1
|
Pueyo Moliner A, Ito K, Zaucke F, Kelly DJ, de Ruijter M, Malda J. Restoring articular cartilage: insights from structure, composition and development. Nat Rev Rheumatol 2025:10.1038/s41584-025-01236-7. [PMID: 40155694 DOI: 10.1038/s41584-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Articular cartilage can withstand substantial compressive and shear forces within the joint and also reduces friction during motion. The exceptional mechanical properties of articular cartilage stem from its highly organized extracellular matrix (ECM). The ECM is composed mainly of collagen type II and is pivotal in conferring mechanical durability to the tissue within its proteoglycan-rich matrix. Articular cartilage is prone to injury and degeneration, and current treatments often fail to restore the mechanical function of this tissue. A key challenge is replicating the intricate collagen-proteoglycan network, which is essential for the long-lasting restoration and mechanical durability of the tissue. Understanding articular cartilage development, which arises between late embryonic and early juvenile development, is vital for the creation of durable therapeutic strategies. The development of the articular ECM involves the biosynthesis, fibrillogenesis and self-assembly of the collagen type II network, which, along with proteoglycans and minor ECM components, shapes the architecture of adult articular cartilage. A deeper understanding of these processes could inform biomaterial-based therapies aimed at improving therapeutic outcomes. Emerging biofabrication technologies offer new opportunities to integrate developmental principles into the creation of durable articular cartilage implants. Bridging fundamental biology with innovative engineering offers novel approaches to generating more-durable 3D implants for articular cartilage restoration.
Collapse
Affiliation(s)
- Alba Pueyo Moliner
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Presedo A, Rutz E, Howard JJ, Shrader MW, Miller F. The Etiology of Neuromuscular Hip Dysplasia and Implications for Management: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:844. [PMID: 39062293 PMCID: PMC11275045 DOI: 10.3390/children11070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This study summarizes the current knowledge of the etiology of hip dysplasia in children with neuromuscular disease and the implications for management. This article is based on a review of development of the hip joint from embryology through childhood growth. This knowledge is then applied to selective case reviews to show how the understanding of these developmental principles can be used to plan specific treatments. The development of the hip joint is controlled by genetic shape determination, but the final adult shape is heavily dependent on the mechanical environment experienced by the hip joint during growth and development. Children with neuromuscular conditions show a high incidence of coxa valga, hip dysplasia, and subluxation. The etiology of hip pathology is influenced by factors including functional status, muscular tone, motor control, child's age, and muscle strength. These factors in combination influence the development of high neck-shaft angle and acetabular dysplasia in many children. The hip joint reaction force (HJRF) direction and magnitude determine the location of the femoral head in the acetabulum, the acetabular development, and the shape of the femoral neck. The full range of motion is required to develop a round femoral head. Persistent abnormal direction and/or magnitude of HJRF related to the muscular tone can lead to a deformed femoral head and a dysplastic acetabulum. Predominating thigh position is the primary cause defining the direction of the HJRF, leading to subluxation in nonambulatory children. The magnitude and direction of the HJRF determine the acetabular shape. The age of the child when these pathomechanics occur acts as a factor increasing the risk of hip subluxation. Understanding the risk factors leading to hip pathology can help to define principles for the management of neurologic hip impairment. The type of neurologic impairment as defined by functional severity assessed by Gross Motor Function Classification System and muscle tone can help to predict the risk of hip joint deformity. A good understanding of the biomechanical mechanisms can be valuable for treatment planning.
Collapse
Affiliation(s)
- Ana Presedo
- Department of Pediatric Orthopaedics, Robert Debré University Hospital, 75019 Paris, France;
| | - Erich Rutz
- Department of Orthopaedics, The Royal Children’s Hospital, Melbourne 3052, Australia;
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne 3010, Australia
- Medical Faculty, University of Basel, 4001 Basel, Switzerland
| | - Jason J. Howard
- Department of Orthopaedics, Nemours Children’s Health, Wilmington, DE 19803, USA; (J.J.H.); (M.W.S.)
| | - Michael Wade Shrader
- Department of Orthopaedics, Nemours Children’s Health, Wilmington, DE 19803, USA; (J.J.H.); (M.W.S.)
| | - Freeman Miller
- Department of Orthopaedics, Nemours Children’s Health, Wilmington, DE 19803, USA; (J.J.H.); (M.W.S.)
| |
Collapse
|
3
|
Luo S, Chen Y, Zhou W, Canavese F, Li L. Pioneering a chick embryo model to explore the intrauterine etiology of developmental dysplasia of the hip in oligohydramnios conditions. Osteoarthritis Cartilage 2024; 32:869-880. [PMID: 38588889 DOI: 10.1016/j.joca.2024.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE To explore the impact of oligohydramnios on fetal movement and hip development, given its association with developmental dysplasia of the hip (DDH) but unclear mechanisms. METHODS Chick embryos were divided into four groups based on the severity of oligohydramnios induced by amniotic fluid aspiration (control, 0.2 mL, 0.4 mL, 0.6 mL). Fetal movement was assessed by detection of movement and quantification of residual amniotic fluid volume. Hip joint development was assessed by gross anatomic analysis, micro-computed tomography (micro-CT) for cartilage assessment, and histologic observation at multiple time points. In addition, a subset of embryos from the 0.4 mL aspirated group underwent saline reinfusion and subsequent evaluation. RESULTS Increasing volumes of aspirated amniotic fluid resulted in worsening of fetal movement restrictions (e.g., 0.4 mL aspirated and control group at E10: frequency difference -7.765 [95% CI: -9.125, -6.404]; amplitude difference -0.343 [95% CI: -0.588, -0.097]). The 0.4 mL aspirated group had significantly smaller hip measurements compared to controls, with reduced acetabular length (-0.418 [95% CI: -0.575, -0.261]) and width (-0.304 [95% CI: -0.491, -0.117]) at day E14.5. Histological analysis revealed a smaller femoral head (1.084 ± 0.264 cm) and shallower acetabulum (0.380 ± 0.106 cm) in the 0.4 mL group. Micro-CT showed cartilage matrix degeneration (13.6% [95% CI: 0.6%, 26.7%], P = 0.043 on E14.5). Saline reinfusion resulted in significant improvements in the femoral head to greater trochanter (0.578 [95% CI: 0.323, 0.833], P = 0.001). CONCLUSIONS Oligohydramnios can cause DDH by restricting fetal movement and disrupting hip morphogenesis in a time-dependent manner. Timely reversal of oligohydramnios during the fetal period may prevent DDH.
