eadd8273. [PMID: 38657023 DOI: 10.1126/scitranslmed.add8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Rotator cuff injuries result in more than 500,000 surgeries annually in the United States, many of which fail. These surgeries typically involve repair of the injured tendon and removal of the subacromial bursa, a synovial-like tissue that sits between the rotator cuff and the acromion. The subacromial bursa has been implicated in rotator cuff pathogenesis and healing. Using proteomic profiling of bursa samples from nine patients with rotator cuff injury, we show that the bursa responds to injury in the underlying tendon. In a rat model of supraspinatus tenotomy, we evaluated the bursa's effect on the injured supraspinatus tendon, the uninjured infraspinatus tendon, and the underlying humeral head. The bursa protected the intact infraspinatus tendon adjacent to the injured supraspinatus tendon by maintaining its mechanical properties and protected the underlying humeral head by maintaining bone morphometry. The bursa promoted an inflammatory response in injured rat tendon, initiating expression of genes associated with wound healing, including Cox2 and Il6. These results were confirmed in rat bursa organ cultures. To evaluate the potential of the bursa as a therapeutic target, polymer microspheres loaded with dexamethasone were delivered to the intact bursae of rats after tenotomy. Dexamethasone released from the bursa reduced Il1b expression in injured rat supraspinatus tendon, suggesting that the bursa could be used for drug delivery to reduce inflammation in the healing tendon. Our findings indicate that the subacromial bursa contributes to healing in underlying tissues of the shoulder joint, suggesting that its removal during rotator cuff surgery should be reconsidered.
Collapse
Affiliation(s)
- Brittany P Marshall
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Beth G Ashinsky
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Xavier E Ferrer
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Jennifer A Kunes
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Astia C Innis
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Andrew J Luzzi
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Lynn Ann Forrester
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Kevin G Burt
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Lauren E Lisiewski
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - William N Levine
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - David Kovacevic
- New York Metropolitan Orthopaedics and Spine, New York, NY 10001, USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Huang H, Hwang J, Anilkumar S, Kiick KL. Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions. Biomacromolecules 2024; 25:2408-2422. [PMID: 38546162 DOI: 10.1021/acs.biomac.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.
Collapse
Affiliation(s)
- Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sudha Anilkumar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Seon S, Li Y, Lee S, Jeon YS, Kang DS, Ryu DJ. Self-Assembled PLGA-Pluronic F127 Microsphere for Sustained Drug Release for Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:471. [PMID: 38675430 PMCID: PMC11054183 DOI: 10.3390/ph17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
For many years, sustained-release drug delivery systems (SRDDS) have emerged as a featured topic in the pharmaceutical field. Particularly for chronic diseases, such as osteoarthritis, there is a lot of demand for SRDDS because of the long treatment period and repetitive medication administration. Thus, we developed an injectable PLGA-F127 microsphere (MS) that is capable of the in situ conversion to an implant. The microprecipitation method for PLGA-F127 MS was established, and the physicochemical stability of the products was confirmed. The microspheres were assembled into a single mass in 37 °C aqueous conditions and showed a remarkably delayed drug release profile. First, the release started with no significant initial burst and lagged for 60 days. After that, in the next 40 days, the remaining 75% of the drugs were constantly released until day 105. We expect that our PLGA-F127 MS could be employed to extend the release period of 2 months of medication to 4 months. This could be a valuable solution for developing novel SRDDS for local injections.
Collapse
Affiliation(s)
- Semee Seon
- Research & Development, Nextbiomedical Co., Ltd., Incheon 22013, Republic of Korea
| | - Yixian Li
- Research & Development, Nextbiomedical Co., Ltd., Incheon 22013, Republic of Korea
| | - Sangah Lee
- Research & Development, Nextbiomedical Co., Ltd., Incheon 22013, Republic of Korea
| | - Yoon Sang Jeon
- Orthopedic Surgery, Inha University Hospital, Incheon 22013, Republic of Korea
| | - Dong Seok Kang
- Orthopedic Surgery, Inha University Hospital, Incheon 22013, Republic of Korea
| | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, Incheon 22013, Republic of Korea
| |
Collapse
|
9
|
Raymond HE, Barbera JP, Shah KC, Zubizarreta N, Huang HH, Poeran J, Chen DD, Moucha CS, Hayden BL. Risk of Infection After Total Knee or Hip Arthroplasty After Receipt of Multiple Corticosteroid or Hyaluronic Acid Injections. J Am Acad Orthop Surg 2023; 31:e868-e875. [PMID: 37603685 DOI: 10.5435/jaaos-d-22-01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Few studies have assessed the relationship between the quantity of preoperative corticosteroid injections (CSIs) or hyaluronic acid injections (HAIs) and postoperative infection risk after total knee or hip arthroplasty (TKA, THA). We aimed to (1) determine whether the number of injections administered before TKA/THA procedures is associated with postoperative infections and (2) establish whether infection risk varies by injection type. METHODS This retrospective cohort study included 230,487 THAs and 371,511 TKAs from the 2017 to 2018 Medicare Limited Data Set. The quantity of CSI or HAI, defined as receiving either CSI or HAI ≤2 years before TKA/THA, was identified and categorized as 0, 1, 2, or >2. The primary outcome was 90-day postoperative infection. Multivariable regression models measured the association between the number of injections and 90-day postoperative infection. Odds ratios and 95% confidence intervals were reported. RESULTS The percentage of THA patients receiving 1, 2, and >2 preoperative CSIs was 6.1%, 1.6%, and 0.8%, respectively. Receiving >2 CSIs within 2 years before THA was associated with higher odds of 90-day postoperative infection (odds ratios = 1.74, 95% CI = 1.11 to 2.74, P = 0.02). The percentage of TKA patients receiving 1, 2, and >2 CSIs was 3.0%, 1.2%, and 1.1%, respectively. For HAIs in TKA patients, percentage receiving injections was 98.3%, 0.6%, 0.2%, and 0.9%, respectively. Quantity of CSIs or HAIs administered was not associated with postoperative infection among TKA patients. CONCLUSION Patients receiving >2 injections before THA had higher odds of 90-day postoperative infection. This finding was not observed in TKA patients. These results suggest that the use of >2 injections within 2 years of THA should be avoided.
Collapse
Affiliation(s)
- Hayley E Raymond
- From the Department of Orthopaedic Surgery, Mount Sinai Health System, New York, NY
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yoshida B, Piple AS, Wang JC, Richardson MK, Christ AB, Heckmann ND. Perioperative Dexamethasone Associated With Decreased Length of Stay After Total Hip and Knee Arthroplasty. J Am Acad Orthop Surg 2023; 31:e778-e787. [PMID: 37205878 DOI: 10.5435/jaaos-d-22-01146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/01/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION Dexamethasone is increasingly used after total joint arthroplasty (TJA) to reduce postoperative nausea and vomiting (PONV) and pain. The primary aim of this study was to examine the relationship between perioperative intravenous (IV) dexamethasone and length of stay (LOS) in patients undergoing primary, elective TJA. METHODS All patients who underwent TJA from 2015 to 2020 and received perioperative IV dexamethasone were queried from the Premier Healthcare Database. The cohort of patients who received dexamethasone was randomly truncated by a power of 10 and matched in a 1:2 ratio based on age and sex to patients who did not receive dexamethasone. Patient characteristics, hospital factors, comorbidities, 90-day postoperative complications, LOS, and postoperative morphine milligram equivalents were recorded for each cohort. Univariate and multivariate analyses were conducted to assess differences. RESULTS Overall, 190,974 matched patients were included, 63,658 (33.3%) of whom received dexamethasone and 127,316 (66.7%) did not. The dexamethasone cohort was composed of fewer patients with uncomplicated diabetes (11.6% vs. 17.5%, P < 0.001). Patients who received dexamethasone had significantly decreased mean LOS compared with patients who did not receive dexamethasone (1.66 vs. 2.03 days, P < 0.001). After controlling for confounding variables, dexamethasone was associated with significantly lower risk of pulmonary embolism (adjusted odds ratio [aOR]: 0.74, 95% CI: 0.61 to 0.90, P = 0.003), deep vein thrombosis (aOR: 0.78, 95% CI: 0.68 to 0.89, P < 0.001), PONV (aOR: 0.75, 95% CI: 0.70 to 0.80, P < 0.001), acute kidney injury (aOR: 0.82, 95% CI: 0.75 to 0.89, P < 0.001), and urinary tract infection (aOR: 0.77, 95% CI: 0.70 to 0.80, P < 0.001). In aggregate, dexamethasone was associated with similar postoperative opioid utilization between cohorts ( P = 0.061). CONCLUSION Perioperative dexamethasone was associated with reduced LOS and decreased postoperative complications including PONV, pulmonary embolism, deep vein thrombosis, acute kidney injury, and urinary tract infection after TJA. Although perioperative dexamethasone was not associated with notable reductions in postoperative opioid utilization, this study supports the use of dexamethasone to decrease LOS through multifactorial mechanisms beyond decreased pain.
