1
|
Rossier B, Jordan O, Allémann E, Rodríguez-Nogales C. Nanocrystals and nanosuspensions: an exploration from classic formulations to advanced drug delivery systems. Drug Deliv Transl Res 2024; 14:3438-3451. [PMID: 38451440 PMCID: PMC11499347 DOI: 10.1007/s13346-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Nanocrystals and nanosuspensions have become realistic approaches to overcome the formulation challenges of poorly water-soluble drugs. They also represent a less-known but versatile platform for multiple therapeutic applications. They can be integrated into a broad spectrum of drug delivery systems including tablets, hydrogels, microneedles, microparticles, or even functionalized liposomes. The recent progresses, challenges, and opportunities in this field are gathered originally together with an informative case study concerning an itraconazole nanosuspension-in-hydrogel formulation. The translational aspects, historical and current clinical perspectives are also critically reviewed here to shed light on the incoming generation of nanocrystal formulations.
Collapse
Affiliation(s)
- Benjamin Rossier
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
| |
Collapse
|
2
|
Jeong JH, Kim JS, Choi YR, Shin DH, Kang JH, Kim DW, Park YS, Park CW. Preparation and Evaluation of Inhalable Microparticles with Improved Aerodynamic Performance and Dispersibility Using L-Leucine and Hot-Melt Extrusion. Pharmaceutics 2024; 16:784. [PMID: 38931905 PMCID: PMC11206964 DOI: 10.3390/pharmaceutics16060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery.
Collapse
Affiliation(s)
- Jin-Hyuk Jeong
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Ji-Su Kim
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Yu-Rim Choi
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Dae Hwan Shin
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Ji-Hyun Kang
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
- Institute of New Drug Development and Respiratory Drug Development Research Institute, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Yun-Sang Park
- Research & Development Center, P2K Bio, Cheongju 28160, Republic of Korea;
| | - Chun-Woong Park
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| |
Collapse
|
3
|
Orszulak L, Lamrani T, Bernat R, Tarnacka M, Żakowiecki D, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Zięba A, Kamiński K, Kamińska E. The Influence of PVP Polymer Topology on the Liquid Crystalline Order of Itraconazole in Binary Systems. Mol Pharm 2024; 21:3027-3039. [PMID: 38755753 DOI: 10.1021/acs.molpharmaceut.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 μg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 μg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Bernat
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Żakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Şuta LM, Ridichie A, Ledeţi A, Temereancă C, Ledeţi I, Muntean D, Rădulescu M, Văruţ RM, Watz C, Crăineanu F, Ivan D, Vlase G, Stelea L. Host-Guest Complexation of Itraconazole with Cyclodextrins for Bioavailability Enhancement. Pharmaceutics 2024; 16:560. [PMID: 38675221 PMCID: PMC11054515 DOI: 10.3390/pharmaceutics16040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Itraconazole is an antifungal agent included in the triazole pharmacological classification that belongs to the BCS class II, characterized by a low solubility in an aqueous medium (of 1 ng/mL, at neutral pH), which is frequently translated in a low oral bioavailability but with a high permeability. In this sense, it is necessary to find solutions to increase/improve the solubility of itraconazole in the aqueous environment. The main purpose of this study is the preparation and analysis of five different guest-host inclusion complexes containing intraconazole. Initially, a blind docking process was carried out to determine the interactions between itraconazole and the selected cyclodextrins. The second step of the study was to find out if the active pharmaceutical ingredient was entrapped in the cavity of the cyclodextrin, by using spectroscopic and thermal techniques. Also, the antifungal activity of the inclusion complexes was studied to examine if the entrapment of itraconazole influences the therapeutic effect. The results showed that the active substance was entrapped in the cavity of the cyclodextrins, with a molar ratio of 1:3 (itraconazole-cyclodextrin), and that the therapeutic effect was not influenced by the entrapment.
Collapse
Affiliation(s)
- Lenuţa-Maria Şuta
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Amalia Ridichie
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania
| | - Adriana Ledeţi
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania
| | - Ionuţ Ledeţi
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania
| | - Delia Muntean
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| | - Matilda Rădulescu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
| | - Claudia Watz
- Department I—Pharmaceutical Physics, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Florentin Crăineanu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| | - Denisa Ivan
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania;
| | - Lavinia Stelea
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| |
Collapse
|
5
|
Chang S, Yang Q, Liu J, Yin L, Han J, Zong L, Pu X. The Increased Dissolution and Oral Absorption of Itraconazole by Nanocrystals with an Endogenous Small-Molecule Surfactant as a Stabilizer. Molecules 2024; 29:1769. [PMID: 38675589 PMCID: PMC11052100 DOI: 10.3390/molecules29081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.
Collapse
Affiliation(s)
- Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Qiang Yang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Jiahuan Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Li Yin
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Jihong Han
- School of Pharmacy and Bioengineering, Keele University, Kiel ST5 5BG, UK;
| | - Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| |
Collapse
|
6
|
Soe HMSH, Junthip J, Chamni S, Chansriniyom C, Limpikirati P, Thanusuwannasak T, Asasutjarit R, Pruksakorn P, Autthateinchai R, Wet-Osot S, Loftsson T, Jansook P. A promising synthetic citric crosslinked β-cyclodextrin derivative for antifungal drugs: Solubilization, cytotoxicity, and antifungal activity. Int J Pharm 2023; 645:123394. [PMID: 37689255 DOI: 10.1016/j.ijpharm.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Effective antifungal therapy for the treatment of fungal keratitis requires a high drug concentration at the corneal surface. However, the use of natural β-cyclodextrin (βCD) in the preparation of aqueous eye drop formulations for treating fungal keratitis is limited by its low aqueous solubility. Here, we synthesized water-soluble anionic βCD derivatives capable of forming water-soluble complexes and evaluated the solubility, cytotoxicity, and antifungal efficacy of drug prepared using the βCD derivative. To achieve this, a citric acid crosslinked βCD (polyCTR-βCD) was successfully synthesized, and the aqueous solubilities of selected antifungal drugs, including voriconazole, miconazole (MCZ), itraconazole, and amphotericin B, in polyCTR-βCD and analogous βCD solutions were evaluated. Among the drugs tested, complexation of MCZ with polyCTR-βCD (MCZ/polyCTR-βCD) increased MCZ aqueous solubility by 95-fold compared with that of MCZ/βCD. The inclusion complex formation of MCZ/βCD and MCZ/polyCTR-βCD was confirmed by spectroscopic techniques. Additionally, the nanoaggregates of saturated MCZ/polyCTR-βCD and MCZ/βCD solutions were observed using dynamic light scattering and transmission electron microscopy. Moreover, MCZ/polyCTR-βCD solution exhibited good mucoadhesion, sustained drug release, and high drug permeation of porcine cornea ex vivo. Hen's Egg test-chorioallantoic membrane assay and cell viability study using Statens Seruminstitut Rabbit Cornea cell line showed that both MCZ/polyCTR-βCD and MCZ/βCD exhibited no sign of irritation and non-toxic to cell line. Additionally, antifungal activity evaluation demonstrated that all isolated fungi, including Candida albicans, Aspergillus flavus, and Fusarium solani, were susceptible to MCZ/polyCTR-βCD. Overall, the results showed that polyCTR-βCD could be a promising nanocarrier for the ocular delivery of MCZ.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Supakarn Chamni
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaisak Chansriniyom
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patanachai Limpikirati
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Rathapon Asasutjarit
- Faculty of Pharmacy, Thammasat University, Klong Luang, Rangsit, Pathum Thani 12120, Thailand
| | - Patamaporn Pruksakorn
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Rinrapas Autthateinchai
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Sirawit Wet-Osot
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Pokhrel DR, Sah MK, Gautam B, Basak HK, Bhattarai A, Chatterjee A. A recent overview of surfactant-drug interactions and their importance. RSC Adv 2023; 13:17685-17704. [PMID: 37312992 PMCID: PMC10258811 DOI: 10.1039/d3ra02883f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This review focuses on the self-aggregation properties of different drugs, as well as on their interaction with anionic, cationic, and gemini surfactants. The interaction of drugs with surfactants has been reviewed concerning conductivity, surface tension, viscosity, density, and UV-Vis spectrophotometric measurements, and their relation with critical micelle concentration (CMC), cloud point, and binding constant. The conductivity measurement technique is used for the micellization of ionic surfactants. Cloud point studies can be used for the non-ionic, and also for certain ionic surfactants. Usually, surface tension studies are mostly employed for non-ionic surfactants. The degree of dissociation that is determined is used to evaluate thermodynamic parameters of micellization at various temperatures. The effect of external parameters like temperature, salt, solvent, pH, etc., is discussed for thermodynamics parameters using recent experimental works on drug-surfactant interactions. Consequences of drug-surfactant interaction, condition of drugs during interaction with surfactants, and applications of drug-surfactant interaction are being generalized which reflects current and future potential uses of drug-surfactant interactions.
