1
|
Lv H, Wang Y, Zhang G, Wang X, Hu Z, Chu Q, Zhou Y, Yang Y, Jiang T, Wang J. Association between obesity measurement indexes and symptomatic knee osteoarthritis among the Chinese population: analysis from a nationwide longitudinal study. BMC Musculoskelet Disord 2024; 25:986. [PMID: 39623424 PMCID: PMC11610057 DOI: 10.1186/s12891-024-08009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The current literature lacks robust clinical data and evidence delineating the relationship between obesity measurement indexes and knee osteoarthritis (KOA). Consequently, this investigation seeks to elucidate the potential link between obesity measurement indexes and KOA among Chinese adults in a nationally representative study. METHODS Firstly, this research performed an observational study in the China Health and Retirement Longitudinal Study (CHARLS). The variables were extracted from interviews and compared between KOA and non-KOA participants. The relationship between obesity measurement indexes and KOA was analyzed by multivariate logistic regression. Restricted cubic spline (RCS) regression tests the nonlinearity of the relationship between obesity measurement indexes and KOA. Subgroup analyses were performed by sex to verify the robustness of the findings. RESULTS In this cross-sectional analysis, we found a positive association between obesity measurement indexes and KOA. These results did not change on multiple imputations(BMI: OR = 1.02, 95% CI, 1.01-1.04, P < 0.05; WHtR: OR = 2.85, 95% CI, 1.08-7.51, P < 0.05; BRI: OR = 1.07, 95% CI, 1.01-1.12, P < 0.05; BFP: OR = 1.02 95% CI, 1.00-1.03, P < 0.05). All the effects of obesity measurement indexes with KOA are present in females. None of the stratifying variables significantly affected the association between obesity measurement indexes and KOA. RCS regression test revealed the linear positive correlation between obesity measurement indexes and KOA. CONCLUSION In this cross-sectional study, we found a significant association between obesity measurement indexes and KOA. This relationship is not affected by stratification and confounding factors.
Collapse
Affiliation(s)
- Hao Lv
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Yan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Ge Zhang
- The Third People's Hospital of Hefei, Hefei, Anhui Province, 230000, China
| | - Xingyu Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Zhimu Hu
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Qingsong Chu
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Yao Zhou
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Yuxiang Yang
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China
| | - Ting Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China.
| | - Jiuxiang Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230000, China.
| |
Collapse
|
2
|
Zapata-Linares N, Loisay L, de Haro D, Berenbaum F, Hügle T, Geurts J, Houard X. Systemic and joint adipose tissue lipids and their role in osteoarthritis. Biochimie 2024; 227:130-138. [PMID: 39343353 DOI: 10.1016/j.biochi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Osteoarthritis (OA) is a major disease whose prevalence increases with aging, sedentary lifestyles, and obesity. The association between obesity and OA has been well documented, but the precise mechanisms underlying this heightened risk remain unclear. While obesity imposes greater forces on joints, systemic fat-derived factors such as lipids or adipokine may potentially act on the pathophysiology of OA, but the exact role of these factors in weight-bearing and non-weight-bearing joints remains elusive. Intra-articular adipose tissues (IAAT) have gained significant attention for actively participating in OA pathogenesis by interacting with various joint tissues. Lipid content has been proposed as a diagnostic target for early OA detection and a potential source of biomarkers. Moreover, targeting a specific IAAT called infrapatellar fat pad (IFP) and its lipids hold promise for attenuating OA-associated inflammation. Conversely, bone marrow adipose tissue (BMAT), which was long thought to be an inert filling tissue, is now increasingly considered a dynamic tissue whose volume and lipid content regulate bone remodeling in pathological conditions. Given OA's ability to alter adipose tissues, particularly those within the joint (IFP and BMAT), and the influence of adipose tissues on OA pathogenesis, this review examines the lipids produced by OA-associated adipose tissues, shedding light on their potential role in OA pathophysiology and highlighting them as potential therapeutic targets.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France
| | - Léa Loisay
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Diego de Haro
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Francis Berenbaum
- Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, F-75012, Paris, France
| | - Thomas Hügle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jeroen Geurts
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012, Paris, France.
| |
Collapse
|
3
|
Klyucherev TO, Peshkova MA, Revokatova DP, Serejnikova NB, Fayzullina NM, Fayzullin AL, Ershov BP, Khristidis YI, Vlasova II, Kosheleva NV, Svistunov AA, Timashev PS. The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11564. [PMID: 39519121 PMCID: PMC11545893 DOI: 10.3390/ijms252111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV-exosomes and matrix-bound nanovesicles (MBV)-both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration.
