1
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Bell RD, Cann EA, Mishra B, Valencia M, Zhang Q, Huang M, Yang X, Carli A, Bostrom M, Ivashkiv LB. Staphyloccocus aureus biofilm, in absence of planktonic bacteria, produces factors that activate counterbalancing inflammatory and immune-suppressive genes in human monocytes. J Orthop Res 2024; 42:2582-2592. [PMID: 38922976 PMCID: PMC11481048 DOI: 10.1002/jor.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Staphyloccocus aureus (S. aureus) is a major bacterial pathogen in orthopedic periprosthetic joint infection (PJI). S. aureus forms biofilms that promote persistent infection by shielding bacteria from immune cells and inducing an antibiotic-tolerant metabolic state. We developed an in vitro system to study S. aureus biofilm interactions with primary human monocytes in the absence of planktonic bacteria. In line with previous in vivo data, S. aureus biofilm induced expression of inflammatory genes such as TNF and IL1B, and their anti-inflammatory counter-regulator IL10. S. aureus biofilm also activated expression of PD-1 ligands, and IL-1RA, molecules that have the potential to suppress T cell function or differentiation of protective Th17 cells. Gene induction did not require monocyte:biofilm contact and was mediated by a soluble factor(s) produced by biofilm-encased bacteria that was heat resistant and >3 kD in size. Activation of suppressive genes by biofilm was sensitive to suppression by Jak kinase inhibition. These results support an evolving paradigm that biofilm plays an active role in modulating immune responses, and suggest this occurs via production of a soluble vita-pathogen-associated molecular pattern, a molecule that signals microbial viability. Induction of T cell suppressive genes by S. aureus biofilm provides insights into mechanisms that can suppress T cell immunity in PJI.
Collapse
Affiliation(s)
- Richard D Bell
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - E. Abrefi Cann
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Bikash Mishra
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| | - Melanie Valencia
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Qiong Zhang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Mary Huang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Xu Yang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Alberto Carli
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Lionel B Ivashkiv
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| |
Collapse
|
3
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
5
|
Jørgensen AR, Hanberg P, Bue M, Hartig-Andreasen C, Jørgensen NP, Stilling M. Local cefuroxime tissue concentrations in the hand after single and repeated administration to 16 patients undergoing trapeziectomy: a randomized controlled trial. Acta Orthop 2024; 95:498-504. [PMID: 39240016 PMCID: PMC11378730 DOI: 10.2340/17453674.2024.41343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The duration of antibiotic coverage in hand tissues during surgery is unknown. We investigated the time the free concentration of cefuroxime was above the minimal inhibitory concentration (fT>MIC) of 4 μg/mL in hand tissues after single and repeated administration. METHODS In a prospective, unblinded randomized study 16 patients (13 female, age range 51-80 years) underwent trapeziectomy. Microdialysis catheters were placed in the metacarpal bone (primary effect parameter), synovial sheath, and subcutaneous tissue. Patients were randomized to postoperative administration of either intravenous single administration of cefuroxime (1,500 mg) (Group 1, n = 8) or repeated dosing (2 x 1,500 mg) with a 4 h interval (Group 2, n = 8). Samples were taken over 8 h. RESULTS The fT>MIC of 4 μg/mL was found to be significantly longer in the metacarpal bone in Group 2 compared with Group 1 with a mean difference of 199 min (95% confidence interval 158-239). The same trend was evident in the remaining compartments. A concentration of 4 μg/mL was reached in all compartments in both groups within a mean time of 6 min (range 0-27 min). In Group 1, the mean concentrations decreased below 4 μg/mL between 3 h 59 min and 5 h 38 min. CONCLUSION The fT>MIC was longer after repeated administration compared with single administration in all compartments. A single administration of cefuroxime 1,500 mg provided antimicrobial hand tissue coverage for a minimum of 3 h 59 min. Cefuroxime administration in hand surgeries should be done minimum 27 min prior to incision to achieve sufficient coverage in all individuals. Cefuroxime readministration should be considered in hand surgeries lasting longer than 4 h from time of administration.
Collapse
Affiliation(s)
- Andrea René Jørgensen
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - Pelle Hanberg
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus
| | - Mats Bue
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus
| | | | | | - Maiken Stilling
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus
| |
Collapse
|
6
|
Blondel M, Machet C, Wildemann B, Abidine Y, Swider P. Mechanobiology of bacterial biofilms: Implications for orthopedic infection. J Orthop Res 2024; 42:1861-1869. [PMID: 38432991 DOI: 10.1002/jor.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Postoperative bacterial infections are prevalent complications in both human and veterinary orthopedic surgery, particularly when a biofilm develops. These infections often result in delayed healing, early revision, permanent functional loss, and, in severe cases, amputation. The diagnosis and treatment pose significant challenges, and bacterial biofilm further amplifies the therapeutic difficulty as it confers protection against the host immune system and against antibiotics which are usually administered as a first-line therapeutic option. However, the inappropriate use of antibiotics has led to the emergence of numerous multidrug-resistant organisms, which largely compromise the already imperfect treatment efficiency. In this context, the study of bacterial biofilm formation allows to better target antibiotic use and to evaluate alternative therapeutic strategies. Exploration of the roles played by mechanical factors on biofilm development is of particular interest, especially because cartilage and bone tissues are reactive environments that are subjected to mechanical load. This review delves into the current landscape of biofilm mechanobiology, exploring the role of mechanical factors on biofilm development through a multiscale prism starting from bacterial microscopic scale to reach biofilm mesoscopic size and finally the macroscopic scale of the fracture site or bone-implant interface.
Collapse
Affiliation(s)
- Margaux Blondel
- Small Animal Surgery Department, Lyon University, VetAgro Sup, Marcy l'Etoile, France
| | - Camille Machet
- National Veterinary School of Toulouse, Toulouse, France
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yara Abidine
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| |
Collapse
|
7
|
Thompson E, Qureshi A. Pathogens in FRI - Do bugs matter? - An analysis of FRI studies to assess your enemy. J Orthop 2024; 53:59-72. [PMID: 38476676 PMCID: PMC10925936 DOI: 10.1016/j.jor.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Fracture-related infection (FRI) is a devasting complication for both patients and their treating Orthopaedic surgeon that can lead to loss of limb function or even amputation. The unique and unpredictable features of FRI make its diagnosis and treatment a significant challenge. It has substantial morbidity and financial implications for patients, their families and healthcare providers. In this article, we perform an in-depth and comprehensive review of FRI through recent and seminal literature to highlight evolving definitions, diagnostic and treatment approaches, focusing on common pathogens such as Staphylococcus aureus, polymicrobial infections and multi-drug-resistant organisms (MDRO). Furthermore, multiple resistance mechanisms and adaptations for microbial survival are discussed, as well as modern evidence-based medical and surgical advancements in treatment strategies in combating FRI.
Collapse
Affiliation(s)
- Emmet Thompson
- Limb Reconstruction Service, Trauma & Orthopaedic Department, University Hospital Southampton, Southampton, UK
| | - Amir Qureshi
- Limb Reconstruction Service, Trauma & Orthopaedic Department, University Hospital Southampton, Southampton, UK
| |
Collapse
|
8
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Dai H, Wang J, Zhang H, Zhao J. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review. Front Bioeng Biotechnol 2024; 12:1342340. [PMID: 38567086 PMCID: PMC10986186 DOI: 10.3389/fbioe.2024.1342340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haidong Dai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
9
|
Hickok NJ, Li B, Oral E, Zaat SAJ, Armbruster DA, Atkins GJ, Chen AF, Coraça-Huber DC, Dai T, Greenfield EM, Kasinath R, Libera M, Marques CNH, Moriarty TF, Scott Phillips K, Raghuraman K, Ren D, Rimondini L, Saeed K, Schaer TP, Schwarz EM, Spiegel C, Stoodley P, Truong VK, Tsang STJ, Wildemann B, Zelmer AR, Zinkernagel AS. The 2023 Orthopedic Research Society's international consensus meeting on musculoskeletal infection: Summary from the in vitro section. J Orthop Res 2024; 42:512-517. [PMID: 38146070 DOI: 10.1002/jor.25774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Antimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates. Here, we report recommendations and rationale from the reviews and the results of the internet vote. Only two questions received a ≥90% consensus vote, emphasizing the disparate approaches and lack of established consensus for in vitro modeling and interpretation of results. Comments on knowledge gaps and the need for further research on these critical MSKI questions are included.
Collapse
Affiliation(s)
- Noreen J Hickok
- Department of Orthopaedic Surgery, Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Department of Orthopaedic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Antonia F Chen
- Department of Orthopaedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Débora C Coraça-Huber
- Research Laboratory for Implant Associated Infections (Biofilm Lab), University Hospital for Orthopedics and Traumatology, Experimental Orthopaedics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tianhong Dai
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward M Greenfield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| | | | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | | | - K Scott Phillips
- Laboratory of Analytical Chemistry, Division of Biological Standards and Quality Control, Office of Compliance and Biologics Quality, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Kordo Saeed
- University Hospital Southampton NHS Foundation Trust, Winchester and Basingstoke, UK
- University of Southampton, Southampton, UK
| | - Thomas P Schaer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Christopher Spiegel
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopedics, University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Stoodley
- Department Microbial Infection and Immunity and Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Shao-Ting Jerry Tsang
- Department of Trauma and Orthopaedic Surgery, University of Edinburgh, Edinburgh, Scotland, UK
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Anja R Zelmer
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Schwarz EM, Archer NK, Atkins GJ, de Mesy Bentley KL, Botros M, Cassat JE, Chisari E, Coraça-Huber DC, Daiss JL, Gill SR, Goodman SB, Harro J, Hernandez CJ, Ivashkiv LB, Kates SL, Marques CNH, Masters EA, Muthukrishnan G, Owen JR, Raafat D, Saito M, Veis DJ, Xie C. The 2023 Orthopaedic Research Society's International Consensus Meeting on musculoskeletal infection: Summary from the host immunity section. J Orthop Res 2024; 42:518-530. [PMID: 38102985 PMCID: PMC10932846 DOI: 10.1002/jor.25758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Musculoskeletal infections (MSKI), which are a major problem in orthopedics, occur when the pathogen eludes or overwhelms the host immune system. While effective vaccines and immunotherapies to prevent and treat MSKI should be possible, fundamental knowledge gaps in our understanding of protective, nonprotective, and pathogenic host immunity are prohibitive. We also lack critical knowledge of how host immunity is affected by the microbiome, implants, prior infection, nutrition, antibiotics, and concomitant therapies, autoimmunity, and other comorbidities. To define our current knowledge of these critical topics, a Host Immunity Section of the 2023 Orthopaedic Research Society MSKI International Consensus Meeting (ICM) proposed 78 questions. Systematic reviews were performed on 15 of these questions, upon which recommendations with level of evidence were voted on by the 72 ICM delegates, and another 12 questions were voted on with a recommendation of "Unknown" without systematic reviews. Two questions were transferred to another ICM Section, and the other 45 were tabled for future consideration due to limitations of available human resources. Here we report the results of the voting with internet access to the questions, recommendations, and rationale from the systematic reviews. Eighteen questions received a consensus vote of ≥90%, while nine recommendations failed to achieve this threshold. Commentary on why consensus was not achieved on these questions and potential ways forward are provided to stimulate specific funding mechanisms and research on these critical MSKI host defense questions.