Collapse
Affiliation(s)
- Dilli Ram Pokhrel
- Department of Chemistry, Damak Multiple Campus Damak Jhapa 57217 Nepal
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| | - Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar 56613 Nepal
| | - Bibaran Gautam
- Department of Chemistry, Damak Multiple Campus Damak Jhapa 57217 Nepal
| | - Hriday Kumar Basak
- Department of Chemistry, Government General Degree College at Kushmandi Dakshin Dinajpur West Bengal-733121 India
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar 56613 Nepal
- Department of Chemistry, Indian Institute of Technology Madras 600036 India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University Uttar Dinajpur West Bengal-733134 India
| |
Collapse
|
8
|
Synergistic effect of miscible cellulose-based microparticles and pH modulators on the bioavailability of a weakly basic drug and its metabolites. Int J Biol Macromol 2023; 233:123555. [PMID: 36746304 DOI: 10.1016/j.ijbiomac.2023.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate the miscibility of cellulose derivatives to improve the release rate and stability of microparticles containing the weakly basic drug itraconazole (ITZ). We also investigated the effect of some organic acids on the microenvironmental pH (pHm) and the release rate of ITZ from the cellulose-based microparticles. The synergistic effect of cellulose-based microparticles and pHm modulators on the bioavailability of ITZ compared with the reference product was investigated in a rabbit model. Differential scanning calorimetry and Fourier-transform infrared spectroscopy (FTIR) analysis showed that ITZ, hydroxypropyl methylcellulose, and hydroxypropyl methylcellulose phthalate were miscible at a ratio of 1.5:3:1 (w/w/w), and the stability of the microparticles was maintained for 6 months under accelerated conditions. In addition, X-ray diffraction, FTIR, and scanning electron microscopy were used to characterize the properties of the microparticles. Through the titration technique and determination of pHm, the combination of fumaric acid and maleic acid (1:2, w/w) was found to be the most effective pHm modulator for microparticles. The integration of cellulose-based microparticles and pHm modulators showed a synergistic effect on the flux and relative bioavailability of ITZ and its active metabolite OH-ITZ (182.60 % and 217.67 %, respectively) when compared with the reference product.
Collapse
|
9
|
Yousaf R, Khan MI, Akhtar MF, Madni A, Sohail MF, Saleem A, Irshad K, Sharif A, Rana M. Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon 2023; 9:e14281. [PMID: 36925532 PMCID: PMC10010992 DOI: 10.1016/j.heliyon.2023.e14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Itraconazole (ICZ) is a broad spectrum antifungal drug, but used as second or third line therapy due to its low and erratic oral bioavailability. This work was carried out to prepare and characterize matrix type lipid-polymer hybrid nanoparticles (LPHNPs) for dissolution enhancement of ICZ. LPHNPs were prepared using solvent diffusion/emulsification technique. Matrix LPHNPs were composed of chitosan (polymer), glyceryl monostearate (lipid) and poloxamer 188 (stabilizer). LPHNPs loaded with ICZ (LPHNPs-1, LPHNPs-2, LPHNPs-3 and LPHNPs-4) were developed using varying concentration of chitosan whereas LPHNPs (LPHNPs-5, LPHNPs-6, LPHNPs-7 and LPHNPs-8) were prepared using varying concentrations of poloxamer 188. LPHNPs loaded with ICZ were further evaluated for entrapment efficiency, particle size, polydispersity index (PDI), zeta potential and dissolution profiles at biorelevant pH conditions. The particle size (LPHNPs-1 to LPHNPs-4) was found to be in range of 421-588 nm with PDI values 0.34-0.41. The particles size of LPHNPs-5 to LPHNPs-8 was found to be in range of 489-725 nm with PDI 0.34-0.74. The entrapment efficiency of LPHNPs-1 to LPHNPs-4 was found to be in range of 85.21%-91.34%. The entrapment efficiency of LPHNPs-5 to LPHNPs-8 was found to be in range 78.32%-90.44%. . The scanning electron microscopy of optimized formulations LPHNPs-1 and LPHNPs-5 indicated formation of oval shaped nanoparticles. DSC thermogram of ICZ loaded LPHNPs also depicted the conversion of crystalline form of ICZ into amorphous form demonstrating the internalization and dissolution enhancement of drug in the hybrid matrix. The cumulative drug dissolved at acidic pH 1.2 was found to be 23.3% and 19.8% for LPHNPs-1 and LPHNPs-5 respectively. Similarly at basic pH values 7.4, cumulative amount of drug dissolved was 90.2% and 83.4% for LPHNPs-1 and LPHNPs-5 respectively. Drug dissolution kinetics exhibited fickian diffusion best described by Korse-meyer Peppas model. The results suggested that chitosan and glyceryl monostearate based matrix LPHNPs could be used as promising approach for dissolution enhancement of ICZ which could further increase its bioavailability.
Collapse
Affiliation(s)
- Rimsha Yousaf
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Maria Rana
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| |
Collapse
|
10
|
Tirsoaga A, Cojocaru V, Badea M, Badea IA, Rostas AM, Stoica R, Bacalum M, Chifiriuc MC, Olar R. Copper (II) Species with Improved Anti-Melanoma and Antibacterial Activity by Inclusion in β-Cyclodextrin. Int J Mol Sci 2023; 24:ijms24032688. [PMID: 36769008 PMCID: PMC9916925 DOI: 10.3390/ijms24032688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
To improve their biological activity, complexes [Cu(bipy)(dmtp)2(OH2)](ClO4)2·dmtp (1) and [Cu(phen)(dmtp)2(OH2)](ClO4)2·dmtp (2) (bipy 2,2'-bipyridine, phen: 1,10-phenantroline, and dmtp: 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine) were included in β-cyclodextrins (β-CD). During the inclusion, the co-crystalized dmtp molecule was lost, and UV-Vis spectra together with the docking studies indicated the synthesis of new materials with 1:1 and 1:2 molar ratios between complexes and β-CD. The association between Cu(II) compounds and β-CD has been proven by the identification of the components' patterns in the IR spectra and powder XRD diffractograms, while solid-state UV-Vis and EPR spectra analysis highlighted a slight modification of the square-pyramidal stereochemistry around Cu(II) in comparison with precursors. The inclusion species are stable in solution and exhibit the ability to scavenge or trap ROS species (O2·- and HO·) as indicated by the EPR experiments. Moreover, the two inclusion species exhibit anti-proliferative activity against murine melanoma B16 cells, which has been more significant for (2)@β-CD in comparison with (2). This behavior is associated with a cell cycle arrest in the G0/G1 phase. Compared with precursors, (1a)@β-CD and (2a)@β-CD exhibit 17 and 26 times more intense activity against planktonic Escherichia coli, respectively, while (2a)@β-CD is 3 times more active against the Staphylococcus aureus strain.