Collapse
Affiliation(s)
- Shaoting Luo
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Federico Canavese
- Department of Pediatric Orthopedic Surgery, Lille University Centre, Jeanne de Flandre Hospital, 59000 Lille, France
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
4
|
Ahmed S, Rogers AV, Nowlan NC. Mechanical loading due to muscle movement regulates establishment of the collagen network in the developing murine skeleton. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231023. [PMID: 37859832 PMCID: PMC10582611 DOI: 10.1098/rsos.231023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Mechanical loading is critical for collagen network maintenance and remodelling in adult skeletal tissues, but the role of loading in collagen network formation during development is poorly understood. We test the hypothesis that mechanical loading is necessary for the onset and maturation of spatial localization and structure of collagens in prenatal cartilage and bone, using in vivo and in vitro mouse models of altered loading. The majority of collagens studied was aberrant in structure or localization, or both, when skeletal muscle was absent in vivo. Using in vitro bioreactor culture system, we demonstrate that mechanical loading directly modulates the spatial localization and structure of collagens II and X. Furthermore, we show that mechanical loading in vitro rescues aspects of the development of collagens II and X from the effects of fetal immobility. In conclusion, our findings show that mechanical loading is a critical determinant of collagen network establishment during prenatal skeletal development.
Collapse
Affiliation(s)
- Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Khatib NS, Monsen J, Ahmed S, Huang Y, Hoey DA, Nowlan NC. Mechanoregulatory role of TRPV4 in prenatal skeletal development. SCIENCE ADVANCES 2023; 9:eade2155. [PMID: 36696489 PMCID: PMC9876556 DOI: 10.1126/sciadv.ade2155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Biophysical cues are essential for guiding skeletal development, but the mechanisms underlying the mechanical regulation of cartilage and bone formation are unknown. TRPV4 is a mechanically sensitive ion channel involved in cartilage and bone cell mechanosensing, mutations of which lead to skeletal developmental pathologies. We tested the hypothesis that loading-driven prenatal skeletal development is dependent on TRPV4 activity. We first establish that mechanically stimulating mouse embryo hindlimbs cultured ex vivo stimulates knee cartilage growth, morphogenesis, and expression of TRPV4, which localizes to areas of high biophysical stimuli. We then demonstrate that loading-driven joint cartilage growth and shape are dependent on TRPV4 activity, mediated via control of cell proliferation and matrix biosynthesis, indicating a mechanism by which mechanical loading could direct growth and morphogenesis during joint formation. We conclude that mechanoregulatory pathways initiated by TRPV4 guide skeletal development; therefore, TRPV4 is a valuable target for the development of skeletal regenerative and repair strategies.
Collapse
Affiliation(s)
- Nidal S. Khatib
- Department of Bioengineering, Imperial College London, London, UK
| | - James Monsen
- Department of Bioengineering, Imperial College London, London, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - Yuming Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - David A. Hoey
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Kim M, Koyama E, Saunders CM, Querido W, Pleshko N, Pacifici M. Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs. Biol Open 2022; 11:bio059381. [PMID: 35608281 PMCID: PMC9212078 DOI: 10.1242/bio.059381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The synovial cavity and its fluid are essential for joint function and lubrication, but their developmental biology remains largely obscure. Here, we analyzed E12.5 to E18.5 mouse embryo hindlimbs and discovered that cavitation initiates around E15.0 with emergence of multiple, discrete, µm-wide tissue discontinuities we term microcavities in interzone, evolving into a single joint-wide cavity within 12 h in knees and within 72-84 h in interphalangeal joints. The microcavities were circumscribed by cells as revealed by mTmG imaging and exhibited a carbohydrate and protein content based on infrared spectral imaging at micro and nanoscale. Accounting for differing cavitation kinetics, we found that the growing femur and tibia anlagen progressively flexed at the knee over time, with peak angulation around E15.5 exactly when the full knee cavity consolidated; however, interphalangeal joint geometry changed minimally over time. Indeed, cavitating knee interzone cells were elongated along the flexion angle axis and displayed oblong nuclei, but these traits were marginal in interphalangeal cells. Conditional Gdf5Cre-driven ablation of Has2 - responsible for production of the joint fluid component hyaluronic acid (HA) - delayed the cavitation process. Our data reveal that cavitation is a stepwise process, brought about by sequential action of microcavities, skeletal flexion and elongation, and HA accumulation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Minwook Kim
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheri M. Saunders
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Zhou W, Luo W, Liu D, Canavese F, Li L, Zhao Q. Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113408. [PMID: 35298972 DOI: 10.1016/j.ecoenv.2022.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The etiology of developmental dysplasia of the hip (DDH) is multifactorial, including breech presentation and hip capsular laxity. In particular, hip laxity is the main contributor to DDH by changing the ratio and distribution of collagens. Also, fluoride (F) affects collagens from various tissue besides bone and tooth. To investigate the association of DDH and excessive F intake, we conducted this research in lab on cell and animal model simultaneously. We established animal model of combination of DDH and F toxicity. The incidence of DDH in each group was calculated, and hip capsules were collected for testing histopathological and ultrastructural changes. The primary fibroblasts were further extracted from hip capsule and treated with F. The expression of collagen type I and III was both examined in vivo and in vitro, and the level of oxidative stress and apoptosis was also tested identically. We revealed that the incidence of DDH increased with F concentration. Furthermore, the oxidative stress and apoptosis levels of hip capsules and fibroblasts both increased after F exposure. Therefore, this study shows that excessive F intake increases susceptibility to DDH by altering hip capsular laxity in vivo and in vitro respectively. We believe that F might be a risk factor for DDH by increasing hip laxity induced by triggering fibroblast oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weizheng Zhou
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Federico Canavese
- Department of Pediatric Orthopedics, Lille University Center, Jeanne de Flandres Hospital, Avenue Eugène-Avinée, Lille 59037, France
| | - Lianyong Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Qun Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| |
Collapse
|
8
|
Siddicky SF, Wang J, Rabenhorst B, Buchele L, Mannen EM. Exploring infant hip position and muscle activity in common baby gear and orthopedic devices. J Orthop Res 2021; 39:941-949. [PMID: 34566253 PMCID: PMC8462515 DOI: 10.1002/jor.24818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
Infant positioning in daily life may affect hip development. While neonatal animal studies indicate detrimental relationships between inactive lower extremities and hip development and dysplasia, no research has explored infant hip biomechanics experimentally. This study evaluated hip joint position and lower extremity muscle activity of healthy infants in common body positions, baby gear, and orthopedic devices used to treat hip dysplasia (the Pavlik harness and the Rhino cruiserabduction brace). Surface electromyography(EMG) and marker-based motion capture recorded lower extremity muscle activity and kinematics of 22 healthy full-term infants (4.2±1.6 months, 13M/9F) during five conditions: Pavlik harness, Rhino brace, inward-facing soft-structured baby carrier, held in arms facing inwards, and a standard car seat. Mean filtered EMG signal, time when muscles were active, and hip position (angles) were calculated. Compared to the Pavlik harness, infants exhibited similar adductor activity (but lower hamstring and gluteus maximus activity) in the Rhino abduction brace, similar adductor and gluteus maximus activity (but lower quadriceps and hamstring activity) in the baby carrier, similar but highly variable muscle activity in-arms, and significantly lower muscle activity in the car seat. Hip position was similar between the baby carrier and the Pavlik harness. This novel infant biomechanics study illustrates the potential benefits of using inward-facing soft-structured baby carriers for healthy hip development and highlights the potential negative impact of using supine-lying container-type devices such as car seats for prolonged periods of time. Further study is needed to understand the full picture of how body position impacts infant musculoskeletal development.