Collapse
Affiliation(s)
- Edward M. Schwarz
- Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gerald J. Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L. de Mesy Bentley
- Department of Orthopaedics and Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, USA
| | - Mina Botros
- Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| | - James E. Cassat
- Departments of Pediatrics, Pathology, Microbiology, and Immunology, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emanuele Chisari
- Department of Adult Hip and Knee Joint Reconstruction, Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Débora C. Coraça-Huber
- ResearchLaboratory for Implant Associated Infections (Biofilm Lab) - University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - John L. Daiss
- Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester, Rochester, New York, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, USA
| | - Janette Harro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Christopher J. Hernandez
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Lionel B. Ivashkiv
- Department of Medicine and Immunology, Weill Cornell Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Cláudia N. H. Marques
- Department of Biological Sciences, Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Elysia A. Masters
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | | | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dina Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Motoo Saito
- Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| | - Deborah J. Veis
- Departments of Medicine, Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | - Chao Xie
- Department of Orthopaedics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
11
|
Moriarty TF, Hickok NJ, Saeed K, Schaer TP, Chen AF, Schwarz EM. The 2023 Orthopaedic Research Society International Consensus Meeting on musculoskeletal infection. J Orthop Res 2024; 42:497-499. [PMID: 37823833 DOI: 10.1002/jor.25714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The Orthopaedic Research Society's Research Interest Group completed its international consensus meeting (ICM) on musculoskeletal infections (MSKI) following the 2023 Annual Meeting. The work products from this ICM include the 65 questions with recommendation and rationale, and the voting results from the 72 delegates. There are also five Consensus Articles in this issue of the Journal of Orthopaedic Research from the ICM Sections: Host Immunity, Established Infection-Treatment, Clinical Questions not addressed by the prior MSKI ICMs, In Vitro, and Animal Models. This Introduction summarizes the 3-year Delphi process used by the ICM with timelines and critical milestones. It also highlights several challenges that had to be addressed, and a large body of work that remains.
Collapse
Affiliation(s)
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kordo Saeed
- University Hospital Southampton, NHS Foundation Trust, University of Southampton, Southampton, UK
| | - Thomas P Schaer
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Antonia F Chen
- Department of Orthpaedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward M Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| |
Collapse
|
12
|
Xie C, Ren Y, Weeks J, Rainbolt J, Kenney HM, Xue T, Allen F, Shu Y, Tay AJH, Lekkala S, Yeh SCA, Muthukrishnan G, Gill AL, Gill SR, Kim M, Kates SL, Schwarz EM. Longitudinal intravital imaging of the bone marrow for analysis of the race for the surface in a murine osteomyelitis model. J Orthop Res 2024; 42:531-538. [PMID: 37812184 PMCID: PMC10932844 DOI: 10.1002/jor.25716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Critical knowledge gaps of orthopedic infections pertain to bacterial colonization. The established dogma termed the Race for the Surface posits that contaminating bacteria compete with host cells for the implant post-op, which remains unproven without real-time in vivo evidence. Thus, we modified the murine longitudinal intravital imaging of the bone marrow (LIMB) system to allow real-time quantification of green fluorescent protein (GFP+) host cells and enhanced cyan fluorescent protein (ECFP+) or red fluorescent protein (RFP+) methicillin-resistant Staphylococcus aureus (MRSA) proximal to a transfemoral implant. Following inoculation with ~105 CFU, an L-shaped metal implant was press-fit through the lateral cortex at a 90° angle ~0.150 mm below a gradient refractive index (GRIN) lens. We empirically derived a volume of interest (VOI) = 0.0161 ± 0.000675 mm3 during each imaging session by aggregating the Z-stacks between the first (superior) and last (inferior) in-focus LIMB slice. LIMB postimplantation revealed very limited bacteria detection at 1 h, but by 3 h, 56.8% of the implant surface was covered by ECFP+ bacteria, and the rest were covered by GFP+ host cells. 3D volumetric rendering of the GFP+ and ECFP+ or RFP+ voxels demonstrated exponential MRSA growth between 3 and 6 h in the Z-plane, which was validated with cross-sectional ex vivo bacterial burden analyses demonstrating significant growth by ~2 × 104 CFU/h on the implant from 2 to 12 h post-op (p < 0.05; r2 > 0.98). Collectively, these results show the competition at the surface is completed by 3 h in this model and demonstrate the potential of LIMB to elucidate mechanisms of bacterial colonization, the host immune response, and the efficacy of antimicrobials.
Collapse
Affiliation(s)
- Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason Weeks
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas Xue
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Faith Allen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Ye Shu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Allie Jia Hui Tay
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Sashank Lekkala
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Shu-Chi A. Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Ann L. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Jennings JA, Arts JJ, Abuhussein E, Alt V, Ashton N, Baertl S, Bhattacharyya S, Cain JD, Dintakurthi Y, Ducheyne P, Duffy H, Falconer R, Gautreaux M, Gianotti S, Hamilton JL, Hylen A, van Hoogstraten S, Libos A, Markovics A, Mdingi V, Montgomery EC, Morgenstern M, Obremskey W, Priddy LB, Tate J, Ren Y, Ricciardi B, Tucker LJ, Weeks J, Vanvelk N, Williams D, Xie C, Hickok N, Schwarz EM, Fintan Moriarty T. 2023 International Consensus Meeting on musculoskeletal infection: Summary from the treatment workgroup and consensus on treatment in preclinical models. J Orthop Res 2024; 42:500-511. [PMID: 38069631 DOI: 10.1002/jor.25765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
In vitro and in vivo studies are critical for the preclinical efficacy assessment of novel therapies targeting musculoskeletal infections (MSKI). Many preclinical models have been developed and applied as a prelude to evaluating safety and efficacy in human clinical trials. In performing these studies, there is both a requirement for a robust assessment of efficacy, as well as a parallel responsibility to consider the burden on experimental animals used in such studies. Since MSKI is a broad term encompassing infections varying in pathogen, anatomical location, and implants used, there are also a wide range of animal models described modeling these disparate infections. Although some of these variations are required to adequately evaluate specific interventions, there would be enormous value in creating a unified and standardized criteria to animal testing in the treatment of MSKI. The Treatment Workgroup of the 2023 International Consensus Meeting on Musculoskeletal Infection was responsible for questions related to preclinical models for treatment of MSKI. The main objective was to review the literature related to priority questions and estimate consensus opinion after voting. This document presents that process and results for preclinical models related to (1) animal model considerations, (2) outcome measurements, and (3) imaging.
Collapse
Affiliation(s)
| | - Jacobus J Arts
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ezzuddin Abuhussein
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Volker Alt
- Department of Trauma Surgery, University Hospital, Regensburg, Germany
| | - Nicholas Ashton
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Susanne Baertl
- Department of Trauma Surgery, University Hospital, Regensburg, Germany
| | - Sanjib Bhattacharyya
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- XeroThera Inc., Philadelphia, Pennsylvania
| | - Jarrett D Cain
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yogita Dintakurthi
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Paul Ducheyne
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hannah Duffy
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Robert Falconer
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Malley Gautreaux
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sofia Gianotti
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - John L Hamilton
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Annika Hylen
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sanne van Hoogstraten
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Andres Libos
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Orthopaedic Surgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Adrienn Markovics
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Emily C Montgomery
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Mario Morgenstern
- Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - William Obremskey
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren B Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jermiah Tate
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Youliang Ren
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin Ricciardi
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Luke J Tucker
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jason Weeks
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Niels Vanvelk
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Dustin Williams
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chao Xie
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Noreen Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Edward M Schwarz
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
14
|
Mirzaei R, Campoccia D, Ravaioli S, Arciola CR. Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics. Antibiotics (Basel) 2024; 13:184. [PMID: 38391570 PMCID: PMC10885942 DOI: 10.3390/antibiotics13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular matrix, still represent an open challenge in many clinical contexts, including orthopedics, where biofilm-associated bone and joint infections remain the main cause of implant failure. This study explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, highlighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these infections. The classic mechanisms through which biofilms form and the more recently proposed new ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi. New findings on biofilm formation with host components are presented. The article also delves into the emerging and critical concept of immunometabolism, a key function of immune cells that biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy of biofilm infections is highlighted, referring to the latest research.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
15
|
Eijkel BIM, Apachitei I, Fratila-Apachitei LE, Zadpoor AA. In vitro co-culture models for the assessment of orthopedic antibacterial biomaterials. Front Bioeng Biotechnol 2024; 12:1332771. [PMID: 38375457 PMCID: PMC10875071 DOI: 10.3389/fbioe.2024.1332771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
The antibacterial biofunctionality of bone implants is essential for the prevention and treatment of implant-associated infections (IAI). In vitro co-culture models are utilized to assess this and study bacteria-host cell interactions at the implant interface, aiding our understanding of biomaterial and the immune response against IAI without impeding the peri-implant bone tissue regeneration. This paper reviews existing co-culture models together with their characteristics, results, and clinical relevance. A total of 36 studies were found involving in vitro co-culture models between bacteria and osteogenic or immune cells at the interface with orthopedic antibacterial biomaterials. Most studies (∼67%) involved co-culture models of osteogenic cells and bacteria (osteo-bac), while 33% were co-culture models of immune cells and bacterial cells (im-bac). All models involve direct co-culture of two different cell types. The cell seeding sequence (simultaneous, bacteria-first, and cell-first) was used to mimic clinically relevant conditions and showed the greatest effect on the outcome for both types of co-culture models. The im-bac models are considered more relevant for early peri-implant infections, whereas the osteo-bac models suit late infections. The limitations of the current models and future directions to develop more relevant co-culture models to address specific research questions are also discussed.
Collapse
Affiliation(s)
- Benedictus I. M. Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | | | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | | |
Collapse
|
16
|
Jia-Wei H, Jing W, Li C, Xiao-Gang Z, Guo-Qing L, Bo-Yong X, Bao-Chao J, Jun-Jie H, Jun Z. Two-dimensional liquid chromatography measurement of meropenem concentration in synovial fluid of patients with periprosthetic joint infection. Biomed Chromatogr 2024; 38:e5778. [PMID: 38073142 DOI: 10.1002/bmc.5778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/26/2024]
Abstract
Periprosthetic joint infection (PJI) is a catastrophic complication following joint replacement surgery. One potential treatment approach for PJI could be the combination of one-stage revision and intra-articular infusion of antibiotics. Meropenem is one of the commonly used intra-articular antibiotics in our institution. Determining the concentration of meropenem in the joint cavity could be crucial for optimizing its local application, effectively eradicating biofilm infection, and improving PJI treatment outcomes. In this study, we developed a simple, precise, and accurate method of two-dimensional liquid chromatography (2D-LC) for determining the concentration of meropenem in human synovial fluid. The method was then validated based on the guidelines of the Food and Drug Administration and the Chinese Pharmacopoeia. Meropenem showed good linearity in the range of 0.31-25.01 μg/mL (r ≥ .999). Selectivity, intra-day and inter-day precision and accuracy, extraction recovery, and stability validation results were all within the acceptance range. This method has been successfully applied to the determination of synovial fluid samples from PJI patients, providing a useful detection method for meropenem therapeutic drug monitoring (TDM) in PJI patients.