Collapse
Affiliation(s)
- Brandon Yoshida
- From the Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
11
|
Streck LE, Braun S, Spilo K, Boettner CS, Brenneis M, Boettner F. How safe are intra-articular corticosteroid injections to the hip? BMC Musculoskelet Disord 2023; 24:665. [PMID: 37608323 PMCID: PMC10463482 DOI: 10.1186/s12891-023-06766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Intra-articular corticosteroid injections (ICSI) are an effective symptomatic treatment for osteoarthritis of the hip. However, the safety of ICSI has been questioned and a relatively high risk for septic arthritis, rapidly progressive osteoarthritis (RPIO) and periprosthetic joint infections (PJI) in patients undergoing subsequent total hip arthroplasty (THA) have been suggested. METHODS This is a retrospective evaluation of 682 hips that underwent ICSI with 40 mg of Triamcinolone for primary osteoarthritis of the hip. All ICSI were performed using sterile techniques, the number of ICSI in each hip and the cumulative corticosteroid dosage were assessed. Pre- and post-injection radiographs were compared to identify cases with RPIO. Native joint septic arthritis, surgical site infections and PJI were identified by chart review. RESULTS 4 hips (0.6%) developed RPIO 2-4 months following ICSI. The cumulative Triamcinolone dose was not associated with the development of RPIO (p = 0.281). 1 case was diagnosed with septic arthritis and treated with staged THA, there were no signs of infection at a 5 years follow-up. 483 hips (75.7%) underwent THA, including 199 hips with THA less than 3 months following ICSI and 181 hips with > 1 ICSI prior to THA. There were 3 superficial surgical site infections/wound dehiscence and no PJI. CONCLUSION The rate of RPIO was 0.6%. The current findings suggest that if ICSI is performed under sterile conditions, the risk for septic arthritis or PJI following THA, even in patients with multiple ICSI or ICSI within 3 months prior to surgery, is minimal.
Collapse
Affiliation(s)
- Laura Elisa Streck
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Sebastian Braun
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Kimi Spilo
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Cosima Sue Boettner
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Marco Brenneis
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528, Frankfurt/Main, Germany
| | - Friedrich Boettner
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
12
|
Marshall BP, Ferrer XE, Kunes JA, Innis AC, Luzzi AJ, Forrester LA, Burt KG, Lee AJ, Song L, Hung CT, Levine WN, Kovacevic D, Thomopoulos S. The subacromial bursa is a key regulator of the rotator cuff and a new therapeutic target for improving repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547347. [PMID: 37425730 PMCID: PMC10327214 DOI: 10.1101/2023.07.01.547347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Rotator cuff injuries result in over 500,000 surgeries performed annually, an alarmingly high number of which fail. These procedures typically involve repair of the injured tendon and removal of the subacromial bursa. However, recent identification of a resident population of mesenchymal stem cells and inflammatory responsiveness of the bursa to tendinopathy indicate an unexplored biological role of the bursa in the context of rotator cuff disease. Therefore, we aimed to understand the clinical relevance of bursa-tendon crosstalk, characterize the biologic role of the bursa within the shoulder, and test the therapeutic potential for targeting the bursa. Proteomic profiling of patient bursa and tendon samples demonstrated that the bursa is activated by tendon injury. Using a rat to model rotator cuff injury and repair, tenotomy-activated bursa protected the intact tendon adjacent to the injured tendon and maintained the morphology of the underlying bone. The bursa also promoted an early inflammatory response in the injured tendon, initiating key players in wound healing. In vivo results were supported by targeted organ culture studies of the bursa. To examine the potential to therapeutically target the bursa, dexamethasone was delivered to the bursa, prompting a shift in cellular signaling towards resolution of inflammation in the healing tendon. In conclusion, contrary to current clinical practice, the bursa should be retained to the greatest extent possible and provides a new therapeutically target for improving tendon healing outcomes. One Sentence Summary The subacromial bursa is activated by rotator cuff injury and regulates the paracrine environment of the shoulder to maintain the properties of the underlying tendon and bone.
Collapse
|
13
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
14
|
Miyauchi A, Noguchi M, Lei XF, Sakaki M, Kobayashi-Tanabe M, Haraguchi S, Miyazaki A, Kim-Kaneyama JR. Knockdown of mechanosensitive adaptor Hic-5 ameliorates post-traumatic osteoarthritis in rats through repression of MMP-13. Sci Rep 2023; 13:7446. [PMID: 37156857 PMCID: PMC10167244 DOI: 10.1038/s41598-023-34659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease associated with articular cartilage destruction. Matrix metalloproteinase-13 (MMP-13) has an essential role in OA pathogenesis by degradation of collagen II, a major component of articular cartilage. Hydrogen peroxide-inducible clone-5 (Hic-5; TGFB1I1), a transforming growth factor-β-inducible mechanosensor, has previously been reported to promote OA pathogenesis by upregulating MMP-13 expression in mouse osteoarthritic lesions. In our current study, immunohistochemical analysis showed that Hic-5 protein expression was increased in human OA cartilage compared with normal cartilage. Functional experiments demonstrated that Hic-5 and MMP-13 expression was increased by mechanical stress, and mechanical stress-induced MMP-13 expression was suppressed by Hic-5 siRNA in human chondrocytes. Moreover, intracellular localization of Hic-5 shifted to the nucleus from focal adhesions in human chondrocytes subjected to mechanical stress, and nuclear Hic-5 increased MMP-13 gene expression. In vivo, intra-articular injection of Hic-5 siRNA decreased the Osteoarthritis Research Society International score and MMP-13 protein expression in articular cartilage of OA rats. Our findings suggest that Hic-5 regulates transcription of MMP-13 in human chondrocytes, and Hic-5 may be a novel therapeutic target for OA because OA progression was suppressed by intra-articular injection of Hic-5 siRNA in rats.
Collapse
Affiliation(s)
- Aya Miyauchi
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masahito Noguchi
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Xiao-Feng Lei
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masashi Sakaki
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Momoko Kobayashi-Tanabe
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
15
|
Warren MR, Bajpayee AG. Modeling Electrostatic Charge Shielding Induced by Cationic Drug Carriers in Articular Cartilage Using Donnan Osmotic Theory. Bioelectricity 2022; 4:248-258. [PMID: 36644714 PMCID: PMC9811830 DOI: 10.1089/bioe.2021.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Positively charged drug carriers are rapidly emerging as a viable solution for long-standing challenges in delivery to dense, avascular, negatively charged tissues. These cationic carriers have demonstrated especially strong promise in targeting drugs to articular cartilage for osteoarthritis (OA) treatment. It is critical to evaluate the dose-dependent effects of their high intratissue uptake levels on charge-shielding of anionic matrix constituents, and the resulting changes in tissue osmotic swelling and mechanical integrity. Materials and Methods We use the ideal Donnan osmotic theory to derive a model for predicting intracartilage swelling pressures as a function of net charge (z) and equilibrium uptake of short-length, arginine-rich, multivalent, cationic peptide carriers (cationic peptide carriers [CPCs], z varied from +8 to +20) in cartilage samples with varying arthritic severities and fixed charge density (FCD). We use this model to determine the dose-dependent influence of CPCs on both physiological osmotic swelling pressures and compressive electrostatic moduli of cartilage in healthy and arthritic states. Results Under physiological conditions, the Donnan model predicted carrier-induced reductions in free swelling pressure between 8 and 29 kPa, and diminished compressive modulus by 20-68 kPa, both dependent on the net charge and uptake of CPCs. The magnitudes of deswelling and stiffness reduction increased monotonically with carrier uptake and net charge. Furthermore, predicted levels of deswelling by CPC charge shielding were amplified in tissues with reduced FCD (which model OA). Finally, the Donnan model predicted markedly higher reductions in tissue compressive modulus in hypotonic bathing salinity compared with physiological and hypertonic conditions. Conclusion This analysis demonstrates the importance of considering charge shielding as a likely adverse effect associated with uptake of cationic drug carriers into negatively charged tissues, especially in the case of damaged tissue. The simple modeling approach and principles described herein can inform the design of cationic drug delivery carriers and their clinical treatment regimens.