Collapse
Affiliation(s)
- Safeer F. Siddicky
- Department of Orthopaedic Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
- Mechanical and Biomedical Engineering Department, College of Engineering, Boise State University, Boise, ID
| | - Junsig Wang
- Department of Orthopaedic Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Brien Rabenhorst
- Department of Orthopaedic Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lauren Buchele
- Department of Orthopaedic Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Erin M. Mannen
- Department of Orthopaedic Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
- Mechanical and Biomedical Engineering Department, College of Engineering, Boise State University, Boise, ID
| |
Collapse
|
9
|
Rolfe RA, Scanlon O'Callaghan D, Murphy P. Joint development recovery on resumption of embryonic movement following paralysis. Dis Model Mech 2021; 14:dmm048913. [PMID: 33771841 PMCID: PMC8084573 DOI: 10.1242/dmm.048913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Fetal activity in utero is a normal part of pregnancy and reduced or absent movement can lead to long-term skeletal defects, such as Fetal Akinesia Deformation Sequence, joint dysplasia and arthrogryposis. A variety of animal models with decreased or absent embryonic movements show a consistent set of developmental defects, providing insight into the aetiology of congenital skeletal abnormalities. At developing joints, defects include reduced joint interzones with frequent fusion of cartilaginous skeletal rudiments across the joint. At the spine, defects include shortening and a spectrum of curvature deformations. An important question, with relevance to possible therapeutic interventions for human conditions, is the capacity for recovery with resumption of movement following short-term immobilisation. Here, we use the well-established chick model to compare the effects of sustained immobilisation from embryonic day (E)4-10 to two different recovery scenarios: (1) natural recovery from E6 until E10 and (2) the addition of hyperactive movement stimulation during the recovery period. We demonstrate partial recovery of movement and partial recovery of joint development under both recovery conditions, but no improvement in spine defects. The joints examined (elbow, hip and knee) showed better recovery in hindlimb than forelimb, with hyperactive mobility leading to greater recovery in the knee and hip. The hip joint showed the best recovery with improved rudiment separation, tissue organisation and commencement of cavitation. This work demonstrates that movement post paralysis can partially recover specific aspects of joint development, which could inform therapeutic approaches to ameliorate the effects of human fetal immobility. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
10
|
Bridglal DL, Boyle CJ, Rolfe RA, Nowlan NC. Quantifying the tolerance of chick hip joint development to temporary paralysis and the potential for recovery. Dev Dyn 2020; 250:450-464. [PMID: 32776603 DOI: 10.1002/dvdy.236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Abnormal fetal movements are implicated in joint pathologies such as arthrogryposis and developmental dysplasia of the hip (DDH). Experimentally induced paralysis disrupts joint cavitation and morphogenesis leading to postnatal abnormalities. However, the developmental window(s) most sensitive to immobility-and therefore the best time for intervention-have never been identified. Here, we systematically vary the timing and duration of paralysis during early chick hip joint development. We then test whether external manipulation of immobilized limbs can mitigate the effects of immobility. RESULTS Timing of paralysis affected the level of disruption to joints, with paralysis periods between embryonic days 4 and 7 most detrimental. Longer paralysis periods produced greater disruption in terms of failed cavitation and abnormal femoral and acetabular geometry. External manipulation of an immobilized limb led to more normal morphogenesis and cavitation compared to un-manipulated limbs. CONCLUSIONS Temporary paralysis is detrimental to joint development, particularly during days 4 to 7. Developmental processes in the very early stages of joint development may be critical to DDH, arthrogryposis, and other joint pathologies. The developing limb has the potential to recover from periods of immobility, and external manipulation provides an innovative avenue for prevention and treatment of developmental joint pathologies.
Collapse
Affiliation(s)
- Devi L Bridglal
- Department of Bioengineering, Imperial College London, London, UK
| | - Colin J Boyle
- Department of Bioengineering, Imperial College London, London, UK
| | - Rebecca A Rolfe
- Department of Bioengineering, Imperial College London, London, UK.,Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
11
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Sotiriou V, Rolfe RA, Murphy P, Nowlan NC. Effects of Abnormal Muscle Forces on Prenatal Joint Morphogenesis in Mice. J Orthop Res 2019; 37:2287-2296. [PMID: 31297860 DOI: 10.1002/jor.24415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/02/2019] [Indexed: 02/04/2023]
Abstract
Fetal movements are essential for normal development of the human skeleton. When fetal movements are reduced or restricted, infants are at higher risk of developmental dysplasia of the hip and arthrogryposis (multiple joint contractures). Joint shape abnormalities have been reported in mouse models with abnormal or absent musculature, but the effects on joint shape in such models have not been quantified or characterized in detail. In this study, embryonic mouse forelimbs and hindlimbs at a single developmental stage (Theiler Stage 23) with normal, reduced, or absent muscle were imaged in three-dimensions. Skeletal rudiments were virtually segmented and rigid image registration was used to reliably align rudiments with each other, enabling repeatable assessment and measurement of joint shape differences between normal, reduced-muscle and absent-muscle groups. We demonstrate qualitatively and quantitatively that joint shapes are differentially affected by a lack of, or reduction in, skeletal muscle, with the elbow joint being the most affected of the major limb joints. Surprisingly, the effects of reduced muscle were often more pronounced than those of absent skeletal muscle, indicating a complex relationship between muscle mass and joint morphogenesis. These findings have relevance for human developmental disorders of the skeleton in which abnormal fetal movements are implicated, particularly developmental dysplasia of the hip and arthrogryposis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2287-2296, 2019.