Collapse
Affiliation(s)
- He Jia-Wei
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wang Jing
- Department of Pharmacy, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cao Li
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhang Xiao-Gang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Guo-Qing
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xu Bo-Yong
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ji Bao-Chao
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huang Jun-Jie
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhao Jun
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
17
|
Zenke Y, Motojima Y, Ando K, Kosugi K, Hamada D, Okada Y, Sato N, Shinohara D, Suzuki H, Kawasaki M, Sakai A. DAIR in treating chronic PJI after total knee arthroplasty using continuous local antibiotic perfusion therapy: a case series study. BMC Musculoskelet Disord 2024; 25:36. [PMID: 38183061 PMCID: PMC10768161 DOI: 10.1186/s12891-024-07165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Antimicrobial agents are administered via intramedullary antibiotic perfusion (iMAP)/intrasoft tissue antibiotic perfusion (iSAP) to infected lesions to control osteoarticular and soft tissue infections. Continuous local antibiotic perfusion (CLAP) has been reported to be useful. This study aimed to investigate the outcomes of DAIR combined with CLAP for chronic PJI after total knee arthroplasty performed at our hospital. SUBJECTS AND METHODS Six patients (male; one case, female; five cases, mean age 79.5 years (70-94)) underwent CLAP for chronic PJI after TKA at our hospital between July 2020 and June 2022. They were followable for at least one year after surgery. Seven months (17-219), with a mean follow-up of 24.3 months (12-36). In addition to direct debridement and insert exchange, systemic antimicrobial treatment, and CLAP with gentamicin were performed using NPWT. We investigated the organisms causing the inflammation, the duration of iMAP/iSAP implantation, the maximum daily dose of GM, the maximum GM blood concentration, and the presence or absence of GM-induced adverse events. RESULT Two of six patients had a recurrence of infection at five weeks and five months after initial CLAP and required repeat CLAP treatment, but all patients could preserve their components. The organisms responsible for the flare-ups were MSSA in three cases: ESBL-producing E. coli, mixed MSSA and streptococcal infection, Klebsiella pneumonia in one case each, and unknown pathogens in one case. CLAP therapy for all patients was administered eight times in 6 cases: iMAP, mean: 10.0 days (5-16); iSAP, mean: 19.3 days (15-28); GM dose, mean: 162.5 mg/day (80-240); and GM blood concentration, mean: 1.4 µg/mL (0.2-5.0). Adverse events included one case of reversible acute kidney injury during CLAP in a patient with recurrent infection. DAIR with CLAP for chronic post-TKA infection can be a useful treatment option to preserve components and allow the infection to subside, provided the implant is not markedly loosened.
Collapse
Affiliation(s)
- Yukichi Zenke
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan.
| | - Yasuhito Motojima
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Kohei Ando
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Kenji Kosugi
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Daishi Hamada
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Yasuaki Okada
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Naohito Sato
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Daichi Shinohara
- Department of Trauma Reconstruction, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanisiku, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyusyu City Fukuoka Prefecture, Japan
- Department of Arthroplasty Center, University of Occupational and Environmental Health, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyusyu City Fukuoka Prefecture, Japan
- Department of Arthroplasty Center, University of Occupational and Environmental Health, Kitakyusyu City Fukuoka Prefecture, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyusyu City Fukuoka Prefecture, Japan
| |
Collapse
|
18
|
Choe H, Maruo A, Hieda Y, Abe K, Kobayashi N, Ike H, Kumagai K, Takeyama M, Kawabata Y, Inaba Y. Novel Local Antifungal Treatment for Fungal Periprosthetic Joint Infection With Continuous Local Antibiotic Perfusion: A Surgical Technique. Arthroplast Today 2023; 24:101245. [PMID: 38023642 PMCID: PMC10665700 DOI: 10.1016/j.artd.2023.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Fungal periprosthetic joint infections are one of the most intractable orthopedic disorders. Continuous local antibiotic perfusion allows direct administration of the antifungal agent micafungin into the local infection area at biofilm-disruptive concentrations, while controlling the dead space in addition to conventional treatment. Although the appropriate use of continuous local antibiotic perfusion requires familiarity with the characteristics of local antibiotic perfusion, it is a versatile treatment modality that can improve the clinical outcomes of fungal periprosthetic joint infection in combination with conventional treatment methods.
Collapse
Affiliation(s)
- Hyonmin Choe
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Akihiro Maruo
- Department of Orthopaedic Surgery, Harima Himeji General Medical Center, Himeji, Japan
| | - Yuta Hieda
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koki Abe
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Naomi Kobayashi
- Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Ike
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Masanobu Takeyama
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yusuke Kawabata
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
19
|
Wang X, Zheng Z, Wang J, Ma H, Wang G, Zhao X. Can Platelets/Mean Platelet Volume Accurately Diagnose Periprosthetic Joint Infection? Revealing Their Actual Diagnostic Efficacy. Infect Drug Resist 2023; 16:7155-7163. [PMID: 38023398 PMCID: PMC10640817 DOI: 10.2147/idr.s420323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Currently, there is no single test indicator for diagnosing periprosthetic joint infection (PJI) with an acceptable level of sensitivity. Therefore, ratio indicators have been introduced to improve the accuracy of diagnostic algorithms. Platelet count /mean platelet volume (PMR) is reported to be a potential PJI diagnostic biomarker, but its clinical value for diagnosing PJI is still uncertain. This study aims to provide additional evidence to support the effectiveness of PMR in accurately diagnosing PJI. Methods This study recruited 116 patients with PJI and 137 patients with aseptic loosening, divided them into PJI group and AL group. Collect subjects' preoperative laboratory indicators such as ESR, CRP, PLT, MPV, etc. The area under the curve (AUC) was calculated by plotting the receiver operating characteristic (ROC) curve to determine the diagnostic efficacy of PMR. Results ESR, CRP, PLT, and PLT/MPV were significantly increased in the PJI group, while MPV levels were decreased (both P< 0.001). The AUC of the PMR was 0.752, and the optimal cut-off value for diagnosing chronic PJI was determined to be 27.8 based on the Youden index. The sensitivity and specificity for diagnosing PJI were 79.3% and 47.9%, respectively, with a positive predictive value of 68.27%, a negative predictive value of 69.80%, and a diagnostic odds ratio of 4.97. The AUC (0.752) of the ratio biomarker was lower than that of ESR (0.825) and CRP (0.900). After predictive model calculation, the combination of PMR, CRP, and ESR had an AUC value of 0.910, with a sensitivity of 84.5% and a specificity of 84.7%, showing good discriminative ability. Conclusion Compared with traditional biomarkers ESR and CRP, the value of the PMR for diagnosing PJI is not significant, but it can be used as an auxiliary indicator for PJI diagnosis in combination with other indicators (P<0.001).
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Clinic Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Zhongren Zheng
- Department of Clinic Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Jialiang Wang
- Department of Clinic Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Hui Ma
- Department of Joint and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, People’s Republic of China
| | - Guodong Wang
- Department of Joint and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, People’s Republic of China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, People’s Republic of China
| |
Collapse
|
20
|
Eriksson HK, Lazarinis S, Järhult JD, Hailer NP. Early Staphylococcal Periprosthetic Joint Infection (PJI) Treated with Debridement, Antibiotics, and Implant Retention (DAIR): Inferior Outcomes in Patients with Staphylococci Resistant to Rifampicin. Antibiotics (Basel) 2023; 12:1589. [PMID: 37998791 PMCID: PMC10668653 DOI: 10.3390/antibiotics12111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
It is unknown how rifampicin resistance in staphylococci causing a periprosthetic joint infection (PJI) affects outcomes after debridement, antibiotics, and implant retention (DAIR). We thus aimed to compare the risk of relapse in DAIR-treated early PJI caused by staphylococci with or without rifampicin resistance. In total, 81 patients affected by early PJI were included, and all patients were treated surgically with DAIR. This was repeated if needed. The endpoint of relapse-free survival was estimated using the Kaplan-Meier method, and Cox regression models were fitted to assess the risk of infection relapse for patients infected with rifampicin-resistant bacteria, adjusted for age, sex, type of joint, and type of index surgery. In patients with rifampicin-resistant staphylococci, relapse was seen in 80% after one DAIR procedure and in 70% after two DAIR procedures. In patients with rifampicin-sensitive bacteria, 51% had an infection relapse after one DAIR procedure and 33% had an infection relapse after two DAIR procedures. Patients with rifampicin-resistant staphylococcal PJI thus had an increased adjusted risk of infection relapse of 1.9 (95% CI: 1.1-3.6, p = 0.04) after one DAIR procedure compared to patients with rifampicin-sensitive bacteria and a 4.1-fold (95% CI: 1.2-14.1, p = 0.03) increase in risk of infection relapse after two DAIR procedures. Staphylococcal resistance to rifampicin is associated with inferior outcomes after DAIR. These findings suggest that DAIR may not be a useful strategy in early PJI caused by rifampicin-resistant staphylococci.
Collapse
Affiliation(s)
- Hannah K. Eriksson
- Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, 751 83 Uppsala, Sweden; (S.L.); (N.P.H.)
| | - Stergios Lazarinis
- Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, 751 83 Uppsala, Sweden; (S.L.); (N.P.H.)
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 83 Uppsala, Sweden;
| | - Nils P. Hailer
- Department of Surgical Sciences, Section of Orthopaedics, Uppsala University, 751 83 Uppsala, Sweden; (S.L.); (N.P.H.)
| |
Collapse
|
21
|
Ren Y, Weeks J, Xue T, Rainbolt J, de Mesy Bentley KL, Shu Y, Liu Y, Masters E, Cherian P, McKenna CE, Neighbors J, Ebetino FH, Schwarz EM, Sun S, Xie C. Evidence of bisphosphonate-conjugated sitafloxacin eradication of established methicillin-resistant S. aureus infection with osseointegration in murine models of implant-associated osteomyelitis. Bone Res 2023; 11:51. [PMID: 37848449 PMCID: PMC10582111 DOI: 10.1038/s41413-023-00287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 10/19/2023] Open
Abstract
Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (hydroxybisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.