Collapse
Affiliation(s)
- Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria P. Revokatova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nafisa M. Fayzullina
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yana I. Khristidis
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Chou LS, Zhang J, Jildeh TR. Metabolic Functions of the Infrapatellar Fat Pad: Implications for Knee Health and Pathology. JBJS Rev 2024; 12:01874474-202410000-00001. [PMID: 39361777 DOI: 10.2106/jbjs.rvw.24.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
» Despite being historically viewed as a vestigial structure, the infrapatellar fat pad (IPFP) is now recognized as a metabolically active structure, influencing knee health through cytokine production and metabolic pathways.» With distinct anatomical regions, the IPFP contains diverse cell types including adipocytes, fibroblasts, and immune cells, influencing its functional roles, pathology, and contributions to knee disorders.» The IPFP acts as an endocrine organ by releasing adipokines such as adiponectin, leptin, and tumor necrosis factor α, regulating energy balance, immune responses, and tissue remodelling, with implications for knee joint health.» The IPFP's metabolic interactions with neighboring tissues influence joint health, clinical conditions such as knee pain, osteoarthritis, postoperative complications, and ganglion cysts, highlighting its therapeutic potential and clinical relevance.» Understanding the multifaceted metabolic role of the IPFP opens avenues for collaborative approaches that integrate orthopaedics, endocrinology, and immunology to develop innovative therapeutic strategies targeting the intricate connections between adipokines, joint health, and immune responses.
Collapse
Affiliation(s)
- Lee S Chou
- Department of Orthopaedic Surgery, Michigan State University, East Lansing, Michigan
| | | | | |
Collapse
|
5
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
6
|
Li F, Yan S, Liu C, Mai Q. Traditional Chinese medicine reyanbao combined with huoxue powder in treatment of knee osteoarthritis of qi stagnation and blood stasis type. Asian J Surg 2024:S1015-9584(24)01919-5. [PMID: 39277468 DOI: 10.1016/j.asjsur.2024.08.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- Fengping Li
- The Twelfth Department of Orthopedics, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| | - Sumin Yan
- The Twelfth Department of Orthopedics, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Chang Liu
- The Twelfth Department of Orthopedics, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Qingxia Mai
- The Twelfth Department of Orthopedics, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| |
Collapse
|
7
|
Eckstein F, Putz R, Wirth W. Sexual dimorphism in peri-articular tissue anatomy - More keys to understanding sex-differences in osteoarthritis? OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100485. [PMID: 38946793 PMCID: PMC11214405 DOI: 10.1016/j.ocarto.2024.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
Objective Osteoarthritis prevalence differs between women and men; whether this is the result of differences in pre-morbid articular or peri-articular anatomical morphotypes remains enigmatic. Albeit sex within humans cannot be reduced to female/male, this review focusses to the sexual dimorphism of peri-articular tissues, given lack of literature on non-binary subjects. Methods Based on a Pubmed search and input from experts, we selected relevant articles based on the authors' judgement of relevance, interest, and quality; no "hard" bibliometric measures were used to evaluate the quality or importance of the work. Emphasis was on clinical studies, with most (imaging) data being available for the knee and thigh. Results The literature on sexual dimorphism of peri-articular tissues is reviewed: 1) bone size/shape, 2) subchondral/subarticular bone, 3) synovial membrane and infra-patellar fad-pad (IPFP), 4) muscle/adipose tissue, and 5) peri-articular tissue response to treatment. Conclusions Relevant sex-specific differences exist for 3D bone shape and IPFP size, even after normalization to body weight. Presence of effusion- and Hoffa-synovitis is associated with greater risk of incident knee osteoarthritis in overweight women, but not in men. When normalized to bone size, men exhibit greater muscle, and women greater adipose tissue measures relative to the opposite sex. Reduced thigh muscle specific strength is associated with incident knee osteoarthritis and knee replacement in women, but not in men. These observations may explain why women with muscle strength deficits have a poorer prognosis than men with similar deficits. A "one size/sex fits all" approach must be urgently abandoned in osteoarthritis research.