Collapse
Affiliation(s)
- Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London, SW6 7NA, UK
| | - Rebecca A Rolfe
- Department of Bioengineering, Imperial College London, London, SW6 7NA, UK.,Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, SW6 7NA, UK
| |
Collapse
|
13
|
Young M, Selleri L, Capellini TD. Genetics of scapula and pelvis development: An evolutionary perspective. Curr Top Dev Biol 2019; 132:311-349. [PMID: 30797513 PMCID: PMC6430119 DOI: 10.1016/bs.ctdb.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tetrapods, the scapular and pelvic girdles perform the important function of anchoring the limbs to the trunk of the body and facilitating the movement of each appendage. This shared function, however, is one of relatively few similarities between the scapula and pelvis, which have significantly different morphologies, evolutionary histories, embryonic origins, and underlying genetic pathways. The scapula evolved in jawless fish prior to the pelvis, and its embryonic development is unique among bones in that it is derived from multiple progenitor cell populations, including the dermomyotome, somatopleure, and neural crest. Conversely, the pelvis evolved several million years later in jawed fish, and it develops from an embryonic somatopleuric cell population. The genetic networks controlling the formation of the pelvis and scapula also share similarities and differences, with a number of genes shaping only one or the other, while other gene products such as PBX transcription factors act as hierarchical developmental regulators of both girdle structures. Here, we provide a detailed review of the cellular processes and genetic networks underlying pelvis and scapula formation in tetrapods, while also highlighting unanswered questions about girdle evolution and development.
Collapse
Affiliation(s)
- Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States; Program in Craniofacial Biology, Department of Anatomy, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States.
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States.
| |
Collapse
|
14
|
Giorgi M, Sotiriou V, Fanchini N, Conigliaro S, Bignardi C, Nowlan NC, Dall’Ara E. Prenatal growth map of the mouse knee joint by means of deformable registration technique. PLoS One 2019; 14:e0197947. [PMID: 30605480 PMCID: PMC6317797 DOI: 10.1371/journal.pone.0197947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/09/2018] [Indexed: 11/24/2022] Open
Abstract
Joint morphogenesis is the process during which distinct and functional joint shapes emerge during pre- and post-natal joint development. In this study, a repeatable semi-automatic protocol capable of providing a 3D realistic developmental map of the prenatal mouse knee joint was designed by combining Optical Projection Tomography imaging (OPT) and a deformable registration algorithm (Sheffield Image Registration toolkit, ShIRT). Eleven left limbs of healthy murine embryos were scanned with OPT (voxel size: 14.63μm) at two different stages of development: Theiler stage (TS) 23 (approximately 14.5 embryonic days) and 24 (approximately 15.5 embryonic days). One TS23 limb was used to evaluate the precision of the displacement predictions for this specific case. The remaining limbs were then used to estimate Developmental Tibia and Femur Maps. Acceptable uncertainties of the displacement predictions computed from repeated images were found for both epiphyses (between 1.3μm and 1.4μm for the proximal tibia and between 0.7μm and 1.0μm for the femur, along all directions). The protocol was found to be reproducible with maximum Modified Housdorff Distance (MHD) differences equal to 1.9 μm and 1.5 μm for the tibial and femoral epiphyses respectively. The effect of the initial shape of the rudiment affected the developmental maps with MHD of 21.7 μm and 21.9 μm for the tibial and femoral epiphyses respectively, which correspond to 1.4 and 1.5 times the voxel size. To conclude, this study proposes a repeatable semi-automatic protocol capable of providing mean 3D realistic developmental map of a developing rudiment allowing researchers to study how growth and adaptation are directed by biological and mechanobiological factors.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kindom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kindom
- Certara QSP, Certara UK Limited, Simcyp Division, Sheffield, United Kindom
- * E-mail:
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London, United Kindom
| | | | | | | | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kindom
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kindom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kindom
| |
Collapse
|
15
|
Mureşan S, Mărginean MO, Voidăzan S, Vlasa I, Sîntean I. Musculoskeletal ultrasound: a useful tool for diagnosis of hip developmental dysplasia: One single-center experience. Medicine (Baltimore) 2019; 98:e14081. [PMID: 30633215 PMCID: PMC6336624 DOI: 10.1097/md.0000000000014081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/27/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the most common congenital abnormalities of the musculoskeletal apparatus in newborns. The aim of this study was to analyze the contribution of ultrasonography in the detection of DDH in newborns and infants, identifying the regional incidence of this pathology in the central area of Romania, emphasizing the risk factors that underlie DDH etiopathogenicity.This article represents a retrospective study of 847 newborns and infants examined in the Imagistic Department of a medical center from the central area of Romania, between January 1 and December 31, 2016. The ultrasound examinations were performed for the bilateral coxofemoral joints, using the method and technique described by Graf. For subjects born in the same medical center, data regarding mother's age, birth weights, and type of delivery (natural vs. caesarian section) were statistically analyzed.In our study group, the frequency of ultrasound diagnosis obtained from the examinations of right and left hips showed that the most frequent stage was type IA, and the rarest stage was III. The IA stage of right coxofemoral joints (87.3%) was higher than in the left coxofemoral joints (87.2%). The incidence of hip dysplasia (type III) diagnosed with ultrasound examinations in subjects from the central area of Romania was 0.2% (0.1% in both hips and 0.1% for the left coxofemoral joint).The musculoskeletal ultrasound examination is effective in early detection of hip dysplasia. The implementation of national and regional programs that promote indications, risk factors, and the screening age for DDH in both rural and urban areas could be a step forward in the early diagnosis of hip dysplasia for newborns and infants. The low incidence of DDH from our study group is not able to identify the role of advanced age of the mother, high birth weight of the newborn, or caesarean section as risk factors involved in the etiology of hip dysplasia. The implementation of national and regional programs that promote the musculoskeletal ultrasound as a screening imagistic investigation for DDH, in both rural and urban areas, could be a step forward in the early diagnosis of hip dysplasia for newborns and infants.
