1
|
Wang F, Zhang J, Zhang Q, Song Z, Xin C. Antifungal activities of Equol against Candida albicans in vitro and in vivo. Virulence 2024; 15:2404256. [PMID: 39267283 PMCID: PMC11409501 DOI: 10.1080/21505594.2024.2404256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause systemic infections in immunocompromised individuals. Morphological transition and biofilm formation are major virulence factors of C. albicans. Moreover, biofilm enhances resistance to antifungal agents. Therefore, it is urgent to identify new and effective compounds to target the biofilm of C. albicans. In the present study, the antifungal activities of equol against C. albicans were investigated. In vitro, the microdilution analysis and spot assay result showed that equol exhibited potent inhibitory activities against C. albicans. Further investigations confirmed that the antifungal effects of equol involved interference with the transition from yeast to hypha and biofilm formation of C. albicans. In addition, transcriptome sequencing and reverse transcription-quantitative PCR (qRT-PCR) analysis showed that equol significantly downregulated the expression of several genes in the Ras1-cAMP-PKA pathway related to hyphae and biofilm formation and significantly upregulated the expression of the negative transcriptional repressors RFG1 and TUP1. Moreover, equol effectively reduced the production of cAMP, a key messenger in the Ras1-cAMP-PKA pathway, while supplementation with cAMP partly rescued the equol-induced defects in hyphal development. Furthermore, in a mouse model of systemic candidiasis (SC), equol treatment significantly decreased the fungal burden (liver, kidneys, and lung) in mice and local tissue damage, while enhancing the production of interleukin-10 (IL-10). Together, these findings confirm that equol is a potentially effective agent for treatment of SC.
Collapse
Affiliation(s)
- Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing Key Laboratory of LuZhou, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jinping Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, People's Republic of China
| | - Qian Zhang
- Department of blood transfusion, Zhejiang people's hospital, Yichang, China
| | - Zhangyong Song
- School of Basic Medical Science, Southwest Medical University, Luzhou, People's Republic of China
- Technical Platform for the Molecular Biology, Research Core Facility, Southwest Medical University, Luzhou, People's Republic of China
- Southwest Medical University, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Caiyan Xin
- School of Basic Medical Science, Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
2
|
Mohamed G, Ji A, Cao X, Islam MS, Hassan MF, Zhao Y, Lan X, Dong W, Wu H, Xu W. A small antimicrobial peptide derived from a Burkholderia bacterium exhibits a broad-spectrum and high inhibiting activities against crop diseases. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39539019 DOI: 10.1111/pbi.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Crop diseases cause significant quality and yield losses to global crop products each year and are heavily controlled by chemicals along with very limited antibiotics composed of small molecules. However, these methods often result in environmental pollution and pest resistance, necessitating the development of new bio-controlling products to mitigate these hazards. To identify effective antimicrobial peptides (AMPs) considered as potential sources of future antibiotics, AMPs were screened from five bacterial strains showing antagonism against a representative phytopathogenic fungus (Rhizoctonia Solani) through the Bacillus subtilis expression system, which has been developed for identifying bacterial AMPs by displaying autolysis morphologies. A total of 5000 colonies were screened, and five displaying autolysis morphologies showed antagonism against R. solani. A novel AMP with the strongest antagonism efficiency was determined and tentatively named HR2-7, which is composed of 24 amino acids with an alpha-helical structure. HR2-7 has strong and broad-spectrum antimicrobial activity, tested against 10 g-positive and -negative bacteria and four phytopathogenic fungi by contact culture in plates with minimal lethal concentrations of 4.0 μM. When applied as purified peptide or in fermented B. subtilis culture solution, HR2-7 showed strong controlling efficiency on plants against diverse fungal and bacterial pathogens. Based on current understanding, HR2-7 is recognized as the first AMP derived from an agricultural antagonistic bacterium. It exhibits wide-ranging and notable antimicrobial efficacy, offering a supplementary approach for managing plant diseases, in addition to conventional chemical pesticides and antibiotics.
Collapse
Affiliation(s)
- Gamarelanbia Mohamed
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Ao Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Xinyu Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Md Samiul Islam
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Mohamed F Hassan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yang Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Xing Lan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Wubei Dong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Hongqu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
3
|
Machado A, Gama M, Martins JA. Development of a dextrin-vitamin D3 micelle nanocarrier for the antimicrobial peptide LLKKK18 as a potential therapeutic agent for bone infections. J Mater Chem B 2024; 12:11464-11476. [PMID: 39392350 DOI: 10.1039/d4tb00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In this work, an expedite synthesis was developed for a self-assembled micelle carrier for the antimicrobial peptide LL18. Covalent one-pot functionalization of dextrin with succinylated vitamin D3 and succinic anhydride produced an amphiphilic material that undergoes self-assembly into micelles in aqueous medium. Succinylated dextrin-vitamin D3 micelles were efficiently loaded with LL18 by electrostatic and hydrophobic interactions. Remarkably, the LL18-loaded micelle formulation dramatically improves the antibacterial activity of free LL18 against S. aureus, completely abrogates its severe hemolytic activity, redirects the internalization of LL18 from the perinuclear region of osteoblasts to the lysosomes and reduces cellular toxicity towards osteoblasts and macrophages. Overall, this work demonstrates that self-assembled micelle formulations based on dextrin, vitamin D3 and antimicrobial peptides, are promising platforms to develop multifunctional antibiotic-independent antimicrobial agents, not prone to the development of bacterial resistance, to treat bone infections.
Collapse
Affiliation(s)
- Alexandra Machado
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - José Alberto Martins
- Center of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
4
|
Aparicio-Blanco J, López-Torres II, Alonso-Berenguel M, Torres-Suárez AI, Martín-Sabroso C. Local antimicrobial delivery systems for prophylaxis and treatment of periprosthetic traumatological infections. Eur J Pharm Sci 2024; 204:106940. [PMID: 39504811 DOI: 10.1016/j.ejps.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Infections associated with implants are the most serious complications in joint replacement surgeries and can jeopardize the functionality of orthopedic implants. Local antimicrobial delivery could enable antibiotics to attain concentrations above the minimum inhibitory concentration (MIC) threshold at the joint replacement site while preventing systemic side effects. Therefore, there is a dire need for the development of improved biomaterial-based delivery systems for local antibiotic administration in prosthetic infections. In this context, this review highlights the latest breakthroughs in the design of biomaterial-based formulations intended for the prophylaxis and treatment of prosthetic infections. Delivery systems for distinct forms of administration (i.e., direct intra-articular administration, loading into bone cements, coating of implant surfaces, or loading into hydrogels) are here comprehensively compiled with a focus on the design of microparticles and nanosystems for local antimicrobial administration and their impact on distinct in vitro and in vivo models of implant infections.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain
| | - Irene I López-Torres
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. De los Reyes Católicos, 2, 28040, Madrid, Spain
| | - María Alonso-Berenguel
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Ana I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain.
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Shamsuzzaman M, Kim S, Choi YJ, Kim B, Dahal RH, Shin M, Kim J. Therapeutic Phage Candidates for Targeting Prevalent Sequence Types of Carbapenem-Resistant Escherichia coli. Foodborne Pathog Dis 2024; 21:681-688. [PMID: 39045774 DOI: 10.1089/fpd.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Carbapenem-resistant Escherichia coli (CREC) is a global threat to public health; therefore, alternative treatment options are urgently needed. Bacteriophages have emerged as promising candidates for combating CREC infections. This study aimed to investigate the genetic basis of phage sensitivity in CREC by evaluating carbapenem resistance among multidrug-resistant (MDR) E. coli isolated in Daegu, South Korea and analyzing their sequence types (STs) with phage susceptibility spectra. Among the 60 MDR E. coli isolates, 80.4% were identified as CREC, with 77.0% demonstrating resistance to imipenem and 66.6% to meropenem. Moreover, 70 lytic E. coli bacteriophages were isolated from hospital sewage water and evaluated against those 60 E. coli isolates. The phages exhibited lytic activity of 33%-60%, with average titers ranging from 5.6 × 1012 to 2.4 × 1013 PFU/mL (Plaque-Forming Unit). Furthermore, multilocus sequence typing (MLST) analysis of the bacterial isolates revealed 14 distinct STs, mostly belonging to ST131, ST410, and ST648. Notably, the phage susceptibility spectra of ST73, ST13003, ST648, ST2311, ST167, ST405, ST607, ST7962, and ST131 were significantly different. Thus, the isolated phages can effectively lyse CREC isolates, particularly those with clinically dominant STs. Conversely, ST410 exhibited a 14.2%-87.14% susceptibility spectrum, whereas ST1139, ST1487, ST10, and ST206 did not lyse, suggesting the presence of more resistant STs. Future studies are warranted to identify the reasons behind this resistance and address it. Ultimately, this study will aid in developing focused treatments to address these pressing global health issues.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon-Jung Choi
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Bokyung Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minsang Shin
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Pazarci Ö, Hümeyra Taşkin Kafa A, Taş A, Keklikcioğlu Çakmak N, Hasbek M, Kilinç S, Tunçbilek Z. Assessment of the antimicrobial and antibiofilm activity of the combination of N-acetyl cysteine and carvacrol against Staphylococcus aureus, the most common orthopedic infectious agent. Microb Pathog 2024; 196:106934. [PMID: 39265812 DOI: 10.1016/j.micpath.2024.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The increasing prevalence of antibiotic-resistant bacterial infections has led to the search for new approaches. OBJECTIVE This study aimed to evaluate the effects of carvacrol and N-acetyl cysteine, both individually and in combination, on the planktonic cells and biofilm formations of Staphylococcus aureus, including methicillin-resistant and methicillin-sensitive strains. Additionally, the study sought to perform cytotoxicity tests and chemical characterization to further understand the properties and potential applications of these substances. METHODS A total of 19 S. aureus strains were included in the study. Minimum inhibitory concentration and minimum bactericidal concentration were determined by assays. Synergy analysis tests were carried out. Cytotoxicity tests were conducted on the fibroblast cell line. Characterization test was performed. RESULTS While Minimum inhibitory concentration and minimum bactericidal concentration values for carvacrol varied between 250 and 500 μg/ml, these values were in the range of 32-64 mg/ml for N-acetyl cysteine. Biofilm formation activities were identified. A total of eight strains, including six clinical and two standard strains with the highest biofilm-forming ability, were selected for combination studies. The combination of Carvacrol and N-acetyl cysteine exhibited synergistic and partially synergistic effects on the tested planktonic and biofilm strains, and these effects were dose-dependent. Carvacrol was found to be the most active drug at the end of 24, 48, and 72 h. Regarding the synergistic effect of N-acetyl cysteine + carvacrol, it was revealed to exhibit higher activity than N-acetyl cysteine and lower activity than carvacrol. CONCLUSION The combination of carvacrol and N-acetyl cysteine demonstrated synergistic and partially synergistic effects against both planktonic and biofilm forms of Staphylococcus aureus. These results suggest potential for novel approaches in managing orthopedic infections, warranting further research to explore their therapeutic applications.