Collapse
Affiliation(s)
- Matthew R. Warren
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Setiadi AYLA, Karmawan LU. Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice. Foods 2022; 11:foods11223576. [PMID: 36429168 PMCID: PMC9689885 DOI: 10.3390/foods11223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammatory arthritis is a severe joint disease that causes long-lasting pain that reduces a patient's quality of life. Several commercial medicines have been used to reduce the inflammation in arthritis. However, they have side effects that affect other organs and increase the infection rate in the patient. Therefore, searching for alternative medicines from natural herbs to use as a substitute for chemical drugs and reduce the side effects of drugs has become the focus of investigation. Zanthoxylum acanthopodium DC., known as andaliman, is an endemic spice that originates from Tapanuli, North Sumatera (Indonesia). Our previous study confirmed that andaliman exerts anti-inflammatory and xanthin oxidase enzymatic inhibitory activities. Unfortunately, there are no in vivo studies on the efficacy of andaliman in reducing inflammation in arthritis. This research aimed to produce an andaliman extract rich in essential oils, to formulate andaliman extract in a nanoemulsion product, and to test their anti-arthritic and anti-inflammatory effects on suppressing the gene expression of inflammatory arthritis in vivo. Several steps were used to conduct this experiment, including andaliman extraction, bioactive compound identification, nanoandaliman formulation, in vivo inflammatory arthritis mice modeling using complete Freund's adjuvant (CFA), and gene expression quantification using quantitative PCR (qPCR). Andaliman extract and nanoandaliman effectively reduced arthritic scores in CFA-induced arthritic mice. Both treatments also demonstrated anti-inflammatory potential via blocking several arthritic inflammatory gene expressions from cartilage tissue and brain in CFA-induced mice. Nanoandaliman at low dose (25 mg/kg bw) exerted a higher suppressive effect against the gene expression of cox-2, il-ib, inos, and mmp-1 compared to that of andaliman extract. At high dose (100 mg/kg bw), andaliman extract effectively inhibited the expression of il-ib, inos, and mmp-1 genes in arthritic mice. These data suggest that nanoandaliman may be an alternative, natural anti-arthritic and anti-inflammatory candidate for the management of inflammatory arthritis.
Collapse
Affiliation(s)
| | - Listya Utami Karmawan
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| |
Collapse
|
17
|
Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 2022; 17:100495. [PMID: 36420054 PMCID: PMC9676212 DOI: 10.1016/j.mtbio.2022.100495] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
Damage to cartilage tissues is often difficult to repair owing to chronic inflammation and a lack of bioactive factors. Therefore, developing bioactive materials, such as hydrogels acting as extracellular matrix mimics, that can inhibit the inflammatory microenvironment and promote cartilage repair is crucial. Hyaluronic acid, which exists in cartilage and synovial fluid, has been extensively investigated for cartilage tissue engineering because of its promotion of cell adhesion and proliferation, regulation of inflammation, and enhancement of cartilage regeneration. However, hyaluronic acid-based hydrogels have poor degradation rates and unfavorable mechanical properties, limiting their application in cartilage tissue engineering. Recently, various multifunctional hyaluronic acid-based hydrogels, including alkenyl, aldehyde, thiolated, phenolized, hydrazide, and host–guest group-modified hydrogels, have been extensively studied for use in cartilage tissue engineering. In this review, we summarize the recent progress in the multifunctional design of hyaluronic acid-based hydrogels and their application in cartilage tissue engineering. Moreover, we outline the future research prospects and directions in cartilage tissue regeneration. This would provide theoretical guidance for developing hyaluronic acid-based hydrogels with specific properties to satisfy the requirements of cartilage tissue repair.
Collapse
|
18
|
Warren MR, Vedadghavami A, Bhagavatula S, Bajpayee AG. Effects of polycationic drug carriers on the electromechanical and swelling properties of cartilage. Biophys J 2022; 121:3542-3561. [PMID: 35765244 PMCID: PMC9515003 DOI: 10.1016/j.bpj.2022.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Cationic nanocarriers offer a promising solution to challenges in delivering drugs to negatively charged connective tissues, such as to articular cartilage for the treatment of osteoarthritis (OA). However, little is known about the effects that cationic macromolecules may have on the mechanical properties of cartilage at high interstitial concentrations. We utilized arginine-rich cationic peptide carriers (CPCs) with varying net charge (from +8 to +20) to investigate the biophysical mechanisms of nanocarrier-induced alterations to cartilage biomechanical properties. We observed that CPCs increased the compressive modulus of healthy bovine cartilage explants by up to 70% and decreased the stiffness of glycosaminoglycan-depleted tissues (modeling OA) by 69%; in both cases, the magnitude of the change in stiffness correlated with the uptake of CPC charge variants. Next, we directly measured CPC-induced osmotic deswelling in cartilage tissue due to shielding of charge repulsions between anionic extracellular matrix constituents, with magnitudes of reductions between 36 and 64 kPa. We then demonstrated that electrostatic interactions were required for CPC-induced stiffening to occur, evidenced by no observed increase in tissue stiffness when measured in hypertonic bathing salinity. We applied a non-ideal Donnan osmotic model (under triphasic theory) to separate bulk modulus measurements into Donnan and non-Donnan components, which further demonstrated the conflicting charge-shielding and matrix-stiffening effects of CPCs. These results show that cationic drug carriers can alter tissue mechanical properties via multiple mechanisms, including the expected charge shielding as well as a novel stiffening phenomenon mediated by physical linkages. We introduce a model for how the magnitudes of these mechanical changes depend on tunable physical properties of the drug carrier, including net charge, size, and spatial charge distribution. We envision that the results and theory presented herein will inform the design of future cationic drug-delivery systems intended to treat diseases in a wide range of connective tissues.
Collapse
Affiliation(s)
- Matthew R Warren
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Sanjana Bhagavatula
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts; Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
19
|
Black RM, Flaman LL, Lindblom K, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Tissue catabolism and donor-specific dexamethasone response in a human osteochondral model of post-traumatic osteoarthritis. Arthritis Res Ther 2022; 24:137. [PMID: 35689293 PMCID: PMC9185927 DOI: 10.1186/s13075-022-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Post-traumatic osteoarthritis (PTOA) does not currently have clinical prognostic biomarkers or disease-modifying drugs, though promising candidates such as dexamethasone (Dex) exist. Many challenges in studying and treating this disease stem from tissue interactions that complicate understanding of drug effects. We present an ex vivo human osteochondral model of PTOA to investigate disease effects on cartilage and bone homeostasis and discover biomarkers for disease progression and drug efficacy. METHODS Human osteochondral explants were harvested from normal (Collins grade 0-1) ankle talocrural joints of human donors (2 female, 5 male, ages 23-70). After pre-equilibration, osteochondral explants were treated with a single-impact mechanical injury and TNF-α, IL-6, and sIL-6R ± 100 nM Dex for 21 days and media collected every 2-3 days. Chondrocyte viability, tissue DNA content, and glycosaminoglycan (sGAG) percent loss to the media were assayed and compared to untreated controls using a linear mixed effects model. Mass spectrometry analysis was performed for both cartilage tissue and pooled culture medium, and the statistical significance of protein abundance changes was determined with the R package limma and empirical Bayes statistics. Partial least squares regression analyses of sGAG loss and Dex attenuation of sGAG loss against proteomic data were performed. RESULTS Injury and cytokine treatment caused an increase in the release of matrix components, proteases, pro-inflammatory factors, and intracellular proteins, while tissue lost intracellular metabolic proteins, which was mitigated with the addition of Dex. Dex maintained chondrocyte viability and reduced sGAG loss caused by injury and cytokine treatment by 2/3 overall, with donor-specific differences in the sGAG attenuation effect. Biomarkers of bone metabolism had mixed effects, and collagen II synthesis was suppressed with both disease and Dex treatment by 2- to 5-fold. Semitryptic peptides associated with increased sGAG loss were identified. Pro-inflammatory humoral proteins and apolipoproteins were associated with lower Dex responses. CONCLUSIONS Catabolic effects on cartilage tissue caused by injury and cytokine treatment were reduced with the addition of Dex in this osteochondral PTOA model. This study presents potential peptide biomarkers of early PTOA progression and Dex efficacy that can help identify and treat patients at risk of PTOA.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa L Flaman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karin Lindblom
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Susan Chubinskaya
- Departments of Pediatrics, Orthopedic Surgery and Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Wang S, Qiu Y, Qu L, Wang Q, Zhou Q. Hydrogels for Treatment of Different Degrees of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:858656. [PMID: 35733529 PMCID: PMC9207401 DOI: 10.3389/fbioe.2022.858656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a common disease that severely restricts human activities and degrades the quality of life. Every year, millions of people worldwide are diagnosed with osteoarthritis, placing a heavy burden on society. Hydrogels, a polymeric material with good biocompatibility and biodegradability, are a novel approach for the treatment of osteoarthritis. In recent years, this approach has been widely studied with the development of materials science and tissue engineering technology. We reviewed the research progress of hydrogels in the treatment of osteoarthritis in the past 3 years. We summarized the required hydrogel properties and current applications according to the development and treatment of osteoarthritis. Furthermore, we listed the challenges of hydrogels for different types of osteoarthritis and presented prospects for future development.