Collapse
Affiliation(s)
- Felix Eckstein
- Research Program for Musculoskeletal Imaging, Center for Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Reinhard Putz
- Anatomische Anstalt, Ludwig Maximilians Universität München, Munich, Germany
| | - Wolfgang Wirth
- Research Program for Musculoskeletal Imaging, Center for Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| |
Collapse
|
8
|
Komaravolu RK, Mehta-D'souza P, Conner T, Allen M, Lumry J, Batushansky A, Pezant NP, Montgomery CG, Griffin TM. Sex-specific effects of injury and beta-adrenergic activation on metabolic and inflammatory mediators in a murine model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2024; 32:1097-1112. [PMID: 38527663 PMCID: PMC11330734 DOI: 10.1016/j.joca.2024.03.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Metabolic processes are intricately linked to the resolution of innate inflammation and tissue repair, two critical steps for treating post-traumatic osteoarthritis (PTOA). Based on lipolytic and immunoregulatory actions of norepinephrine, we hypothesized that intra-articular β-adrenergic receptor (βAR) stimulation would suppress PTOA-associated inflammation in the infrapatellar fat pad (IFP) and synovium. DESIGN We used the βAR agonist isoproterenol to perturb intra-articular metabolism 3.5 weeks after applying a non-invasive single-load compression injury to knees of 12-week-old male and female mice. We examined the acute effects of intra-articular isoproterenol treatment relative to saline on IFP histology, multiplex gene expression of synovium-IFP tissue, synovial fluid metabolomics, and mechanical allodynia. RESULTS Injured knees developed PTOA pathology characterized by heterotopic ossification, articular cartilage loss, and IFP atrophy and fibrosis. Isoproterenol suppressed the upregulation of pro-fibrotic genes and downregulated the expression of adipose genes and pro-inflammatory genes (Adam17, Cd14, Icam1, Csf1r, and Casp1) in injured joints of female (but not male) mice. Analysis of published single-cell RNA-seq data identified elevated catecholamine-associated gene expression in resident-like synovial-IFP macrophages after injury. Injury substantially altered synovial fluid metabolites by increasing amino acids, peptides, sphingolipids, phospholipids, bile acids, and dicarboxylic acids, but these changes were not appreciably altered by isoproterenol. Intra-articular injection of either isoproterenol or saline increased mechanical allodynia in female mice, whereas neither substance affected male mice. CONCLUSIONS Acute βAR activation altered synovial-IFP transcription in a sex and injury-dependent manner, suggesting that women with PTOA may be more sensitive than men to treatments targeting sympathetic neural signaling pathways.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Isoproterenol/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Disease Models, Animal
- Sex Factors
- Synovial Membrane/metabolism
- Adipose Tissue/metabolism
- Inflammation Mediators/metabolism
- Receptors, Adrenergic, beta/metabolism
- Injections, Intra-Articular
- Knee Injuries/complications
- Knee Injuries/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/etiology
- Cartilage, Articular/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Taylor Conner
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Madeline Allen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Jessica Lumry
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Nathan P Pezant
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Courtney G Montgomery
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Health Care System, Oklahoma City, OK 73104, USA; Oklahoma Center for Geroscience and the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
9
|
Eckstein F, Walter-Rittel TC, Chaudhari AS, Brisson NM, Maleitzke T, Duda GN, Wisser A, Wirth W, Winkler T. The design of a sample rapid magnetic resonance imaging (MRI) acquisition protocol supporting assessment of multiple articular tissues and pathologies in knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100505. [PMID: 39183946 PMCID: PMC11342198 DOI: 10.1016/j.ocarto.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This expert opinion paper proposes a design for a state-of-the-art magnetic resonance image (MRI) acquisition protocol for knee osteoarthritis clinical trials in early and advanced disease. Semi-quantitative and quantitative imaging endpoints are supported, partly amendable to automated analysis. Several (peri-) articular tissues and pathologies are covered, including synovitis. Method A PubMed literature search was conducted, with focus on the past 5 years. Further, osteoarthritis imaging experts provided input. Specific MRI sequences, orientations, spatial resolutions and parameter settings were identified to align with study goals. We strived for implementation on standard clinical scanner hardware, with a net acquisition time ≤30 min. Results Short- and long-term longitudinal MRIs should be obtained at ≥1.5T, if possible without hardware changes during the study. We suggest a series of gradient- and spin-echo-sequences, supporting MOAKS, quantitative analysis of cartilage morphology and T2, and non-contrast-enhanced depiction of synovitis. These sequences should be properly aligned and positioned using localizer images. One of the sequences may be repeated in each participant (re-test), optimally at baseline and follow-up, to estimate within-study precision. All images should be checked for quality and protocol-adherence as soon as possible after acquisition. Alternative approaches are suggested that expand on the structural endpoints presented. Conclusions We aim to bridge the gap between technical MRI acquisition guides and the wealth of imaging literature, proposing a balance between image acquisition efficiency (time), safety, and technical/methodological diversity. This approach may entertain scientific innovation on tissue structure and composition assessment in clinical trials on disease modification of knee osteoarthritis.