Collapse
Affiliation(s)
- Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jason Weeks
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Thomas Xue
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Pathology and Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ye Shu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuting Liu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Elysia Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeffrey Neighbors
- Department of Pharmacology, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Frank H Ebetino
- BioVinc, LLC, Pasadena, CA, 91107, USA
- Department of Chemistry, University of Rochester, Rochester, NY, 14642, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
Delaney LJ, Isguven S, Hilliard R, Lacerda Q, Oeffinger BE, Machado P, Schaer TP, Hickok NJ, Kurtz SM, Forsberg F. In Vitro and In Vivo Evaluation of Ultrasound-Triggered Release From Novel Spinal Device. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2357-2368. [PMID: 37249416 PMCID: PMC10524871 DOI: 10.1002/jum.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Bacterial infection following spinal fusion is a major clinical concern with up to 20% incidence. An ultrasound-triggered bulk-release system to combat postsurgical bacterial survival was designed and evaluated. METHODS Polylactic acid (PLA) clips were loaded with vancomycin (VAN) and microbubbles (Sonazoid, GE HealthCare) in vitro. Stability was determined over 14 days. VAN-loaded clips were submerged in water and insonated using a Logiq E10 scanner (GE HealthCare) with a curvilinear C6 probe. Doppler-induced VAN release was quantified using spectrophotometry. For in vivo testing, clips were loaded with methylene blue (MeB) solution and Sonazoid. These clips were implanted into a rabbit along the spine at L2 and L5, as well as a pig at L1 and L3, then insonated in Doppler mode using the C6 probe. RESULTS Sonazoid microbubbles were better preserved when incubated in VAN compared with distilled water at 4°C, 25°C, and 37°C incubation temperatures (P = .0131). Contrast enhancement was observed from both solutions when incubated at 4°C storage conditions. Insonated clips achieved average cumulative VAN release of 101.8 ± 2.8% (81.4 ± 2.8 mg) after 72 hours. Uninsonated clips had only 0.3 ± 0.1% (0.3 ± 0.1 mg) average cumulative VAN release (P < .0001). Clips retrieved from the rabbit did not rupture with insonation nor produce MeB staining of surrounding tissues. In the pig, the PLA film was visibly ruptured and MeB tissue was observed following insonation, whereas the uninsonated clip was intact. CONCLUSION These results demonstrate ultrasound-triggered release of an encapsulated prophylactic solution and provide an important proof-of-concept for continuing large animal evaluations for translational merit.
Collapse
Affiliation(s)
- Lauren J. Delaney
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Selin Isguven
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Rachel Hilliard
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, 19348
| | - Quezia Lacerda
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, 19104
| | - Brian E. Oeffinger
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, 19104
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, 19348
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Steven M. Kurtz
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA, 19104
- Exponent, Inc., Philadelphia, PA, 19104
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107
| |
Collapse
|
23
|
Fawi HMT, Papastergiou P, Khan F, Hart A, Coleman NP. Use of monofilament sutures and triclosan coating to protect against surgical site infections in spinal surgery: a laboratory-based study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3051-3058. [PMID: 37000241 PMCID: PMC10504140 DOI: 10.1007/s00590-023-03534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE We investigated bacterial propagation through multifilament, monofilament sutures and whether sutures coated with triclosan would exhibit a different phenomenon. METHODS One centimetre (cm) wide trenches were cut in the middle of Columbia blood Agar plates. We tested a 6 cm length of two Triclosan-coated (PDS plus®, Vicryl plus®) and two uncoated (PDS ®, Vicryl ®) sutures. Each suture was inoculated with a bacterial suspension containing methicillin-sensitive Staphylococcus aureus (MSSA), Escherichia coli (E. coli), Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus (MRSA) at one end of each suture. The plates were incubated at 36C for 48 h, followed by room temperature for a further 5 days. We established bacterial propagation by observing for any bacterial growth on the Agar on the opposite side of the trench. RESULTS Bacterial propagation was observed on the opposite side of the trench with both suture types, monofilament PDS and multifilament Vicryl, when tested with the motile bacterium (E. coli). Propagation was not observed on the other side of the trench with the monofilament PDS suture following incubation with MSSA and S. epidermidis, and in 66% of MRSA. With multifilament suture Vicryl, propagation was observed on the other side of the trench in 90% (MSSA), 80% (S. epidermidis), and 100% (MRSA) of plates tested. No bacterial propagation was observed in any of the triclosan-coated sutures (monofilament or multifilament). CONCLUSIONS Monofilament sutures are associated in vitro with less bacterial propagation along their course when compared to multifilament sutures. Inhibition in both sutures can be further enhanced with a triclosan coating.
Collapse
Affiliation(s)
- H M T Fawi
- Trauma and Orthopaedics Department, Queen Elizabeth Hospital NHS Trust, Kings Lynn, UK.
- School of Public Health, Imperial College London, London, UK.
| | - P Papastergiou
- Microbiology Department, Limassol General Hospital, Kato Polemidia, Cyprus
- Microbiology Department, Norfolk & Norwich University Hospital NHS Trust, Norwich, UK
| | - F Khan
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - A Hart
- Microbiology Department, Norfolk & Norwich University Hospital NHS Trust, Norwich, UK
| | - N P Coleman
- Trauma and Orthopaedics Department, Queen Elizabeth Hospital NHS Trust, Kings Lynn, UK
| |
Collapse
|
24
|
Burke ZDC, Hart CM, Kelley BV, Mamouei Z, Blumstein GW, Hamad C, Hori K, Cevallos N, Villalpando C, Truong N, Turkmani A, Ralston M, Kavanaugh A, Tenorio E, Kauvar LM, Li A, Prunet N, Stavrakis AI, Bernthal NM. Monoclonal Antibody Disrupts Biofilm Structure and Restores Antibiotic Susceptibility in an Orthopedic Implant Infection Model. Antibiotics (Basel) 2023; 12:1490. [PMID: 37887191 PMCID: PMC10604051 DOI: 10.3390/antibiotics12101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial biofilms on orthopedic implants are resistant to the host immune response and to traditional systemic antibiotics. Novel therapies are needed to improve patient outcomes. TRL1068 is a human monoclonal antibody (mAb) against a biofilm anchoring protein. For assessment of this agent in an orthopedic implant infection model, efficacy was measured by reduction in bacterial burden of Staphylococcus aureus, the most common pathogen for prosthetic joint infections (PJI). Systemic treatment with the biofilm disrupting mAb TRL1068 in conjunction with vancomycin eradicated S. aureus from steel pins implanted in the spine for 26 of 27 mice, significantly more than for vancomycin alone. The mechanism of action was elucidated by two microscopy studies. First, TRL1068 was localized to biofilm using a fluorescent antibody tag. Second, a qualitative effect on biofilm structure was observed using scanning electron microscopy (SEM) to examine steel pins that had been treated in vivo. SEM images of implants retrieved from control mice showed abundant three-dimensional biofilms, whereas those from mice treated with TRL1068 did not. Clinical Significance: TRL1068 binds at high affinity to S. aureus biofilms, thereby disrupting the three-dimensional structure and significantly reducing implant CFUs in a well-characterized orthopedic model for which prior tested agents have shown only partial efficacy. TRL1068 represents a promising systemic treatment for orthopedic implant infection.
Collapse
Affiliation(s)
- Zachary D. C. Burke
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.M.H.); (B.V.K.)
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Christopher M. Hart
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.M.H.); (B.V.K.)
| | - Benjamin V. Kelley
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.M.H.); (B.V.K.)
| | - Zeinab Mamouei
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Gideon W. Blumstein
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.M.H.); (B.V.K.)
| | - Christopher Hamad
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Kellyn Hori
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Nicolas Cevallos
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Christina Villalpando
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Nicole Truong
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Amr Turkmani
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Micah Ralston
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Aaron Kavanaugh
- Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (K.H.)
| | - Edgar Tenorio
- Trellis Bioscience, Inc., Redwood City, CA 94063, USA
| | | | - Alan Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Nathanael Prunet
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Alexandra I. Stavrakis
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.M.H.); (B.V.K.)
| | - Nicholas M. Bernthal
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.M.H.); (B.V.K.)
| |
Collapse
|
25
|
De Meo D, Martini P, Pennarola MF, Guarascio G, Rivano Capparuccia M, Iaiani G, Candela V, Gumina S, Villani C. Hydrogel Coating versus Calcium Sulphate Beads as a Local Antibiotic Carrier for Debridement Procedures in Acute Periprosthetic Joint Infection: A Preliminary Study. Gels 2023; 9:758. [PMID: 37754439 PMCID: PMC10530128 DOI: 10.3390/gels9090758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Periprosthetic joint infections (PJI) are among the most difficult complications to treat in orthopaedic surgery. Debridement, antibiotics, and implant retention (DAIR) represent an efficient strategy for acute PJI, especially when resorbable local antibiotic carriers and coatings are used. The aim of this pilot study was to evaluate the difference between using antibiotic-loaded hydrogel (ALH) and calcium sulphate (CS) beads in the DAIR procedure. We analysed 16 patients who had been treated since 2018 for acute PJI, namely eight patients with knee PJI (50%), seven with hip PJI (43.7%), and one with shoulder PJI (6.2%). Nine patients were treated with the Debridement, Antibiotic Coating and Retention of the Implant (DACRI) method, while seven were treated with the Debridement, Antibiotic Pearls, Retention of the Implant (DAPRI) method. We found no significant differences between the two groups in terms of age, sex, the American Society of Anesthesiologists risk score, Charlson Comorbidity Index, localisation, days from onset to diagnosis and pathogenesis. Furthermore, no differences were found between the DACRI and DAPRI groups in terms of infection control (15 patients, 93.75% with p = 0.36) and last C-Reactive Protein values (p = 0.26), with a mean follow-up of 26.1 ± 7.7 months. Treatment for one patient affected by knee Candida albicans PJI in the DACRI group was not successful. In conclusion, DAPRI and DACRI appear to be safe and effective treatments for PJIs. This evidence will encourage the development of new clinical research into local carriers and coatings for use in acute implant-associated infections.
Collapse
Affiliation(s)
- Daniele De Meo
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
| | - Paolo Martini
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
| | - Maria Francesca Pennarola
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
| | - Giovanni Guarascio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
| | - Marco Rivano Capparuccia
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00100 Rome, Italy
| | - Giancarlo Iaiani
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00100 Rome, Italy
| | - Vittorio Candela
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
| | - Stefano Gumina
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, 00100 Rome, Italy; (P.M.); (M.F.P.); (G.G.); (V.C.); (S.G.); (C.V.)