Collapse
Affiliation(s)
- Alina Tirsoaga
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
| | - Victor Cojocaru
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Irinel Adriana Badea
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Roberta Stoica
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Biological Sciences Division, The Romanian Academy, 25 Calea Victoriei, Sector 1, District 1, 010071 Bucharest, Romania
| | - Rodica Olar
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| |
Collapse
|
11
|
Gamboa-Arancibia ME, Caro N, Gamboa A, Morales JO, González Casanova JE, Rojas Gómez DM, Miranda-Rojas S. Improving Lurasidone Hydrochloride's Solubility and Stability by Higher-Order Complex Formation with Hydroxypropyl-β-cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15010232. [PMID: 36678861 PMCID: PMC9861442 DOI: 10.3390/pharmaceutics15010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
The biopharmaceutical classification system groups low-solubility drugs into two groups: II and IV, with high and low permeability, respectively. Most of the new drugs developed for common pathologies present solubility issues. This is the case of lurasidone hydrochloride-a drug used for the treatment of schizophrenia and bipolar depression. Likewise, the stability problems of some drugs limit the possibility of preparing them in liquid pharmaceutical forms where hydrolysis and oxidation reactions can be favored. Lurasidone hydrochloride presents the isoindole-1,3-dione ring, which is highly susceptible to alkaline hydrolysis, and the benzisothiazole ring, which is susceptible to a lesser extent to oxidation. Herein, we propose to study the increase in the solubility and stability of lurasidone hydrochloride by the formation of higher-order inclusion complexes with hydroxypropyl-β-cyclodextrin. Several stoichiometric relationships were studied at between 0.5 and 3 hydroxypropyl-β-cyclodextrin molecules per drug molecule. The obtained products were characterized, and their solubility and stability were assessed. According to the obtained results, the formation of inclusion complexes dramatically increased the solubility of the drug, and this increased with the increase in the inclusion ratio. This was associated with the loss of crystalline state of the drug, which was in an amorphous state according to infrared spectroscopy, calorimetry, and X-ray analysis. This was also correlated with the stabilization of lurasidone by the cyclodextrin inhibiting its recrystallization. Phase solubility,1H-NMR, and docking computational characterization suggested that the main stoichiometric ratio was 1:1; however, we cannot rule out a 1:2 ratio, where a second cyclodextrin molecule could bind through the isoindole-1,3-dione ring, improving its stability as well. Finally, we can conclude that the formation of higher-order inclusion complexes of lurasidone with hydroxypropyl-β-cyclodextrin is a successful strategy to increase the solubility and stability of the drug.
Collapse
Affiliation(s)
- María Elena Gamboa-Arancibia
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile
- Correspondence: (M.E.G.-A.); (S.M.-R.); Tel.: +56-2-2-7181166 (M.E.G.-A.); +56-2-2-6618341 (S.-M.R.)
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile
| | - Alexander Gamboa
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomas, Avenida Ejército 146, Santiago 8370003, Chile
| | - Javier Octavio Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
- Advanced Center for Chronic Diseases, Santiago 8380494, Chile
- Center of New Drugs for Hypertension, Santiago 8380494, Chile
| | | | - Diana Marcela Rojas Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370321, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Correspondence: (M.E.G.-A.); (S.M.-R.); Tel.: +56-2-2-7181166 (M.E.G.-A.); +56-2-2-6618341 (S.-M.R.)
| |
Collapse
|
12
|
A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals (Basel) 2022; 15:ph15121447. [PMID: 36558897 PMCID: PMC9785708 DOI: 10.3390/ph15121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate systems are promising carriers for antifungal delivery due to their ability to overcome the drawbacks of conventional dosage forms. CD-based nanocarriers could form beneficial combinations of CDs and nanoparticulate platforms. These systems have synergistic or additive effects regarding improved drug loading, enhanced chemical stability, and enhanced drug permeation through membranes, thereby increasing the bioavailability of drugs. Here, an application of CD in antifungal drug formulations is reviewed. CD-based nanocarriers, such as nanoparticles, liposomes, nanoemulsions, nanofibers, and in situ gels, enhancing antifungal activity in a controlled-release manner and possessing good toxicological profiles, are described. Additionally, the examples of current, updated CD-based nanocarriers loaded with antifungal drugs for delivery by various routes of administration are discussed and summarized.
Collapse
|
13
|
Rajamohan R, Mohandoss S, Ashokkumar S, Choi EH, Madi F, Leila N, Lee YR. Water-soluble inclusion complexes for a novel anti-viral agent with low toxicity; Oseltamivir with the β-cyclodextrins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Rajendiran N, Antony Muthu Prabhu A, Mohandoss T, Thulasidhasan J, Baskaran R. Spectral and Theoretical Investigation of Inclusion Complex between Cinnamic Acid and Hydroxycinnamic Acids with Native Cyclodextrins. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1869794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N. Rajendiran
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - A. Antony Muthu Prabhu
- Department of PG Chemistry, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India
| | - T. Mohandoss
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - J. Thulasidhasan
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - R. Baskaran
- Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
15
|
Jin M, Zeng B, Liu Y, Jin L, Hou Y, Liu C, Liu W, Wu H, Chen L, Gao Z, Huang W. Co-Delivery of Repurposing Itraconazole and VEGF siRNA by Composite Nanoparticulate System for Collaborative Anti-Angiogenesis and Anti-Tumor Efficacy against Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071369. [PMID: 35890264 PMCID: PMC9317122 DOI: 10.3390/pharmaceutics14071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Combinations of two different therapeutic modalities of VEGF inhibitors against angiogenesis can cooperatively impede breast cancer tumor growth and enhance therapeutic efficacy. Itraconazole (ITZ) is a conventional antifungal drug with high safety; however, it has been repurposed to be a multi target anti-angiogenesis agent for cancer therapy in recent years. In the present study, composite nanoparticles co-loaded with ITZ and VEGF siRNA were prepared in order to investigate their anti-angiogenesis efficacy and synergistic anticancer effect against breast cancer. The nanoparticles had a suitable particle size (117.9 ± 10.3 nm) and weak positive surface charge (6.69 ± 2.46 mV), as well as good stability and drug release profile in vitro. Moreover, the nanoparticles successfully escaped from endosomes and realized cell apoptosis and cell proliferation inhibition in vitro. In vitro and in vivo experiments showed that the nanoparticles could induce the silencing of VEGF-related expressions as well as anti-angiogenesis efficacy, and the co-loaded ITZ-VEGF siRNA NPs could inhibit tumor growth effectively with low toxicity and side effects. Taken together, the as-prepared delivery vehicles are a simple and safe nano-platform that improves the antitumor efficacy of VEGF siRNA and ITZ, which allows the repositioning of the generic drug ITZ as a great candidate for antitumor therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lili Jin
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| |
Collapse
|
16
|
Umemura K, Katada Y, Nakagawa S, Sugimoto M, Matsumura K, Yonezawa A, Nagao M, Ohsumi A, Date H, Terada T. Improved absorption of itraconazole tablet by co-administration with lemon beverages in a lung transplant recipient: A case report. J Infect Chemother 2022; 28:1203-1207. [PMID: 35534338 DOI: 10.1016/j.jiac.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
Abstract
After lung transplantation, itraconazole (ITCZ) is used as a prophylaxis for aspergillosis. ITCZ is a weak base with high lipophilicity, and the dissolution and absorption of ITCZ tablets and capsules are pH dependent. Therefore, ITCZ may not achieve sufficient serum concentrations in patients with higher gastric pH because of its poor bioavailability. We report a case of a woman in fifties with post-COVID-19 respiratory failure who successfully underwent lung transplantation, followed by improved bioavailability of ITCZ tablets when given with acidic lemon beverages. The patient was initially administered ITCZ oral solution; this was discontinued because of its unpleasant taste, nausea, and vomiting. The ITCZ oral solution was replaced with ITCZ tablets 78 days after transplantation; however, serum concentrations of ITCZ and hydroxy-ITCZ were below the detection limit (100 ng/mL). We co-administered ITCZ tablets with commercially available lemon beverages. Subsequently, serum concentrations of ITCZ and hydroxy-ITCZ increased to 341 and 673 ng/mL, respectively, on the 125th day after transplantation. Infection with fungi, including Aspergillus spp., was not observed in this case. The patient had no adverse events such as gastric ulcer or hyperglycemia. These results suggest that the co-administration of lemon beverages and ITCZ tablets may help achieve better absorption of ITCZ in patients taking acid suppressants.