Collapse
Affiliation(s)
- Shuze Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Liu Qu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
21
|
Olival A, Vieira SF, Gonçalves VMF, Cunha C, Tiritan ME, Carvalho A, Reis RL, Ferreira H, Neves NM. Erythrocyte-derived liposomes for the treatment of inflammatory diseases. J Drug Target 2022; 30:873-883. [PMID: 35414285 DOI: 10.1080/1061186x.2022.2066107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effective and safe therapies to counteract persistent inflammation are necessary. We developed erythrocyte-derived liposomes (EDLs) with intrinsic anti-inflammatory activity. The EDLs were prepared using lipids extracted from erythrocyte membranes, which are rich in omega-3 fatty acids with several health benefits. Diclofenac, a widely used anti-inflammatory drug, was incorporated into EDLs in relevant therapeutic concentrations. The EDLs were also functionalized with folic acid to allow their active targeting of M1 macrophages, which are key players in inflammatory processes. In the presence of lipopolysaccharide (LPS)-stimulated macrophages, empty EDLs and EDLs incorporating diclofenac were able to reduce the levels of important pro-inflammatory cytokines, namely interleukin-6 (IL-6; ≈85% and 77%, respectively) and tumor necrosis factor-alpha (TNF-α; ≈64% and 72%, respectively). Strikingly, cytocompatible concentrations of EDLs presented similar effects to dexamethasone, a potent anti-inflammatory drug, in reducing IL-6 and TNF-α concentrations, demonstrating the EDLs potential to be used as bioactive carriers in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- A Olival
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - V M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Paredes, Portugal
| | - C Cunha
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M E Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Paredes, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - A Carvalho
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - H Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Heard BJ, Barton KI, Abubacker S, Chung M, Martin CR, Schmidt TA, Shrive NG, Hart DA. Synovial and cartilage responsiveness to peri-operative hyaluronic acid ± dexamethasone administration following a limited injury to the rabbit stifle joint. J Orthop Res 2022; 40:838-845. [PMID: 34061360 DOI: 10.1002/jor.25108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) can develop after an injury to the knee. Previous studies have indicated that an intra-articular (IA) injection of the potent glucocorticoid dexamethasone (DEX) may significantly prevent induction of PTOA. The aim of the present study was to investigate the effectiveness of a single IA injection of hyaluronic acid (HA), alone and in combination with DEX following a localized intra-articular injury as a PTOA-preventing treatment option. An established rabbit model of surgical injury consisting of dual intra-articular (IA) drill holes in a non-cartilaginous area of the femoral notch near the origin of the anterior cruciate ligament (ACL) to allow for bleeding into the joint space was used. Immediately following surgery, subjects were treated with HA, HA + DEX, or received no treatment. An uninjured control group was used for comparison (N = 5/group). Rabbits were sacrificed and investigated at 9 weeks post-injury. At 9 weeks post-injury, there was a significant protective capacity of the single IA treatment of DEX + HA on the histological grade of the synovial tissue, and some variable location-specific effects of HA alone and HA + DEX interactions on cartilage damage. Thus, it is possible that co-treatment with HA may interfere with the effectiveness of the DEX. In vitro friction testing indicated that DEX did not interfere with the lubricating ability of HA or synovial fluid on cartilage. These results suggest that a single IA administration of HA in combination with DEX following an IA injury is not recommended for inhibition of PTOA progression in this model.
Collapse
Affiliation(s)
- B J Heard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - K I Barton
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - S Abubacker
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - M Chung
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - C R Martin
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - T A Schmidt
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sculich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - N G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Sculich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Bone & Joint Health Strategic Clinical Network, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
García-Couce J, Tomás M, Fuentes G, Que I, Almirall A, Cruz LJ. Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels 2022; 8:44. [PMID: 35049579 PMCID: PMC8774693 DOI: 10.3390/gels8010044] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Miriela Tomás
- Unidad de I + D, Empresa Laboratorios AICA, La Habana 11300, Cuba;
| | - Gastón Fuentes
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Ivo Que
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Amisel Almirall
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
24
|
In Vitro Study of Licorice on IL-1β-Induced Chondrocytes and In Silico Approach for Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14121337. [PMID: 34959737 PMCID: PMC8709290 DOI: 10.3390/ph14121337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important feature of OA pathogenesis. A Glycyrrhiza new variety, Wongam (WG), was developed by the Korea Rural Development Administration to enhance the cultivation and quality of Glycyrrhizae Radix et Rhizoma (licorice). This study examined the regulatory effect of WG against hypertrophy-like changes such as RUNX2, Collagen X, VEGFA, MMP-13 induction, and Collagen II reduction induced by IL-1β in SW1353 human chondrocytes. Additionally, in silico methods were performed to identify active compounds in licorice to target chondrocyte hypertrophy-related proteins. WG showed inhibitory effects against IL-1β-induced chondrocyte hypertrophy by regulating both HDAC4 activation via the PTH1R/PKA/PP2A pathway and the SOX9/β-catenin signaling pathway. In silico analysis demonstrated that 21 active compounds from licorice have binding potential with 11 targets related to chondrocyte hypertrophy. Further molecular docking analysis and in vivo studies elicited four compounds. Based on HPLC, isoliquiritigenin and its precursors were identified and quantified. Taken together, WG is a potential therapeutic agent for chondrocyte hypertrophy-like changes in OA.
Collapse
|
25
|
Arabiyat AS, Chen H, Erndt-Marino J, Burkhard K, Scola L, Fleck A, Wan LQ, Hahn MS. Hyperosmolar Ionic Solutions Modulate Inflammatory Phenotype and sGAG Loss in a Cartilage Explant Model. Cartilage 2021; 13:713S-721S. [PMID: 32975437 PMCID: PMC8804856 DOI: 10.1177/1947603520961167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to compare the effects of hyperosmolar sodium (Na+), lithium (Li+) and potassium (K+) on catabolic and inflammatory osteoarthritis (OA) markers and sulfated glycosaminoglycan (sGAG) loss in TNF-α-stimulated cartilage explants. METHODS Explants from bovine stifle joints were stimulated with TNF-α for 1 day to induce cartilage degradation followed by supplementation with 50 mM potassium chloride (KCl), 50 mM lithium chloride (LiCl), 50 mM sodium chloride (NaCl), or 100 nM dexamethasone for an additional 6 days. We assessed the effect of TNF-α stimulation and hyperosmolar ionic treatment on sGAG loss and expression of OA-associated proteins: ADAMTS-5, COX-2, MMP-1, MMP-13, and VEGF. RESULTS TNF-α treatment increased sGAG loss (P < 0.001) and expression of COX-2 (P = 0.018), MMP-13 (P < 0.001), and VEGF (P = 0.017) relative to unstimulated controls. Relative to activated controls, LiCl and dexamethasone treatment attenuated sGAG loss (P = 0.008 and P = 0.042, respectively) and expression of MMP-13 (P = 0.005 and P = 0.036, respectively). In contrast, KCl treatment exacerbated sGAG loss (P = 0.032) and MMP-1 protein expression (P = 0.010). NaCl treatment, however, did not alter sGAG loss or expression of OA-related proteins. Comparing LiCl and KCl treatment shows a potent reduction (P < 0.05) in catabolic and inflammatory mediators following LiCl treatment. CONCLUSION These results suggest that these ionic species elicit varying responses in TNF-α-stimulated explants. Cumulatively, these findings support additional studies of hyperosmolar ionic solutions for potential development of novel intraarticular injections targeting OA.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Hongyu Chen
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Josh Erndt-Marino
- Department of Biomedical Engineering,
Tufts University, Medford, MA, USA
| | - Katie Burkhard
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Lisa Scola
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Allison Fleck
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Leo Q. Wan
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| |
Collapse
|
26
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
27
|
Shen C, Gao M, Chen H, Zhan Y, Lan Q, Li Z, Xiong W, Qin Z, Zheng L, Zhao J. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnology 2021; 19:395. [PMID: 34838028 PMCID: PMC8627084 DOI: 10.1186/s12951-021-01136-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/14/2021] [Indexed: 12/27/2022] Open
Abstract
Stimulus-responsive therapy that allows precise imaging-guided therapy is limited for osteoarthritis (OA) therapy due to the selection of proper physiological markers as stimulus. Based on that the over-production of Reactive Oxygen Species (ROS) is associated with the progression in OA, we selected ROS as markers and designed a cartilage targeting and ROS-responsive theranostic nanoprobe that can be used for effective bioimaging and therapy of OA. This nanoprobe was fabricated by using PEG micelles modified with ROS-sensitive thioketal linkers (TK) and cartilage-targeting peptide, termed TKCP, which was then encapsulated with Dexamethasone (DEX) to form TKCP@DEX nanoparticles. Results showed that the nanoprobe can smartly “turn on” in response to excessive ROS and “turn off” in the normal joint. By applying different doses of ROS inducer and ROS inhibitor, this nanoprobe can emit ROS-dependent fluorescence according to the degree of OA severity, helpful to precise disease classification in clinic. Specifically targeting cartilage, TKCP@DEX could effectively respond to ROS and sustained release DEX to remarkably reduce cartilage damage in the OA joints. This smart, sensitive and endogenously activated ROS-responsive nanoprobe is promising for OA theranostics. ![]()
Collapse
Affiliation(s)
- Chong Shen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopedics, The Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Haimin Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory On Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
28
|
Kulchar RJ, Denzer BR, Chavre BM, Takegami M, Patterson J. A Review of the Use of Microparticles for Cartilage Tissue Engineering. Int J Mol Sci 2021; 22:10292. [PMID: 34638629 PMCID: PMC8508725 DOI: 10.3390/ijms221910292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue and organ failure has induced immense economic and healthcare concerns across the world. Tissue engineering is an interdisciplinary biomedical approach which aims to address the issues intrinsic to organ donation by providing an alternative strategy to tissue and organ transplantation. This review is specifically focused on cartilage tissue. Cartilage defects cannot readily regenerate, and thus research into tissue engineering approaches is relevant as a potential treatment option. Cells, scaffolds, and growth factors are three components that can be utilized to regenerate new tissue, and in particular recent advances in microparticle technology have excellent potential to revolutionize cartilage tissue regeneration. First, microspheres can be used for drug delivery by injecting them into the cartilage tissue or joint space to reduce pain and stimulate regeneration. They can also be used as controlled release systems within tissue engineering constructs. Additionally, microcarriers can act as a surface for stem cells or chondrocytes to adhere to and expand, generating large amounts of cells, which are necessary for clinically relevant cell therapies. Finally, a newer application of microparticles is to form them together into granular hydrogels to act as scaffolds for tissue engineering or to use in bioprinting. Tissue engineering has the potential to revolutionize the space of cartilage regeneration, but additional research is needed to allow for clinical translation. Microparticles are a key enabling technology in this regard.