Collapse
Affiliation(s)
- Özhan Pazarci
- Department of Orthopaedics, Faculty of Adana Medicine, University of Health Science, Adana City Training and Research Hospital, Adana, Turkiye.
| | - Ayşe Hümeyra Taşkin Kafa
- Department of Medical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Ayça Taş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Neşe Keklikcioğlu Çakmak
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Murşit Hasbek
- Department of Medical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Seyran Kilinç
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Zuhal Tunçbilek
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkiye
| |
Collapse
|
7
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
8
|
Lin H, Gao Z, Shan T, Asilebieke A, Guo R, Kan YC, Li C, Xu Y, Chu JJ. A review on the promising antibacterial agents in bone cement-From past to current insights. J Orthop Surg Res 2024; 19:673. [PMID: 39428491 PMCID: PMC11492595 DOI: 10.1186/s13018-024-05143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Antibacterial bone cements (ABCs), such as antibiotic-loaded bone cements (ALBCs), have been widely utilized in clinical treatments. Currently, bone cements loaded with vancomycin, gentamicin, tobramycin, or clindamycin are approved by the US Food and Drug Administration. However, traditional ALBCs exhibit drawbacks like burst release and bacterial resistance. Therefore, there is a demand for the development of antibacterial bone cements containing novel agents to address these defects. In this review, we provide an overview and prospect of the new antibacterial agents that can be used or have the potential to be applied in bone cement, including metallic antibacterial agents, pH-switchable antibacterial agents, cationic polymers, N-halamines, non-leaching acrylic monomers, antimicrobial peptides and enzymes. Additionally, we have conducted a preliminary assessment of the feasibility of bone cement containing N-halamine, which has demonstrated good antibacterial activities. The conclusion of this review is that the research and utilization of bone cement containing novel antibacterial agents contribute to addressing the limitations of ALBCs. Therefore, it is necessary to continue expanding the research and use of bone cement incorporating novel antibacterial agents. This review offers a novel perspectives for designing ABCs and treating bone infections.
Collapse
Affiliation(s)
- Hao Lin
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, 230013, Anhui, China
| | - Zhe Gao
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Tao Shan
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Ayakuzi Asilebieke
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Rui Guo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Chun Li
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| | - Yang Xu
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China.
| |
Collapse
|
9
|
Aycan D. Alginate/hyaluronic acid/gelatin ternary blended films as pH-sensitive drug carriers: In vitro ampicillin release and kinetic studies. Int J Biol Macromol 2024; 277:134111. [PMID: 39048006 DOI: 10.1016/j.ijbiomac.2024.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Researchers continuously focused on the fabrication of innovative drug delivery systems to prevent microbial infections while minimizing systemic side effects. Among these, pH-sensitive antibiotic release systems based on bio-based materials have gained great attention due to their ability to precisely modulate drug kinetics and enhance therapeutic efficacy. Herein, pH-sensitive alginate/hyaluronic acid/gelatin ternary blended films were fabricated for the controlled release of ampicillin. Swelling capacity, hydrolytic degradation profile, pH reversibility and in vitro ampicillin release behavior of produced films were investigated in both simulated gastric (pH 1.2) and intestinal (pH 7.4) environments. The cumulative release amount of ampicillin at pH 1.2 (61.0 ± 1.07 mg drug/g polymer) was greater than that of at pH 7.4 (43.0 ± 1.05 mg drug/g polymer) proved that release behavior of ampicillin for produced films is pH-dependent. Based on the fitted release data, best fit was found as the first-order kinetic model with the highest R2 values of 0.966 and 0.962 for both pH conditions. According to Korsmeyer-Peppas model, drug release mechanism is also controlled by case II-transport. Furthermore, produced films demonstrated excellent cytocompatibility. All results revealed that obtained films could be a promising drug carrier to traditional targeting systems for site-specific, pH-sensitive ampicillin delivery in both gastric and intestine.
Collapse
Affiliation(s)
- Didem Aycan
- Marmara University, Department of Chemical Engineering, 34854 Istanbul, Turkey.
| |
Collapse
|
10
|
Zhou J, Wang H, Virtanen S, Witek L, Dong H, Thanassi D, Shen J, Yang YP, Yu C, Zhu D. Hybrid zinc oxide nanocoating on titanium implants: Controlled drug release for enhanced antibacterial and osteogenic performance in infectious conditions. Acta Biomater 2024:S1742-7061(24)00555-5. [PMID: 39343288 DOI: 10.1016/j.actbio.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Implant-associated bacterial infections are a primary cause of complications in orthopedic implants, and localized drug delivery represents an effective mitigation strategy. Drawing inspiration from the morphology of desiccated soil, our group has developed an advanced drug-delivery system augmented onto titanium (Ti) plates. This system integrates zinc oxide (ZnO) nanorod arrays with a vancomycin drug layer along with a protective Poly(lactic-co-glycolic acid) (PLGA) coating. The binding between the ZnO nanorods and the drug results in attached drug blocks, isolated by desiccation-like cracks, which are then encapsulated by PLGA to enable sustained drug release. Additionally, the release of zinc ions and the generation of reactive oxygen species (ROS) from the ZnO nanorods enhance the antibacterial efficacy. The antibacterial properties of ZnO nanorod-drug-PLGA system have been validated through both in vitro and in vivo studies. Comprehensive investigations were conducted on the impact of bacterial infections on bone defect regeneration and the role of this drug-delivery system in the healing process. Furthermore, the local immune response was analyzed and the immunomodulatory function of the system was demonstrated. Overall, the findings underscore the superior performance of the ZnO nanorod-drug-PLGA system as an efficient and safe approach to combat implant-associated bacterial infections. STATEMENT OF SIGNIFICANCE: Implant-associated bacterial infections pose a significant clinical challenge, particularly in orthopedic procedures. To address this, we developed an innovative ZnO nanorod-drug-PLGA system for local antibiotic delivery on conventional titanium implants. This system is biodegradable and features a unique desiccation-like structure that enables sustained drug release, along with the active substances released from the ZnO nanorods. In a rat calvarial defect model challenged with S. aureus, our system demonstrated remarkable antibacterial efficacy, significantly enhanced bone defect regeneration, and exhibited local immunomodulatory effects that support both infection control and osteogenesis. These breakthrough findings highlight the substantial clinical potential of this novel drug delivery system and introduce a transformative coating strategy to enhance the functionality of traditional metallic biomaterials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Hanbo Wang
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Sannakaisa Virtanen
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10010, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Hongzhou Dong
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 21000, China
| | - David Thanassi
- Department of Microbiology and Immunology, University of Stony Brook, Stony Brook, NY 11794, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - Cunjiang Yu
- Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
11
|
Aththanayaka AMWGKP, Weerasinghe GGYH, Weerakkody NS, Samarasinghe SHGG, Priyadharshana U. Effectiveness of selective antibiotics use in ESBL-related UTIs. BMC Microbiol 2024; 24:360. [PMID: 39306662 PMCID: PMC11416004 DOI: 10.1186/s12866-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are the second most common infection, affecting 150 million people each year worldwide. Enterobacteriaceae species expressing extended-spectrum β-lactamases (ESBLs) are on the rise across the globe and are becoming a severe problem in the therapeutic management of clinical cases of urinary tract infection. Knowledge of the prevalence and antibiogram profile of such isolates is essential to develop an appropriate treatment methodology. This study aimed to investigate the prevalence of Enterobacteriaceae isolates exhibiting ESBL and their selective oral antibiogram profile at the district general hospital, Polonnaruwa. RESULTS A total of 4386 urine specimens received to the Microbiology Laboratory during the study period. Among them, 1081 (24.6%) showed positive results for urine culture while 200/1081 specimens showed ESBL isolates. Out of the selected 200 specimen's majority (67.5%) of samples received from the In-Patient Department. There were 200 patients and reported that 115 (57.5%) were females and 85 (42.5%) were males. The majority (51%) of the patients belong to the age group of 55-74 years. Among the ESBLs positive specimens, the majority 74.5% (n = 149) identified organisms were E. coli followed by Klebsiella spp.17.5% (n = 35), Enterobacteriaceae 7% (n = 14) and only1% (n = 2) isolate of Proteus spp. Mecillinam (87.92%) and Nitrofurantoin (83.2%) showed higher effectiveness against E. coli. Nitrofurantoin showed the highest effectiveness against Klebsiella spp. (40%), other Enterobacteriaceae spp. (100%). Proteus spp. showed 100% effectiveness and resistance respectively against Ciprofloxacin, Cotrimoxazole and Nitrofurantoin. CONCLUSION The most predominant ESBLs producing uro-pathogen was the E. coli in the study setting and E. coli had higher sensitivity rate against Mecillinam. Among currently used oral antibiotics Nitrofurantoin was the best choice for UTIs caused by ESBL producers.
Collapse
Affiliation(s)
| | | | - Nimsha Sevwandika Weerakkody
- Food Molecular and Microbiology, Department of Agriculture and Plantation Engineering, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | | | | |
Collapse
|
12
|
Kushram P, Bose S. Improving Biological Performance of 3D-Printed Scaffolds with Garlic-Extract Nanoemulsions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48955-48968. [PMID: 39196793 DOI: 10.1021/acsami.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Complex bone diseases such as osteomyelitis, osteosarcoma, and osteoporosis often cause critical-size bone defects that the body cannot self-repair and require an advanced bone graft material to repair. We have fabricated 3D-printed tricalcium phosphate bone scaffolds functionalized with garlic extract (GE). GE was encapsulated in a nanoemulsion (GE-NE) to enhance bioavailability and stability. GE-NE showed ∼73% drug encapsulation efficiency, with an average particle size of 158 nm and a zeta potential of -14.2 mV. Release of GE-NEs from the scaffold displayed a controlled and biphasic release profile at both acidic and physiological mediums. Results from the osteosarcoma study show that GE-NE demonstrated ∼88% reduction in cancer cell growth while exhibiting no cytotoxicity toward bone-forming cells. Interaction for the functionalized scaffold with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa showed a substantial reduction in bacteria growth by more than 90% compared to the unfunctionalized scaffold. These findings demonstrate the potential of GE-NEs-treated porous scaffolds to treat bone-related diseases, particularly for non-load bearing applications.
Collapse
Affiliation(s)
- Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
13
|
Zou P, Chen Z, Tu J, Chen X, Liu X. Comparison of Mutant Prevention Concentrations of Fluoroquinolones Against ESBL-Positive and ESBL-Negative Klebsiella pneumoniae Isolates from Orthopedic Patients. Microb Drug Resist 2024; 30:391-397. [PMID: 39019029 DOI: 10.1089/mdr.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
The majority of Klebsiella pneumonia isolates possess the extended-spectrum beta-lactamase (ESBL) enzymes. Therefore, K. pneumoniae can easily develop drug resistance. How to effectively overcome the problem of drug resistance in K. pneumoniae is still a research hotspot. This study aimed to compare the mutant prevention concentration (MPC) of ESBL-positive and ESBL-negative K. pneumoniae isolated from orthopedic patients, which may provide a basis for the effective use of drugs to control the enrichment of resistance mutants of K. pneumoniae. The MPC90 values of 55 isolates of ESBL-positive K. pneumoniae against 4 fluoroquinolones were 32 µg/mL for levofloxacin and gatifloxacin, 16 µg/mL for ciprofloxacin, and 4 µg/mL for gemifloxacin. The selection index value was 8 for levofloxacin and ciprofloxacin and 2 for gemifloxacin and gatifloxacin, respectively. For ESBL-negative K. pneumoniae isolates, the MPC90 values were 16 µg/mL for levofloxacin and ciprofloxacin, 4 µg/mL for gemifloxacin, and 32 µg/mL for gatifloxacin. The selection index value was 8 for levofloxacin and ciprofloxacin, 2 for gemifloxacin, and 4 for gatifloxacin. For the ESBL-positive K. pneumoniae, the %T>MIC90 order was gemifloxacin > levofloxacin > ciprofloxacin > gatifloxacin. For the ESBL-negative K. pneumoniae, the %T>MIC90 order was levofloxacin > gemifloxacin > ciprofloxacin > gatifloxacin. The mutant-preventing ability of gatifloxacin and gemifloxacin was the strongest among the 4 fluoroquinolones. So gemifloxacin may be the first choice of drug to treat K. pneumoniae infection.