Collapse
Affiliation(s)
- Keisuke Umemura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiki Katada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsuhiro Sugimoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsuyuki Matsumura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Miki Nagao
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin- Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
17
|
Suvarna P, Chaudhari P, Birangal S, Mallela LS, Roy S, Koteshwara A, Aranjani JM, Lewis SA. Voriconazole-Cyclodextrin Supramolecular Ternary Complex-Loaded Ocular Films for Management of Fungal Keratitis. Mol Pharm 2022; 19:258-273. [PMID: 34928610 DOI: 10.1021/acs.molpharmaceut.1c00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal keratitis is one of the leading causes of ophthalmic mycosis affecting the vision due to corneal scarring. Voriconazole (VRC) is the most preferred azole antifungal agent for treating ocular mycotic infections. Ocular drug delivery is challenging due to the shorter corneal residence time of the formulation requiring frequent administration, leading to poor patient compliance. The present study aimed at improving the solubility, transcorneal permeation, and efficacy of voriconazole via the formation of cyclodextrin-based ternary complexes and incorporation of the complex into mucoadhesive films. A phase solubility study suggested a ∼14-fold improvement in VRC solubility, whereas physicochemical characterization confirmed the inclusion of VRC in the cyclodextrin inner cavity. In silico docking studies were performed to predict the docking conformation and stability of the inclusion complex. Complex-loaded films showed sustained release of voriconazole from the films and improved transcorneal permeation by ∼4-fold with an improved flux of 8.36 μg/(cm2 h) for ternary complex-loaded films compared to 1.86 μg/(cm2 h) for the pure VRC film. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and hen's egg-chorioallantoic membrane test (HET-CAM) assays confirmed that the complexes and ocular films were nonirritant and safe for ocular administration. The antifungal study performed using Aspergillus fumigatus and Fusarium oxysporum suggested improved antifungal activity compared to the pure drug film. In conclusion, the supramolecular cyclodextrin ternary complex proved to be a promising strategy for enhancing the solubility and permeability and augmenting the antifungal activity of voriconazole in the management of fungal keratitis.
Collapse
Affiliation(s)
- Pooja Suvarna
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shaila Angela Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
18
|
Dhoot D, Mahajan H, Jain G, Deshmukh G, Barkate H. Serum and sebum pharmacokinetics evaluation of a novel formulation of itraconazole in healthy volunteers. INDIAN JOURNAL OF DRUGS IN DERMATOLOGY 2022. [DOI: 10.4103/ijdd.ijdd_23_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Evaluation of Drug Sorption on Laboratory Materials with Abraham Solvation Parameters of Drugs and its Prevention. Pharm Res 2021; 38:2167-2177. [PMID: 34931286 DOI: 10.1007/s11095-021-03156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Undesired drug sorption on laboratory material surfaces reduces the performance of analytical methods and results in the generation of unreliable data. Hence, we characterized the sorption of drugs and evaluated the sorption extent using a linear free energy relationship (LFER) model with Abraham solvation parameters of drugs. Furthermore, to prevent sorption, the effects of additives, such as organic solvents and salts, were evaluated. METHODS The sorption of fifteen model drugs (concentration: 2 μM), with various physicochemical properties, on materials in 0.2% dimethyl sulfoxide aqueous solutions was evaluated. Drug sorption extent on the materials was determined using high-performance liquid chromatography. The obtained results were analyzed using an LFER model with Abraham solvation parameters of the drugs. The effect of additives on the sorption of itraconazole, one of the most hydrophobic drugs among those tested in this study, was investigated. RESULTS Sorption was dependent on the physicochemical properties of drugs, rather than the type of materials used, and additives altered the rate of drug sorption. Equations were developed to evaluate the sorption extent (nmol) of drugs to glass and polypropylene using the Abraham solvation parameters of the drugs. CONCLUSIONS LFER modeling with Abraham solvation parameters of drugs enabled us to evaluate drug sorption on materials. All the additives altered the rate of drug sorption, and some organic solvents effectively prevented sorption. The developed LFER model would be useful for assessment of the sorption properties of compounds in in vitro evaluations in drug discovery research and various other biochemical fields.
Collapse
|
20
|
|
21
|
Wu HH, Garidel P, Michaela B. HP-β-CD for the formulation of IgG and Ig-based biotherapeutics. Int J Pharm 2021; 601:120531. [PMID: 33775727 DOI: 10.1016/j.ijpharm.2021.120531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
The main challenge to develop HCF for IgG and Ig-based therapeutics is to achieve essential solubility, viscosity and stability of these molecules in order to maintain product quality and meet regulatory requirement during manufacturing, production, storage, shipment and administration processes. The commonly used and FDA approved excipients for IgG and Ig -based therapeutics may no longer fulfil the challenge of HCF development for these molecules to certain extent, especially for some complex Ig-based platforms. 2-Hydroxypropyl beta-cyclodextrin (HP-β-CD) is one of the promising excipients applied recently for HCF development of IgG and Ig-based therapeutics although it has been used for formulation of small synthesized chemical drugs for more than thirty years. This review describes essential aspects about application of HP-β-CD as excipient in pharmaceutical formulation, including physico-chemical properties of HP-β-CD, supply chain, regulatory, patent landscape, marketed drugs with HP-β-CD, analytics and analytical challenges, stability and control strategies, and safety concerns. It also provides an overview of different studies, and outcomes thereof, regarding formulation development for IgGs and Ig-based molecules in liquid and solid (lyophilized) dosage forms with HP-β-CD. The review specifically highlights the challenges for formulation manufacturing of IgG and Ig-based therapeutics with HP-β-CD and identifies areas for future work in pharmaceutical and formulation development.
Collapse
Affiliation(s)
- Helen Haixia Wu
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, Biberach an der Riss, Germany.
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, Biberach an der Riss, Germany
| | - Blech Michaela
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, Biberach an der Riss, Germany
| |
Collapse
|
22
|
Bachmaier RD, Monschke M, Faber T, Krome AK, Pellequer Y, Stoyanov E, Lamprecht A, Wagner KG. In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100076. [PMID: 33851133 PMCID: PMC8024662 DOI: 10.1016/j.ijpx.2021.100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore, we investigated the influence of low-viscosity hydroxypropyl cellulose (HPC) polymers as an additive in HPMC based ternary ASD formulations made by hot-melt extrusion (HME) on the bioavailability of itraconazole (ITZ). The partitioning potential of the different HPC grades was screened in biphasic supersaturation assays. Solid-state analytics were performed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD). The addition of HPCs, especially HPC-UL, resulted in a superior partitioned amount of ITZ in biphasic supersaturation assays. Moreover, the approach in using HPCs as an additive in HPMC based ASDs led to an increase in partitioned ITZ compared to Sporanox® in biorelevant biphasic dissolution studies. The results from the biphasic dissolution experiments correlated well with the in vivo studies, which revealed the highest oral bioavailability for the ternary ASD comprising HPC-UL and HPMC. Increased partitioning rate of itraconazole using low-viscosity HPC polymers. Enhanced bioavailability of itraconazole using HPC-UL as functional additive. Ternary amorphous solid dispersion with higher performance than Sporanox®.