Collapse
Affiliation(s)
- Felix Eckstein
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Thula Cannon Walter-Rittel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | | | - Nicholas M. Brisson
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Anna Wisser
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Wolfgang Wirth
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Tobias Winkler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
10
|
Falvino A, Gasperini B, Cariati I, Bonanni R, Chiavoghilefu A, Gasbarra E, Botta A, Tancredi V, Tarantino U. Cellular Senescence: The Driving Force of Musculoskeletal Diseases. Biomedicines 2024; 12:1948. [PMID: 39335461 PMCID: PMC11429507 DOI: 10.3390/biomedicines12091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The aging of the world population is closely associated with an increased prevalence of musculoskeletal disorders, such as osteoporosis, sarcopenia, and osteoarthritis, due to common genetic, endocrine, and mechanical risk factors. These conditions are characterized by degeneration of bone, muscle, and cartilage tissue, resulting in an increased risk of fractures and reduced mobility. Importantly, a crucial role in the pathophysiology of these diseases has been proposed for cellular senescence, a state of irreversible cell cycle arrest induced by factors such as DNA damage, telomere shortening, and mitochondrial dysfunction. In addition, senescent cells secrete pro-inflammatory molecules, called senescence-associated secretory phenotype (SASP), which can alter tissue homeostasis and promote disease progression. Undoubtedly, targeting senescent cells and their secretory profiles could promote the development of integrated strategies, including regular exercise and a balanced diet or the use of senolytics and senomorphs, to improve the quality of life of the aging population. Therefore, our review aimed to highlight the role of cellular senescence in age-related musculoskeletal diseases, summarizing the main underlying mechanisms and potential anti-senescence strategies for the treatment of osteoporosis, sarcopenia, and osteoarthritis.
Collapse
Affiliation(s)
- Angela Falvino
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Beatrice Gasperini
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Angela Chiavoghilefu
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Lee K, Banuls-Mirete M, Lombardi AF, Posis AIB, Chang EY, Lane NE, Guma M. Infrapatellar fat pad size and subcutaneous fat in knee osteoarthritis radiographic progression: data from the osteoarthritis initiative. Arthritis Res Ther 2024; 26:145. [PMID: 39080699 PMCID: PMC11289919 DOI: 10.1186/s13075-024-03367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Adipose tissue has been associated with knee osteoarthritis (KOA) pathogenesis, but the longitudinal changes in adipose tissue with KOA progression have not been carefully evaluated. This study aimed to determine if longitudinal changes of systemic and local adipose tissue is associated with radiographic progression of KOA. METHODS This case-control study used data from the Osteoarthritis Initiative (OAI) and included 315 cases (all the right knees with a minimum of Kellgren-Lawrence score (KL) of 0 and an increase of ≥ 1 KL from baseline to 48 months) and 315 controls matched by age, sex, race, and baseline KL. Cross sectional area of IPFP (IPFP CSA) and subcutaneous adipose tissue around the distal thigh (SCATthigh) were measured using MRI images at baseline and 24 months. Conditional logistic regression models were fitted to estimate associations of obesity markers, IPFP CSA, and SCATthigh with radiographic KOA progression. Mediation analysis was used to assess whether IPFP CSA or SCATthigh mediates the relationships between baseline BMI and radiographic KOA progression. RESULTS 24-month changes of IPFP CSA (ΔIPFP CSA) and SCATthigh (ΔSCATthigh) were significantly greater in cases compared to controls, whereas Δ BMI and Δ abdominal circumference were similar in both groups during follow-up. Adjusted ORs for radiographic KOA progression were 9.299, 95% CI (5.357-16.141) per 1 SD increase of Δ IPFP CSA and 1.646, 95% CI (1.288-2.103) per 1 SD increase of Δ SCATthigh. ΔIPFP CSA mediated the association between baseline BMI and radiographic KOA progression (87%). CONCLUSIONS Subjects with radiographic progression of KOA, had significant increases in IPFP CSA and subcutaneous adipose tissue while BMI and abdominal circumference remained stable. Additional studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC 0663, La Jolla, CA, 92093-0663, USA
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Marina Banuls-Mirete
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC 0663, La Jolla, CA, 92093-0663, USA
| | - Alecio F Lombardi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Alexander I B Posis
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, USA
| | - Nancy E Lane
- Department of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Monica Guma
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC 0663, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|
12
|
Fagan M, Fajardo R, Grozier C, Jildeh TR, Lissy M, Harkey MS. Ultrasound assessment of the infrapatellar fat pad can detect Hoffa-synovitis in patients following anterior cruciate ligament reconstruction: A pilot study. OSTEOARTHRITIS IMAGING 2024; 4:100174. [PMID: 38549837 PMCID: PMC10976330 DOI: 10.1016/j.ostima.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Introduction Osteoarthritis (OA) commonly occurs following anterior cruciate ligament reconstruction (ACLR), affecting over 50 % of patients within 10-15 years post-ACLR. The Hoffa-synovitis of the infrapatellar fat pad (IPFP) has been implicated as a major contributor to OA pathogenesis. While MRI is typically used to evaluate the IPFP, it is cost-prohibitive for routine screening. This study aimed to validate ultrasound as an alternative for detecting IPFP Hoffa-synovitis in participants post-ACLR. Methods In this cross-sectional study, 15 participants (18-35 years, 1-5 years post-ACLR) underwent two imaging sessions separated by one week. First, a standardized bilateral anterior knee ultrasound assessment was used to examine IPFP echo-intensity. Second, MRI scans of both knees were graded by a board-certified musculoskeletal radiologist for Hoffa-synovitis according to the Anterior Cruciate Ligament Osteoarthritis Score grading system. IPFP echo-intensity were quantified on each ultrasound image, and a limb symmetry index (LSI) was calculated to assess between-limb differences. We used an independent t-test and Cohen's d effect sizes to compare IPFP echo-intensity LSI between people with and without MRI-confirmed Hoffa-synovitis. Results Four of the 15 participants (27 %) exhibited MRI-confirmed Hoffa-synovitis. Significantly higher IPFP echo-intensity LSI values were found in participants with Hoffa-synovitis (32.1 ± 12.1 %) compared to those without (10.5 ± 10.4 %), confirming the ultrasound's ability to distinguish between the two groups (t = -3.44; p = 0.004; d = 2.01). Discussion Ultrasound detects bilateral IPFP signal intensity alterations in participants post-ACLR with MRI-confirmed Hoffa-synovitis. This work should be seen as a proof-of-concept, and further validation in a larger, more diverse sample is essential for verifying these results.