Collapse
Affiliation(s)
| | | | - Septimiu Voidăzan
- Epidemiology Department, University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureş
| | - Ionuţ Vlasa
- Gynecological Clinic No. 1, Emergency County Hospital Târgu Mureş
| | - Ioana Sîntean
- University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
16
|
Killian ML, Locke RC, James MG, Atkins PR, Anderson AE, Clohisy JC. Novel model for the induction of postnatal murine hip deformity. J Orthop Res 2019; 37:151-160. [PMID: 30259572 PMCID: PMC6393179 DOI: 10.1002/jor.24146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/12/2018] [Indexed: 02/04/2023]
Abstract
Acetabular dysplasia is a common, multi-etiological, pre-osteoarthritic (OA) feature that can lead to pain and instability of the young adult hip. Despite the clinical significance of acetabular dysplasia, there is a paucity of small animal models to investigate structural and functional changes that mediate morphology of the dysplastic hip and drive the subsequent OA cascade. Utilizing a novel murine model developed in our laboratory, this study investigated the role of surgically induced unilateral instability of the postnatal hip on the initiation and progression of acetabular dysplasia and impingement up to 8-weeks post-injury. C57BL6 mice were used to develop titrated levels of hip instability (i.e., mild, moderate, and severe instabillity or femoral head resection) at weaning. Joint shape, acetabular coverage, histomorphology, and statistical shape modeling were used to assess quality of the hip following 8 weeks of destabilization. Acetabular coverage was reduced following severe, but not moderate, instability. Moderate instability induced lateralization of the femur without dislocation, whereas severe instability led to complete dislocation and pseudoacetabulae formation. Mild instability did not result in morphological changes to the hip. Removal of the femoral head led to reduced hip joint space volume. These data support the notion that hip instability, driven by mechanical loss-of-function of soft connective tissue, can induce morphometric changes in the growing mouse hip. This work developed a new mouse model to study hip health in the murine adolescent hip and is a useful tool for investigating the mechanical and structural adaptations to hip instability during growth. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 5 Innovation Way, Suite 200, Newark, Delaware 19716,,Department of Orthopaedic Surgery, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis, Missouri 63110
| | - Ryan C. Locke
- Department of Biomedical Engineering, University of Delaware, 5 Innovation Way, Suite 200, Newark, Delaware 19716
| | - Michael G. James
- Department of Orthopaedic Surgery, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis, Missouri 63110
| | - Penny R. Atkins
- Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, Utah 84112,,Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, Utah 84108
| | - Andrew E. Anderson
- Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, Utah 84112,,Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, Utah 84108
| | - John C. Clohisy
- Department of Orthopaedic Surgery, Washington University School of Medicine, 425 S. Euclid Avenue, Saint Louis, Missouri 63110
| |
Collapse
|
17
|
Lawrence EA, Kague E, Aggleton JA, Harniman RL, Roddy KA, Hammond CL. The mechanical impact of col11a2 loss on joints; col11a2 mutant zebrafish show changes to joint development and function, which leads to early-onset osteoarthritis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0335. [PMID: 30249781 PMCID: PMC6158203 DOI: 10.1098/rstb.2017.0335] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Collagen is the major structural component of cartilage, and mutations in the genes encoding type XI collagen are associated with severe skeletal dysplasias (fibrochondrogenesis and Stickler syndrome) and early-onset osteoarthritis (OA). The impact of the lack of type XI collagen on cell behaviour and mechanical performance during skeleton development is unknown. We studied a zebrafish mutant for col11a2 and evaluated cartilage, bone development and mechanical properties to address this. We show that in col11a2 mutants, type II collagen is made but is prematurely degraded in maturing cartilage and ectopically expressed in the joint. These changes are correlated with increased stiffness of both bone and cartilage; quantified using atomic force microscopy. In the mutants, the skeletal rudiment terminal region in the jaw joint is broader and the interzone smaller. These differences in shape and material properties impact on joint function and mechanical performance, which we modelled using finite element analyses. Finally, we show that col11a2 heterozygous carriers reach adulthood but show signs of severe early-onset OA. Taken together, our data demonstrate a key role for type XI collagen in maintaining the properties of cartilage matrix; which when lost leads to alterations to cell behaviour that give rise to joint pathologies.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Elizabeth A Lawrence
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Jessye A Aggleton
- School of Anthropology and Archaeology, University of Bristol, Bristol BS8 1UU, UK
| | | | - Karen A Roddy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
18
|
Pan XS, Li J, Brown EB, Kuo CK. Embryo movements regulate tendon mechanical property development. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0325. [PMID: 30249775 PMCID: PMC6158208 DOI: 10.1098/rstb.2017.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
Tendons transmit forces from muscles to bones to enable skeletal motility. During development, tendons begin to bear load at the onset of embryo movements. Using the chick embryo model, this study showed that altered embryo movement frequency led to changes in elastic modulus of calcaneal tendon. In particular, paralysis led to decreased modulus, whereas hypermotility led to increased modulus. Paralysis also led to reductions in activity levels of lysyl oxidase (LOX), an enzyme that we previously showed is required for cross-linking-mediated elaboration of tendon mechanical properties. Additionally, inhibition of LOX activity abrogated hypermotility-induced increases in modulus. Taken together, our findings suggest embryo movements are critical for tendon mechanical property development and implicate LOX in this process. These exciting findings expand current knowledge of how functional tendons form during development and could guide future clinical approaches to treat tendon defects associated with abnormal mechanical loading in utero. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.