- M.I.T.O. (Malattie Infettive in Traumatologia e Ortopedia-Infections in Traumatology and Orthopedics Surgery) Study Group, Policlinico Umberto I Hospital, Viale del Policlinico 155, 00161 Rome, Italy; (M.R.C.); (G.I.)
| |
Collapse
|
26
|
Lindtner R, Wurm A, Kugel K, Kühn J, Putzer D, Arora R, Coraça-Huber DC, Zelger P, Schirmer M, Badzoka J, Kappacher C, Huck CW, Pallua JD. Comparison of Mid-Infrared Handheld and Benchtop Spectrometers to Detect Staphylococcus epidermidis in Bone Grafts. Bioengineering (Basel) 2023; 10:1018. [PMID: 37760120 PMCID: PMC10525239 DOI: 10.3390/bioengineering10091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Bone analyses using mid-infrared spectroscopy are gaining popularity, especially with handheld spectrometers that enable on-site testing as long as the data quality meets standards. In order to diagnose Staphylococcus epidermidis in human bone grafts, this study was carried out to compare the effectiveness of the Agilent 4300 Handheld Fourier-transform infrared with the Perkin Elmer Spectrum 100 attenuated-total-reflectance infrared spectroscopy benchtop instrument. The study analyzed 40 non-infected and 10 infected human bone samples with Staphylococcus epidermidis, collecting reflectance data between 650 cm-1 and 4000 cm-1, with a spectral resolution of 2 cm-1 (Agilent 4300 Handheld) and 0.5 cm-1 (Perkin Elmer Spectrum 100). The acquired spectral information was used for spectral and unsupervised classification, such as a principal component analysis. Both methods yielded significant results when using the recommended settings and data analysis strategies, detecting a loss in bone quality due to the infection. MIR spectroscopy provides a valuable diagnostic tool when there is a tissue shortage and time is of the essence. However, it is essential to conduct further research with larger sample sizes to verify its pros and cons thoroughly.
Collapse
Affiliation(s)
- Richard Lindtner
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Alexander Wurm
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
- Praxis Dr. Med. Univ. Alexander Wurm FA für Orthopädie und Traumatologie, Koflerweg 7, 6275 Stumm, Austria
| | - Katrin Kugel
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Julia Kühn
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - David Putzer
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Débora Cristina Coraça-Huber
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (J.B.); (C.K.); (C.W.H.)
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (R.L.); (K.K.); (J.K.); (D.P.); (R.A.); (D.C.C.-H.); (J.D.P.)
| |
Collapse
|
27
|
Doub JB, Chan B, Johnson AJ. Salphage: Salvage bacteriophage therapy for a chronic Enterococcus faecalis prosthetic joint infection. IDCases 2023; 33:e01854. [PMID: 37577050 PMCID: PMC10413068 DOI: 10.1016/j.idcr.2023.e01854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Chronic prosthetic joint infections are difficult to treat without conducting revision surgery because conventional antibiotics cannot eradicate bacteria that reside in biofilms. Consequently, novel therapeutics are needed to help treat prosthetic joint infections with one being bacteriophage therapy given its innate biofilm activity. Herein a sixty-nine-year-old man with a recalcitrant Enterococcus faecalis prosthetic joint infection is discussed. The patient was successfully treated with personalized bacteriophage therapy and after two years of follow up he has not had a clinical recurrence. Overall, this case report supports that bacteriophage therapy for prosthetic joint infections has promise to reduce the morbidity that is associated with current treatments. However, more research is needed to assess whether this therapeutic is helping eradicate infections or if it is making bacteria less pathogenic. This is an important point which will need to be evaluated as this therapeutic continues to be developed for all infections.
Collapse
Affiliation(s)
- James B. Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Doub Laboratory of Translational Bacterial Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Aaron J. Johnson
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Xie C, Ren Y, Weeks J, Xue T, Rainbolt J, Bentley KDM, Shu Y, Liu Y, Masters E, Cherian P, McKenna C, Neighbors J, Ebetino F, Schwarz E, Sun S. Evidence of Bisphosphonate-Conjugated Sitafloxacin Eradication of Established Methicillin-Resistant S. aureus Infection with Osseointegration in Murine Models of Implant-Associated Osteomyelitis. RESEARCH SQUARE 2023:rs.3.rs-2856287. [PMID: 37214929 PMCID: PMC10197753 DOI: 10.21203/rs.3.rs-2856287/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (bisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy, while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.
Collapse
Affiliation(s)
- Chao Xie
- University of Rochester Medical Center
| | | | | | | | | | | | - Ye Shu
- University of Rochester Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Evaluation of Serum Albumin and Globulin in Combination With C-Reactive Protein Improves Serum Diagnostic Accuracy for Low-Grade Periprosthetic Joint Infection. J Arthroplasty 2023; 38:555-561. [PMID: 36115535 DOI: 10.1016/j.arth.2022.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Serum immune markers can be useful in the diagnosis of periprosthetic joint infection (PJI) by detecting long-lasting abnormal immunological conditions. The purpose of this study was to examine whether serum immune markers can improve the diagnostic accuracy of PJI. METHODS We enrolled 51 PJI, 45 aseptic loosening, and 334 osteoarthritis patients for assessment of the discriminatory accuracy of serum markers including white blood cell count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and D-dimer, total protein, albumin (Alb), globulin (Glb), neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, albumin-globulin ratio (AGR), CRP-albumin ratio (CAR), and CRP-AGR ratio (CAGR). These diagnostic accuracies for low-grade PJI were also calculated in patients who had serum CRP levels < 10 mg/L. RESULTS Among serum markers, Alb, Glb, AGR, CRP, ESR, CAR, and CAGR had highly accurate diagnostic accuracy for PJI, with area under the curve of 0.92, 0.90, 0.96, 0.97, 0.92, 0.97, and 0.98, respectively. In low-grade PJI patients, area under the curve of CRP, ESR, CAR, and CAGR (0.69, 0.80, 0.65, and 0.82, respectively) was decreased but that of Alb, Glb, and AGR (0.90, 0.88, and 0.95, respectively) remained high, indicating the diagnostic utility of these immune markers. The sensitivity and specificity of AGR with cutoff value of 1.1 were demonstrated as 0.92 and 0.89, respectively, and with cutoff value of 1.2, 1.00, and 0.79, respectively, in the diagnosis of low-grade infection. CONCLUSION Our results demonstrate the potential value of Alb, Glb, AGR, and combination indices of these immune makers with CRP in improving preoperative serum diagnosis for PJI, especially in low-grade PJI. LEVEL OF EVIDENCE Diagnostic- Level II.
Collapse
|
30
|
Sánchez-Salcedo S, García A, González-Jiménez A, Vallet-Regí M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater 2023; 155:654-666. [PMID: 36332875 DOI: 10.1016/j.actbio.2022.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO2, CaO and P2O5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.
Collapse
Affiliation(s)
- Sandra Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Ana García
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - Adela González-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
31
|
Liu K, Luo Y, Hao L, Chen J. Antimicrobial effect of methylene blue in microbiologic culture to diagnose periprosthetic joint infection: an in vitro study. J Orthop Surg Res 2022; 17:571. [PMID: 36577990 PMCID: PMC9795775 DOI: 10.1186/s13018-022-03475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND As one of the major diagnostic criteria in Musculoskeletal Infection Society, the microbiological diagnosis of periprosthetic joint infection (PJI) performed by analyzing periprosthetic tissue culture is recommended. The goal of this study was to determine if methylene blue (MB) has antibacterial effects that might interfere with microbial culture in vitro. METHODS Eight isolates of reference strains of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Streptococcus pyogenes, and Candida albicans were incubated appropriately on blood agar, China blue agar, or Sabouraud's agar plates at 35 ℃. (Streptococci were cultured in a CO2-rich atmosphere.) Each bacterial suspension was formed by 50-fold dilution before the test MB was added. For each strain, bacterial suspension was divided into 3 groups (5 samples each) exposed either MB 0.1%, MB 0.05% or sterile non-bacteriostatic 0.45% saline. The antimicrobial property of MB was determined by measuring the bacterial density on agar plates incubated for 24 h and comparing it with controls unexposed to MB. RESULTS Exposure to MB 0.1% or MB 0.05% negatively affected microbial viability in vitro. Of the diluted form of MB exposure, reference strains of S. hominis and A. baumannii resulted in fewer colony-forming units compared with the sterile saline control. MB concentration was significantly negatively correlated with CFU counts of S. hominis and A. baumannii strains. The antibacterial property of MB 0.1% or MB 0.05% appears to affect the ability to culture the organism in in vitro assays. CONCLUSION MB 0.1% or MB 0.05% has strong antimicrobial activities against some commonly encountered bacterial strains in PJI in vitro. To further evaluate its potential antibacterial usefulness in clinical applications, the next studies are needed to assess the ability of MB to affect the ability to culture the pathogens in vivo, especially in periprosthetic tissue.
Collapse
Affiliation(s)
- Kan Liu
- grid.24695.3c0000 0001 1431 9176Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, No.51 Xiaoguan Street, Beijing, 100029 China
| | - Yanping Luo
- grid.414252.40000 0004 1761 8894Department of Clinical Microbiology, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Libo Hao
- grid.414252.40000 0004 1761 8894Department of Orthopedics, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Jiying Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, General Hospital of Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
32
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
33
|
Wurm A, Kühn J, Kugel K, Putzer D, Arora R, Coraça-Huber DC, Zelger P, Badzoka J, Kappacher C, Huck CW, Pallua JD. Raman microscopic spectroscopy as a diagnostic tool to detect Staphylococcus epidermidis in bone grafts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121570. [PMID: 35779474 DOI: 10.1016/j.saa.2022.121570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Raman microscopic spectroscopyis a new approach for further characterization and detection of molecular features in many pathological processes. This technique has been successfully applied to scrutinize the spatial distribution of small molecules and proteins within biological systems by in situ analysis. This study uses Raman microscopic spectroscopyto identify any in-depth benefits and drawbacks in diagnosing Staphylococcus epidermidis in human bone grafts. MATERIAL AND METHODS 40 non-infected human bone samples and 10 human bone samples infected with Staphylococcus epidermidis were analyzed using Raman microscopic spectroscopy. Reflectance data were collected between 200 cm-1 and 3600 cm-1 with a spectral resolution of 4 cm-1 using a Senterra II microscope (Bruker, Ettlingen, Germany). The acquired spectral information was used for spectral and unsupervised classification, such as principal component analysis. RESULTS Raman measurements produced distinct diagnostic spectra that were used to distinguish between non-infected human bone samples and Staphylococcus epidermidis infected human bone samples by spectral and principal component analyses. A substantial loss in bone quality and protein conformation was detected by human bone samples co-cultured with Staphylococcus epidermidis. The mineral-to-matrix ratio using the phosphate/Amide I ratio (p = 0.030) and carbonate/phosphate ratio (p = 0.001) indicates that the loss of relative mineral content in bones upon bacterial infection is higher than in non-infected human bones. Also, an increase of alterations in the collagen network (p = 0.048) and a decrease in the structural organization and relative collagen in infected human bone could be detected. Subsequent principal component analyses identified Staphylococcus epidermidis in different spectral regions, respectively, originating mainly from CH2 deformation (wagging) of protein (at 1450 cm-1) and bending and stretching modes of C-H groups (∼2800-3000 cm-1). CONCLUSION Raman microscopic spectroscopyis presented as a promising diagnostic tool to detect Staphylococcus epidermidis in human bone grafts. Further studies in human tissues are warranted.