Collapse
Key Words
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- AUC, area under the curve
- AcN, acetonitrile
- Amorphous solid dispersion
- BCS, biopharmaceutical classification system
- Biphasic dissolution
- DMSO, dimethyl sulfoxide
- DSC, differential scanning calorimetry
- FaSSIF, fasted state simulated intestinal fluid
- GI, gastrointestinal
- HME, hot-melt extrusion
- HPC
- HPC, hydroxypropyl cellulose
- HPMC
- HPMC, hydroxypropyl methyl cellulose
- Hot-melt extrusion
- ITZ, itraconazole
- KTZ, ketoconazole
- NCE, new chemical entity
- OH-ITZ, hydroxy-itraconazole
- PM, physical mixture
- SD, spray-drying
- TG, glass transition temperature
- XRPD, x-ray powder diffraction
Collapse
Affiliation(s)
- Rafael D Bachmaier
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Thilo Faber
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Anna K Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Yann Pellequer
- UFR Santé, Laboratoire de Pharmacie Galénique, 19, rue Ambroise Paré, 25000 Besancon, France
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,UFR Santé, Laboratoire de Pharmacie Galénique, 19, rue Ambroise Paré, 25000 Besancon, France
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
23
|
Vasilev NA, Surov AO, Voronin AP, Drozd KV, Perlovich GL. Novel cocrystals of itraconazole: Insights from phase diagrams, formation thermodynamics and solubility. Int J Pharm 2021; 599:120441. [PMID: 33675927 DOI: 10.1016/j.ijpharm.2021.120441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022]
Abstract
In this work, the cocrystallization approach was applied to itraconazole (ITR), a very slightly soluble triazole antifungal drug, which led to the formation of two new solid forms of ITR with 4-aminobenzoic acid (4AmBA) and 4-hydroxybenzamide (4OHBZA). A thermodynamic analysis of the solid-liquid binary phase diagrams for the (ITR + 4AmBA) and (ITR + 4OHBZA) systems provided conclusive evidence of the cocrystal stoichiometry: 1:1 for the cocrystal with 4-aminobenzoic acid, and 1:2 for the cocrystal with 4-hydroxybenzamide. Powder X-Ray diffraction analysis confirmed the formation of two different polymorphic forms of the [ITR + 4OHBZA] (1:2) cocrystal obtained either through solution or melt crystallization. Cocrystal formation and polymorphic transition processes were investigated in detail by the DSC and HSM methods. The thermodynamic functions of cocrystal formation were estimated from the solubility of the cocrystals and the corresponding solubility of the pure compounds at different temperatures. The combination of ITR and 4OHBZA was found to be more favorable than the reaction between ITR and 4AmBA in terms of both Gibbs energy and enthalpy. The pH-solubility behavior of the cocrystals was investigated at different pH values using eutectic concentrations of the components and the cocrystal solubility advantage was estimated. It was found that the cocrystallization of itraconazole with 4OHBZA and 4AmBA can potentially increase the drug solubility at pH1.2 and 37 °C by 225 and 64 times, respectively. The cocrystal dissolution behavior in biorelevant media was analyzed in terms of Cmax, σmax parameters (the maximum ITR concentration and supersaturation), and AUC (the concentration area under the curve during the dissolution - supersaturation - precipitation process). The cocrystals had similar σmax values during the dissolution and sustained supersaturation for up to 6 h, which gave them an advantage in the AUC values (13-37 times higher) over the drug. The differences in the dissolution profiles of the cocrystals were rationalized in terms of their dissolution rate values.
Collapse
Affiliation(s)
- Nikita A Vasilev
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - Artem O Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - Alexander P Voronin
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - Ksenia V Drozd
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia
| | - German L Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045, Akademicheskaya st., 1, Ivanovo, Russia.
| |
Collapse
|
24
|
Jagdale SK, Nawale RB. Experimental measurement - correlation of solubility and dissolution thermodynamics study of itraconazole in pure monosolvents at various temperatures. Drug Dev Ind Pharm 2021; 47:1038-1051. [PMID: 33539234 DOI: 10.1080/03639045.2021.1879841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The information about the solubility and thermodynamic properties of solution is important for pharmaceutically important processes, formulation development, and further theoretical studies. In the present study, the solid-liquid equilibrium (solubility) for itraconazole (ITC) was determined experimentally in 14 monosolvents at temperatures between 293.15 K and 318.15 K under pressure of 0.1 MPa. The mole fraction solubilities were found to increase with increasing temperatures and followed inverse trend with the polarity of selected solvents. Besides, KAT-LSER analysis was performed to study the effect of solvent. The results revealed that the solute-solvent interaction (43.94%) was much higher than that of solvent-solvent interaction (16.59%). Thermodynamic based models like van't Hoff equation, modified Apelblat equation, Buchowski-Ksiazaczak equation, and polynomial empirical equation were applied to fit and correlate the experimental solubilities. Overall relative average deviation (RAD) and overall root-mean square deviation (104×RMSD) were observed to be minimum with the empirical polynomial equation and attained the values of 0.0033 and 0.0047, respectively. Furthermore, theoretical ideal solubilities, activity coefficients, and thermodynamic properties of dissolution including molar enthalpy, molar entropy, molar Gibbs free energy, and excess enthalpy were estimated. Ideal solubilities were projected considerably higher than experimental solubilities at each studied temperature. Thermodynamic properties of dissolution indicated that the dissolution was not a spontaneous process; observed to be endothermic (ΔH0soln>0) and enthalpy driven (ΔS0soln>0). Such solid-liquid equilibrium data of ITC will be of immense help in process and formulation development in pharmaceutical sciences.
Collapse
Affiliation(s)
- Sachin K Jagdale
- Department of Pharmaceutics, Marathwada Mitramandal's College of Pharmacy, Pune, India.,Y B Chavan College of Pharmacy, Aurangabad, India
| | - Rajesh B Nawale
- Department of Pharmacology, Government College of Pharmacy, Aurangabad, India
| |
Collapse
|
25
|
Hanada M, Jermain SV, Thompson SA, Furuta H, Fukuda M, Williams RO. Ternary Amorphous Solid Dispersions Containing a High-Viscosity Polymer and Mesoporous Silica Enhance Dissolution Performance†. Mol Pharm 2020; 18:198-213. [PMID: 33291881 DOI: 10.1021/acs.molpharmaceut.0c00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the benefits of a ternary amorphous solid dispersion (ASD) that was designed as an immediate-release tablet with a high drug load (e.g., 40% w/w) to produce heightened maintenance of drug supersaturation during dissolution testing, which will be henceforth referred to as the "maintenance ability". Ternary ASD granules were produced by hot melt extrusion (HME) and were comprised of itraconazole (ITZ) 50%, hypromellose (HPMC) 20%, and mesoporous silica (XDP) 30%, where amorphous ITZ incorporated into HPMC was efficiently absorbed in XDP pores. The ternary ASD granules containing a high-viscosity HPMC (AF4M) produced a significantly heightened maintenance ability of drug supersaturation in neutral pH dissolution media in which crystalline ITZ solubility is below 1 μg/mL. The final tablet formulation contained 80% w/w of the ASD granules (40% w/w ITZ), had an acceptable size, and exhibited both sufficient tablet hardness and disintegration. The dissolution behavior of the ternary ASD tablet exhibited a supersaturation maintenance ability similar to that of the ASD granules. Under neutral conditions, the ternary ASD tablet showed immediate and higher ITZ release compared with the binary ASD tablets, and this phenomenon could be explained by the difference in ITZ/AF4M particle size in the tablet. In high-resolution scanning electron microscopy (SEM), it was observed that ITZ and AF4M in the ternary formulation could easily form nano-sized particles (<1 μm) during the absorption process into/onto XDP pores prepared by HME, which contributed to the immediate ITZ release from the ternary ASD tablet under neutral pH conditions. Therefore, the ternary ASD containing high-viscosity HPMC and mesoporous silica prepared by HME made it possible to design a high ASD content, small-size tablet with an ideal dissolution profile in biorelevant media, and we expect that this technology can be applied for continuous HME ASD manufacturing.