Collapse
Affiliation(s)
- Peng Zou
- The Department of Orthopedics, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Zhiquan Chen
- The Department of Orthopedics, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Jijun Tu
- The Department of Orthopedics, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Xinfeng Chen
- The Department of Orthopedics, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Xuejian Liu
- The Department of Orthopedics, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Li H, Yang Z, Khan SA, Walsh LJ, Seneviratne CJ, Ziora ZM. Characteristics of Metallic Nanoparticles (Especially Silver Nanoparticles) as Anti-Biofilm Agents. Antibiotics (Basel) 2024; 13:819. [PMID: 39334993 PMCID: PMC11428507 DOI: 10.3390/antibiotics13090819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Biofilm-associated infections account for a large proportion of chronic diseases and pose a major health challenge. Metal nanoparticles offer a new way to address this problem, by impairing microbial growth and biofilm formation and by causing degradation of existing biofilms. This review of metal nanoparticles with antimicrobial actions included an analysis of 20 years of journal papers and patent applications, highlighting the progress over that time. A network analysis of relevant publications showed a major focus on the eradication of single-species biofilms formed under laboratory conditions, while a bibliometric analysis showed growing interest in combining different types of metal nanoparticles with one another or with antibiotics. The analysis of patent applications showed considerable growth over time, but with relatively few patents progressing to be granted. Overall, this profile shows that intense interest in metal nanoparticles as anti-biofilm agents is progressing beyond the confines of simple laboratory biofilm models and coming closer to clinical application. Looking to the future, metal nanoparticles may provide a sustainable approach to combatting biofilms of drug-resistant bacteria.
Collapse
Affiliation(s)
- Hongze Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (H.L.); (Z.Y.)
| | - Zhihe Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (H.L.); (Z.Y.)
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
| | - Sadaf Aiman Khan
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Indian Institute of Technology (IITD) Delhi, New Delhi 110016, India
| | - Laurence J. Walsh
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
| | - Chaminda Jayampath Seneviratne
- Oral Health Centre, School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.A.K.); (L.J.W.); (C.J.S.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Indian Institute of Technology (IITD) Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Iconaru SL, Predoi D, Ciobanu CS, Negrila CC, Trusca R, Raaen S, Rokosz K, Ghegoiu L, Badea ML, Cimpeanu C. Novel Antimicrobial Agents Based on Zinc-Doped Hydroxyapatite Loaded with Tetracycline. Antibiotics (Basel) 2024; 13:803. [PMID: 39334978 PMCID: PMC11428947 DOI: 10.3390/antibiotics13090803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
In this paper, we present for the first time the development of zinc-doped hydroxyapatite enriched with tetracycline (ZnHApTe) powders and provide a comprehensive evaluation of their physico-chemical and biological properties. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used for the sample's complex evaluation. Moreover, the biocompatibility of zinc-doped hydroxyapatite (ZnHAp) and ZnHApTe nanoparticles was evaluated with the aid of human fetal osteoblastic cells (hFOB 1.19 cell line). The results of the biological assays suggested that these nanoparticles hold great promise as potential candidates for the future development of novel biocompatible and antimicrobial agents for biomedical applications. The antimicrobial properties of the ZnHAp and ZnHApTe nanoparticles were assessed using the standard reference microbial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231. The results of the in vitro antimicrobial assay demonstrated that both tested materials exhibited good antimicrobial activity. Additionally, these data also indicated that the antimicrobial effects of the ZnHAp nanoparticles were intensified by the presence of tetracycline (Te). Furthermore, the results also suggested that the antimicrobial activity of the samples increased with the incubation time.
Collapse
Affiliation(s)
- Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | | | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, NO 7491 Trondheim, Norway
| | - Krzysztof Rokosz
- Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich 2, PL 75-453 Koszalin, Poland
| | - Liliana Ghegoiu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Monica Luminita Badea
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Marasti Boulevard, 011464 Bucharest, Romania
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, 011464 Bucharest, Romania
| |
Collapse
|
16
|
Masalma R, Ghanim A, Jarrar M, Zidan T, Alkaiyat A, Abdalla M, M Jaber M, Qattawi I, Joudeh N, Khayyat R. Antibiotic utilization at an orthopedic inpatient department in a large governmental hospital in the north of the West Bank, Palestine; a retrospective observational study. BMC Infect Dis 2024; 24:851. [PMID: 39174925 PMCID: PMC11340046 DOI: 10.1186/s12879-024-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Studies evaluating the patterns of antibiotic consumption are becoming increasingly necessary as a result of the increased use of antibiotics and development of antibiotic resistance globally. This study aimed to evaluate the use of antibiotics in in terms of both quantity and quality at the largest surgical hospital in the north of the West Bank, Palestine. METHODS An observational retrospective study with a total population sampling method was conducted to collect data from the inpatients of the orthopedic departments of a large governmental hospital in the northern West Bank, Palestine. The data were collected from patients' files and evaluated using the anatomical therapeutic chemical and defined daily dose (ATC/DDD) methodology, and the drug utilization 90% (DU90%) index. The ATC/DDD methodology, designed by the World Health Organization (WHO), as a well-trusted and standardized tool that allows measuring and comparing antibiotic utilization across different contexts. Antibiotic prescriptions were classified using the World Health Organization Access, Watch and Reserve classification (WHO AWaRe). RESULTS Of the 896 patients who were admitted to the hospital in the year 2020 and included in the study, 61.9% were males, and 38.1% were females. The percentage of patients who received antibiotics was 97.0%, and the overall antibiotic usage was 107.91 DDD/100 bed days. The most commonly prescribed antibiotic was cefazolin (50.30 DDD/100 bed days), followed by gentamicin (24.15 DDD/100 bed days) and ceftriaxone (17.35 DDD/100 bed days). The DU90% segment comprised four different agents. Classification of antibiotics according to the WHO AWaRe policy revealed that 75.9% of antibiotics were prescribed from the access list. CONCLUSION This study comes as part of the efforts exerted to combat the growing problem of antibiotic resistance in Palestine. Our results showed that the consumption of antibacterial agents in the orthopedic unit at a large governmental hospital in Palestine was relatively high. The results of this study provide valuable insights for the decision-makers to create policies aimed at regulating antibiotic prescriptions. This study also aims to provide a look into the antibiotic prescription patterns, offering a clearer understanding of the current situation of antibiotic consumption in Palestine. It also emphasizes the need for antibiotic stewardship and surveillance programs.
Collapse
Affiliation(s)
- Raed Masalma
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Ahmad Ghanim
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mahmoud Jarrar
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Thabet Zidan
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Abdulsalam Alkaiyat
- Department of Public Health, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mazen Abdalla
- Department of Orthopedic Surgery, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Mohammad M Jaber
- Department of Orthopedic Surgery, An-Najah National University Hospital, Nablus, 44839, Palestine
| | | | - Nagham Joudeh
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Rasha Khayyat
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, New Campus, Building: 27, Office: 2140, P.O. Box 7, Nablus, 44839, Palestine.
| |
Collapse
|
17
|
Wang Q, Yang J, Xing M, Li B. Antimicrobial Peptide Identified via Machine Learning Presents Both Potent Antibacterial Properties and Low Toxicity toward Human Cells. Microorganisms 2024; 12:1682. [PMID: 39203524 PMCID: PMC11356914 DOI: 10.3390/microorganisms12081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Preventing infection is a critical clinical challenge; however, the extensive use of antibiotics has resulted in remarkably increased antibiotic resistance. A variety of antibiotic alternatives including antimicrobial peptides (AMPs) have been studied. Unfortunately, like most conventional antibiotics, most current AMPs have shown significantly high toxicity toward the host, and therefore induce compromised host responses that may lead to negative clinical outcomes such as delayed wound healing. In this study, one of the AMPs with a short length of nine amino acids was first identified via machine learning to present potentially low cytotoxicity, and then synthesized and validated in vitro against both bacteria and mammalian cells. It was found that this short AMP presented strong and fast-acting antimicrobial properties against bacteria like Staphylococcus aureus, one of the most common bacteria clinically, and it targeted and depolarized bacterial membranes. This AMP also demonstrated significantly lower (e.g., 30%) toxicity toward mammalian cells like osteoblasts, which are important cells for new bone formation, compared to conventional antibiotics like gentamicin, vancomycin, rifampin, cefazolin, and fusidic acid at short treatment times (e.g., 2 h). In addition, this short AMP demonstrated relatively low toxicity, similar to osteoblasts, toward an epithelial cell line like BEAS-2B cells.
Collapse
Affiliation(s)
- Qifei Wang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Junlin Yang
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China;
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T2N2, Canada;
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
18
|
Aslan S, Demir C, Kurtoğlu EL, Altındiş M. Antibiotic Resistance Profiles of Escherichia coli and Salmonella spp. Isolated From Dairy Farms and Surroundings in a Rural Area of Western Anatolia, Turkey. Cureus 2024; 16:e65996. [PMID: 39221349 PMCID: PMC11366177 DOI: 10.7759/cureus.65996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background Antibiotic resistance is a significant public health issue worldwide. Antibiotic-resistant zoonotic bacteria such as Escherichia coli (E. coli), Campylobacter, Salmonella, Listeria, Coxiella, and Mycobacterium can be particularly isolated from biofertilizers. Epidemiological studies have shown that cases of foodborne infections and intoxications are significantly related to animal-derived foods. The presence of these species in aquatic environments indicates areas or organisms contaminated with animal or human feces. Especially, the presence of E. coli in aquatic environments has become a serious problem worldwide. Pathogenic strains of E. coli cause waterborne and foodborne diseases. Materials and methods This study included a total of 290 samples collected from five different dairy farms between April and September 2023 which comprised 20 samples of cow manure, 20 samples of milk, three samples of dairy workers' hand washing water, five samples of soil, five samples of water, and five samples of vegetables. The samples taken from the farms were homogenized with 0.1% peptone water at a ratio of 1/10. They were then cultured on xylose lysine deoxycholate (XLD), eosin methylene blue agar (EMB), and blood agar media, and gram-negative colonies were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the VITEK2 automated system (BioMerieux Inc., Durham, NC). Amplification of the isolated DNA extracts was performed with A.B.T.™ 2X HS-PCR MasterMix (A.B.T Laboratory Industry, Arnavutköy, Turkey) in the SimpliAmp™ thermal cycler (Thermo Fischer Scientific Inc., Waltham, MA) and visualized by agarose gel electrophoresis. Results Among the 52 E. coli strains isolated in our study, the highest antibiotic sensitivity rate was observed in meropenem, while the lowest sensitivity rates were determined in cefazolin and cefuroxime. While two of the Salmonella spp. (n = 2) isolates were found to be resistant to tetracycline, and one was found to be resistant to penicillin and ampicillin. No resistance to trimethoprim/sulfamethoxazole was detected in either isolate. Extended-spectrum beta-lactamases (ESBLs) were detected in only four (7.7%) E. coli strains. While tetA, tetB, and TEM genes were seen in almost all E. coli strains, they were not found in Salmonella spp. Conclusion In conclusion, our study revealed the presence of antimicrobial resistance genes in E. coli and Salmonella spp. isolates collected from various farms and environmental samples, which render the antimicrobials used for disease treatment ineffective. Consequently, research should be undertaken to prevent the development of new resistance genes in our country, as creating new medications and treatment strategies for these diseases is costly and time-intensive.