Collapse
Affiliation(s)
- M Fagan
- College of Health Professions, Grand Valley State University, USA
| | | | - C Grozier
- Department of Kinesiology, Michigan State University, USA
| | - T R Jildeh
- Michigan State University Sports Medicine, USA
| | - M Lissy
- Michigan State University Sports Medicine, USA
| | - M S Harkey
- Department of Kinesiology, Michigan State University, USA
| |
Collapse
|
13
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
14
|
Nowicka B, Torres A, Polkowska I, Jackow-Nowicka J, Przewozny M, Jackow-Malinowska J. Concentrations of Selected Adipocytokines in the Blood Plasma in Proximal Suspensory Desmopathy of Horses, with a Focus on Their Physical Activity-A Pilot Study. Int J Mol Sci 2023; 25:205. [PMID: 38203376 PMCID: PMC10778773 DOI: 10.3390/ijms25010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic tendon and ligament diseases are commonly encountered in both athletic humans and animals, especially horses. Distal limb diseases, including suspensory ligament (SL) pathology due to anatomical, histological, and biomechanical properties, can be considered a model for tendon and ligament pathologies in humans. The appropriate selection of therapy is often crucial in optimising the healing process. One decisive factor influencing the possibility of returning to pre-disease training levels appears to be the utilisation of physical activity, including controlled movement, during the rehabilitation process. In the pathogenesis of musculoskeletal diseases and rehabilitation, adipocytokines play diverse roles. However, it is unclear what significance they hold in horses and in specific disease entities as well as the consequences of their mutual interactions. Recent studies indicate that in the pathogenesis of diseases with varied aetiologies in humans, their value varies at different stages, resulting in a diverse response to treatment. The results of this study demonstrate lower resistin concentrations in the venous blood plasma of horses with proximal suspensory desmopathy (PSD), while higher levels were observed in regularly trained and paddocked animals. The horses investigated in this study showed higher concentrations of resistin and IL-8, particularly in paddocked horses as well as in the working group of horses. The results suggest that these concentrations, including resistin in blood plasma, may be clinically significant. This attempt to explore the aetiopathogenesis of the processes occurring in the area of the proximal attachment of the suspensory ligament may optimise the procedures for the treatment and rehabilitation of horses.
Collapse
Affiliation(s)
- Beata Nowicka
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głeboka 30, 20-612 Lublin, Poland;
| | - Anna Torres
- Department of Pediatric and Adolescent Gynecology, Medical University of Lublin, Chodzki 4, 20-094 Lublin, Poland;
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głeboka 30, 20-612 Lublin, Poland;
| | - Jagoda Jackow-Nowicka
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | | | | |
Collapse
|
15
|
Martin A, Liu K, Alimohammadi M. The ligamentum mucosum's potential as a preventative structure in the development of knee osteoarthritis. J Exp Orthop 2023; 10:109. [PMID: 37919534 PMCID: PMC10622374 DOI: 10.1186/s40634-023-00681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
PURPOSE This paper aimed to identify whether the presence, type, and/or morphology of the ligamentum mucosum could play a role in the development of knee osteoarthritis. Since its microscopic structure is alike that of other knee ligaments, it was hypothesized that its presence could facilitate knee motion and stability, thus preventing or reducing the extent of knee osteoarthritis. METHODS Thirty three cadavers (a total of 51 knees) were dissected. The ligamentum mucosum, if present, was measured with a digital caliber and a measuring tape in terms of length, width, and thickness. Knee osteoarthritis was assessed in six regions of the knee. The OuterBridge Classification System (Grades 0-4) was used to visually assess the extent, in addition to probing the area. Osteoarthritis was deemed present if the grade was 2 or greater. RESULTS The presence of the ligament was associated with a lower mean osteoarthritis level in the trochlear groove and lateral tibial plateau regions (p < 0.001 and p = 0.013, respectively). Overall osteoarthritis of the knee was also present at varying levels for each type of the ligamentum mucosum (p < 0.001). The patella and the medial condyle had the greatest levels of osteoarthritis, while the medial and lateral tibial plateaus had the lowest levels. CONCLUSION The presence of the ligamentum mucosum is linked with decreased osteoarthritis in the trochlear groove region. In addition, both the absent ligament and its classification as a vertical septum are associated with increased knee osteoarthritis. LEVEL OF EVIDENCE Five.