Collapse
Affiliation(s)
- A Wurm
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - J Kühn
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - K Kugel
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - D Putzer
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - R Arora
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - D C Coraça-Huber
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - P Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - J Badzoka
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - C Kappacher
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - C W Huck
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - J D Pallua
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
34
|
Zhang Z, Liu P, Wang W, Wang S, Li B, Li J, Yang B, Li M, Li Q, Yang H, Huang Z, Liu L. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol 2022; 13:923735. [PMID: 35903480 PMCID: PMC9315197 DOI: 10.3389/fmicb.2022.923735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To describe the demographic characteristics, risk factors, and bacterial resistance of fracture-related infection (FRI) of the long bones of the extremities. Materials and Methods This single-center study retrospectively evaluated patients with FRI of the long bones of the extremities at West China Hospital between January 2012 and December 2017, and analyzed the demographic characteristics, risk factors, distribution of pathogenic bacteria, and bacterial drug resistance. Results Among 9,900 patients, 535 patients (5.4%) were diagnosed with FRI. The most common site of FRI was tibiofibular (298, 55.7%), with 424 cases (79.2%) of open fractures, and 282 cases (52.7%) due to traffic injuries. The 41–50 years age group had the highest incidence of FRI with 157 (29.3%) cases. Overall, 546 strains of 52 types of bacteria were detected in FRI patients, with 105 strains of multidrug-resistant (MDR) bacteria. Methicillin-resistant Staphylococcus aureus (48, 8.8%) and extended-spectrum-β-lactamase Escherichia coli (32, 5.8%) accounted for the largest proportion. Multivariate logistic regression analysis showed that sex (odds ratio [OR] 1.813; 95% confidence interval [CI], 1.071∼3.070; P = 0.027) and fracture type (OR 3.128; 95% CI, 1.683∼5.815; P < 0.001) were independent risk factors for monomicrobial infection (MI). Female sex (OR 4.190; 95% CI, 1.212∼14.486; P = 0.024) was an independent risk factor for polymicrobial infection (PI). Conclusion This study clarified the infection rates, changes in the bacterial spectrum, and drug resistance characteristics, and risk factors of FRI of the long bones of the extremities in the largest trauma center in southwest China.
Collapse
Affiliation(s)
- Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- *Correspondence: Zhengdong Zhang,
| | - Pan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bohua Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Banyin Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Huang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- Zeyu Huang,
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- Lei Liu,
| |
Collapse
|
35
|
Okae Y, Nishitani K, Sakamoto A, Kawai T, Tomizawa T, Saito M, Kuroda Y, Matsuda S. Estimation of Minimum Biofilm Eradication Concentration (MBEC) on In Vivo Biofilm on Orthopedic Implants in a Rodent Femoral Infection Model. Front Cell Infect Microbiol 2022; 12:896978. [PMID: 35846761 PMCID: PMC9285014 DOI: 10.3389/fcimb.2022.896978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
The formation of a biofilm on the implant surface is a major cause of intractable implant-associated infection. To investigate the antibiotic concentration needed to eradicate the bacteria inside a biofilm, the minimum biofilm eradication concentration (MBEC) has been used, mostly against in vitro biofilms on plastic surfaces. To produce a more clinically relevant environment, an MBEC assay against biofilms on stainless-steel implants formed in a rat femoral infection model was developed. The rats were implanted with stainless steel screws contaminated by two Staphylococcus aureus strains (UAMS-1, methicillin-sensitive Staphylococcus aureus; USA300LAC, methicillin-resistant Staphylococcus aureus) and euthanized on days 3 and 14. Implants were harvested, washed, and incubated with various concentrations (64–4096 μg/mL) of gentamicin (GM), vancomycin (VA), or cefazolin (CZ) with or without an accompanying systemic treatment dose of VA (20 μg/mL) or rifampicin (RF) (1.5 μg/mL) for 24 h. The implant was vortexed and sonicated, the biofilm was removed, and the implant was re-incubated to determine bacterial recovery. MBEC on the removed biofilm and implant was defined as in vivo MBEC and in vivo implant MBEC, respectively, and the concentrations of 100% and 60% eradication were defined as MBEC100 and MBEC60, respectively. As for in vivo MBEC, MBEC100 of GM was 256–1024 μg/mL, but that of VA and CZ ranged from 2048–4096 μg/mL. Surprisingly, the in vivo implant MBEC was much higher, ranging from 2048 μg/mL to more than 4096 μg/mL. The addition of RF, not VA, as a secondary antibiotic was effective, and MBEC60 on day 3 USA300LAC biofilm was reduced from 1024 μg/mL with GM alone to 128 μg/mL in combination with RF and the MBEC60 on day 14 USA300LAC biofilm was reduced from 2048 μg/mL in GM alone to 256 μg/mL in combination with RF. In conclusion, a novel MBEC assay for in vivo biofilms on orthopedic implants was developed. GM was the most effective against both methicillin-sensitive and methicillin-resistant Staphylococcus aureus, in in vivo biofilms, and the addition of a systemic concentration of RF reduced MBEC of GM. Early initiation of treatment is desired because the required concentration of antibiotics increases with biofilm maturation.
Collapse
|
36
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
37
|
Ren Y, Xue T, Rainbolt J, Bentley KLDM, Galloway CA, Liu Y, Cherian P, Neighbors J, Hofstee MI, Ebetino FH, Moriarty TF, Sun S, Schwarz EM, Xie C. Efficacy of Bisphosphonate-Conjugated Sitafloxacin in a Murine Model of S. aureus Osteomyelitis: Evidence of "Target & Release" Kinetics and Killing of Bacteria Within Canaliculi. Front Cell Infect Microbiol 2022; 12:910970. [PMID: 35811672 PMCID: PMC9263620 DOI: 10.3389/fcimb.2022.910970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
S. aureus infection of bone is difficult to eradicate due to its ability to colonize the osteocyte-lacuno-canalicular network (OLCN), rendering it resistant to standard-of-care (SOC) antibiotics. To overcome this, we proposed two bone-targeted bisphosphonate-conjugated antibiotics (BCA): bisphosphonate-conjugated sitafloxacin (BCS) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS). Initial studies demonstrated that the BCA kills S. aureus in vitro. Here we demonstrate the in vivo efficacy of BCS and HBCS versus bisphosphonate, sitafloxacin, and vancomycin in mice with implant-associated osteomyelitis. Longitudinal bioluminescent imaging (BLI) confirmed the hypothesized "target and release"-type kinetics of BCS and HBCS. Micro-CT of the infected tibiae demonstrated that HBCS significantly inhibited peri-implant osteolysis versus placebo and free sitafloxacin (p < 0.05), which was not seen with the corresponding non-antibiotic-conjugated bisphosphonate control. TRAP-stained histology confirmed that HBCS significantly reduced peri-implant osteoclast numbers versus placebo and free sitafloxacin controls (p < 0.05). To confirm S. aureus killing, we compared the morphology of S. aureus autolysis within in vitro biofilm and infected tibiae via transmission electron microscopy (TEM). Live bacteria in vitro and in vivo presented as dense cocci ~1 μm in diameter. In vitro evidence of autolysis presented remnant cell walls of dead bacteria or "ghosts" and degenerating (non-dense) bacteria. These features of autolyzed bacteria were also present among the colonizing S. aureus within OLCN of infected tibiae from placebo-, vancomycin-, and sitafloxacin-treated mice, similar to placebo. However, most of the bacteria within OLCN of infected tibiae from BCA-treated mice were less dense and contained small vacuoles and holes >100 nm. Histomorphometry of the bacteria within the OLCN demonstrated that BCA significantly increased their diameter versus placebo and free antibiotic controls (p < 0.05). As these abnormal features are consistent with antibiotic-induced vacuolization, bacterial swelling, and necrotic phenotype, we interpret these findings to be the initial evidence of BCA-induced killing of S. aureus within the OLCN of infected bone. Collectively, these results support the bone targeting strategy of BCA to overcome the biodistribution limits of SOC antibiotics and warrant future studies to confirm the novel TEM phenotypes of bacteria within OLCN of S. aureus-infected bone of animals treated with BCS and HBCS.
Collapse
Affiliation(s)
- Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Thomas Xue
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, United States
| | - Chad A. Galloway
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, United States
| | - Yuting Liu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Jeffrey Neighbors
- BioVinc LLC, Pasadena, CA, United States
- Department of Pharmacology, Pennsylvania State University, Hershey, PA, United States
| | | | - Frank H. Ebetino
- BioVinc LLC, Pasadena, CA, United States
- Department of Chemistry, University of Rochester, Rochester, NY, United States
| | | | | | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
38
|
Molecular Evolution and Genomic Insights into Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 88. Microbiol Spectr 2022; 10:e0034222. [PMID: 35730953 PMCID: PMC9430171 DOI: 10.1128/spectrum.00342-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence type 88 (ST88) methicillin-resistant Staphylococcus aureus (MRSA) has been recognized as an important pathogen that causes infections in humans, especially when it has strong biofilm production and multidrug resistance (MDR). However, knowledge of the determinants of resistance or virulence and genomic characteristics of ST88 MRSA from China is still limited. In this study, we employed the antimicrobial resistance (AMR), biofilm formation, and genomic characteristics of ST88 MRSA collected from various foods in China and estimated the worldwide divergence of ST88 MRSA with publicly available ST88 genomes. All ST88 isolates studied were identified as having resistance genes, while 50% (41/82) harbored MDR genes. All isolates carried core virulence genes related to immune modulation, adherence, secreted enzymes, and hemolysin. In addition, all 20 Chinese ST88 isolates showed biofilm production capacity, three strongly so. Bayesian phylogenetic analysis showed that Chinese ST88 clones formed an independent MRSA lineage, with two subclades associated with acquisition of type IVc staphylococcal cassette chromosome mec (SCCmec) elements. In contrast, all African ST88 strains were subtyped as SCCmecIVa, where the African clades were mixed with a few European and American isolates, suggesting potential transmission from Africa to these regions. In summary, our results revealed the evolution of ST88 MRSA in humans, animals, and foods in Africa and Asia. The food-associated ST88 genomes in this study will remedy the lack of food-associated ST88 isolates, and the study in general will extend the discussion of the potential exchanges of ST88 between humans and foods or food animals. IMPORTANCE ST88 MRSA has frequently been detected in humans, animals, and foods mainly in Africa and Asia. It can colonize and cause mild to severe infections in humans, especially children. Several studies from African countries have described its genotypic characteristics but, limited information is available on the evolution and characterization of ST88 MRSA in Asia, especially China. Meanwhile, the molecular history of its global spread remains largely unclear. In this study, we analyzed the genomic evolution of global ST88 MRSA strains in detail and identified key genetic changes associated with specific hosts or regions. Our results suggested geographical differentiation between ST88 MRSA’s evolution in Africa and its evolution in Asia, with a more recent clonal evolution in China. The introduction of ST88 MRSA in China was aligned with the acquisition of SCCmecIVc elements, specific virulent prophages, and AMR genes.