Collapse
Affiliation(s)
- Savaş Aslan
- Health Policy, Medical Laboratory Techniques Program, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, TUR
| | - Cengiz Demir
- Medical Microbiology, Afyonkarahisar Health Sciences University, Afyonkarahisar, TUR
| | - Elçin L Kurtoğlu
- Medical Genetics, Medical Laboratory Techniques Program, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, TUR
| | | |
Collapse
|
19
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
20
|
Zhao AY, Kuyl EV, Agarwal AR, Das A, Harris AB, McDaniel CM, Gu A, Thakkar SC, Golladay GJ. Trends in Extended Oral Antibiotic Prophylaxis Utilization Following Primary and Revision Total Hip Arthroplasty From 2010 to 2022. J Arthroplasty 2024; 39:1906-1910.e1. [PMID: 38220026 DOI: 10.1016/j.arth.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND In patients considered high-risk for infection, extended oral antibiotic (EOA) prophylaxis has been demonstrated to reduce rates of prosthetic joint infection following total hip arthroplasty (THA). Although national guidelines regarding their use have not yet been created, the increase in literature surrounding EOA prophylaxis suggests a potential change in practice patterns. The purpose of this study was to investigate the trends in utilization of EOA prophylaxis following THA from 2010 to 2022 and identify prescription patterns. METHODS A total of 646,059 primary THA and 51,879 aseptic revision THA patients were included in this study. Patients who underwent primary or aseptic revision THA between 2010 and 2022 were identified in a national administrative claims database. Rates and duration of EOA prescriptions were calculated. A secondary analysis examined rates of utilization across demographics, including patients considered high risk for infection. RESULTS From 2010 to 2022, utilization of EOA increased by 366% and 298% following primary and revision THA, respectively. Of patients prescribed postoperative antibiotics, 30% and 59% were prescribed antibiotics for more than 7 days following primary and revision THA, respectively. Rates of utilization were similar between high-risk individuals and the general population. CONCLUSIONS Rates of utilization of EOA prophylaxis after THA have increased significantly since 2010. As current trends demonstrate a wide variation in prescription patterns, including in length of antibiotic duration and in patient population prescribed, guidelines surrounding the use of EOA prophylaxis after THA are necessary to promote antibiotic stewardship while preventing rates of periprosthetic joint infection.
Collapse
Affiliation(s)
- Amy Y Zhao
- Department of Orthopaedic Surgery, The George Washington University, Washington, District of Columbia
| | - Emile-Victor Kuyl
- Department of Orthopaedic Surgery, The George Washington University, Washington, District of Columbia
| | - Amil R Agarwal
- Department of Orthopaedic Surgery, The George Washington University, Washington, District of Columbia
| | - Avilash Das
- Department of Orthopaedic Surgery, The George Washington University, Washington, District of Columbia
| | - Andrew B Harris
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Claire M McDaniel
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Alex Gu
- Department of Orthopaedic Surgery, The George Washington University, Washington, District of Columbia
| | - Savyasachi C Thakkar
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Gregory J Golladay
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
21
|
Wagner RK, Emmelot MP, van Trikt C, Visser CE, Peters EJ, Janssen SJ, Kloen P. Characteristics and Outcomes of Occult Infections in Presumed Aseptic Nonunions: A Retrospective Cohort Study. J Orthop Trauma 2024; 38:452-458. [PMID: 39007663 PMCID: PMC11219069 DOI: 10.1097/bot.0000000000002822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To determine (1) the rate of positive cultures in presumed aseptic nonunions, (2) the rate and microbial spectrum of positive cultures that represented occult infection, and (3) rates of nonunion healing. METHODS DESIGN Retrospective cohort study. SETTING Tertiary referral center. PATIENTS SELECTION CRITERIA Adult patients with a presumed aseptic nonunion treated with single-stage revision between 2002 and 2022. OUTCOME MEASURES AND COMPARISONS The rate of positive cultures compared for 2 protocols: old: 1-2 samples cultured 7 days versus new: 5 samples cultured 14 days. The rate of positive cultures meeting occult infection criteria with the new protocol (≥2 samples with phenotypically indistinguishable microorganisms, or ≥1 sample with a high virulent microorganism). Nonunion healing rates between protocols and between groups based on culture results with the new protocol. RESULTS One hundred seventy-nine patients were included. The rate of positive cultures was 14% (n = 15/105) with the old protocol and 51% (n = 38/74) with the new protocol (P < 0.001). With the new protocol, the rate of positive cultures meeting occult infection criteria was 19% (n = 14/74), and coagulase-negative staphylococci (48%) and Cutibacterium acnes (38%) were the most common microorganisms. Nonunion healing rates after the primary revision did not differ between protocols (old: 82% vs. new: 86%, P = 0.41) and groups based on culture result (sterile: 86% vs. occultly infected: 93%, P = 0.66). The final overall nonunion healing rate was 97%. CONCLUSIONS Occult infections were identified in 1 in 5 presumed aseptic nonunions using a standardized protocol with 5 intraoperative samples cultured 14 days and were predominantly caused by slow growing, gram-positive microorganisms. The local spectrum and antimicrobial sensitivity of occult infections should be considered when developing empiric antimicrobial protocols. Patients with presumed aseptic nonunions can expect high healing rates, regardless of the culture result. LEVEL OF EVIDENCE Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Robert Kaspar Wagner
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands;
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands;
- Department of Orthopaedic Surgery, Harvard Medical School Orthopedic Trauma Initiative, Massachusetts General Hospital, Boston, MA
| | - Mees P. Emmelot
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands;
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands;
| | - Clinton van Trikt
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands;
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands;
| | - Caroline E. Visser
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands;
| | - Edgar J.G. Peters
- Amsterdam UMC location Vrije Universiteit Amsterdam, Infectious Diseases, Amsterdam, the Netherlands;
- Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands; and
- Amsterdam Infection & Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Stein J. Janssen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands;
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands;
| | - Peter Kloen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands;
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands;
| |
Collapse
|
22
|
Li Y, Yin Y, Li L. Conferring NiTi alloy with controllable antibacterial activity and enhanced corrosion resistance by exploiting Ag@PDA films as a platform through a one-pot construction route. Heliyon 2024; 10:e34154. [PMID: 39113964 PMCID: PMC11304019 DOI: 10.1016/j.heliyon.2024.e34154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
The lack of antibacterial activity and the leaching of Ni ions seriously limit the potential applications of the near equiatomic nickel-titanium (NiTi) alloy in the biomedical field. In this study, a silver nanoparticles (Ag NPs) wrapped in a polydopamine (Ag@PDA) film modified NiTi alloy with controllable antibacterial activity and enhanced corrosion resistance was achieved using a one-pot approach in a mixed solution of AgNO3 and dopamine. The controllable antibacterial activity could be achieved by adjusting the initial concentration of dopamine (Cdop), which obtained Ag@PDA films with varying thickness of polydopamine layers coated on Ag NPs, thereby conferring different levels of antibacterial activity to the modified NiTi alloy. In vitro antibacterial ratios (24 h) of Ag@PDA film-modified NiTi alloy against E.coli and S.aureus ranged from 46 % to 100 % and from 42 % to 100 %, respectively. The release curves of Ag ions indicated the persistent antibacterial effect of Ag@PDA film-modified NiTi alloy for at least 21 days. Moreover, in vitro cytotoxicity and in vivo implantation tests demonstrated the satisfactory biosafety of the Ag@PDA film-modified NiTi alloy when used as bioimplants. This research offers valuable insight into meeting various antibacterial demands for NiTi alloy implantations and highlights the potential of Ag-containing film-modified biomaterials in addressing different types of infections induced by implantations.
Collapse
Affiliation(s)
- Ying Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
- School of Health Management, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| |
Collapse
|
23
|
Seregina T, Shelomentsev I, Krivoborodov E, Vaniushenkova A, Toropygin I, Dyatlov A, Lukashov N, Dyatlov V. Physicochemical and Biological Properties of Vancomycin-Containing Antibacterial Polysaccharide Gels for Biocomposite Bone Implant Impregnation. Biomacromolecules 2024; 25:4156-4167. [PMID: 38922325 DOI: 10.1021/acs.biomac.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Polymeric drugs containing up to 60% by weight of the antibiotic vancomycin were synthesized based on dextran carriers activated with epichlorohydrin. Vancomycin was covalently bound, involving the primary amino group of the molecule through the hydroxypropyl radical to the C6 position of the anhydroglucose units of the dextran main chain. Covalent binding is necessary to prevent spontaneous release of the antibiotic from the gel, thereby reducing the risk of bacterial multiresistance. Antibacterial depot gels were obtained from those polymers, containing up to 17.5% by weight of polysaccharide with a cross-linking density of q = 3-5 nodes per macromolecule for the deposition of another type of drugs not covalently bound to the polymer gel. They were used to coat the surface of the internal pores of biocomposite bone implants based on bovine cancellous bone used in orthopedics. The chemical structure of the polymer was studied using 13C NMR spectroscopy and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The stiffness of the gels was evaluated by the values of the accumulation modulus G' = 170-270 kPa and the loss modulus G″ = 3.7-4.2 kPa determined on a rheometer. Their values are close to those typical for materials used to replace soft tissue in plastic surgery. The minimum inhibitory concentration of the gels against Staphylococcus aureus P209 depends on the antibiotic content in the polymer. It equals 2.5 mg/L for vancomycin we used and 100 mg/L for a polymer containing 50% by weight of covalently bound antibiotic. The cytotoxic concentration measured with cell culture HEK 293T exceeds 1200 mg/L in 24 h exposure. The release dynamics of drugs not covalently bound to dextran from the depot gel were studied using fluorescein as a model. The release time is independent of the gel density and lasts up to 6 days for a 2 mm thick layer. Both the gel and the bone implants impregnated with it maintained consistently high antibacterial activity throughout the experiment, up to its completion after 168 h, with the local concentration of the released antibiotic at the site of bacterial attack exceeding the therapeutic level by 200 times.
Collapse
Affiliation(s)
- Tatiana Seregina
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Shelomentsev
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Efrem Krivoborodov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anna Vaniushenkova
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Toropygin
- V. N. Orekhovich Institute of Biomedical Chemistry, Pogodinskaya str., 10, p. 8, 119121 Moscow, Russia
| | - Alexander Dyatlov
- The Hebrew University of Jerusalem, POB 12272, Jerusalem 9112000, Israel
| | - Nikolay Lukashov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Valerie Dyatlov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| |
Collapse
|
24
|
Raichur A, Sinha N. Narrow spectrum nano-antibiotic for selective removal of ARB from contaminated water: New insights into stimuli response based on cellular attachment, lysis, and excretion. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134475. [PMID: 38733781 DOI: 10.1016/j.jhazmat.2024.134475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Narrow spectrum nano-antibiotics are supposedly the future trouble-shooters to improve the efficacy of conventional antimicrobials for treatment of severe bacterial infections, remove contamination from water and diminish the development of antibiotic resistance. In this study, antimicrobial peptide functionalized boron-carbon-nitride nanosheets ((Ant)pep@BCN NSs) are developed that are a promising wastewater disinfector and antibiotic resistant bactericide agent. These nanosheets are developed for selective removal and effective inactivation of antibiotic resistant bacteria (ARB) from water in presence of two virulent bacteria. The (Ant)pep@BCN NSs provide reactive surface receptors specific to the ARB. They mimic muralytic enzymes to damage the cell membrane of ARB. These NSs demonstrate 3-fold higher antimicrobial efficiency against the targeted ARB compared to pristine BCN even at lower concentrations. To the best of our knowledge, this is the first time that functionalized BCN has been developed to remove ARB selectively from wastewater. Furthermore, the (Ant)pep@BCN selectively reduced the microbiological load and led to morphological changes in Gram negative ARB in a mixed bacterial inoculum. These ARBs excreted outer-inner membrane vesicles (OIMVs) of triangular shape as a stimuli response to (Ant)pep@BCN NSs. These novel antimicrobial peptide-NSs have potential to improve treatment efficacy against ARB infections and water contamination.