Collapse
Affiliation(s)
- Masataka Hanada
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Scott V Jermain
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,Formulation and Process Development, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Hirosuke Furuta
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mamoru Fukuda
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Loftsson T. Cyclodextrins in Parenteral Formulations. J Pharm Sci 2020; 110:654-664. [PMID: 33069709 DOI: 10.1016/j.xphs.2020.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Most drugs have very limited solubility in water and some can be extremely difficult to formulate as parenteral solutions where the dose should preferably be dissolved in couple of ml of aqueous media without use of organic solvents and surface active agents, or application of somewhat extreme techniques such as prodrug formation. Thus, pharmaceutical formulators are constantly looking for new, biologically acceptable, and low-cost armamentarium for parenteral formulation development. Cyclodextrins (CDs) are enabling pharmaceutical excipients that can temporarily camouflage undesirable physiochemical drug properties such as low aqueous solubility through formation of drug/CD inclusion complexes. CDs are cyclic oligosaccharides that have similar physiological and biological properties like linear saccharides of comparable molecular weight. Due to their very favorable toxicological and pharmacokinetic profiles their usage in parenteral drug formulations is frequently preferred over other solubilizing techniques. Here the physiochemical and biological properties of CDs are reviewed as well as their pharmacokinetics after intravenous administration. Their regulatory status is briefly reviewed and their tendency to self-assemble to form clusters or aggregates discussed. Finally, some examples are given of how CDs are applied in aqueous parenteral formulations, how their solubilizing effect has been enhanced and how their target concentration is determined.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
27
|
Production of Itraconazole Nanocrystal-Based Polymeric Film Formulations for Immediate Drug Release. Pharmaceutics 2020; 12:pharmaceutics12100960. [PMID: 33065968 PMCID: PMC7600483 DOI: 10.3390/pharmaceutics12100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
In order to improve the solubility properties of BCS class II drug itraconazole, fast dissolving oral polymeric film formulations based on itraconazole nanocrystals were produced. Drug nanocrystals were manufactured by the wet pearl milling technique. In polymeric film formulations, hydroxypropyl methyl cellulose (HPMC) was used as a film forming polymer, and glycerin was used as a plasticizer. For nanocrystal suspensions and film formulations, thorough physicochemical characterization was performed, including particle sizing and size deviation, film appearance, weight variation, thickness, folding endurance, drug content uniformity, disintegration time, and dissolution profile. After milling, the nanoparticles were 369 nm in size with a PI value of 0.20. Nanoparticles were stable and after redispersion from film formulations, the particle size remained almost the same (330 nm and PI 0.16). The produced films were flexible, homogeneous, fast disintegrating, and drug release rate from both the nanosuspension and film formulations showed immediate release behavior. Based on the study, the film casting method for production of itraconazole nanocrystal based immediate release formulations is a good option for improved solubility.
Collapse
|
28
|
Kasparyan G, Poojari C, Róg T, Hub JS. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations. J Phys Chem B 2020; 124:8811-8821. [PMID: 32924486 DOI: 10.1021/acs.jpcb.0c03359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Itraconazole is a triazole drug widely used in the treatment of fungal infections, and it is in clinical trials for treatment of several cancers. However, the drug suffers from poor solubility, while experiments have shown that itraconazole delivery in liposome nanocarriers improves both circulation half-life and tissue distribution. The drug release mechanism from the nanocarrier is still unknown, and it depends on several factors including membrane stability against defect formation. In this work, we used molecular dynamics simulations and potential of mean force (PMF) calculations to quantify the influence of itraconazole on pore formation over lipid membranes, and we compared the effect by itraconazole with a pore-stabilizing effect by the organic solvent dimethyl sulfoxide (DMSO). According to the PMFs, both itraconazole and DMSO greatly reduce the free energy of pore formation, by up to ∼20 kJ mol-1. However, whereas large concentrations of itraconazole of 8 mol % (relative to lipid) were required, only small concentrations of a few mole % DMSO (relative to water) were sufficient to stabilize pores. In addition, itraconazole and DMSO facilitate pore formation by different mechanisms. Whereas itraconazole predominantly aids the formation of a partial defect with a locally thinned membrane, DMSO mainly stabilizes a transmembrane water needle by shielding it from the hydrophobic core. Notably, the two distinct mechanisms act cooperatively upon adding both itraconazole and DMSO to the membrane, as revealed by an additional reduction of the pore free energy. Overall, our simulations reveal molecular mechanisms and free energies of membrane pore formation by small molecules. We suggest that the stabilization of a locally thinned membrane as well as the shielding of a transmembrane water needle from the hydrophobic membrane core may be a general mechanism by which amphiphilic molecules facilitate pore formation over lipid membranes at sufficient concentrations.
Collapse
Affiliation(s)
- Gari Kasparyan
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Chetan Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Jagdale S, Nawale RB. Extended Hildebrand Solubility Approach: Prediction and Correlation of the Solubility of Itraconazole in Triacetin: Water Mixtures at 298.15°K. Turk J Pharm Sci 2020; 17:228-234. [PMID: 32454784 DOI: 10.4274/tjps.galenos.2019.20438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/07/2019] [Indexed: 12/01/2022]
Abstract
Objectives The aim of the study is to explore the suitability of an empirical approach for the extended Hildebrand solubility approach (EHSA) to predict and correlate the solubility of the crystalline drug itraconazole (ITRA) in triacetin: water mixtures. Materials and Methods The physicochemical properties of ITRA like fusion enthalpy, solubility parameter, and ideal mole fraction solubility were estimated. The solubilities of ITRA in mixed solvent blends comprising triacetin: water were determined at 298.15°K. Theoretical solubilities were back calculated using a polynomial regression equation of the interaction energy parameter W as a function of the solubility parameter (δ1) of the solvent mixture. Similarly, the solubilities were predicted by direct method based on the use of logarithmic experimental solubilities (logX2 ) against the solubility parameter (δ1) of the solvent mixture. The predictive capabilities of both EHSA and the direct method were compared using mean percent deviations. Results The solubility of ITRA was increased in all the triacetin: water blends and was highest in the blend in which the solubility parameter of ITRA equaled that of the solvent mixture. The prediction capacities of the direct method (mean % deviation was -1.89%) were better than those of EHSA (mean % deviation was 9.76%) in the fifth order polynomial. Conclusion The results indicated that the solubility of any crystalline solute can be adequately predicted and correlated with the mere knowledge of physicochemical properties and EHSA. The information could be of help in process and formulation development.
Collapse
Affiliation(s)
- Sachin Jagdale
- Marathwada Mitramandal's College of Pharmacy, Department of Pharmaceutics, Thergaon, Pune, India
| | - Rajesh B Nawale
- Government College of Pharmacy, Department of Pharmacology, Aurangabad, Maharashtra, India
| |
Collapse
|
31
|
Vandera KKA, Picconi P, Valero M, González-Gaitano G, Woods A, Zain NMM, Bruce KD, Clifton LA, Skoda MWA, Rahman KM, Harvey RD, Dreiss CA. Antibiotic-in-Cyclodextrin-in-Liposomes: Formulation Development and Interactions with Model Bacterial Membranes. Mol Pharm 2020; 17:2354-2369. [DOI: 10.1021/acs.molpharmaceut.0c00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kalliopi-Kelli A. Vandera
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Pietro Picconi
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, ES E-37007 Salamanca, Spain
| | | | - Arcadia Woods
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Nur Masirah M. Zain
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Kenneth D. Bruce
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Luke A. Clifton
- Rutherford Appleton Laboratory, ISIS, 1-27, R3, Harwell Campus, Didcot OX11 0QX, U.K
| | | | - Khondaker Miraz Rahman
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard D. Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Cécile A. Dreiss
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
32
|
Ma R, Chen JT, Ji XY, Xu XL, Mu Q. Hydroxypropyl- β-Cyclodextrin Complexes of Styryllactones Enhance the Anti-Tumor Effect in SW1116 Cell Line. Front Pharmacol 2020; 11:484. [PMID: 32390840 PMCID: PMC7188779 DOI: 10.3389/fphar.2020.00484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Styryllactones, a class of compounds obtained from the genus Goniothalamus (Annonaceae), have demonstrated in vitro antitumor activity. However, the aqueous solubility of these compounds is poor. In this study, we identified the absolute configurations of the previously isolated compounds, which were first isolated in our laboratory, by single-crystal X-ray diffraction analysis using Cu Kα radiation. Subsequently, the antitumor activities of the compounds were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide staining in four tumor cell lines. The induced apoptosis activity of leiocarpin E-7'-Monoacetate was studied by an annexin V fluorescein isothiocyanate/propidium iodide double-staining experiment, and the caspase activity was tested in the SW1116 cell line. The results demonstrated that the antitumor activities of cheliensisin A and goniodiol-7-monoacetate were limited by their poor water solubility. To address this issue, hydroxypropyl-β-cyclodextrin (HP-β-CD) complexes of the compounds were synthesized by the saturated aqueous method. The complexes were then analyzed using a differential scanning calorimeter. The IC50 of cheliensisin A was reduced by 45% and 58% against SW1116 and SMMC-7721 cell lines, respectively. Similarly, the IC50 of goniodiol-7-monoacetate was reduced by 55% and 34% against the two tumor cell lines, respectively. To further evaluate whether the styryllactones and complexes possessed selectivity against cancer cell lines and normal cell lines, toxicity against human normal cell line (HEK293T) was evaluated. The results demonstrated that the HP-β-CD complexes displayed more cytotoxicity than the respective pristine compounds against the HEK293T cell line. However, there existed a therapeutic window when the complexes were applied against cancer cell lines. In summary, the synthesis of several styryllactone compounds complexed with HP-β-CD was reported for the first time. These complexes could significantly enhance the cytotoxic effects of styryllactone compounds.