Collapse
Affiliation(s)
- Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA.,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14620, USA
| | - Jiewen Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA.,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14620, USA
| | - Edward B Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA.,Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY 14620, USA.,Wilmot Cancer Center, University of Rochester School of Medicine, Rochester, NY 14620, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA .,Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14620, USA.,Department of Orthopaedics, University of Rochester School of Medicine, Rochester, NY 14620, USA
| |
Collapse
|
19
|
Parisi C, Chandaria VV, Nowlan NC. Blocking mechanosensitive ion channels eliminates the effects of applied mechanical loading on chick joint morphogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0317. [PMID: 30249769 PMCID: PMC6158207 DOI: 10.1098/rstb.2017.0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
Abnormalities in joint shape are increasingly considered a critical risk factor for developing osteoarthritis in life. It has been shown that mechanical forces during prenatal development, particularly those due to fetal movements, play a fundamental role in joint morphogenesis. However, how mechanical stimuli are sensed or transduced in developing joint tissues is unclear. Stretch-activated and voltage-gated calcium ion channels have been shown to be involved in the mechanoregulation of chondrocytes in vitro. In this study, we analyse, for the first time, how blocking these ion channels influences the effects of mechanical loading on chick joint morphogenesis. Using in vitro culture of embryonic chick hindlimb explants in a mechanostimulation bioreactor, we block stretch-activated and voltage-gated ion channels using, respectively, gadolinium chloride and nifedipine. We find that the administration of high doses of either drug largely removed the effects of mechanical stimulation on growth and shape development in vitro, while neither drug had any effect in static cultures. This study demonstrates that, during joint morphogenesis, mechanical cues are transduced—at least in part—through mechanosensitive calcium ion channels, advancing our understanding of cartilage development and mechanotransduction. This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.
Collapse
Affiliation(s)
- Cristian Parisi
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vikesh V Chandaria
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
20
|
Variability in strain distribution in the mice tibia loading model: A preliminary study using digital volume correlation. Med Eng Phys 2018; 62:7-16. [PMID: 30243888 DOI: 10.1016/j.medengphy.2018.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/28/2018] [Accepted: 09/02/2018] [Indexed: 01/27/2023]
Abstract
It is well known that bone has an enormous adaptive capacity to mechanical loadings, and to this extent, several in vivo studies on mouse tibia use established cyclic compressive loading protocols to investigate the effects of mechanical stimuli. In these experiments, the applied axial load is well controlled but the positioning of the hind-limb between the loading endcaps may dramatically affect the strain distribution induced on the tibia. In this study, the full field strain distribution induced by a typical in vivo setup on mouse tibiae was investigated through a combination of in situ compressive testing, µCT scanning and a global digital volume correlation (DVC) approach. The precision of the DVC method and the effect of repositioning on the strain distributions were evaluated. Acceptable uncertainties of the DVC approach for the analysis of loaded tibiae (411 ± 58µɛ) were found for nodal spacing of approximately 50 voxels (520 µm). When pairs of in situ preloaded and loaded images were registered, low variability of the strain distributions within the tibia were seen (range of mean differences in principal strains: 585-1800µɛ). On contrary, larger differences were seen after repositioning (range of mean differences in principal strains: 2500-5500µɛ). To conclude, these preliminary results on thee specimens showed that the DVC approach applied to the mouse tibia can be precise enough to evaluate local strain distributions under loads, and that repositioning of the hind-limb within the testing machine can induce large differences in the strain distributions that should be accounted for when modelling this system.
Collapse
|
21
|
Verbruggen SW, Kainz B, Shelmerdine SC, Arthurs OJ, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC. Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors. J Biomech 2018; 78:1-9. [PMID: 30037582 PMCID: PMC6135936 DOI: 10.1016/j.jbiomech.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/03/2022]
Abstract
Fetal kicking and movements generate biomechanical stimulation in the fetal skeleton, which is important for prenatal musculoskeletal development, particularly joint shape. Developmental dysplasia of the hip (DDH) is the most common joint shape abnormality at birth, with many risk factors for the condition being associated with restricted fetal movement. In this study, we investigate the biomechanics of fetal movements in such situations, namely fetal breech position, oligohydramnios and primiparity (firstborn pregnancy). We also investigate twin pregnancies, which are not at greater risk of DDH incidence, despite the more restricted intra-uterine environment. We track fetal movements for each of these situations using cine-MRI technology, quantify the kick and muscle forces, and characterise the resulting stress and strain in the hip joint, testing the hypothesis that altered biomechanical stimuli may explain the link between certain intra-uterine conditions and risk of DDH. Kick force, stress and strain were found to be significantly lower in cases of breech position and oligohydramnios. Similarly, firstborn fetuses were found to generate significantly lower kick forces than non-firstborns. Interestingly, no significant difference was observed in twins compared to singletons. This research represents the first evidence of a link between the biomechanics of fetal movements and the risk of DDH, potentially informing the development of future preventative measures and enhanced diagnosis. Our results emphasise the importance of ultrasound screening for breech position and oligohydramnios, particularly later in pregnancy, and suggest that earlier intervention to correct breech position through external cephalic version could reduce the risk of hip dysplasia.
Collapse
Affiliation(s)
| | - Bernhard Kainz
- Department of Computing, Imperial College London, London, UK
| | | | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Mary A Rutherford
- Department of Perinatal Imaging and Health & Centre for the Developing Brain, School of Biomedical Engineering and Imaging Science, Kings College London, London, UK
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
22
|
Vera MC, Abdala V, Aráoz E, Ponssa ML. Movement and joints: effects of overuse on anuran knee tissues. PeerJ 2018; 6:e5546. [PMID: 30186699 PMCID: PMC6120441 DOI: 10.7717/peerj.5546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Movement plays a main role in the correct development of joint tissues. In tetrapods, changes in normal movements produce alterations of such tissues during the ontogeny and in adult stages. The knee-joint is ideal for observing the influence of movement disorders, due to biomechanical properties of its components, which are involved in load transmission. We analyze the reaction of knee tissues under extreme exercise in juveniles and adults of five species of anurans with different locomotor modes. We use anurans as the case study because they undergo great mechanical stress during locomotion. We predicted that (a) knee tissues subjected to overuse will suffer a structural disorganization process; (b) adults will experience deeper morphological changes than juveniles; and (c) morphological changes will be higher in jumpers compared to walkers. To address these questions, we stimulated specimens on a treadmill belt during 2 months. We performed histological analyses of the knee of both treated and control specimens. As we expected, overuse caused structural changes in knee tissues. These alterations were gradual and higher in adults, and similar between jumpers and walkers species. This study represents a first approach to the understanding of the dynamics of anuran knee tissues during the ontogeny, and in relation to locomotion. Interestingly, the alterations found were similar to those observed in anurans subjected to reduced mobility and also to those described in joint diseases (i.e., osteoarthritis and tendinosis) in mammals, suggesting that among tetrapods, changes in movement generate similar responses in the tissues involved.