Collapse
Affiliation(s)
- Archana Raichur
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
25
|
Ahsan R, Kifayat S, Pooniya KK, Kularia S, Adimalla BS, Sanapalli BKR, Sanapalli V, Sigalapalli DK. Bacterial Histidine Kinase and the Development of Its Inhibitors in the 21st Century. Antibiotics (Basel) 2024; 13:576. [PMID: 39061258 PMCID: PMC11274179 DOI: 10.3390/antibiotics13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial histidine kinase (BHK) is a constituent of the two-component signaling (TCS) pathway, which is responsible for the regulation of a number of processes connected to bacterial pathogenicity, virulence, biofilm development, antibiotic resistance, and bacterial persistence. As BHK regulation is diverse, inhibitors can be developed, such as antibiotic synergists, bacteriostatic/bactericidal agents, virulence inhibitors, and biofilm inhibitors. Inhibition of essential BHK has always been an amenable strategy due to the conserved binding sites of the domains across bacterial species and growth dependence. Hence, an inhibitor of BHK might block multiple TCS regulatory networks. This review describes the TCS system and the role of BHK in bacterial virulence and discusses the available inhibitors of BHK, which is a specific response regulator with essential structural features.
Collapse
Affiliation(s)
- Ragib Ahsan
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sumaiya Kifayat
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Krishan Kumar Pooniya
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sunita Kularia
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Bhavani Sailu Adimalla
- Department of Pharmaceutical Analysis, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, Guntur 522213, Andhra Pradesh, India;
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India;
| | - Vidyasrilekha Sanapalli
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India
| | | |
Collapse
|
26
|
Li Y, Vrana NE, Letellier B, Lavalle P, Guilbaud-Chéreau C. The use of supramolecular systems in biomedical applications for antimicrobial properties, biocompatibility, and drug delivery. Biomed Mater 2024; 19:042005. [PMID: 38729193 DOI: 10.1088/1748-605x/ad49f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Supramolecular chemistry is versatile for developing stimuli-responsive, dynamic and multifunctional structures. In the context of biomedical engineering applications, supramolecular assemblies are particularly useful as coatings for they can closely mimic the natural structure and organisation of the extracellular matrix (ECM), they can also fabricate other complex systems like drug delivery systems and bioinks. In the current context of growing medical device-associated complications and the developments in the controlled drug delivery and regenerative medicine fields, supramolecular assemblies are becoming an indispensable part of the biomedical engineering arsenal. This review covers the different supramolecular assemblies in different biomedical applications with a specific focus on antimicrobial coatings, coatings that enhance biocompatibility, surface modifications on implantable medical devices, systems that promote therapeutic efficiency in cancer therapy, and the development of bioinks. The introduced supramolecular systems include multilayer coating by polyelectrolytes, polymers incorporated with nanoparticles, coating simulation of ECM, and drug delivery systems. A perspective on the application of supramolecular systems is also included.
Collapse
Affiliation(s)
- Yijie Li
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg F-67000, France
- SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, France
| | - Nihal Engin Vrana
- SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, France
| | - Baptiste Letellier
- SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg F-67000, France
- SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, France
| | - Chloé Guilbaud-Chéreau
- SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, France
| |
Collapse
|
27
|
Patra S, Biswas P, Karmakar S, Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: implications of the combination of antibiotics and phytoconstituents. Arch Microbiol 2024; 206:294. [PMID: 38850339 DOI: 10.1007/s00203-024-04012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.
Collapse
Affiliation(s)
- Susmita Patra
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Poulomi Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kaushik Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
28
|
Ben-Amram H, Azrad M, Cohen-Assodi J, Sharabi-Nov A, Edelstein S, Agay-Shay K, Peretz A. Biofilm Formation by Hospital-Acquired Resistant Bacteria Isolated from Respiratory Samples. J Epidemiol Glob Health 2024; 14:291-297. [PMID: 38564110 PMCID: PMC11176280 DOI: 10.1007/s44197-024-00215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Hospital-acquired resistant infections (HARI) are infections, which develop 48 h or more after admission to a healthcare facility. HARI pose a considerably acute challenge, due to limited treatment options. These infections are associated bacterial biofilms, which act as a physical barrier to diverse external stresses, such as desiccation, antimicrobials and biocides. We assessed the influence of multiple factors on biofilm production by HARI -associated bacteria. METHODS Bacteria were isolated from samples of patients with respiratory HARI who were hospitalized during 2020-2022 in north Israel. Following antibiotic susceptibility testing by disc diffusion or broth microdilution, biofilm formation capacities of resistant bacteria (methicillin-resistant staphylococcus aureus, extended spectrum beta-lactamase-producing Escherichia coli and Klebsiela pneumonia, and multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii) was assessed using the crystalline violet staining method. Data regarding season, time to infection, bacterial species, patient age and gender, year, and medical department were collected from the patient medical records. RESULTS Among the 226 study isolates, K. pneumonia was the most prevalent (35.4%) bacteria, followed by P. aeruginosa (23.5%), and methicillin-resistant staphylococcus aureus (MRSA) (21.7%). A significantly higher rate of HARI was documented in 2022 compared to 2020-2021. The majority of isolates (63.3%) were strong biofilm producers, with K. pneumonia (50.3%) being most dominant, followed by P. aeruginosa (29.4%). Biofilm production strength was significantly affected by seasonality and hospitalization length, with strong biofilm production in autumn and in cases where hospitalization length exceeded 30 days. CONCLUSION Biofilm production by HARI bacteria is influenced by bacterial species, season and hospitalization length.
Collapse
Affiliation(s)
- Hila Ben-Amram
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- The Clinical Microbiology Laboratory, Ziv Medical Center, Affiliated with Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Maya Azrad
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Affiliated with Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Jackie Cohen-Assodi
- The Clinical Microbiology Laboratory, Ziv Medical Center, Affiliated with Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Shimon Edelstein
- The Infectious Diseases, Ziv Medical Center, Affiliated with Azrieli Faculty of Medicine, Bar Ilan University, 1311502, Safed, Israel
| | - Keren Agay-Shay
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Affiliated with Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
29
|
El-Subeyhi M, Hamid LL, Gayadh EW, Saod WM, Ramizy A. Biogenic Synthesis and Characterisation of Novel Potassium Nanoparticles by Capparis spinosa Flower Extract and Evaluation of Their Potential Antibacterial, Anti-biofilm and Antibiotic Development. Indian J Microbiol 2024; 64:548-557. [PMID: 39010993 PMCID: PMC11246407 DOI: 10.1007/s12088-024-01190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/30/2023] [Indexed: 07/17/2024] Open
Abstract
Scientific researches on the synthesis, characterisation, and biological activity of potassium nanoparticles (K NPs) are extremely rare. In our study, we successfully synthesised a novel form of K NPs using Capparis spinosa (C. spinosa) flower extract as a reducing and capping agent. The formation of K NPs in new form (K2O NPs) was confirmed by UV-vis and XRD spectra. Furthermore, the FTIR results indicated the presence of specific active biomolecules in the C. spinosa extract which played a crucial role in reducing and stabilising K2O NPs. SEM imaging demonstrated that the K2O NPs exhibited irregular shapes with nanosizes ranging between 25 and 95 nm. Remarkably, the biosynthesised K2O NPs displayed considerable antibacterial activity against a wide range of multidrug-resistant (MDR) pathogenic bacteria. K2O NPs demonstrated considerable anti-biofilm activity against preformed biofilms produced by MDR bacteria. Combining K2O NPs with conventional antibiotics greatly improved their efficacy in compacting the MDR bacterial strains. Industrially, bulk form of potassium oxides was commonly used in the preparation of various antimicrobial compounds such as detergents, bleach, and oxidising solutions. The synthesis of potassium oxide in nanoform has shown remarkable biological efficacy, making it a promising therapeutic approach for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Marwa El-Subeyhi
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Layth L. Hamid
- Biology department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Estabraq W. Gayadh
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Wahran M. Saod
- Chemistry department, College of Science, University Of Anbar, Ramadi, Iraq
| | - Asmiet Ramizy
- Physics department, College of Science, University Of Anbar, Ramadi, Iraq
| |
Collapse
|
30
|
Sun M, Wang J, Huang X, Hang R, Han P, Guo J, Yao X, Chu PK, Zhang X. Ultrasound-driven radical chain reaction and immunoregulation of piezoelectric-based hybrid coating for treating implant infection. Biomaterials 2024; 307:122532. [PMID: 38493670 DOI: 10.1016/j.biomaterials.2024.122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The poor efficiency of US-responsive coatings on implants restricts their practical application. Immunotherapy that stimulates immune cells to enhance their antibacterial activity is expected to synergize with sonodynamic therapy for treating implant infection effectively and safely. Herein, US-responsive hybrid coatings composed of the oxygen-deficient BaTiO3 nanorod arrays and l-arginine (BaTiO3-x/LA) are designed and prepared on titanium implants for sonocatalytic therapy-cooperated immunotherapy to treat Methicillin-resistant Staphylococcus aureus (MRSA) infection. BaTiO3-x/LA can generate more oxidizing reactive oxygen species (ROS, hydroxyl radical (·OH)) and reactive nitrogen species (RNS, peroxynitrite anion (ONOO-)). The construction of nanorod arrays and oxygen defects balances the piezoelectric properties and sonocatalytic capability during US treatment. The generated piezoelectric electric field provides a sufficient driving force to separate electrons and holes, and the oxygen defects attenuate the electron-hole recombination efficiency, consequently increasing the yield of ROS during the US treatment. Moreover, nitric oxide (NO) released by l-arginine reacts with the superoxide radical (·O2-) to produce ONOO-. Since, this radical chain reaction improves the oxidizing ability between bacteria and radicals, the cell membrane (argB, secA2) and DNA (dnaBGXN) are destroyed. The bacterial self-repair mechanism indirectly accelerates bacterial death based on the transcriptome analysis. In addition to participating in the radical chain reaction, NO positively affects macrophage M1 polarization to yield potent phagocytosis to MRSA. As a result, without introducing an extra sonosensitizer, BaTiO3-x/LA exhibits excellent antibacterial activity against MRSA after the US treatment for 15 min. Furthermore, BaTiO3-x/LA facilitates macrophage M2 polarization after implantation and improves osteogenic differentiation. The combined effects of sonodynamic therapy and immunoregulation lead to an effective and safe treatment method for implant-associated infections.
Collapse
Affiliation(s)
- Menglin Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiameng Wang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaobo Huang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiqiang Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, China.
| | - Xiangyu Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan, 030024, China; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
31
|
Li J, Hu S, Feng P, Xia Y, Pei Z, Tian J, Jiang K, Liu L, Cai X, Wu P. Brucine Sulfate, a Novel Bacteriostatic Agent in 3D Printed Bone Scaffold Systems. Polymers (Basel) 2024; 16:1428. [PMID: 38794621 PMCID: PMC11124991 DOI: 10.3390/polym16101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infection is a common complication in bone defect surgery, in which infection by clinically resistant bacteria has been a challenge for the medical community. Given this emerging problem, the discovery of novel natural-type inhibitors of drug-resistant bacteria has become imperative. Brucine, present in the traditional Chinese herb Strychnine semen, is reported to exert analgesic and anti-inflammatory effects. Brucine's clinical application was limited because of its water solubility. We extracted high-purity BS by employing reflux extraction and crystallization, greatly improved its solubility, and evaluated its antimicrobial activity against E. coli and S. aureus. Importantly, we found that BS inhibited the drug-resistant strains significantly better than standard strains and achieved sterilization by disrupting the bacterial cell wall. Considering the safety concerns associated with the narrow therapeutic window of BS, a 3D BS-PLLA/PGA bone scaffold system was constructed with SLS technology and tested for its performance, bacteriostatic behaviors, and biocompatibility. The results have shown that the drug-loaded bone scaffolds had not only long-term, slow-controlled release with good cytocompatibility but also demonstrated significant antimicrobial activity in antimicrobial testing. The above results indicated that BS may be a potential drug candidate for the treatment of antibiotic-resistant bacterial infections and that scaffolds with enhanced antibacterial activity and mechanical properties may have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Jinying Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
| | - Shi Hu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; (S.H.); (P.F.)