Collapse
Affiliation(s)
- Ru Ma
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jie-Tao Chen
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yue Ji
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Xiao-Li Xu
- Cancer Hospital, Fudan University, Shanghai, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
33
|
O’Dwyer PJ, Imanidis G, Box KJ, Reppas C. On the Usefulness of Two Small-Scale In Vitro Setups in the Evaluation of Luminal Precipitation of Lipophilic Weak Bases in Early Formulation Development. Pharmaceutics 2020; 12:pharmaceutics12030272. [PMID: 32188116 PMCID: PMC7151110 DOI: 10.3390/pharmaceutics12030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
A small-scale biphasic dissolution setup and a small-scale dissolution-permeation (D-P) setup were evaluated for their usefulness in simulating the luminal precipitation of three lipophilic weak bases—dipyridamole, ketoconazole and itraconazole. The transition from the gastric to intestinal environment was incorporated into both experimental procedures. Emulsification during the biphasic dissolution experiments had a minimal impact on the data, when appropriate risk mitigation steps were incorporated. Precipitation parameters estimated from the in vitro data were inputted into the Simcyp® physiologically based pharmacokinetic (PBPK) modelling software and simulated human plasma profiles were compared with previously published pharmacokinetic data. Average Cmax and AUC values estimated using experimentally derived precipitation parameters from the biphasic experiments deviated from corresponding published actual values less than values estimated using the default simulator parameters for precipitation. The slow rate of transport through the biomimetic membrane in the D-P setup limited its usefulness in forecasting the rates of in vivo precipitation used in the modelling of average plasma profiles.
Collapse
Affiliation(s)
- Patrick J. O’Dwyer
- Pion Inc. (UK) Ltd., Forest Row, East Sussex RH18 5DW, UK; (P.J.O.); (K.J.B.)
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, GR 157 84 Zografou, Greece
| | - Georgios Imanidis
- School of Life Sciences, Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland;
- Department of Pharmaceutical Sciences, University of Basel, CH 4056 Basel, Switzerland
| | - Karl J. Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex RH18 5DW, UK; (P.J.O.); (K.J.B.)
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, GR 157 84 Zografou, Greece
- Correspondence: ; Tel.: +30-210-727-4678; Fax: +30-210-727-4027
| |
Collapse
|
34
|
Poojari C, Zak A, Dzieciuch-Rojek M, Bunker A, Kepczynski M, Róg T. Cholesterol Reduces Partitioning of Antifungal Drug Itraconazole into Lipid Bilayers. J Phys Chem B 2020; 124:2139-2148. [PMID: 32101005 PMCID: PMC7735721 DOI: 10.1021/acs.jpcb.9b11005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Cholesterol
plays a crucial role in modulating the physicochemical
properties of biomembranes, both increasing mechanical strength and
decreasing permeability. Cholesterol is also a common component of
vesicle-based delivery systems, including liposome-based drug delivery
systems (LDSs). However, its effect on the partitioning of drug molecules
to lipid membranes is very poorly recognized. Herein, we performed
a combined experimental/computational study of the potential for the
use of the LDS formulation for the delivery of the antifungal drug
itraconazole (ITZ). We consider the addition of cholesterol to the
lipid membrane. Since ITZ is only weakly soluble in water, its bioavailability
is limited. Use of an LDS has thus been proposed. We studied lipid
membranes composed of cholesterol, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), and ITZ using a combination of
computational molecular dynamics (MD) simulations of lipid bilayers
and Brewster angle microscopy (BAM) experiments of monolayers. Both
experimental and computational results show separation of cholesterol
and ITZ. Cholesterol has a strong preference to orient parallel to
the bilayer normal. However, ITZ, a long and relatively rigid molecule
with weakly hydrophilic groups along the backbone, predominantly locates
below the interface between the hydrocarbon chain region and the polar
region of the membrane, with its backbone oriented parallel to the
membrane surface; the orthogonal orientation in the membrane could
be the cause of the observed separation. In addition, fluorescence
measurements demonstrated that the affinity of ITZ for the lipid membrane
is decreased by the presence of cholesterol, which is thus probably
not a suitable formulation component of an LDS designed for ITZ delivery.
Collapse
Affiliation(s)
- Chetan Poojari
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.,Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Agata Zak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
35
|
Zahoor FD, Mader KT, Timmins P, Brown J, Sammon C. Investigation of Within-Tablet Dynamics for Extended Release of a Poorly Soluble Basic Drug from Hydrophilic Matrix Tablets Using ATR-FTIR Imaging. Mol Pharm 2020; 17:1090-1099. [PMID: 32069060 DOI: 10.1021/acs.molpharmaceut.9b01063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrophilic matrices are an effective option for oral controlled release but can face challenges in terms of bioavailability and efficacy when used in conjunction with poorly soluble, weakly basic drugs. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) imaging provides dynamic information relating to the location and chemical nature of both the sustained release matrix and the active pharmaceutical ingredient (API) during hydration/dissolution. In this study, we have identified a model system combining itraconazole (IT), a poorly soluble, weakly basic API that has pKa in the physiological range, and hydroxypropyl methylcellulose, which is a commonly used oral tablet matrix. This system was investigated to determine the swelling kinetics at different pH values at a fixed ionic strength and to facilitate the study of the influence of hydrating media pH on the drug particle movement (translocation). Using ATR-FTIR imaging, we were able to show that gel layer formation and swelling were independent of pH but highly dependent on the ionic strength of the hydrating medium in placebo tablets. When the ionic strength was fixed, gel layer formation and radial swelling were both shown to be pH-dependent when IT was incorporated into the matrix. This was verified using optical imaging. The chemical specificity of ATR-FTIR imaging permitted the observation of transformational changes of IT from the free base to the ionized form in the tablet core during hydration. This phenomenon was shown to be greater at pH 1.5 than at pH 7. ATR-FTIR imaging was able to follow drug particle translocation at both pH 1.5 and pH 7; however, the extent of migration away from the tablet core was shown to be greater at lower pH. The location of the translocated particles within the gel layer was different between the two studied pH values, with particles being located close to the swelling front at pH 7 and within the diffusion front at pH 1.5. In both pH environments, the translocated IT particles were shown to be predominantly in the free base form. No evidence of fully solubilized IT was observed in the surrounding medium because of the inherent aqueous solubility of IT being below the instrument detection limits. This work highlighted the value of utilizing a chemically specific spectroscopic tool to increase the understanding of the nature of the factors affecting the release of a pH-dependent, poorly soluble drug from a hydrophilic matrix at different pH values and permitted greater insights into what happens inside the polymer matrix during drug release.