Collapse
Affiliation(s)
- Miriam Corina Vera
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical (IBN), UNT-CONICET, San Miguel de Tucumán, Argentina
| | - Ezequiel Aráoz
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - María Laura Ponssa
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| |
Collapse
|
23
|
Pascual-Garrido C, Guilak F, Rai MF, Harris MD, Lopez MJ, Todhunter RJ, Clohisy JC. Canine hip dysplasia: A natural animal model for human developmental dysplasia of the hip. J Orthop Res 2018; 36:1807-1817. [PMID: 29227567 DOI: 10.1002/jor.23828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/29/2017] [Indexed: 02/04/2023]
Abstract
Developmental dysplasia of the hip (DDH) in humans is a common condition that is associated with hip pain, functional limitations, and secondary osteoarthritis (OA). Surgical treatment of DDH has improved in the last decade, allowing excellent outcomes at short- and mid-term follow-up. Still, the etiology, mechanobiology, and pathology underlying this disease are not well understood. A pre-clinical animal model of DDH could help advance the field with a deeper understanding of specific pathways that initiate hip joint degeneration secondary to abnormal biomechanics. An animal model would also facilitate different interventional treatments that could be tested in a rigorous and controlled environment. The dog model exhibits several important characteristics that make it valuable as a pre-clinical animal model for human DDH. Dogs are naturally prone to develop canine hip dysplasia (CHD), which is treated in a similar manner as in humans. Comparable to human DDH, CHD is considered a pre-OA disease; if left untreated it will progress to OA. However, progression to OA is significantly faster in dogs than humans, with progression to OA within 1-2 years of age, associated with their shorter life span compared to humans. Animal studies could potentially reveal the underlying biochemical pathway(s), which can inform refined treatment modalities and provide opportunities for new treatment and prevention targets. Herein, we review the similarities and differences between the two species and outline the argument supporting CHD as an appropriate pre-clinical model of human DDH. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1807-1817, 2018.
Collapse
Affiliation(s)
- Cecilia Pascual-Garrido
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - M Farooq Rai
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110.,Department of Cell Biology & Physiology, School of Medicine, Washington University, Saint Louis, Missouri
| | - Michael D Harris
- Program in Physical Therapy, School of Medicine, Washington University, Saint Louis, Missouri
| | - Mandi J Lopez
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rory J Todhunter
- College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - John C Clohisy
- Department of Orthopaedic Surgery, School of Medicine, Musculoskeletal Research Center, Washington University, 660 S. Euclid, Campus Box 8233, Saint Louis, Missouri, 63110
| |
Collapse
|
24
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
25
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Verbruggen SW, Nowlan NC. Ontogeny of the Human Pelvis. Anat Rec (Hoboken) 2017; 300:643-652. [PMID: 28297183 DOI: 10.1002/ar.23541] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 09/04/2016] [Indexed: 01/20/2023]
Abstract
The human pelvis has evolved over time into a remarkable structure, optimised into an intricate architecture that transfers the entire load of the upper body into the lower limbs, while also facilitating bipedal movement. The pelvic girdle is composed of two hip bones, os coxae, themselves each formed from the gradual fusion of the ischium, ilium and pubis bones. Unlike the development of the classical long bones, a complex timeline of events must occur in order for the pelvis to arise from the embryonic limb buds. An initial blastemal structure forms from the mesenchyme, with chondrification of this mass leading to the first recognisable elements of the pelvis. Primary ossification centres initiate in utero, followed post-natally by secondary ossification at a range of locations, with these processes not complete until adulthood. This cascade of events can vary between individuals, with recent evidence suggesting that fetal activity can affect the normal development of the pelvis. This review surveys the current literature on the ontogeny of the human pelvis. Anat Rec, 300:643-652, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
27
|
Rolfe RA, Bezer JH, Kim T, Zaidon AZ, Oyen ML, Iatridis JC, Nowlan NC. Abnormal fetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. J Orthop Res 2017; 35:2135-2144. [PMID: 28079273 PMCID: PMC5523455 DOI: 10.1002/jor.23518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/06/2017] [Indexed: 02/04/2023]
Abstract
The incidence of congenital spine deformities, including congenital scoliosis, kyphosis, and lordosis, may be influenced by the in utero mechanical environment, and particularly by fetal movements at critical time-points. There is a limited understanding of the influence of fetal movements on spinal development, despite the fact that mechanical forces have been shown to play an essential role in skeletal development of the limb. This study investigates the effects of muscle forces on spinal curvature, vertebral segmentation, and vertebral shape by inducing rigid or flaccid paralysis in the embryonic chick. The critical time-points for the influence of fetal movements on spinal development were identified by varying the time of onset of paralysis. Prolonged rigid paralysis induced severe defects in the spine, including curvature abnormalities, posterior and anterior vertebral fusions, and altered vertebral shape, while flaccid paralysis did not affect spinal curvature or vertebral segmentation. Early rigid paralysis resulted in more severe abnormalities in the spine than later rigid paralysis. The findings of this study support the hypothesis that the timing and nature of fetal muscle activity are critical influences on the normal development of the spine, with implications for the understanding of congenital spine deformities. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2135-2144, 2017.