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; (S.H.); (P.F.)
| | - Yang Xia
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
- Changde First Chinese Medicine Hospital, Changde 415000, China
| | - Zihan Pei
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
| | - Jiaxuan Tian
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
| | - Kun Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
| | - Liang Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
| | - Ping Wu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.L.); (Y.X.); (Z.P.); (J.T.); (K.J.)
| |
Collapse
|
32
|
Chen Y, Xu Z, Wang X, Sun X, Xu X, Li X, Cheng G. Highly Efficient Photodynamic Hydrogel with AIE-Active Photosensitizers toward Methicillin-Resistant Staphylococcus aureus Ultrafast Imaging and Killing. ACS Biomater Sci Eng 2024; 10:3401-3411. [PMID: 38624061 DOI: 10.1021/acsbiomaterials.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes great health hazards to society because most antibiotics are ineffective. Photodynamic treatment (PDT) has been proposed to combat MRSA due to the advantage of imaging-guided no-drug resistance therapy. However, the traditional photosensitizers for PDT are limited by aggregation-caused quenching for imaging and low photodynamic antibacterial efficiency. In this work, we synthesize a new aggregation-induced emission (AIE) photosensitizer (APNO), which can ultrafast distinguish between Gram-positive and Gram-negative bacteria within 3 s by AIE-active photosensitizer imaging. Meanwhile, APNO can generate antibacterial reactive oxygen species under light irradiation, which holds potential for antibacterial PDT. Then, APNO is loaded by PHEAA hydrogel to obtain a highly efficient photodynamic hydrogel (APNO@gel). In vitro results show complete inhibition of MRSA by APNO@gel under lower-power light irradiation. Transcriptome analysis is performed to investigate antibacterial mechanism of APNO@gel. Most importantly, APNO@gel also exhibits significant inhibition and killing ability of MRSA in the MRSA wound infection model, which will further promote rapid wound healing. Therefore, the photodynamic hydrogel provides a promising strategy toward MRSA ultrafast imaging and killing.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Ziqiang Xu
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Xin Wang
- Department of Molecular Diagnostics, Roche Diagnostics(Shanghai) Limited Company, Shanghai 200131, P. R. China
| | - Xuexue Sun
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xinhui Xu
- Key Laboratory for Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xiao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
| |
Collapse
|
33
|
Graziani G, Ghezzi D, Boi M, Baldini N, Sassoni E, Cappelletti M, Fedrizzi G, Maglio M, Salamanna F, Tschon M, Martini L, Zaffagnini S, Fini M, Sartori M. Ionized jet deposition of silver nanostructured coatings: Assessment of chemico-physical and biological behavior for application in orthopedics. BIOMATERIALS ADVANCES 2024; 159:213815. [PMID: 38447383 DOI: 10.1016/j.bioadv.2024.213815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.
Collapse
Affiliation(s)
- Gabriela Graziani
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Daniele Ghezzi
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Marco Boi
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Nicola Baldini
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Giorgio Fedrizzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Reparto Chimico degli Alimenti, Via Pietro Fiorini 5, 40127 Bologna, Italy.
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lucia Martini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, via Pupilli 1, 40136 Bologna, Italy.
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
34
|
Ding J, Wang X, Liu W, Ding C, Wu J, He R, Zhang X. Biofilm Microenvironment Activated Antibiotic Adjuvant for Implant-Associated Infections by Systematic Iron Metabolism Interference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400862. [PMID: 38408138 PMCID: PMC11077648 DOI: 10.1002/advs.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Hematoma, a risk factor of implant-associated infections (IAIs), creates a Fe-rich environment following implantation, which proliferates the growth of pathogenic bacteria. Fe metabolism is a major vulnerability for pathogens and is crucial for several fundamental physiological processes. Herein, a deferiprone (DFP)-loaded layered double hydroxide (LDH)-based nanomedicine (DFP@Ga-LDH) that targets the Fe-rich environments of IAIs is reported. In response to acidic changes at the infection site, DFP@Ga-LDH systematically interferes with bacterial Fe metabolism via the substitution of Ga3+ and Fe scavenging by DFP. DFP@Ga-LDH effectively reverses the Fe/Ga ratio in Pseudomonas aeruginosa, causing comprehensive interference in various Fe-associated targets, including transcription and substance metabolism. In addition to its favorable antibacterial properties, DFP@Ga-LDH functions as a nano-adjuvant capable of delaying the emergence of antibiotic resistance. Accordingly, DFP@Ga-LDH is loaded with a siderophore antibiotic (cefiderocol, Cefi) to achieve the antibacterial nanodrug DFP@Ga-LDH-Cefi. Antimicrobial and biosafety efficacies of DFP@Ga-LDH-Cefi are validated using ex vivo human skin and mouse IAI models. The pivotal role of the hematoma-created Fe-rich environment of IAIs is highlighted, and a nanoplatform that efficiently interferes with bacterial Fe metabolism is developed. The findings of the study provide promising guidance for future research on the exploration of nano-adjuvants as antibacterial agents.
Collapse
Affiliation(s)
- Jianing Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xin Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Wei Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Cheng Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jianrong Wu
- Shanghai Institute of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
35
|
Scaglione E, Sateriale D, Mantova G, Di Rosario M, Continisio L, Vitiello M, Pagliarulo C, Colicchio R, Pagliuca C, Salvatore P. Antimicrobial efficacy of Punica granatum Lythraceae peel extract against pathogens belonging to the ESKAPE group. Front Microbiol 2024; 15:1383027. [PMID: 38711969 PMCID: PMC11070501 DOI: 10.3389/fmicb.2024.1383027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The improper use and abuse of antibiotics have led to an increase in multidrug-resistant (MDR) bacteria resulting in a failure of standard antibiotic therapies. To date, this phenomenon represents a leading public health threat of the 21st century which requires alternative strategies to fight infections such as the identification of new molecules active against MDR strains. In the last 20 years, natural extracts with biological activities attracted scientific interest. Following the One Health Approach, natural by-products represent a sustainable and promising alternative solution. Consistently, the aim of the present study was to evaluate the antimicrobial activity of hydro-alcoholic pomegranate peel extract (PPE) against MDR microorganisms belonging to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. "ESKAPE" group pathogens. Through semiquantitative and quantitative methods, the PPE showed effective antimicrobial activity against Gram-positive and Gram-negative MDR bacteria. The kinetics of bactericidal action of PPE highlighted that microbial death was achieved in a time- and dose-dependent manner. High concentrations of PPE exhibited antioxidant activity, providing a protective effect on cellular systems and red blood cell membranes. Finally, we report, for the first time, a significant intracellular antibacterial property of PPE as highlighted by its bactericidal action against the staphylococcal reference strain and its bacteriostatic effect against clinical resistant strain in the HeLa cell line. In conclusion, due to its characterized content of polyphenolic compounds and antioxidant activity strength, the PPE could be considered as a therapeutic agent alone or in conjunction with standard antibiotics against challenging infections caused by ESKAPE pathogens.
Collapse
Affiliation(s)
- Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Daniela Sateriale
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Martina Di Rosario
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Leonardo Continisio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Mariateresa Vitiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
36
|
Vonken L, de Bruijn GJ, Noordink A, Kremers S, Schneider F. Barriers and facilitators of implementation of new antibacterial technologies in patient care: an interview study with orthopedic healthcare professionals at a university hospital. BMC Health Serv Res 2024; 24:447. [PMID: 38594689 PMCID: PMC11005272 DOI: 10.1186/s12913-024-10878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Antimicrobial resistance is a major global health threat. Therefore, promising new antibacterial technologies that could minimize our dependence on antibiotics should be widely adopted. This study aims to identify the barriers and facilitators of the adoption of new antibacterial technologies in hospital patient care. METHODS Semi-structured interviews, based on the Consolidated Framework for Implementation Research, were conducted with healthcare professionals related to the orthopedics department of an academic hospital in The Netherlands. RESULTS In total, 11 healthcare professionals were interviewed. Scientific evidence for the effectiveness of the technology was the most explicitly mentioned facilitator of adoption, but other (often contextual) factors were also considered to be important. At the level of the inner and outer setting, high costs and lacking coverage, competition from other firms, and problems with ordering and availability were the most explicit perceived barriers to adoption. Participants did not collectively feel the need for new antibacterial technologies. CONCLUSIONS Barriers and facilitators of the adoption of new antibacterial technologies were identified related to the technology, the hospital, and external factors. The implementation climate might have an indirect influence on adoption. New antibacterial technologies that are scientifically proven effective, affordable, and easily obtainable will most likely be adopted.
Collapse
Affiliation(s)
- Lieve Vonken
- Department of Health Promotion, Research School CAPHRI, Maastricht University, P. Debyelaan 1, 6229 HA, Maastricht, The Netherlands.
| | - Gert-Jan de Bruijn
- Department of Communication Studies, University of Antwerp, Stadscampus, S.M.481 Sint-Jacobsstraat 2, 2000, Antwerpen, Belgium
| | - Annika Noordink
- Department of Health Promotion, Research School CAPHRI, Maastricht University, P. Debyelaan 1, 6229 HA, Maastricht, The Netherlands
| | - Stef Kremers
- Department of Health Promotion, Research School CAPHRI, Maastricht University, P. Debyelaan 1, 6229 HA, Maastricht, The Netherlands
| | - Francine Schneider
- Department of Health Promotion, Research School CAPHRI, Maastricht University, P. Debyelaan 1, 6229 HA, Maastricht, The Netherlands
| |
Collapse
|
37
|
Gallab M, Le PTM, Shintani SA, Takadama H, Ito M, Kitagaki H, Matsushita T, Honda S, Okuzu Y, Fujibayashi S, Yamaguchi S. Mechanical, bioactive, and long-lasting antibacterial properties of a Ti scaffold with gradient pores releasing iodine ions. BIOMATERIALS ADVANCES 2024; 158:213781. [PMID: 38335763 DOI: 10.1016/j.bioadv.2024.213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The ideal bone implant would effectively prevent aseptic as well as septic loosening by minimizing stress shielding, maximizing bone ingrowth, and preventing implant-associated infections. Here, a novel gradient-pore-size titanium scaffold was designed and manufactured to address these requirements. The scaffold features a larger pore size (900 μm) on the top surface, gradually decreasing to small sizes (600 μm to 300 μm) towards the center, creating a gradient structure. To enhance its functionality, the additively manufactured scaffolds were biofunctionalized using simple chemical and heat treatments so as to incorporate calcium and iodine ions throughout the surface. This unique combination of varying pore sizes with a biofunctional surface provides highly desirable mechanical properties, bioactivity, and notably, long-lasting antibacterial activity. The target mechanical aspects, including low elastic modulus, high compression, compression-shear, and fatigue strength, were effectively achieved. Furthermore, the biofunctional surface exhibits remarkable in vitro bioactivity and potent antibacterial activity, even under conditions specifically altered to be favorable for bacterial growth. More importantly, the integration of small pores alongside larger ones ensures a sustained high release of iodine, resulting in antimicrobial activity that persisted for over three months, with full eradication of the bacteria. Taken together, this gradient structure exhibits obvious superiority in combining most of the desired properties, making it an ideal candidate for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Mahmoud Gallab
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan; Faculty of Engineering, Minia University, Minia 61111, Egypt.