Collapse
Affiliation(s)
| | - Kenneth Liu
- UBC (Vancouver, Canada) Faculty of Medicine - Cellular and Physiological Sciences, Vancouver, Canada
| | - Majid Alimohammadi
- UBC (Vancouver, Canada) Faculty of Medicine - Cellular and Physiological Sciences, Vancouver, Canada
| |
Collapse
|
16
|
Xiao J, Zhang P, Cai FL, Luo CG, Pu T, Pan XL, Tian M. IL-17 in osteoarthritis: A narrative review. Open Life Sci 2023; 18:20220747. [PMID: 37854319 PMCID: PMC10579884 DOI: 10.1515/biol-2022-0747] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
Osteoarthritis (OA) is a painful joint disease that is common among the middle-aged and elderly populations, with an increasing prevalence. Therapeutic options for OA are limited, and the pathogenic mechanism of OA remains unclear. The roles of cytokines and signaling pathways in the development of OA is a current research hot spot. Interleukin (IL)-17 is a pleiotropic inflammatory cytokine produced mainly by T helper 17 cells that has established roles in host defense, tissue repair, lymphoid tissue metabolism, tumor progression, and pathological processes of immune diseases, and studies in recent years have identified an important role for IL-17 in the progression of OA. This narrative review focuses on the mechanisms by which IL-17 contributes to articular cartilage degeneration and synovial inflammation in OA and discusses how IL-17 and the IL-17 signaling pathway affect the pathological process of OA. Additionally, therapeutic targets that have been proposed in recent years based on IL-17 and its pathway in OA are summarized as well as recent advances in the study of IL-17 pathway inhibitors and the potential challenges of their use for OA treatment.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| | - Ping Zhang
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi563000, China
| | - Fang-Lan Cai
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi563000, China
| | - Cheng-Gen Luo
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi563000, China
| | - Tao Pu
- Department of Nephrology and Rheumatology, Moutai Hospital, Renhuai 564500Guizhou, China
| | - Xiao-Li Pan
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| | - Mei Tian
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, Zunyi563000, China
| |
Collapse
|
17
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Ahn M, Park KI, Heo JD, Kim YS, Kim GS. Potential Joint Protective and Anti-Inflammatory Effects of Integrin α vβ 3 in IL-1β-Treated Chondrocytes Cells. Biomedicines 2023; 11:2745. [PMID: 37893118 PMCID: PMC10603936 DOI: 10.3390/biomedicines11102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
In osteoarthritis (OA), the articular cartilage covering the articular surface of the bone wears out, exposing the subchondral bone, and the synovial membrane surrounding the joint becomes inflamed, causing pain and deformity. OA causes pain, stiffness, and swelling, and discomfort in the knee when climbing stairs is a typical symptom. Although drug development studies are conducted to treat these inflammatory joint diseases, it is difficult to find conclusive research results which could reduce inflammation and slow cartilage tear. The development of drugs to relieve inflammatory pain often utilizes inflammatory triggers. Interleukins, one of the proteins in the limelight as pro-inflammatory factors, are immune-system-stimulating factors that promote the body's fight against harmful factors such as bacteria. In this study, inflammation was induced in Chondrocytes cells (Chon-001 cells) with IL-1β and then treated with integrin αvβ3 to show anti-inflammatory and chondrogenesis effects. Integrin αvβ3 was not toxic to Chon-001 cells in any concentration groups treated with or without IL-1β. COX-2 and iNOS, which are major markers of inflammation, were significantly reduced by integrin αvβ3 treatment. Expressions of p-ERK, p-JNK, and p-p38 corresponding to the MAPKs signaling pathway and p-IκBα and p-p65 corresponding to the NF-κB signaling pathway were also decreased in a dose-dependent manner upon integrin αvβ3 treatment, indicating that inflammation was inhibited, whereas treatment with integrin αvβ3 significantly increased the expression of ALP, RUNX2, BMP2, BMP4, Aggrecan, SOX9, and COL2A1, suggesting that osteogenesis and chondrogenesis were induced. These results suggest that integrin αvβ3 in-duces an anti-inflammatory effect, osteogenesis, and chondrogenesis on IL-1β-induced Chon-001 cells.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju 52725, Republic of Korea;
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Korea Institute of Toxicology Gyeongnam Branch (KIT), Jinju 52834, Republic of Korea;
| | - Young Sil Kim
- T-Stem Co., Ltd., Changwon 51573, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.H.K.); (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
18
|
Cheleschi S, Veronese N, Carta S, Collodel G, Bottaro M, Moretti E, Corsaro R, Barbarino M, Fioravanti A. MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β. Int J Mol Sci 2023; 24:14994. [PMID: 37834442 PMCID: PMC10573984 DOI: 10.3390/ijms241914994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.