Collapse
|
39
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
40
|
Khoury J, Edelman ER, Talmo C, Webster TJ. Accelerated neutral atom beam (ANAB) modified polyethylene for decreased wear and reduced bacteria colonization: An in vitro study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102540. [PMID: 35181528 DOI: 10.1016/j.nano.2022.102540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) model implants were modified using accelerated neutral atom beam (ANAB) technology and tested for in vitro wear properties and bacteria colonization. Material characterization studies using atomic force microscopy (AFM), surface energy, and in vitro protein adsorption events were also conducted to better understand the mechanism behind such wear properties and bacteria colonization. ANAB modified UHMWPE showed significantly reduced wear properties compared to controls due to nanostructured features, greater surface energy, and improved adsorption of lubricin, a synovial fluid lubricating protein. There was significantly greater adsorption of proteins known to reduce bacteria colonization (specifically, mucin, casein, and lubricin) after 4 h on UHMWPE after ANAB treatment. Such changes in initial protein events led to significantly decreased bacteria (including methicillin resistant Staph. aureus (or MRSA), Staph. aureus, E. coli, multi-drug resistant E. coli, Pseudomonas aeruginosa and Staph. epidermidis) colonization after 24 h without resorting to antibiotic use.
Collapse
Affiliation(s)
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Carl Talmo
- New England Baptist Hospital, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
41
|
Kosugi K, Zenke Y, Sato N, Hamada D, Ando K, Okada Y, Yamanaka Y, Sakai A. Potential of Continuous Local Antibiotic Perfusion Therapy for Fracture-Related Infections. Infect Dis Ther 2022; 11:1741-1755. [PMID: 35596921 PMCID: PMC9334484 DOI: 10.1007/s40121-022-00653-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Fracture-related infections (FRIs) are challenging for orthopedic surgeons, as conventional surgical treatment and systemic antimicrobial therapy cannot completely control local infections. Continuous local antibiotic perfusion (CLAP) is a novel and innovative therapy for bone and soft-tissue infections, and is expected to eradicate biofilms by maintaining a sustained high concentration of antimicrobial agents at the infected site. If CLAP therapy can eradicate infection even in cases with implants while preserving the implants, it would be an ideal and effective treatment for local refractory infections. This study aimed to evaluate the usefulness of novel CLAP therapy for FRIs. Methods Nine patients treated with CLAP therapy were retrospectively analyzed. The mean age was 65.9 (43–82) years, and the mean follow-up period was 14.9 (6–45) months. In all cases, the infected sites were related to the lower extremities (tibia, n = 6; fibula, n = 1; hip joint, n = 1; foot, n = 1). All patients underwent similar procedures for this therapy combined with negative-pressure wound therapy after thorough irrigation and debridement of infected tissues. Results The pathogens identified were Staphylococcus aureus (methicillin-resistant S. aureus, n = 5; methicillin-susceptible S. aureus, n = 1), Pseudomonas aeruginosa (n = 3), Enterococcus faecalis (n = 2), Corynebacterium (n = 1), and Enterobacter (n = 1); pathogens were not detected in one case. The mean duration of CLAP was 17.0 (7–35) days. In all cases, implants were preserved until bone union was achieved. Five cases relapsed; however, infection was finally suppressed in all cases by repeating this method. No side effects were observed. Conclusion This novel case series presents treatment outcomes using CLAP therapy for FRIs. This method has the potential to control the infection without removing the implants, because of the sustained high concentration of antimicrobial agents at the infected site, and could be a valuable treatment option for refractory FRIs with implants, in which bone union has not been achieved. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00653-5.
Collapse
Affiliation(s)
- Kenji Kosugi
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yukichi Zenke
- Department of Emergency Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Naohito Sato
- Department of Emergency Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Daishi Hamada
- Department of Emergency Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kohei Ando
- Department of Emergency Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
42
|
Clindamycin Efficacy for Cutibacterium acnes Shoulder Device-Related Infections. Antibiotics (Basel) 2022; 11:antibiotics11050608. [PMID: 35625252 PMCID: PMC9137462 DOI: 10.3390/antibiotics11050608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Clindamycin is an antibiotic with high bioavailability and appropriate bone diffusion, often proposed as an alternative in guidelines for C. acnes prosthetic joint infections. We aimed to evaluate the efficacy of clindamycin in the treatment of C. acnes shoulder implant joint infections (SIJI). Methods: A retrospective analysis was conducted at the University Hospital of Nice (France) between 2010 and 2019. We included patients with one shoulder implant surgical procedure and at least one C. acnes positive sample. We selected the C. acnes SIJI according to French and international recommendations. The primary endpoint was favorable outcome of C. acnes SIJI treatment after at least 1-year follow-up in the clindamycin group compared to another therapeutic group. Results: Forty-eight SIJI were identified and 33 were treated with clindamycin, among which 25 were treated with monotherapy. The median duration of clindamycin antibiotherapy was 6 weeks. The average follow-up was 45 months; one patient was lost to follow-up. Twenty-seven patients out of 33 (82%) were cured with clindamycin, compared to 9/12 (75%) with other antibiotics. The rate of favorable outcomes increased to 27/31 (87%) with clindamycin and to 9/10 (90%) for other antibiotics when no septic revision strategies were excluded (P = 1.00). Conclusions: The therapeutic strategy based on one- or two-stage revision associated with 6 weeks of clindamycin seems to be effective.
Collapse
|
43
|
DePalma BJ, Nandi S, Chaudhry W, Lee M, Johnson AJ, Doub JB. Assessment of Staphylococcal Clinical Isolates from Periprosthetic Joint Infections for Potential Bacteriophage Therapy. J Bone Joint Surg Am 2022; 104:693-699. [PMID: 35167506 DOI: 10.2106/jbjs.21.00958] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bacteriophage therapy is a potential adjunctive treatment for periprosthetic joint infections (PJIs) given the capabilities of bacteriophages to degrade biofilms, self-replicate, and lyse bacteria. However, many aspects of this therapeutic are ill-defined, and the narrow spectrum of bacteriophage activity along with limited available bacteriophage strains curb potential use for specific bacteria such as Staphylococcus aureus at the present time. Therefore, the aim of this study was to determine the feasibility of using bacteriophages for PJI by (1) categorizing the causative organisms in hip and knee PJI at a tertiary academic center and (2) evaluating in vitro activity of a group of bacteriophages against clinical S. aureus PJI isolates. METHODS Patients with chronic hip or knee PJI after undergoing the first stage of a 2-stage revision protocol from 2017 to 2020 were identified retrospectively by a query of the hospital billing database. The causative pathogens in 129 cases were reviewed and categorized. From this cohort, preserved S. aureus isolates were tested against a library of 15 staphylococcal bacteriophages to evaluate for bacterial growth inhibition over 48 hours. RESULTS S. aureus was the most common pathogen causing PJI (26% [33] of 129 cases). Of 29 S. aureus samples that were analyzed for bacteriophage activity, 97% showed adequate growth inhibition of the predominant planktonic colonies by at least 1 bacteriophage strain. However, 24% of the 29 samples demonstrated additional smaller, slower-growing S. aureus colonies, none of which had adequate growth inhibition by any of the initial 14 bacteriophages. Of 5 secondary colonies that underwent subsequent testing with another bacteriophage with enhanced biofilm activity, 4 showed adequate growth inhibition. CONCLUSIONS Effective bacteriophage therapeutics are potentially available for S. aureus PJI isolates. The differences in bacteriophage activity against the presumed small-colony variants compared with the planktonic isolates have important clinical implications. This finding suggests that bacteriophage attachment receptors differ between the different bacterial morphologic states, and supports future in vitro testing of bacteriophage therapeutics against both planktonic and stationary states of PJI clinical isolates to ensure activity.
Collapse
Affiliation(s)
- Brian J DePalma
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sumon Nandi
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Martin Lee
- Adaptive Phage Therapeutics, Gaithersburg, Maryland
| | - Aaron J Johnson
- Department of Orthopaedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Tarity TD, Xiang W, Jones CW, Gkiatas I, Nocon A, Selemon NA, Carli A, Sculco PK. Do Antibiotic-Loaded Calcium Sulfate Beads Improve Outcomes After Debridement, Antibiotics, and Implant Retention? A Matched Cohort Study. Arthroplast Today 2022; 14:90-95. [PMID: 35252512 PMCID: PMC8891996 DOI: 10.1016/j.artd.2022.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dissolvable antibiotic-loaded calcium sulfate beads are used as an intraoperative adjunct during debridement with antibiotics and implant retention (DAIR) for periprosthetic joint infections (PJI) to reduce the historically higher failure rates than one- or two-stage exchange. This study evaluated clinical outcomes after DAIRs performed with and without these antibiotic beads. The primary outcome was post-DAIR failure secondary to recurrent PJI at 2 years. The secondary outcome was early failure secondary to recurrent PJI within 90 days. MATERIAL AND METHODS DAIRs performed for acute or acute hematogenous PJI at a single institution were retrospectively identified between 2013 and 2018. All DAIRs with adjunctive antibiotic beads (cases) were then exactly matched to a cohort of DAIRs without beads (controls) based on Charlson Comorbidity Index. The McNemar's test and Wilcoxon signed-rank test were used to evaluate differences in outcomes and patient characteristics. RESULTS Twenty DAIR cases (with antibiotic beads) were matched with 20 DAIR controls. There was no difference in age, sex, body mass index, joint, erythrocyte sedimentation rate, C-reactive protein, microbiology profile, antibiotic-resistance profile, or intraoperative lavage adjuncts between groups. There were no statistically significant differences between cases and controls for either overall infection-related failure at 2 years (P = .21) or early infection-related failure at 90 days (P = 1.00). CONCLUSION Adjunctive dissolvable antibiotic-loaded calcium sulfate beads did not reduce the incidence of recurrent PJIs at 2 years or 90 days postoperatively after DAIR. Given the added cost of these antibiotic dissolvable beads without clinical benefits, we cannot recommend their use as an adjunct treatment during DAIRs.