| | - Phuc Thi Minh Le
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan; Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
| | - Seine A Shintani
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Hiroaki Takadama
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Morihiro Ito
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Hisashi Kitagaki
- Osaka Yakin Kogyo Co., Ltd., Zuiko 4-4-28, Higashi Yodogawa-ku, Osaka City, Osaka 533-0005, Japan
| | - Tomiharu Matsushita
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Shintaro Honda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yaichiro Okuzu
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Seiji Yamaguchi
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan.
| |
Collapse
|
38
|
Velazquez-Meza ME, Galarde-López M, Cornejo-Juárez P, Carrillo-Quiroz BA, Velázquez-Acosta C, Bobadilla-del-Valle M, Ponce-de-León A, Alpuche-Aranda CM. Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study. Microorganisms 2024; 12:645. [PMID: 38674590 PMCID: PMC11051902 DOI: 10.3390/microorganisms12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of the study was to detect multidrug-resistant Staphylococcus sp. and Enterococcus sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS®). Antimicrobial susceptibility was performed using VITEK 2® automated system. There were 56 wastewater samples obtained during the study period. A total of 182 Staphylococcus sp. and 248 Enterococcus sp. were identified. The highest frequency of Staphylococcus sp. isolation was in spring and summer (n = 129, 70.8%), and for Enterococcus sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of Staphylococcus sp. and sixty-three of Enterococcus sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of Staphylococcus sp. and ninety-four of Enterococcus sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of Staphylococcus sp. and Enterococcus sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
Collapse
Affiliation(s)
- Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Consuelo Velázquez-Acosta
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Miriam Bobadilla-del-Valle
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
39
|
Zeng B, Liu P, Wu X, Zheng F, Jiang J, Zhang Y, Liao X. Comparison of ANN and LR models for predicting Carbapenem-resistant Klebsiella pneumoniae isolates from a southern province of China's RNSS data. J Glob Antimicrob Resist 2024; 36:453-459. [PMID: 37918787 DOI: 10.1016/j.jgar.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious threat to public health due to its limited treatment options and high mortality rate. This study aims to identify the risk factors of carbapenem resistance in patients with K. pneumoniae isolates and develop CRKP prediction models using logistic regression (LR) and artificial neural network (ANN) methods. METHODS We retrospectively analysed the data of 49,774 patients with Klebsiella pneumoniae isolates from a regional nosocomial infection surveillance system (RNSS) between 2018 and 2021. We performed logistic regression analyses to determine the independent predictors for CRKP. We then built and evaluated LR and ANN models based on these predictors using calibration curves, ROC curves, and decision curve analysis (DCA). We also applied the Synthetic Minority Over-Sampling Technique (SMOTE) to balance the data of CRKP and non-CRKP groups. RESULTS The LR model showed good discrimination and calibration in both training and validation sets, with areas under the ROC curve (AUROC) of 0.824 and 0.825, respectively. The DCA indicated that the LR model had clinical usefulness for decision making. The ANN model outperformed the LR model both in the training set and validation set. The SMOTE technique improved the performance of both models for CRKP detection in training set, but not in the validation set. CONCLUSION We developed and validated LR and ANN models for predicting CRKP based on RNSS data. Both models were feasible and reliable for CRKP inference and could potentially assist clinicians in selecting appropriate empirical antibiotics and reducing unnecessary medical resource utilization.
Collapse
Affiliation(s)
- Bangwei Zeng
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China.
| | - Peijun Liu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Xiaoyan Wu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Feng Zheng
- Information Department, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Jiehong Jiang
- Hangzhou Xinlin Information Technology Company, Hangzhou City, Zhejiang Province, China
| | - Yangmei Zhang
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| | - Xiaohua Liao
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, China
| |
Collapse
|
40
|
Dong J, Chen F, Yao Y, Wu C, Ye S, Ma Z, Yuan H, Shao D, Wang L, Wang Y. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials 2024; 305:122465. [PMID: 38190768 DOI: 10.1016/j.biomaterials.2023.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Bacterial infection and delayed osseointegration are two major challenges for titanium-based orthopedic implants. In the present study, we developed a functionalized titanium implant Ti-M@A by immobilizing antimicrobial peptide (AMP) HHC36-loaded diselenide-bridged mesoporous silica nanoparticles (MSNs) on the surface, which showed good long-term and mechanical stability. The functionalized implants can realize the sustained release of AMP over 30 days and exhibit over 95.71 % antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and MRSA), which arose from the capability to destroy the bacterial membranes. Moreover, Ti-M@A can efficiently inhibit the biofilm formation of the bacteria. The functionalized implants can also significantly promote the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) because of the Se in MSNs. Notably, it can trigger macrophages toward M2 polarization in vitro by scavenging ROS in LPS-activated macrophages. Consequently, in vivo assays with infection and non-infection bone defect models demonstrated that such bioactive implants can not only kill over 98.82 % of S. aureus, but also promote osseointegration. Hence, this study provides a combined strategy to resolve bacterial infection and delayed osseointegration for titanium implants.
Collapse
Affiliation(s)
- Jiyu Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuying Yao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Congcong Wu
- Jinan Center for Disease Control and Prevention, Jinan 250001, China
| | - Silin Ye
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Haipeng Yuan
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
41
|
Huang L, Du M, Sun D, He M, Liu Z, Wu R, Jiang Y, Qi L, Wang J, Zhu C, Li Y, Liu L, Feng G, Zhang L. Propelling Multi-Modal Therapeutics of PEEK Implants through the Power of NO evolving Covalent Organic Frameworks (COFs). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306508. [PMID: 37919860 DOI: 10.1002/smll.202306508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Indexed: 11/04/2023]
Abstract
The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.
Collapse
Affiliation(s)
- Leizhen Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Meixuan Du
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Miaomiao He
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
42
|
Bishoyi AK, Mandhata CP, Sahoo CR, Paidesetty SK, Padhy RN. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1347-1375. [PMID: 37712972 DOI: 10.1007/s00210-023-02719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The Oscillatoria sp., a blue-green alga or cyanobacterium, consists of about 305 species distributed globally. Cyanobacteria are prokaryotes possessing several secondary metabolites that have industrial and biomedical applications. Particularly, the published reviews on Oscillatoria sp. have not recorded any pharmacology, or possible details, while the detailed chemical structures of the alga are reported in the literature. Hence, this study considers pertinent pharmacological activities of the plethora of bioactive components of Oscillatoria sp. Furthermore, the metallic nanoparticles produced with Oscillatoria sp. were documented for plausible antibacterial, antifungal, antioxidant, anticancer, and cytotoxic effects against several cultured human cell lines. The antimicrobial activities of solvent extracts of Oscillatoria sp. and the biotic activities of its derivatives, pyridine, acridine, fatty acids, and triazine were structurally described in detail. To understand the connotations with research gaps and provide some pertinent prospective suggestions for further research on cyanobacteria as potent sources of pharmaceutical utilities, attempts were documented. The compounds of Oscillatoria sp. are a potent source of secondary metabolites that inhibit the cancer cell lines, in vitro. It could be expected that by holistic exploitation, the natural Oscillatoria products, as the source of chemical varieties and comparatively more potent inhibitors, would be explored against pharmacological activities with the integument of SARs.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
43
|
Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, Wong TW, Hidayat A, Nur H. Evaluation of in vitro corrosion behavior and biocompatibility of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron for bone scaffolds applications. Biotechnol J 2024; 19:e2300464. [PMID: 38509814 DOI: 10.1002/biot.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Wan Fahmin Faiz Wan Ali
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Farah Hidayah Jamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fatihhi Szali Januddi
- Advanced Facilities Engineering Technology Research Cluster (AFET), Plant Engineering Technology (PETech) Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Masai, Johor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of UPM - MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tuck-Whye Wong
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Arif Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Negeri Malang, Malang, Indonesia
| | - Hadi Nur
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
- Center of Advanced Materials for Renewable Energy (CAMRY), Universiti Negeri Malang, Malang, Indonesia
| |
Collapse
|
44
|
Xie C, Ren Y, Weeks J, Rainbolt J, Kenney HM, Xue T, Allen F, Shu Y, Tay AJH, Lekkala S, Yeh SCA, Muthukrishnan G, Gill AL, Gill SR, Kim M, Kates SL, Schwarz EM. Longitudinal intravital imaging of the bone marrow for analysis of the race for the surface in a murine osteomyelitis model. J Orthop Res 2024; 42:531-538. [PMID: 37812184 PMCID: PMC10932844 DOI: 10.1002/jor.25716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Critical knowledge gaps of orthopedic infections pertain to bacterial colonization. The established dogma termed the Race for the Surface posits that contaminating bacteria compete with host cells for the implant post-op, which remains unproven without real-time in vivo evidence. Thus, we modified the murine longitudinal intravital imaging of the bone marrow (LIMB) system to allow real-time quantification of green fluorescent protein (GFP+) host cells and enhanced cyan fluorescent protein (ECFP+) or red fluorescent protein (RFP+) methicillin-resistant Staphylococcus aureus (MRSA) proximal to a transfemoral implant. Following inoculation with ~105 CFU, an L-shaped metal implant was press-fit through the lateral cortex at a 90° angle ~0.150 mm below a gradient refractive index (GRIN) lens. We empirically derived a volume of interest (VOI) = 0.0161 ± 0.000675 mm3 during each imaging session by aggregating the Z-stacks between the first (superior) and last (inferior) in-focus LIMB slice. LIMB postimplantation revealed very limited bacteria detection at 1 h, but by 3 h, 56.8% of the implant surface was covered by ECFP+ bacteria, and the rest were covered by GFP+ host cells. 3D volumetric rendering of the GFP+ and ECFP+ or RFP+ voxels demonstrated exponential MRSA growth between 3 and 6 h in the Z-plane, which was validated with cross-sectional ex vivo bacterial burden analyses demonstrating significant growth by ~2 × 104 CFU/h on the implant from 2 to 12 h post-op (p < 0.05; r2 > 0.98). Collectively, these results show the competition at the surface is completed by 3 h in this model and demonstrate the potential of LIMB to elucidate mechanisms of bacterial colonization, the host immune response, and the efficacy of antimicrobials.
Collapse
Affiliation(s)
- Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason Weeks
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas Xue
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Faith Allen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Ye Shu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Allie Jia Hui Tay
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Sashank Lekkala
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Shu-Chi A. Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Ann L. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
45
|
Irfan I, Uddin A, Jain R, Gupta A, Gupta S, Napoleon JV, Hussain A, Alajmi MF, Joshi MC, Hasan P, Kumar P, Abid M, Singh S. Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors. Heliyon 2024; 10:e25077. [PMID: 38327451 PMCID: PMC10847618 DOI: 10.1016/j.heliyon.2024.e25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a-s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a 'click' reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 μM & 1.8 μM (7l), and 3.5 μM & 2.7 μM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection.