Collapse
Affiliation(s)
- Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (R.J.K.); (B.M.C.)
| | - Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
| | - Bharvi M. Chavre
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (R.J.K.); (B.M.C.)
| | - Mina Takegami
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Jennifer Patterson
- Independent Consultant, 3000 Leuven, Belgium
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, 28906 Madrid, Spain
| |
Collapse
|
29
|
Intra-articular Injection of Baicalein Inhibits Cartilage Catabolism and NLRP3 Inflammasome Signaling in a Posttraumatic OA Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6116890. [PMID: 34512868 PMCID: PMC8433010 DOI: 10.1155/2021/6116890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Baicalein has been shown to have chondroprotective potential in vitro. However, its effect on disease modification in osteoarthritis (OA) is largely unknown. The present study is aimed at determining whether baicalein could slow the progression of OA and inhibit OA-related inflammation in a rat model of destabilization of the medial meniscus (DMM) and the underlying mechanisms. The rats subjected to DMM surgery were treated with baicalein (0.8, 1.6, and 3.2 μg/L, 50 μL, once a week) by intra-articular injection for 6 weeks. Dexamethasone (0.4 mg/mL, 50 μL, once a week) was used as a positive control. Histologic grading of cartilage degeneration was performed using the Osteoarthritis Research Society International (OARSI) recommended grading system (on a scale of 0-6). The expression levels of molecules associated with cartilage homeostasis and inflammatory cytokines were analyzed; moreover, the NLRP3 inflammasome activation and cartilage oxidative stress-associated molecules were determined. Baicalein treatment reduced the OARSI score and slowed OA disease progression in a dose-dependent manner within a certain range. Compared with DMM rats, intra-articular injection of baicalein led to (1) reduced levels of inflammatory mediates such as IL-1β and TNF-α, (2) reduced immunochemical staining of MMP-13 and ADAMTS-5, (3) suppressed immunochemical staining loss of type II collagen, (4) reduced expression of cartilage degradation markers including CTX-II and COMP in urine, and (5) inhibited NLRP3 inflammasome activation rather than regulated expression of SOD, GSH, and MDA. In contrast to the administration of baicalein, dexamethasone injection showed similar effects to slow OA progression, while dexamethasone inhibited NLRP3 inflammasome partly through decreasing levels of SOD, GSH, and MDA. This study indicated that baicalein may have the potential for OA prevention and exerts anti-inflammatory effects partly via suppressing NLRP3 inflammasome activation without affecting oxidative stress-associated molecules, and inhibition of cartilage catabolism enzymes in an OA rat model.
Collapse
|
30
|
Xu S, He X, Shi J, Li Z, Song J, Wang J, Wang G, Brand-Saberi B, Cheng X, Yang X. Interaction between retinoic acid and FGF/ERK signals are involved in Dexamethasone-induced abnormal myogenesis during embryonic development. Toxicology 2021; 461:152917. [PMID: 34464682 DOI: 10.1016/j.tox.2021.152917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/01/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Despite the common application in pregnancy at clinical practice, it remains ambiguous whether dexamethasone (Dex) exposure can affect embryonic myogenesis. In this study, firstly we showed that 10-6 M Dex (Cheng et al., 2016; 2017) treatment resulted in abnormal myogenesis in chicken embryos. Secondly, we demonstrated that 10-6 M Dex-induced abnormality of myogenesis resulted from aberrant cell proliferation, as well as from alteration of the differentiation process from the early stage of somitogenesis up to the late stage of myogenesis. The above-mentioned results caused by Dex exposure might be due to the aberrant gene expressions of somite formation (Raldh2, Fgf8, Wnt3a, β-catenin, Slug, Paraxis, N-cadherin) and differentiation (Pax3, MyoD, Wnt3a, Msx1, Shh). Thirdly, RNA sequencing implied the statistically significant differential gene expressions in regulating the myofibril and systemic development, as well as a dramatical alteration of retinoic acid (RA) signaling during somite development in the chicken embryos exposed to Dex. The subsequent validation experiments verified that Dex treatment indeed led to a metabolic change of RA signaling, which was up-regulated and principally mediated by FGF-ERK signaling revealed by means of the combination of chicken embryos and in vitro C2C12 cells. These findings highlight that 10-6 M Dex exposure enhances the risk of abnormal myogenesis through interfering with RA signaling during development.
Collapse
Affiliation(s)
- Shujie Xu
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xiangyue He
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China; Department of Pathology, Medical School, Jinan University, Guangzhou, 510632, China
| | - Junzhu Shi
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Ziguang Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jinhuan Song
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jingyun Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
31
|
Corticosteroid Injections 1 Month Before Arthroscopic Meniscectomy Increase the Risk of Surgical-Site Infection. Arthroscopy 2021; 37:2885-2890.e2. [PMID: 33812029 DOI: 10.1016/j.arthro.2021.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 02/28/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To define the incidence of postoperative infections in patients who receive corticosteroid injections prior to arthroscopic meniscectomy, to determine whether there is a temporal relation between injections and the risk of surgical-site infections, and to identify corresponding risk factors. METHODS The Humana administrative claims database was reviewed for patients undergoing arthroscopic meniscectomy within 1 year of injection and those undergoing arthroscopic meniscectomy without prior injection. Patients with preoperative injections were further stratified by the duration in months between the injection and the surgical procedure. Surgical-site infection within 6 months of surgery was recorded. Univariate analysis and binary logistic regression were performed to determine independent risk factors for surgical-site infection. Statistical significance was defined as P < .05. RESULTS We identified patients with (n = 11,652) and without (n = 37,261) a history of a knee corticosteroid injection within 1 year of arthroscopic meniscectomy with at least 6 months of database activity from 2007 to 2017. In patients who received knee injections within 1 month prior to surgery, the rate of development of postoperative infections was twice that in patients who did not receive an injection (1.28% vs 0.63%; odds ratio [OR], 1.84; 95% confidence interval [CI], 1.24-2.62; P = .001). Multivariate logistic regression identified male sex (OR, 1.39; 95% CI, 1.14-1.71; P = .001), diabetes (OR, 1.48; 95% CI, 1.19-1.85; P < .001), chronic obstructive pulmonary disease (OR, 1.57; 95% CI, 1.27-1.94; P < .001), obesity (OR, 1.32; 95% CI, 1.07-1.63; P = .010), tobacco use (OR, 1.61; 95% CI, 1.30-1.98; P < .001), and preoperative injections within 1 month of surgery (OR, 1.78; 95% CI, 1.21-2.54; P = .002) as significant predictors, whereas injections administered more than 1 month before surgery were not significantly associated with postoperative surgical-site infection after arthroscopic meniscectomy. CONCLUSIONS Injections 1 month before arthroscopic meniscectomy significantly increase the risk of surgical-site infection. However, injections can be safely administered more than 1 month prior to surgery because there is no increased risk of postoperative infection at this time point. LEVEL OF EVIDENCE Level III, retrospective cohort study.