Collapse
Affiliation(s)
- T. David Tarity
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - William Xiang
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Christopher W. Jones
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Ioannis Gkiatas
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Allina Nocon
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Nicolas A. Selemon
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
| | - Alberto Carli
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY, USA
| | - Peter K. Sculco
- Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
45
|
Zhu H, Gao Y, Wang C, Chen Z, Yu X, Qi X, Sun Q, Zhang W, Song W. A nomogram for decision-making assistance on surgical treatment of chronic osteomyelitis in long bones: Establishment and validation based on a retrospective multicenter cohort. Int J Surg 2022; 99:106267. [PMID: 35202861 DOI: 10.1016/j.ijsu.2022.106267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic osteomyelitis remains a major challenge for orthopedic surgeons due to its high recurrence rate. Surgeons currently have few tools to estimate the likelihood of individual recurrence. We here aimed to develop a nomogram to better estimate individual recurrence rate after surgical treatment of chronic osteomyelitis in long bones. METHODS We first retrospectively identified patients as training cohort who had received surgical treatment of chronic osteomyelitis in long bones between January 2010 and January 2016 from four hospitals. Patient demographic, microbiological, clinical, and therapeutic variables were collected and analyzed. Univariate and multivariate analyses were performed successively to identify independently predictive factors for recurrence. To reduce overfitting, the Bayesian information criterion was used to reduce variables in the original model. Nomograms were created with the reduced model after model selection. The nomogram was then internally validated with bootstrap resampling. We then further validated the performance of the established nomogram in validation cohort (data from two distinct institutions). RESULTS Recurrence was found in 136 of 655 (20.8%) and 52 of 201 patients (25.9%) in training and validation cohorts respectively. We included six independent prognostic factors for recurrence in our prediction model: number of previous recurrences, epiphysial involvement, preoperative serum albumin level, axial length of the infectious lesion, lesion-removal method, and application of a muscular flap. After incorporating these six factors, the nomogram achieved good discrimination, with concordance indexes of 0.82 (95% CI, 0.79-0.85) and 0.80 (95% CI, 0.78-0.83) in predicting recurrence in the training and validation cohorts, respectively. Calibration curves were well fitted for both training and validation cohorts. CONCLUSIONS Our nomogram achieved good preoperative prediction of recurrence in chronic osteomyelitis of long bones. Using this nomogram, the recurrence risk can be confidently predicted for each patient and treatment plan. After considering and discussing the functional prognosis with patients, physicians can establish a rational therapeutic plan. LEVEL OF EVIDENCE Prognostic, Level III.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China Shanghai Eighth People's Hospital, Shanghai, China Shanghai Minhang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China Shanghai Zhujiajiao People's Hospital, Shanghai, China The Fifth Hospital of Wuhan City, Wuhan, Hubei, China Jinghong First People's Hospital, Xishuangbanna, Yunnan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sokhi UK, Xia Y, Sosa B, Turajane K, Nishtala SN, Pannellini T, Bostrom MP, Carli AV, Yang X, Ivashkiv LB. Immune Response to Persistent Staphyloccocus Aureus Periprosthetic Joint Infection in a Mouse Tibial Implant Model. J Bone Miner Res 2022; 37:577-594. [PMID: 34897801 PMCID: PMC8940655 DOI: 10.1002/jbmr.4489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
Staphyloccocus aureus is one of the major pathogens in orthopedic periprosthetic joint infection (PJI), a devastating complication of total joint arthroplasty that often results in chronic and persistent infections that are refractory to antibiotics and require surgical interventions. Biofilm formation has been extensively investigated as a reason for persistent infection. The cellular composition, activation status, cytokine profile, and role of the immune response during persistent S. aureus PJI are incompletely understood. In this study, we used histology, multiparametric flow cytometry, and gene expression analysis to characterize the immune response in a clinically relevant orthopedic PJI model. We tested the hypothesis that persistent S. aureus infection induces feedback mechanisms that suppress immune cell activation, thereby affecting the course of infection. Surprisingly, persistent infection was characterized by strikingly high cytokine gene expression indicative of robust activation of multiple components of innate and adaptive immunity, along with ongoing severe neutrophil-dominated inflammation, in infected joint and bone tissues. Activation and expansion of draining lymph nodes and a bone marrow stress granulopoiesis reaction were also maintained during late phase infection. In parallel, feedback mechanisms involving T-cell inhibitory receptors and exhaustion markers, suppressive cytokines, and regulatory T cells were activated and associated with decreased T-cell proliferation and tissue infiltration during the persistent phase of infection. These results identify the cellular and molecular components of the mouse immune response to persistent S. aureus PJI and indicate that neutrophil infiltration, inflammatory cytokine responses, and ongoing lymph node and bone marrow reactions are insufficient to clear infection and that immune effector mechanisms are suppressed by feedback inhibitory pathways. These immune-suppressive mechanisms are associated with diminished T-cell proliferation and tissue infiltration and can be targeted as part of adjuvant immunotherapeutic strategies in combination with debridement of biofilm, antibiotics, and other therapeutic modalities to promote eradication of infection. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Upneet K Sokhi
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yunwei Xia
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Branden Sosa
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Kathleen Turajane
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Sita N Nishtala
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Tania Pannellini
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Department of Pathology, Hospital for Special Surgery, New York, NY, USA
| | - Mathias P Bostrom
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedics, Weill Cornell Medicine, New York, NY, USA
| | - Alberto V Carli
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
47
|
Hellwinkel JE, Working ZM, Certain L, García AJ, Wenke JC, Bahney CS. The intersection of fracture healing and infection: Orthopaedics research society workshop 2021. J Orthop Res 2022; 40:541-552. [PMID: 35076097 PMCID: PMC9169242 DOI: 10.1002/jor.25261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Infection is a common cause of impaired fracture healing. In the clinical setting, definitive fracture treatment and infection are often treated separately and sequentially, by different clinical specialties. The ability to treat infection while promoting fracture healing will greatly reduce the cost, number of procedures, and patient morbidity associated with infected fractures. In order to develop new therapies, scientists and engineers must understand the clinical need, current standards of care, pathologic effects of infection on fractures, available preclinical models, and novel technologies. One of the main causes of poor fracture healing is infection; unfortunately, bone regeneration and infection research are typically approached independently and viewed as two separate disciplines. Here, we aim to bring these two groups together in an educational workshop to promote research into the basic and translational science that will address the clinical challenge of delayed fracture healing due to infection. Statement of clinical significance: Infection and nonunion are each feared outcomes in fracture care, and infection is a significant driver of nonunion. The impact of nonunions on patie[Q2]nt well-being is substantial. Outcome data suggests a long bone nonunion is as impactful on health-related quality of life measures as a diagnosis of type 1 diabetes and fracture-related infection has been shown to significantly l[Q3]ower a patient's quality of life for over 4 years. Although they frequently are associated with one another, the treatment approaches for infections and nonunions are not always complimentary and cannot be performed simultaneously without accepting tradeoffs. Furthermore, different clinical specialties are often required to address the problem, the orthopedic surgeon treating the fracture and an infectious disease specialist addressing the sources of infection. A sequential approach that optimizes treatment parameters requires more time, more surgeries, and thus confers increased morbidity to the patient. The ability to solve fracture healing and infection clearance simultaneously in a contaminated defect would benefit both the patient and the health care system.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Zachary M Working
- Department of Orthopaedic Surgery and Rehabilitation, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Laura Certain
- Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Joseph C Wenke
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, USA
- 7Shriners Children's Texas, Galveston, TX
| | - Chelsea S Bahney
- Center for Regenerative and Personalized Medicine, The Steadman Clinic & Steadman Philippon Research Institute, Vail, Colorado, USA
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
48
|
Riemer K, Lange J. Early periprosthetic hip joint infection managed by cementless one-stage revision - a case series. J Bone Jt Infect 2022; 7:43-50. [PMID: 35251904 PMCID: PMC8892566 DOI: 10.5194/jbji-7-43-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Early periprosthetic hip joint infection (PJI) is traditionally treated with debridement, antibiotics, and implant retention (DAIR). However, infection control rates after DAIR-treated periprosthetic hip joint infection do not exceed 77 %. Cementless one-stage revision of chronic PJI by the Cementless One-stage Revision of Infected Hip Arthroplasty (CORIHA) protocol has been evaluated positively with a 91 % success rate. We wanted to evaluate the effectiveness of cementless one-stage revision following the CORIHA protocol for early PJI in elective primary total hip arthroplasty, regarding risk of re-operation with exchange of implants. Methods: We identified 18 patients in our center with early ( ≤ 6 -week postoperative) PJI after primary total hip arthroplasty (THA) treated with one-stage cementless revision in the period January 2012-March 2018. Treatment followed the CORIHA protocol. Primary outcome was retention of implants at the most recent follow-up. Patients were followed for a minimum of 3 years. Results: Mean follow-up time was 60 months (39-105). All patients retained their implants, but two required superficial soft tissue debridement due to persistent wound seepage. Conclusion: Cementless one-stage revision appears to be an effective treatment of early PJI after primary THA and at least an equal choice of treatment compared with DAIR. Whether the potential benefit of a lower re-revision rate for postoperative PJI outweighs the increased surgical complexity of the CORIHA procedure needs further evaluation.
Collapse
Affiliation(s)
- Kristoffer Riemer
- Elective Surgery Center, Silkeborg Regional Hospital, HE Midt,
Silkeborg, 8600, Denmark
| | - Jeppe Lange
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens,
8700, Denmark
| |
Collapse
|
49
|
Successful Use of Salvage Bacteriophage Therapy for a Recalcitrant MRSA Knee and Hip Prosthetic Joint Infection. Pharmaceuticals (Basel) 2022; 15:ph15020177. [PMID: 35215290 PMCID: PMC8877365 DOI: 10.3390/ph15020177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Prosthetic joint infections are a serious complication of joint replacement surgery due to the significant morbidity and financial burden that is associated with conventional treatments. When patients fail the gold standard two-stage revision surgery, very limited, well-defined standardized approaches are available. Herein, we discuss the case of a sixty-four-year-old woman who had a recalcitrant MRSA prosthetic joint infection of her knee and hip that failed repeated conventional surgical and medical treatments. Only after receiving intraoperative and intravenous bacteriophage therapy was the patient able to achieve cure of her prosthetic joint infections, as demonstrated by the lack of clinical recurrence and sterility of intraoperative cultures while off antibiotics. This case reinforces that bacteriophage therapy holds promise in the treatment of prosthetic joint infections and more specifically in complicated cases who have failed conventional surgical and medical interventions.
Collapse
|
50
|
Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021; 13:2033. [PMID: 34959315 PMCID: PMC8703556 DOI: 10.3390/pharmaceutics13122033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the design of mesoporous silica nanoparticles for infection treatment. Written within a general context of contributions in the field, this manuscript highlights the major scientific achievements accomplished by professor Vallet-Regí's research group in the field of silica-based mesoporous materials for drug delivery. The aim is to bring out her pivotal role on the envisage of a new era of nanoantibiotics by using a deep knowledge on mesoporous materials as drug delivery systems and by applying cutting-edge technologies to design and engineer advanced nanoweapons to fight infection. This review has been divided in two main sections: the first part overviews the influence of the textural and chemical properties of silica-based mesoporous materials on the loading and release of antibiotic molecules, depending on the host-guest interactions. Furthermore, this section also remarks on the potential of molecular modelling in the design and comprehension of the performance of these release systems. The second part describes the more recent advances in the use of mesoporous silica nanoparticles as versatile nanoplatforms for the development of novel targeted and stimuli-responsive antimicrobial nanoformulations for future application in personalized infection therapies.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio L. Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|