Collapse
Affiliation(s)
- Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mukesh C. Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
46
|
Verma AK, Srivastava SK. In silico and structural investigation of sulfonamides targeting VraSR two component system in methicillin-resistant Staphylococcus aureus. J Biomol Struct Dyn 2024:1-21. [PMID: 38319034 DOI: 10.1080/07391102.2024.2309679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Drug-resistant Staphylococcus aureus strains are global health concerns. Several studies have shown that these strains can develop defences against cell wall antibiotics such as β-lactams, glycopeptides and daptomycin which target cell wall biosynthesis. The coordination of these responses have been associated with two component system (TCS) regulated by histidine kinase protein (VraS) and its cognate regulator VraR which influences the target DNA upon signal recognition. Computer-based screening methods, predictions and simulations have emerged as more efficient and quick ways to identify promising new compound leads from large databases against emerging drug targets thus allowing prediction of small select set of molecules for further validations. These combined approaches conserve valuable time and resources. Due to methicillin resistance, sulfonamide-derivative medications have been found to be effective treatment strategy to treat S. aureus infections. The current study used ligand-based virtual screening (LBVS) to identify powerful sulfonamide derivative inhibitors from an antibacterial compound library against VraSR signaling components, VraS and VraR. We identified promising sulfonamide derivative [compound 5: (4-[(1-{[(3,5-Dimethoxyphenyl)Carbamoyl]Methyl}-2,4-Dioxo-1,2,3,4-Tetrahydroquinazolin-3-Yl)Methyl]-N-[(Furan-2-Yl)Methyl]Benzamide)] with reasonable binding parameters of -31.38 kJ/mol and ΔGbind score of -294.32 kJ/mol against ATP binding domain of sensor kinase VraS. We further identified four compounds N1 (PCID83276726), N3 (PCID83276757), N9 (PCID3672584), and N10 (PCID20900589) against VraR DNA binding domain (VraRC) with ΔGbind energies of -190.27, -237.54, -165.21, and -190.88 kJ/mol, respectively. Structural and simulation analyses further suggest their stable interactions with DNA interacting residues and potential to disrupt DNA binding domain dimerization; therefore, it is prudent to further investigate and characterize them as VraR dimer disruptors and inhibit other promoter binding site. Interestingly, the discovery of drugs that target VraS and VraR may open new therapeutic avenues for drug-resistant S. aureus. These predictions based on screening, simulations and binding affinities against VraSR components hold promise for opening novel therapeutic avenues against drug-resistant S. aureus and present opportunities for repositioning efforts. These efforts aim to create analogs with enhanced potency and selectivity against two-component signaling systems that significantly contribute to virulence in MRSA or VRSA. These analyses contribute valuable insights into potential avenues for combating antibiotic-resistant S. aureus through computationally driven drug discovery strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
47
|
Alhhazmi AA, Alluhibi SS, Alhujaily R, Alenazi ME, Aljohani TL, Al-Jazzar AAT, Aljabri AD, Albaqami R, Almutairi D, Alhelali LK, Albasri HM, Almutawif YA, Alturkostani MA, Almutairi AZ. Novel antimicrobial peptides identified in legume plant, Medicago truncatula. Microbiol Spectr 2024; 12:e0182723. [PMID: 38236024 PMCID: PMC10845954 DOI: 10.1128/spectrum.01827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
One of the major issues in healthcare today is antibiotic resistance. Antimicrobial peptides (AMPs), a subclass of host defense peptides, have been suggested as a viable solution for the multidrug resistance problem. Legume plants express more than 700 nodule-specific cysteine-rich (NCR) peptides. Three NCR peptides (NCR094, NCR888, and NCR992) were predicted to have antimicrobial activity using in silico AMP prediction programs. This study focused on investigating the roles of the NCRs in antimicrobial activity and antibiofilm activity, followed by in vitro toxicity profiling. Different variants were synthesized, i.e., mutated and truncated derivatives. The effect on the growth of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) was monitored post-treatment, and survived cells were counted using an in vitro and ex vivo killing assay. The antibiofilm assay was conducted using subinhibitory concentrations of the NCRs and monitoring K. pneumoniae biomass, followed by crystal violet staining. The cytotoxicity profile was evaluated using erythrocyte hemolysis and leukemia (K562) cell line toxicity assays. Out of the NCRs, NCR094 and NCR992 displayed mainly in vitro and ex vivo bactericidal activity on K. pneumoniae. NCR094 wild type (WT) and NCR992 eradicated K. pneumoniae at different potency; NCR094 and NCR992 killed K. pneumoniae completely at 25 and 50 µM, respectively. However, both peptides in the wild type showed negligible bactericidal effect on MRSA in vitro and ex vivo. NCR094 and its derivatives relatively retained the antimicrobial activity on K. pneumoniae in vitro and ex vivo. NCR992 WT lost its antimicrobial activity on K. pneumoniae ex vivo, yet the different truncated and mutated variants retained some of the antimicrobial role ex vivo. All the different variants of NCR094 had no effect on MRSA in vitro and ex vivo. Similarly, NCR992's variants had a negligible bactericidal role on MRSA in vitro, yet the truncated variants had a significantly high bactericidal effect on MRSA ex vivo. NCR094.3 (cystine replacement variant) and NCR992.1 displayed significant antibiofilm activity more than 90%. NCR992.3 and NCR992.2 displayed more than 50% of antibiofilm activity. All the NCR094 forms had no toxicity, except NCR094.1 (49.38%, SD ± 3.46) and all NCR992 forms (63%-93%), which were above the cutoff (20%). Only NCR992.2 showed low toxicity on K562 (24.8%, SD ± 3.40), yet above the 20% cutoff. This study provided preliminary antimicrobial and safety data for the potential use of these peptides for therapeutical applications.IMPORTANCEThe discovery of new antibiotics is urgently needed, given the global expansion of antibiotic-resistant bacteria and the rising mortality rate. One of the initial lines of defense against microbial infections is antimicrobial peptides (AMPs). Plants can express hundreds of such AMPs as defensins and defensin-like peptides. The nodule-specific cysteine-rich (NCR) peptides are a class of defensin-like peptides that have evolved in rhizobial-legume symbioses. This study screened the antimicrobial activity of a subset of NCR sequences using online computational AMP prediction algorithms. Two novel NCRs, NCR094 and NCR992, with different variants were identified to exhibit antimicrobial activity with various potency on two problematic pathogens, K. pneumoniae and MRSA, using in vitro and ex vivo killing assays. Yet, one variant, NCR094.3, had no toxicity toward human cells and displayed antibiofilm activity, which make it a promising lead for antimicrobial drug development.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Sarah S. Alluhibi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Rahaf Alhujaily
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Maymona E. Alenazi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Taif L. Aljohani
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Al-Anoud T. Al-Jazzar
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Ahaad D. Aljabri
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Razan Albaqami
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Dalal Almutairi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Lujain K. Alhelali
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hibah M. Albasri
- Department of Biology, College of Science, Taibah University, Medina, Saudi Arabia
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | | | | |
Collapse
|
48
|
Qian G, Mao Y, Zhao H, Zhang L, Xiong L, Long Z. pH-Responsive nanoplatform synergistic gas/photothermal therapy to eliminate biofilms in poly(L-lactic acid) scaffolds. J Mater Chem B 2024; 12:1379-1392. [PMID: 38247429 DOI: 10.1039/d3tb02600k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To date, implant-associated infection is still a significant clinical challenge, which cannot be effectively eliminated by single therapies due to the formation of microbial biofilms. Herein, a pH-responsive nanoplatform was constructed via the in situ growth of zinc sulfide (ZnS) nanoparticles on the surface of Ti3C2 MXene nanosheets, which was subsequently introduced in poly(L-lactic acid) (PLLA) to prepare a composite bone scaffold via selective laser sintering technology. In the acidic biofilm microenvironment, the degradation of ZnS released hydrogen sulfide (H2S) gas to eliminate the biofilm extracellular DNA (eDNA), thus destroying the compactness of the biofilm. Then, the bacterial biofilm became sensitive to hyperthermia, which could be further destroyed under near-infrared light irradiation due to the excellent photothermal property of MXene, finally achieving gas/photothermal synergistic antibiofilm and efficient sterilization. The results showed that the synergistic gas/photothermal therapy for the composite scaffold not only evidently inhibited the formation of biofilms, but also effectively eradicated the eDNA of the already-formed biofilms and killed 90.4% of E. coli and 84.2% of S. aureus under near infrared light irradiation compared with single gas or photothermal therapy. In addition, the composite scaffold promoted the proliferation and osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Thus, the designed scaffold with excellent biofilm elimination and osteogenesis ability has great potential as an alternative treatment for implant-associated bone infections.
Collapse
Affiliation(s)
- Guowen Qian
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, P. R. China.
| | - Yuqian Mao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
| | - Huihui Zhao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
| | - Lemin Zhang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, P. R. China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, P. R. China.
| |
Collapse
|
49
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
50
|
Cascini F, Franzini M, Andreoli A, Manzotti A, Cadeddu C, Quaranta G, Gentili A, Ricciardi W. Use of oxygen-ozone therapy to improve the effectiveness of antibiotic treatment on infected arthroplasty: protocol for a superiority, open-label, multicentre, randomised, parallel trial. BMJ Open 2024; 14:e076739. [PMID: 38176866 PMCID: PMC10773369 DOI: 10.1136/bmjopen-2023-076739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
INTRODUCTION Surgical site infections still remain a major public health challenge and have become an increasing universal risk, especially for the implantation of orthopaedic devices.Unfortunately, the discovery and increasingly widespread use (especially the misuse) of antibiotics have led to the rapid appearance of antibiotic-resistant strains today; more and more infections are caused by microorganisms that fail to respond to conventional treatments.Oxygen-ozone therapy has been extensively used and studied for decades across various potential medical applications and has provided consistent effects with minimal side effects.This study aims to determine the superiority of oxygen-ozone therapy in combination with oral antibiotic therapy in patients with wound infections after an orthopaedic device implantation when compared with antibiotic therapy alone. METHODS AND ANALYSIS This is an open-label, multicentre, randomised, parallel-group study that aims to assess the efficacy and safety of oxygen-ozone therapy in combination with oral antibiotic therapy to treat infections in patients (male or female aged ≥18 years) having undergone surgery for the implant of an orthopaedic device. Patients must have at least one (but no more than three) postoperative wounds in the site of surgery (ulcers, eschars and sores) and at least one symptom (pain, burning, redness and malodour) and at least one sign (erythema, local warmth, swelling and purulent secretion) of infection of at least moderate intensity (score ≥2) in the target lesion at the screening visit (patients with wounds without signs of localised infection or with undermining wounds will be excluded).Patients (n=186) will be recruited from five Italian hospitals and studied for 7 weeks. All will be assigned to one of the two treatment groups according to a web-based, centralised randomisation procedure and placed into either the (1) intervention: oxygen-ozone therapy 2-3 times a week for 6 weeks (for a maximum of 15 sessions) simultaneously with an appropriate oral antibiotic therapy prescribed at baseline or (2) control: oral antibiotic therapy prescribed at baseline.The primary outcome is the efficacy and superiority of the treatment (ozone and oral antibiotic therapies); secondary outcomes include the resolution of signs and symptoms, modifications in lesion size and the treatment's safety and tolerability. ETHICS AND DISSEMINATION This study has been reviewed and approved by the responsible Independent Ethics Committee (IEC) of COMITATO ETICO CAMPANIA NORD, located at 'Azienda Ospedaliera San Giuseppe Moscati di Avellino'.After completion of the study, the project coordinator will prepare a draft manuscript containing the final results of the study on the basis of the statistical analysis. The manuscript will be derived by the co-authors for comments, and after revision, it will be sent to a major scientific journal. Findings will be disseminated via online and print media, events and peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04787575.
Collapse
Affiliation(s)
- Fidelia Cascini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marianno Franzini
- Società Italiana di Ossigeno-Ozono Terapia (SIOOT), Gorle (BG), Italy
| | | | | | - Chiara Cadeddu
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluigi Quaranta
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Andrea Gentili
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Walter Ricciardi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|