Collapse
Affiliation(s)
- Rebecca A. Rolfe
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - James H. Bezer
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - Tyler Kim
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - Ahmed Z. Zaidon
- Department of Bioengineering, Imperial College London, London,
United Kingdom
| | - Michelle L. Oyen
- Engineering Department, University of Cambridge, Cambridge, United
Kingdom
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai,
New York, NY 10029
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London,
United Kingdom,Correspondence: Dr Niamh Nowlan, Phone: +44 (0)
20 759 45189,
| |
Collapse
|
28
|
Ford CA, Nowlan NC, Thomopoulos S, Killian ML. Effects of imbalanced muscle loading on hip joint development and maturation. J Orthop Res 2017; 35:1128-1136. [PMID: 27391299 PMCID: PMC5575772 DOI: 10.1002/jor.23361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1128-1136, 2017.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110,Department of Orthopedic Surgery, Columbia University, New York, New York 10027
| | - Megan L. Killian
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110,Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
29
|
Chandaria VV, McGinty J, Nowlan NC. Characterising the effects of in vitro mechanical stimulation on morphogenesis of developing limb explants. J Biomech 2016; 49:3635-3642. [PMID: 27743631 PMCID: PMC5765238 DOI: 10.1016/j.jbiomech.2016.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
Mechanical forces due to fetal movements play an important role in joint shape morphogenesis, and abnormalities of the joints relating to abnormal fetal movements can have long-term health implications. While mechanical stimulation during development has been shown to be important for joint shape, the relationship between the quantity of mechanical stimulation and the growth and shape change of developing cartilage has not been quantified. In this study, we culture embryonic chick limb explants in vitro in order to reveal how the magnitude of applied movement affects key aspects of the developing joint shape. We hypothesise that joint shape is affected by movement magnitude in a dose-dependent manner, and that a movement regime most representative of physiological fetal movements will promote characteristics of normal shape development. Chick hindlimbs harvested at seven days of incubation were cultured for six days, under either static conditions or one of three different dynamic movement regimes, then assessed for joint shape, cell survival and proliferation. We demonstrate that a physiological magnitude of movement in vitro promotes the most normal progression of joint morphogenesis, and that either under-stimulation or over-stimulation has detrimental effects. Providing insight into the optimal level of mechanical stimulation for cartilage growth and morphogenesis is pertinent to gaining a greater understanding of the etiology of conditions such as developmental dysplasia of the hip, and is also valuable for cartilage tissue engineering.
Collapse
Affiliation(s)
- Vikesh V Chandaria
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - James McGinty
- Department of Physics, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
30
|
Giorgi M, Verbruggen SW, Lacroix D. In silico bone mechanobiology: modeling a multifaceted biological system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:485-505. [PMID: 27600060 PMCID: PMC5082538 DOI: 10.1002/wsbm.1356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/04/2022]
Abstract
Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever‐increasing complexity of computational mechanobiology models will inevitably move the field toward patient‐specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. WIREs Syst Biol Med 2016, 8:485–505. doi: 10.1002/wsbm.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
31
|
Pollard AS, Pitsillides AA, Portugal SJ. Validating a Noninvasive Technique for Monitoring Embryo Movement In Ovo. Physiol Biochem Zool 2016; 89:331-9. [PMID: 27327183 DOI: 10.1086/687228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Avian embryos are a commonly used model system for developmental studies, but monitoring of physiological parameters such as heart rate (HR) and movement in ovo poses a challenge to researchers. These are also increasingly common research objectives for ecological and embryo behavior studies in oviparous species. We therefore explored the validity of a new digital egg-monitoring system for the noninvasive monitoring of these parameters. We tested the relationship between frequency-of-movement values gathered by digital monitoring and those gathered by the current standard method, which is comparatively invasive and requires egg windowing, and demonstrated that the digital monitoring method effectively distinguishes individual movements but cannot reliably monitor HR in actively motile embryos. We therefore provide recommendations for the appropriate use of this technique for avian physiologists. We also applied the digital monitoring method to reveal how frequency of movement varies throughout prenatal ontogeny in the chicken and showed that commonly used protocols in developmental studies can themselves alter motility; egg windowing and application of light modulate frequency of movement. Recent work has revealed the importance of embryo motility in regulating gene expression and cellular activity during developmental processes. Together with our data, this highlights the value of noninvasive monitoring methods and the importance of controlling for altered embryo motility/behavior in developmental studies.
Collapse
|
32
|
Ponssa ML, Abdala V. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case. PeerJ 2016; 4:e1730. [PMID: 26925340 PMCID: PMC4768673 DOI: 10.7717/peerj.1730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40–42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework.
Collapse
Affiliation(s)
- Maria Laura Ponssa
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo , San Miguel de Tucumán, Tucumán , Argentina
| | - Virginia Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e IML, UNT, Instituto de Biodiversidad Neotropical (IBN), UNT-CONICET , San Miguel de Tucumán, Tucumán , Argentina
| |
Collapse
|
33
|
Abstract
Fetal movements in the uterus are a natural part of development and are known to play an important role in normal musculoskeletal development. However, very little is known about the biomechanical stimuli that arise during movements in utero, despite these stimuli being crucial to normal bone and joint formation. Therefore, the objective of this study was to create a series of computational steps by which the forces generated during a kick in utero could be predicted from clinically observed fetal movements using novel cine-MRI data of three fetuses, aged 20–22 weeks. A custom tracking software was designed to characterize the movements of joints in utero, and average uterus deflection of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6.95 \pm 0.41$$\end{document}6.95±0.41 mm due to kicking was calculated. These observed displacements provided boundary conditions for a finite element model of the uterine environment, predicting an average reaction force of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.52 \pm 0.15$$\end{document}0.52±0.15 N generated by a kick against the uterine wall. Finally, these data were applied as inputs for a musculoskeletal model of a fetal kick, resulting in predicted maximum forces in the muscles surrounding the hip joint of approximately 8 N, while higher maximum forces of approximately 21 N were predicted for the muscles surrounding the knee joint. This study provides a novel insight into the closed mechanical environment of the uterus, with an innovative method allowing elucidation of the biomechanical interaction of the developing fetus with its surroundings.
Collapse
|
34
|
Brunt LH, Norton JL, Bright JA, Rayfield EJ, Hammond CL. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. J Biomech 2015; 48:3112-22. [PMID: 26253758 PMCID: PMC4601018 DOI: 10.1016/j.jbiomech.2015.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development.
Collapse
Affiliation(s)
- Lucy H Brunt
- Schools of Physiology and Pharmacology and of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Joanna L Norton
- Schools of Physiology and Pharmacology and of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Jen A Bright
- School of Earth Sciences, University of Bristol, BS8 1RJ Bristol, United Kingdom
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, BS8 1RJ Bristol, United Kingdom
| | - Chrissy L Hammond
- Schools of Physiology and Pharmacology and of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom.
| |
Collapse
|