Collapse
Affiliation(s)
- Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Viale Scaduto, 90100 Palermo, Italy
| | - Serafino Carta
- Section of Orthopedics and Traumatology, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
19
|
Haartmans MJJ, Claes BSR, Eijkel GB, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals potential lipid markers between infrapatellar fat pad biopsies of osteoarthritis and cartilage defect patients. Anal Bioanal Chem 2023; 415:5997-6007. [PMID: 37505238 PMCID: PMC10556153 DOI: 10.1007/s00216-023-04871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The incidence of osteoarthritis (OA) has been expected to increase due to an aging population, as well as an increased incidence of intra-articular (osteo-) chondral damage. Lipids have already been shown to be involved in the inflammatory process of OA. This study aims at revealing region-specific lipid profiles of the infrapatellar fat pad (IPFP) of OA or cartilage defect patients by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which could be used as biomarkers for early OA detection. A higher presence of phospholipids was found in OA patients compared with cartilage defect patients. In addition, a higher abundance of ether-linked phosphatidylethanolamines (PE O-s) containing arachidonic acid was specifically found in OA patients compared with cartilage defect patients. These lipids were mainly found in the connective tissue of the IPFP. Specific lipid species were associated to OA patients compared with cartilage defect patients. PE O-s have been suggested as possible biomarkers for OA. As these were found more abundantly in the connective tissue, the IPFP's intra-tissue heterogeneity might play an important role in biomarker discovery, implying that the amount of fibrous tissue is associated with OA.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Britt S R Claes
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Gert B Eijkel
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gabrielle J M Tuijthof
- Biomedical Device Design and Production Technology, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Sacher SE, Neri JP, Gao MA, Argentieri EC, Potter HG, Koch KM, Koff MF. MAVRIC based T2 mapping assessment of infrapatellar fat pad scarring in patients with total knee arthroplasty. J Orthop Res 2023; 41:1299-1309. [PMID: 36262013 PMCID: PMC10113607 DOI: 10.1002/jor.25472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
The infrapatellar fat pad (IPFP) has been implicated as a source of postoperative knee pain. Imaging the IPFP is challenging in patients with total knee arthroplasty (TKA) due to metallic susceptibility artifact. Multi-Acquisition Variable-Resonance Image Combination (MAVRIC)-based T2 Mapping has been developed to mitigate this artifact and can generate quantitative T2 data. Objectives of this study were to (1) measure T2 values of the IPFP in patients with TKAs using a MAVRIC based T2 mapping technique and (2) determine if IPFP T2 values are related to the degree of fat pad scarring or clinical magnetic resonance imaging (MRI) findings. Twenty-eight subjects (10 males, 18 females, Age: 66 + 7.2 years [Mean ± standard deviations]) undergoing clinical MRIs were sequentially recruited. Morphological imaging and quantitative T2 mapping sequences were performed on a clinical 1.5 T scanner. The morphologic images were graded for the presence and severity of fat pad scarring and clinical outcomes. T2 values were calculated in the total fat pad volume, a normal regions of interest (ROI), and an abnormal ROI. T2 values were shortened in the total IPFP volume (p = 0.001) and within abnormal regions (p = 0.003) in subjects with more severe IPFP scarring. The difference between T2 values in normal-abnormal regions was greater in subjects with severe versus no scarring (+1426.1%, p = 0.008). T2 values were elevated in patients with MRI findings of osteolysis (+32.3%, p = 0.02). These findings indicate that MAVRIC-based T2 Mapping may be used as a quantitative biomarker of postoperative IPFP scarring in individuals following TKA.
Collapse
Affiliation(s)
- Sara E. Sacher
- Hospital for Special Surgery, 535 East 70th St, New York, NY 10021
| | - John P. Neri
- Hospital for Special Surgery, 535 East 70th St, New York, NY 10021
| | - Madeleine A. Gao
- Hospital for Special Surgery, 535 East 70th St, New York, NY 10021
| | | | - Hollis G. Potter
- Hospital for Special Surgery, 535 East 70th St, New York, NY 10021
| | | | - Matthew F. Koff
- Hospital for Special Surgery, 535 East 70th St, New York, NY 10021
| |
Collapse
|
21
|
Haartmans MJJ, Claes BSR, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Sample preparation for lipid analysis of intra-articular adipose tissue by using matrix-assisted laser desorption/ionization imaging. Anal Biochem 2023; 662:115018. [PMID: 36521559 DOI: 10.1016/j.ab.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique enabling the visualization of the spatial distribution of different molecules in tissue biopsies with different pathologies. Sample handling and preparing adipose tissue for MSI is challenging and prone to molecular delocalization due to tissue melting. In this work, we developed a method for matrix-assisted laser desorption/ionization (MALDI)-MSI to study lipids in human infrapatellar fat pad (IPFP), a biomarker source in musculoskeletal pathologies, while preserving molecular spatial distribution. Cryosectioning at 15 μm with a temperature below -30 °C, thaw-mounting, and sublimation, was demonstrated to preserve IPFP's heterogeneous appearance and spatial distribution of lipids.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands; Amsterdam UMC, Amsterdam Movement Sciences, Department of Orthopedic Surgery and Sports Medicine, Amsterdam, the Netherlands.