Collapse
|
32
|
Wang QS, Xu BX, Fan KJ, Fan YS, Teng H, Wang TY. Dexamethasone-loaded thermo-sensitive hydrogel attenuates osteoarthritis by protecting cartilage and providing effective pain relief. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1120. [PMID: 34430561 PMCID: PMC8350682 DOI: 10.21037/atm-21-684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Background We utilized the destabilization of medial meniscus (DMM)-induced mice to illustrate the osteoarthritis (OA) suppressing and pain-relieving effects of a novel prolonged-release intra-articular (IA)-dexamethasone-loaded thermo-sensitive hydrogel (DLTH). Methods The effects of temperature and pH on DLTH formation and in vitro DLTH release profile were assessed. C57BL/6J mice were randomly divided into three groups: Ctrl group, Model group and DLTH group. The DLTH group received joint injections of 10 µL DLTH (1 mg/kg) into the right knee once a week from week 2 to week 11. We performed micro-computed tomography (Micro-CT) and histological analyses of safranin O-fast green, hematoxylin and eosin, and tartrate-resistant acid phosphatase in knee joints. We also carried out immunohistochemical (IHC) staining for matrix metalloproteinase-9 (MMP-9), MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) in cartilage and Ki-67 in synovia. Pain behavioral testing was carried out in all mice. The serum content of prostaglandin E2 (PGE2) and real-time polymerase chain reaction (PCR) of inflammatory cytokines and pain-related factors in dorsal root ganglia (DRGs) were evaluated. Results It took 20 minutes to form DLTH at pH 7.0 and 37 °C. The cumulative release profiles of dexamethasone (Dex) from DLTH at 37 °C revealed a rapid release in the first 24 h and a sustained slow release for 7 days. In vivo study illustrated that DLTH attenuated OA bone destruction and ameliorated synovitis and progression of OA in DMM-induced mice. The chondroprotective effects of DLTH were mediated by decreased expressions of MMP-9, MMP-13, and ADAMTS-5. The results showed that IA-DLTH exerted pain-relieving effects in OA mice. Upregulation of nociceptive response time (NRT) and downregulations of serum PGE2, inflammatory factors, and pain-related mediators in DRGs of mice in the DLTH group were recorded. Conclusions Data presented in this study elucidated that DLTH exhibited a long and lasting Dex release and it is a potential sustainable drug delivery system (DDS) to treat OA locally. IA-DLTH injection exerted chondroprotective and pain-relieving effects in DMM-induced arthritis. The involvement of MMP-9, MMP-13, ADAMTS-5, and inflammatory and pain-related factors, may account for the suppression of OA progression and pain.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Xin Xu
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai-Jian Fan
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Shan Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Hui Teng
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Yu Wang
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
34
|
Tao H, Zhang Y, Hu Y, Li Q, Hua Y, Lu R, Xie Y, Li X, Zhang B, Chen S. Cartilage Matrix Changes in Hindfoot Joints in Chronic Ankle Instability Patients After Anatomic Repair Using T2-Mapping: Initial Experience With 3-Year Follow-Up. J Magn Reson Imaging 2021; 55:234-243. [PMID: 34189805 DOI: 10.1002/jmri.27809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Anatomic repair is widely accepted as the primary surgical treatment for chronic lateral ankle instability (CLAI). T2-mapping is a powerful tool for quantitative assessment of biochemical changes in cartilage matrix. PURPOSE To longitudinally evaluate cartilage matrix changes in the hindfoot joints of CLAI patients before and after anatomic repair by using T2-mapping with magnetic resonance imaging (MRI). STUDY TYPE Prospective. SUBJECTS Thirty-two CLAI patients (males/females = 20/12) and 21 healthy controls (males/females = 13/7). FIELD STRENGTH/SEQUENCE 3 T; sagittal multi-echo spin-echo technique (T2-mapping), coronal, sagittal, and axial spin-echo PD-FS, and sagittal T1WI sequences. ASSESSMENT MRI examinations were performed in CLAI patients at baseline (prior to surgery) and 3 years after anatomic repair and in healthy controls. On T2-maps, the hindfoot joints were segmented into 16 cartilage subregions. The T2 value of each subregion was measured. All patients were evaluated with the American Orthopedic Foot and Ankle Society (AOFAS) scale at baseline and after surgery. STATISTICAL TESTS Analysis of variance (ANOVA) and Student's t-test were used. The differences corresponding to P < 0.05 were considered statistically significant. RESULTS At baseline, the T2 values in most cartilage subregions of talar dome and medial posterior subtalar joint (pSTJ) were higher in CLAI patients than in healthy controls. After surgery, only the T2 value of anteriomedial talar dome decreased from that at baseline (31.11 ± 3.88 msec vs. 34.27 ± 5.30 msec). The T2 values of other subregions with elevated T2 values remained higher than healthy controls. There were no significant differences in T2 values in the midtarsal joints between CLAI patients and healthy controls (P = 0.262, 0.104, 0.169, 0.103). Postoperatively, the patients' AOFAS scores improved significantly from 67.81 to 89.13. DATA CONCLUSION CLAI patients exhibited elevated T2 values in most subregions of talar dome and medial pSTJ. After anatomic repair, although the patients exhibited good clinical outcomes, the elevated T2 values could not be fully recovered. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Hongyue Tao
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyang Zhang
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Hu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianru Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Lu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxie Xie
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangwen Li
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Forlenza EM, Burnett RA, Korrapati A, Yang J, Forsythe B, Della Valle CJ. Preoperative Corticosteroid Injections Demonstrate a Temporal and Dose-Dependent Relationship with the Rate of Postoperative Infection Following Total Hip Arthroplasty. J Arthroplasty 2021; 36:2033-2037.e1. [PMID: 33618958 DOI: 10.1016/j.arth.2021.01.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/27/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Corticosteroid injections (CSI) are commonly used for the treatment of osteoarthritis of the hip. There is concern, however, that these injections may increase the risk of postoperative infection if a subsequent total hip arthroplasty (THA) is performed. The purpose of the present investigation is to determine the relationship between CSI and the risk of periprosthetic joint infection (PJI) and surgical site infections (SSIs) following THA. METHODS The PearlDiver database was reviewed for patients undergoing THA from 2011 to 2018. Patients with unilateral hip osteoarthritis who received an intra-articular hip CSI prior to ipsilateral THA were matched in a sequential 1:1 fashion based on age, gender, and Charlson Comorbidity Index with THA patients who did not receive an injection in the preoperative period. PJI and SSI within 6 months of the surgical procedure were recorded. Statistical analysis included chi-squared test and multivariate logistic regression. Results were considered significant at P < .05. RESULTS In total, 29,058 patients underwent a hip CSI within 6 months prior to THA. CSI within 4 months of surgery was associated with a higher incidence of PJI at 6-month follow up (1.6% vs 1.1%, P = .040). An injection within 1 month of surgery corresponded to a higher odds of PJI (odds ratio [OR] 1.97) than an injection 4 months prior to surgery (OR 1.24). Furthermore, the quantity of CSI administered within the 3 months prior to THA demonstrated a dose-dependent relationship, with each subsequent injection increasing odds of PJI (OR 1.45-3.59). A similar relationship was observed for SSI. CONCLUSION There appears to be both a time and dose-dependent association of hip CSI and PJI following THA. Surgeons should consider delaying elective THA if a CSI has been administered within the 4 months prior to the planned procedure.
Collapse
Affiliation(s)
- Enrico M Forlenza
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL
| | - Robert A Burnett
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL
| | - Avinaash Korrapati
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL
| | - JaeWon Yang
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL
| | - Brian Forsythe
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL
| | - Craig J Della Valle
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
36
|
Mason D, Englund M, Watt FE. Prevention of posttraumatic osteoarthritis at the time of injury: Where are we now, and where are we going? J Orthop Res 2021; 39:1152-1163. [PMID: 33458863 DOI: 10.1002/jor.24982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
This overview of progress made in preventing post-traumatic osteoarthritis (PTOA) was delivered in a workshop at the Orthopaedics Research Society Annual Conference in 2019. As joint trauma is a major risk factor for OA, defining the molecular changes within the joint at the time of injury may enable the targeting of biological processes to prevent later disease. Animal models have been used to test therapeutic targets to prevent PTOA. A review of drug treatments for PTOA in rodents and rabbits between 2016 and 2018 revealed 11 systemic interventions, 5 repeated intra-articular or topical interventions, and 5 short-term intra-articular interventions, which reduced total Osteoarthritis Research Society International scores by 30%-50%, 20%-70%, and 0%-40%, respectively. Standardized study design, reporting of effect size, and quality metrics, alongside a "whole joint" approach to assessing efficacy, would improve the translation of promising new drugs. A roadblock to translating preclinical discoveries has been the lack of guidelines on the design and conduct of human trials to prevent PTOA. An international workshop addressing this in 2016 considered inclusion criteria and study design, and advocated the use of experimental medicine studies to triage candidate treatments and the development of early biological and imaging biomarkers. Human trials for the prevention of PTOA have tested anakinra after anterior cruciate ligament rupture and dexamethasone after radiocarpal injury. PTOA offers a unique opportunity for defining early mechanisms of OA to target therapeutically. Progress in trial design and high-quality preclinical research, and allegiance with patients, regulatory bodies, and the pharmaceutical industry, will advance this field.