| | - Gabrielle J M Tuijthof
- Faculty of Engineering Technology, Biomedical Device Design and Production Technology (BDDP), Twente University, Twente, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Fjordbakk CT, Marques-Smith P. The equine patellar ligaments and the infrapatellar fat pad - a microanatomical study. BMC Vet Res 2023; 19:20. [PMID: 36691004 PMCID: PMC9869593 DOI: 10.1186/s12917-023-03579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Interpretation of patellar ligament (PL) ultrasonography may be difficult, as hypoechoic or heterogenous echogenicity are common findings. Verifying suspected disease of equine PLs by histopathology is also problematic as descriptions of normal PL vascularity and histology are scarce. The current study describes the PL and infrapatellar fat pad (IFP) vascular pattern from computed tomography scans of barium perfused normal equine specimens (n = 8; age 10 days to 18 years), as well as routine histology to serve as a reference for future investigations into PL pathology and IFP disease. RESULTS The PLs received a bipolar blood supply. Vascular architecture consisted of numerous distinct longitudinal vessels with several horizontal connections, which branched into extensive latticeworks of smaller vessels throughout the ligaments. Several vascular connections between the PLs and the IFP were identified. One distinct longitudinal vessel was seen entering each of the IFP lobes at the distocranial aspect, branching extensively into lobar vascular networks which anastomosed by several horizontal branches at the mid portion of the IFP where the two lobes merge. Histologically, there were large variations in PL interfascicular endotenon thickness, vascularity and fatty infiltration; these parameters increased with age for the intermediate and medial PL. Areas of metaplastic tenocytes / chondroid metaplasia were identified in all investigated adult medial PLs; in 2/7 in the intermediate PL and in 4/7 in the lateral PL. The adult IFP consisted of white unilocular adipose tissue, organized in lobules separated by thin connective tissue septa increasing in thickness towards the periphery and the distocentral aspect. CONCLUSIONS The equine PLs and IFP are highly vascularized structures with ample vascular connections suggestive of crosstalk. This, together with the large variation in PL endotenon thickness, vascularity and fatty infiltration, should be taken into consideration when assessing potential PL histopathology as these changes increase with age and are found in horses without clinical signs of stifle disease. Metaplastic tenocytes / chondroid metaplasia should be considered a normal finding throughout the medial PL and is not age dependent. The role of the equine IFP in stifle disease has yet to be elucidated.
Collapse
Affiliation(s)
- Cathrine Taule Fjordbakk
- grid.19477.3c0000 0004 0607 975XFaculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Equine Teaching Hospital, Oluf Thesens Vei 24, 1432 Ås, Norway
| | - Patrick Marques-Smith
- grid.19477.3c0000 0004 0607 975XFaculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Equine Teaching Hospital, Oluf Thesens Vei 24, 1432 Ås, Norway
| |
Collapse
|
23
|
Braun S, Zaucke F, Brenneis M, Rapp AE, Pollinger P, Sohn R, Jenei-Lanzl Z, Meurer A. The Corpus Adiposum Infrapatellare (Hoffa's Fat Pad)-The Role of the Infrapatellar Fat Pad in Osteoarthritis Pathogenesis. Biomedicines 2022; 10:1071. [PMID: 35625808 PMCID: PMC9138316 DOI: 10.3390/biomedicines10051071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, the infrapatellar fat pad (IFP) has gained increasing research interest. The contribution of the IFP to the development and progression of knee osteoarthritis (OA) through extensive interactions with the synovium, articular cartilage, and subchondral bone is being considered. As part of the initiation process of OA, IFP secretes abundant pro-inflammatory mediators among many other factors. Today, the IFP is (partially) resected in most total knee arthroplasties (TKA) allowing better visualization during surgical procedures. Currently, there is no clear guideline providing evidence in favor of or against IFP resection. With increasing numbers of TKAs, there is a focus on preventing adverse postoperative outcomes. Therefore, anatomic features, role in the development of knee OA, and consequences of resecting versus preserving the IFP during TKA are reviewed in the following article.
Collapse
Affiliation(s)
- Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Anna E. Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Patrizia Pollinger
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| |
Collapse
|