Collapse
Affiliation(s)
- Deborah Mason
- Biomechanics and Bioengineeering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Martin Englund
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Clinical Epidemiology Unit, Lund Unversity, Lund, Sweden
| | - Fiona E Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Matta C, Fellows CR, Quasnichka H, Williams A, Jeremiasse B, Allaway D, Mobasheri A. Clusterin secretion is attenuated by the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α in models of cartilage degradation. J Orthop Res 2021; 39:1017-1029. [PMID: 32725904 DOI: 10.1002/jor.24814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
The protein clusterin has been implicated in the molecular alterations that occur in articular cartilage during osteoarthritis (OA). Clusterin exists in two isoforms with opposing functions, and their roles in cartilage have not been explored. The secreted form of clusterin (sCLU) is a cytoprotective extracellular chaperone that prevents protein aggregation, enhances cell proliferation and promotes viability, whereas nuclear clusterin acts as a pro-death signal. Therefore, these two clusterin isoforms may be putative molecular markers of repair and catabolic responses in cartilage and the ratio between them may be important. In this study, we focused on sCLU and used established, pathophysiologically relevant, in vitro models to understand its role in cytokine-stimulated cartilage degradation. The secretome of equine cartilage explants, osteochondral biopsies and isolated unpassaged chondrocytes was analyzed by western blotting for released sCLU, cartilage oligomeric protein (COMP) and matrix metalloproteinases (MMP) 3 and 13, following treatment with the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α. Release of sulfated glycosaminoglycans (sGAG) was determined using the dimethylmethylene blue assay. Clusterin messenger RNA (mRNA) expression was quantified by quantitative real-time polymerase chain reaction. MMP-3, MMP-13, COMP, and sGAG release from explants and osteochondral biopsies was elevated with cytokine treatment, confirming cartilage degradation in these models. sCLU release was attenuated with cytokine treatment in all models, potentially limiting its cytoprotective function. Clusterin mRNA expression was down-regulated 7-days post cytokine stimulation. These observations implicate sCLU in catabolic responses of chondrocytes, but further studies are required to evaluate its role in OA and its potential as an investigative biomarker.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Christopher R Fellows
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Helen Quasnichka
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | | | - Bernadette Jeremiasse
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David Allaway
- Biomarkers Division, WALTHAM Petcare Science Institute, Waltham-on-the-Wolds, Leicestershire, UK
| | - Ali Mobasheri
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics, University Medical Centre Utrecht, Utrecht, The Netherlands.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
38
|
Kim HS, Lee JH, Mandakhbayar N, Jin GZ, Kim SJ, Yoon JY, Jo SB, Park JH, Singh RK, Jang JH, Shin US, Knowles JC, Kim HW. Therapeutic tissue regenerative nanohybrids self-assembled from bioactive inorganic core / chitosan shell nanounits. Biomaterials 2021; 274:120857. [PMID: 33965799 DOI: 10.1016/j.biomaterials.2021.120857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Natural inorganic/organic nanohybrids are a fascinating model in biomaterials design due to their ultra-microstructure and extraordinary properties. Here, we report unique-structured nanohybrids through self-assembly of biomedical inorganic/organic nanounits, composed of bioactive inorganic nanoparticle core (hydroxyapatite, bioactive glass, or mesoporous silica) and chitosan shell - namely Chit@IOC. The inorganic core thin-shelled with chitosan could constitute as high as 90%, strikingly contrasted with the conventional composites. The Chit@IOC nanohybrids were highly resilient under cyclic load and resisted external stress almost an order of magnitude effectively than the conventional composites. The nanohybrids, with the nano-roughened surface topography, could accelerate the cellular responses through stimulated integrin-mediated focal adhesions. The nanohybrids were also able to load multiple therapeutic molecules in the core and shell compartment and then release sequentially, demonstrating controlled delivery systems. The nanohybrids compartmentally-loaded with therapeutic molecules (dexamethasone, fibroblast growth factor 2, and phenamil) were shown to stimulate the anti-inflammatory, pro-angiogenic and osteogenic events of relevant cells. When implanted in the in vivo calvarium defect model with 3D-printed scaffold forms, the therapeutic nanohybrids were proven to accelerate new bone formation. Overall, the nanohybrids self-assembled from Chit@IOC nanounits, with their unique properties (ultrahigh inorganic content, nano-topography, high resilience, multiple-therapeutics delivery, and cellular activation), can be considered as promising 3D tissue regenerative platforms.
Collapse
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sung-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea; UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, South Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
39
|
Bone Tissue Metabolism in Dynamics of Experimental Knee Osteoarthrosis Induced by Dexamethasone and Talcum. Bull Exp Biol Med 2021; 170:734-736. [PMID: 33893944 DOI: 10.1007/s10517-021-05143-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 10/21/2022]
Abstract
We studied remodeling of the bone tissue in the dynamics of experimental dexamethasoneand talcum-induced knee osteoarthrosis. Disturbed osteoclastogenesis accompanied by a decrease in the production of fibroblast growth factor-23 and elevation of serum osteoprotegerin and osteocalcin were observed at the early stages of the disease. During progression of degenerative and dystrophic processes in the joint tissues, an increase in sclerostin concentrations, a decrease in osteocalcin content, and changes in the force and direction of correlations between osteoblast processes and osteoclastogenesis as well as hierarchic distribution of the dominating mechanism of subchondral remodeling were revealed.
Collapse
|
40
|
Zewail M, Nafee N, Boraie N. Intra-Articular Dual Drug Delivery for Synergistic Rheumatoid Arthritis Treatment. J Pharm Sci 2021; 110:2808-2822. [PMID: 33848528 DOI: 10.1016/j.xphs.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Systemic rheumatoid arthritis (RA) regimens fail to attain effective drug level at the affected joints and are associated with serious side effects. Herein, an attempt made to improve therapeutic outcomes of both leflunomide (LEF) which is a disease modifying antirheumatic and dexamethasone (Dex) through local delivery of combination therapy by intra-articular route. LEF and Dex were encapsulated in nanostructured lipid carriers (NLCs) and PLGA nanoparticles (NPs), respectively. Both nanocarriers were loaded into chitosan/β glycerophosphate (CS/βGP) thermo-sensitive hydrogels and injected intra-articularly in adjuvant induced RA rat model. Particle size of LEF NLCs and selected Dex NPs formulations were 200 and 119 nm, respectively. Dex NPs and LEF NLCs showed a sustained release profile for up to 58 and 17 days, respectively. After 14 days of treatment remarkable joint healing was observed for groups treated with Dex NPs in combination with either free LEF or LEF NLCs in CS/βGP hydrogel. Joint diameter measurements, TNF α levels and histopathological examination of dissected joints showed comparable values to the negative control group. This might be attributed to the synergistic effect of drug combination besides the ability of nanocarriers loaded hydrogel to prolong joint residence time and enhance joint healing potential.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, El Gomhoria Street, Damanhour, Egypt.
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
41
|
DeJulius CR, Gulati S, Hasty KA, Crofford LJ, Duvall CL. Recent Advances in Clinical Translation of Intra-Articular Osteoarthritis Drug Delivery Systems. ADVANCED THERAPEUTICS 2021; 4:2000088. [PMID: 33709019 PMCID: PMC7941755 DOI: 10.1002/adtp.202000088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints and a leading cause of physical disability in adults. Intra-articular (IA) therapy is a popular treatment strategy for localized, single-joint OA; however, small-molecule drugs such as corticosteroids do not provide prolonged relief. One possible reason for their lack of efficacy is high clearance rates from the joint through constant lymphatic drainage of the synovial tissues and synovial fluid and also by their exchange via the synovial vasculature. Advanced drug delivery strategies for extended release of therapeutic agents in the joint space is a promising approach to improve outcomes for OA patients. Broadly, the basic principle behind this strategy is to encapsulate therapeutic agents in a polymeric drug delivery system (DDS) for diffusion- and/or degradation-controlled release, whereby degradation can occur by hydrolysis or tied to relevant microenvironmental cues such as pH, reactive oxygen species (ROS), and protease activity. In this review, we highlight the development of clinically tested IA therapies for OA and highlight recent systems which have been investigated preclinically. DDS strategies including hydrogels, liposomes, polymeric microparticles (MPs) and nanoparticles (NPs), drug conjugates, and combination systems are introduced and evaluated for clinical translational potential.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| | - Karen A Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, 1211 Union Ave. Suite 520, Memphis, TN 38104, United States
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, 1161 21 Ave. S., Nashville, TN 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, United States
| |
Collapse
|
42
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 DOI: 10.2139/ssrn.3619770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
43
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 PMCID: PMC7794037 DOI: 10.1371/journal.pmed.1003501] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
44
|
Barbin T, Groppo F, Toledo F, Costa Y, Clemente-Napimoga J, Figueroba S. The effect of omega-3 in temporomandibular joint synovial tissues of rats with induced arthritis: pilot study. Int J Oral Maxillofac Surg 2020; 49:1319-1325. [DOI: 10.1016/j.ijom.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
|
45
|
Gress K, Charipova K, An D, Hasoon J, Kaye AD, Paladini A, Varrassi G, Viswanath O, Abd-Elsayed A, Urits I. Treatment recommendations for chronic knee osteoarthritis. Best Pract Res Clin Anaesthesiol 2020; 34:369-382. [PMID: 33004154 DOI: 10.1016/j.bpa.2020.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Primary osteoarthritis (OA) hinders an aging global population as one of the leading causes of years-lost-to-disability (YLD). OA in most patients is considered to be an overuse injury that results in degenerative inflammation of the joints with the associated formation of bony outgrowths. Due to the escalating nature of this chronic pain disease, treatment management for OA can initially begin with a more conservative approach. It can eventually lead to more invasive surgical procedures. At present, the standard of care remains initial conservative management with lifestyle changes, including weight loss with concurrent anti-inflammatory regimens. Injections are frequently used for the escalation of care, but a significant number of patients ultimately resort to total knee arthroplasty. This review will focus specifically on knee OA, providing a brief overview of risk factors and early management and in-depth exploration of the invasive interventions that can offer symptomatic relief and return of function.
Collapse
Affiliation(s)
- Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Daniel An
- Georgetown University School of Medicine, Washington, DC, USA
| | - Jamal Hasoon
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Alan D Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | | | | | - Omar Viswanath
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA; Valley Pain Consultants, Envision Physician Services, Phoenix, AZ, USA; University of Arizona College of Medicine-Phoenix, Department of Anesthesiology, Phoenix, AZ, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
| | - Alaa Abd-Elsayed
- Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Abstract
Aim: Additively manufactured (3D printed), stainless steel implants were coated with dexamethasone using gelatin, chondroitin sulfate for use in bone graft surgeries. Materials & methods: The drug and polymers were deposited on the implants with a rough surface using a high precision air brush. The gelatin-chondroitin sulfate layers were cross-linked using glutaraldehyde. Results: The drug content uniformity was within 100 ± 5%, and the thickness of the polymer layer was 410 ± 5.2 μm. The in vitro release studies showed a biphasic pattern with an initial burst release followed by slow release up to 3 days. Conclusion: These results are very promising as the slow release implants can be further tested in vivo in large animals, such as cattle and horses to prevent the inflammatory cascade following surgeries.
Collapse
|
47
|
Eom TH, Lim HR, Jeong SH, Park KS, Jang CH. Hearing Results Following Type 1 Tympanoplasty in Elderly Patients. In Vivo 2020; 34:1395-1398. [PMID: 32354936 DOI: 10.21873/invivo.11919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIM The outcomes of type 1 tympanoplasty in elderly patients remain controversial. Therefore, more studies are needed to clarify the prognosis of elderly patients after tympanoplasty. The purpose of this study was to evaluate the clinical outcomes of type 1 tympanoplasty in elderly patients. PATIENTS AND METHODS We retrospectively analyzed data from 116 patients who underwent type 1 tympanoplasty due to chronic otitis media. Seventy-one of the 116 patients were elderly individuals aged 65 years or older (study group). Forty-five patients were younger than 65 years (control group). Due to cochlear intolerance by aging in the study group, we used dexamethasone soaked gelfoam packing in the middle ear and intraoperative dexamethasone injection. To compare the outcomes between groups, we determined the mean hearing levels by averaging the hearing thresholds. The differences in the air-bone gaps before and after tympanoplasty were compared between groups. RESULTS In the study group, 54 patients had an underlying disease (76%). Hypertension was the most common underlying disease. The postoperative air conduction (AC) and bone conduction (BC) improved in both the study group and the control group. In the control group, postoperative air-bone gap (ABG) was significantly higher than preoperative ABG. Although the postoperative ABG improved in the study group, the improvement was insignificant. CONCLUSION Although significant improvement of ABG was not achieved, postoperative AC and BC were improved. Intraoperative dexamethasone injection and dexamethasone soaked gelfoam packing in the middle ear was effective to prevent deterioration of BC after operation.
Collapse
Affiliation(s)
- Tae-Ho Eom
- Suwan Best ENT Clinic, Gwangju, Republic of Korea
| | - Hye-Rin Lim
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Se-Hyun Jeong
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyeong-Suk Park
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
48
|
García-Fernández L, Olmeda-Lozano M, Benito-Garzón L, Pérez-Caballer A, San Román J, Vázquez-Lasa B. Injectable hydrogel-based drug delivery system for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110702. [DOI: 10.1016/j.msec.2020.110702] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023]
|
49
|
Kunze KN, Mirzayan R, Beletsky A, Cregar W, Skallerud W, Williams BT, Verma NN, Cole BJ, Chahla J. Do Corticosteroid Injections Before or After Primary Rotator Cuff Repair Influence the Incidence of Adverse Events? A Subjective Synthesis. Arthroscopy 2020; 36:1476-1484. [PMID: 32035175 DOI: 10.1016/j.arthro.2020.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/01/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine the influence of corticosteroid injections (CSIs) before or after primary rotator cuff repair (RCR) on the risk of (1) revision RCR, (2) retears, and (3) infections. METHODS The Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, PubMed, Embase, and MEDLINE databases were queried in accordance with the 2009 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Data pertaining to the use of CSIs before or after primary RCR and adverse events were extracted. A subjective synthesis of these outcomes and bias was performed. RESULTS A total of 10 studies including 240,976 patients were identified; 20.0% received a perioperative CSI. Of the 48,235 patients who received a CSI, 66.2% did so preoperatively whereas 33.8% did so postoperatively. A total of 78 patients received both preoperative and postoperative CSIs. Three studies examined the influence of preoperative CSIs on revision RCR; the incidence ranged from 3.8% to 10.5% with preoperative CSIs and from 3.2% to 3.4% for controls. Two of these studies analyzed outcomes of patients from the same databases over the same period. Five studies examined the influence of postoperative CSI use on retears; the incidence ranged from 5.7% to 19.0% in patients who received postoperative CSIs and from 10.0% to 18.4% for controls. Three studies examined the influence of CSI use on infection; 2 studies examined the risk of infection after postoperative CSI use, which ranged from 0.0% to 6.7% with CSIs and from 0.0% to 0.5% for controls. CONCLUSIONS The use of preoperative CSIs could be associated with an increased risk of revision RCR. There were no conclusive data to suggest an increased risk of retear or infection with CSI use based on a subjective synthesis of ranges. There is currently poor-quality literature surrounding this topic. Given that the current literature is limited and heterogeneous, no definitive recommendations can be made on perioperative CSI use for RCR. LEVEL OF EVIDENCE Level III, systematic review of Level I and III studies.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - Raffy Mirzayan
- Department of Orthopaedic Surgery, Kaiser Permanente, Baldwin Park, California, U.S.A
| | - Alexander Beletsky
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - William Cregar
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - William Skallerud
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - Brady T Williams
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - Nikhil N Verma
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - Brian J Cole
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois
| | - Jorge Chahla
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
50
|
Montjean R, Escaich S, Paolini R, Carelli C, Pirson S, Neutelings T, Henrotin Y, Vêtu C. REG-O3 chimeric peptide combining growth hormone and somatostatin sequences improves joint function and prevents cartilage degradation in rat model of traumatic knee osteoarthritis. PLoS One 2020; 15:e0231240. [PMID: 32287299 PMCID: PMC7156079 DOI: 10.1371/journal.pone.0231240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objective REG-O3 is a 24-aminoacid chimeric peptide combining a sequence derived from growth hormone (GH) and an analog of somatostatin (SST), molecules displaying cartilage repair and anti-inflammatory properties, respectively. This study aimed to investigate the disease-modifying osteoarthritis drug (DMOAD) potential of REG-O3 by analyzing its effect on pain, joint function and structure, upon injection into osteoarthritic rat knee joint. Design Osteoarthritis was induced in the right knee of mature male Lewis rats (n = 12/group) by surgical transection of the anterior cruciate ligament (ACLT) combined with partial medial meniscectomy (pMMx). Treatments were administered intra-articularly from fourteen days after surgery through three consecutive injections one week apart. The effect of REG-O3, solubilized in a liposomal solution and injected at either 5, 25 or 50 μg/50 μL, was compared to liposomal (LIP), dexamethasone and hyaluronic acid (HA) solutions. The study endpoints were the pain/function measured once a week throughout the entire study, and the joint structure evaluated eight weeks after surgery using OARSI score. Results ACLT/pMMx surgery induced a significant modification of weight bearing in all groups. When compared to liposomal solution, REG-O3 was able to significantly improve weight bearing as efficiently as dexamethasone and HA. REG-O3 (25 μg) was also able to significantly decrease OARSI histological global score as well as degeneration of both cartilage and matrix while the other treatments did not. Conclusion This study provides evidence of a remarkable protecting effect of REG-O3 on pain/knee joint function and cartilage/matrix degradation in ACLT/pMMx model of rat osteoarthritis. REG-O3 thus displays an interesting profile as a DMOAD.
Collapse
Affiliation(s)
| | - Sonia Escaich
- Regulaxis SAS, Romainville, France
- ESE Conseil, Saint-Cloud, France
| | | | | | | | | | - Yves Henrotin
- Artialis SA, Tour GIGA, CHU Sart-Tilman, Liège, Belgium
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Liège, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
- * E-mail:
| | | |
Collapse
|