Collapse
Affiliation(s)
- Farah Deeba Zahoor
- Sheffield Hallam University, City Campus, Howard Street, Sheffield SI 1WB, U.K
| | - Kerstin T Mader
- Sheffield Hallam University, City Campus, Howard Street, Sheffield SI 1WB, U.K
| | - Peter Timmins
- University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | | | - Chris Sammon
- Sheffield Hallam University, City Campus, Howard Street, Sheffield SI 1WB, U.K
| |
Collapse
|
36
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
37
|
Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm 2019; 575:119002. [PMID: 31893546 DOI: 10.1016/j.ijpharm.2019.119002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
Itraconazole (ITZ) can be used for the treatment of cryptococcus neoformans meningitis and aspergillus brain abscess. While, the inherent hydrophobicity of ITZ and the existence of blood brain barrier (BBB) limit its applications as a central nervous system drug. In this study, a novel brain targeting drug delivery system based on bovine serum albumin (BSA) was constructed for enhancing ITZ distribution in brain. Firstly, ITZ was loaded into BSA nanoparticles (ITZ-NPs) with 11.6% of drug loading. Subsequently, the nanoparticles were modified with borneol (BO) and polyethylene glycol (PEG) (PEG/BO-ITZ-NPs). The resulting nanoparticles retained their nanosize (186.3 nm), uniform and spherical morphology, and negative surface charge (-21.03 mV). Cell uptake studies showed that compared with ITZ-NPs, PEG/BO-ITZ-NPs had significantly increased uptake in bEnd.3 cells, and the increase in BO concentration was beneficial for the cellular uptake of NPs. Moreover, PEG/BO-ITZ-NPs displayed an approximately 3.5-fold higher area under the curve in rats and about 2-fold higher brain distribution in mice than that of Sporanox®, i.e. ITZ solubilized by hydroxylpropyl-β-cyclodetrin, after i.v. administration. In a word, BO and PEG dual modified BSA nanoparticles may potentially serve as an ITZ vehicle for brain targeting.
Collapse
|
38
|
Caira MR. Cyclodextrin Inclusion of Medicinal Compounds for Enhancement of their Physicochemical and Biopharmaceutical Properties. Curr Top Med Chem 2019; 19:2357-2370. [PMID: 31648636 DOI: 10.2174/1568026619666191018101524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Owing to their wide structural diversity and unique complexing properties, cyclodextrins (CDs) find manifold applications in drug discovery and development. The focus of this mini-review is on their uses as 'enabling excipients' both in the context of early drug discovery and in subsequent optimisation of drug performance. Features highlighted here include descriptions of the structures of CDs, synthetic derivatisation to fine-tune their properties, the nature of inclusion complexation of drugs within the CD cavity, methodology for the study of free and complexed hosts in the solid state and in solution, the inherent pharmacological activity of several CDs and its utility, novel CD-based drug delivery systems, and the role of CDs in drug discovery and optimisation. Illustrative examples are generally based on research reported during the last two decades. Application of CDs to the optimisation of the performance of established drugs is commonplace, but there are many opportunities for the intervention of CDs during the early stages of drug discovery, which could guide the selection of suitable candidates for development, thereby contributing to reducing the attrition rate of new molecular entities.
Collapse
Affiliation(s)
- Mino R Caira
- Department of Chemistry, Centre for Supramolecular Chemistry Research, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
39
|
Takano R, Maurer R, Jacob L, Stowasser F, Stillhart C, Page S. Formulating Amorphous Solid Dispersions: Impact of Inorganic Salts on Drug Release from Tablets Containing Itraconazole-HPMC Extrudate. Mol Pharm 2019; 17:2768-2778. [DOI: 10.1021/acs.molpharmaceut.9b01109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ryusuke Takano
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
- Discovery Technology Department, Chugai Pharmaceutical Co., Ltd, Shizuoka 412-8513, Japan
| | - Reto Maurer
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Laurence Jacob
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Frank Stowasser
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Cordula Stillhart
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Susanne Page
- Pharmaceutical Research and Development, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| |
Collapse
|
40
|
Borbás E, Kádár S, Tsinman K, Tsinman O, Csicsák D, Takács-Novák K, Völgyi G, Sinkó B, Pataki H. Prediction of Bioequivalence and Food Effect Using Flux- and Solubility-Based Methods. Mol Pharm 2019; 16:4121-4130. [DOI: 10.1021/acs.molpharmaceut.9b00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Enikő Borbás
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Szabina Kádár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | | | - Oksana Tsinman
- Pion Inc, Billerica, Massachuesetts 01821, United States
| | - Dóra Csicsák
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest H-1092, Hungary
| | | | - Gergely Völgyi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest H-1092, Hungary
| | - Bálint Sinkó
- Pion Inc, Billerica, Massachuesetts 01821, United States
| | - Hajnalka Pataki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| |
Collapse
|
41
|
Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid EE, Hussein-Al-Ali S, Alhassan FH, Salih AM, Hussein MZ, Zainal Z, Sani D, Aljumaily AH, Saeed MI. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties. Eur J Pharm Sci 2019; 133:167-182. [DOI: 10.1016/j.ejps.2019.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
42
|
Sardana K, Khurana A, Gupta A. Parameters that determine dissolution and efficacy of itraconazole and its relevance to recalcitrant dermatophytoses. Expert Rev Clin Pharmacol 2019; 12:443-452. [PMID: 30952196 DOI: 10.1080/17512433.2019.1604218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Recalcitrant dermatophytoses is on the rise. Though myriad factors contribute to recalcitrance including terbinafine resistance, itraconazole largely remains sensitive. However, there are increasing instances of patients not responding adequately to itraconazole despite low MICs, probably due to issues plaguing the pelletization process, resulting in suboptimal quality. Data on this topic was searched on pubmed using the search items: itraconazole, MIC, MFC, quality, assay, pharmacokinetics, pharmacodynamics, dermatophytoses, and recalcitrance. Areas covered: A detailed analysis of the manufacturing process of itraconazole with emphasis on pelletization and parameters affecting the dissolution and bioavailability is presented. Important formulation factors including drug-polymer ratio, polymer type, coating thickness, bead size, and number are discussed. Also covered is the rationale of dosimetry of itraconazole in dermatophytoses based on the skin pharmacokinetics and MIC of the organism. Expert opinion: The process of pelletization has multiple components aiming to achieve maximum dissolution of the drug. Variations in the process, pellet quality, number, and polymer determine absorption. Morphometric analysis of pellets is a simple method to quantify quality of the drug. Once the process has been standardized, dosimetry depends on the route of secretion and site of infection, accounting for the variation of doses from 100 mg to 400 mg/day.
Collapse
Affiliation(s)
- Kabir Sardana
- a Department of Dermatology , Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital , New Delhi , India
| | - Ananta Khurana
- a Department of Dermatology , Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital , New Delhi , India
| | - Aastha Gupta
- a Department of Dermatology , Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital , New Delhi , India
| |
Collapse
|
43
|
Jagdale SK, Nawale RB. Solubilization and determination of solution thermodynamic properties of itraconazole in different solvents at different temperatures. Drug Dev Ind Pharm 2019; 45:1168-1180. [PMID: 30935249 DOI: 10.1080/03639045.2019.1602138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The solubility of itraconazole (ITRA) in thirteen pure solvents including water, dimethyl sulphoxide, acetonitrile, methanol, 1,4-butanediol, ethanol, isopropyl alcohol, n-butanol, octanol, ethyl acetate, toluene, benzene, 1,4-dioxane were estimated at the temperatures ranging from 293.15 K to 318.15 K under atmospheric pressure (0.1 MPa). The results reflected that the solubility of ITRA was a function of temperature and was increased with a rise in temperature in each solvent. Moreover, the solubility in polar solvents was less and found to be increased in non-polar solvents. Furthermore, the results of solubilization were correlated by the Van't Hoff equation, the modified Apelblat equation, the Buchowski - Ksiazaczak λh equation, and the polynomial empirical equation. The polynomial empirical equation proved to be more accurate and suitable for the correlation of solubilities of ITRA in studied solvents at various temperatures. Besides, theoretical ideal solubilities, activity coefficients, and thermodynamic properties of the solution process including standard molar enthalpy, entropy, Gibbs free energy, and excess enthalpy were calculated from the experimental solubility data. These thermodynamic parameters indicated that the solubilization process was not spontaneous, endothermic, and enthalpy driven. Such thermodynamic based solubility data of ITRA will be of immense help in solubilization, synthesis, process development, preformualtion, and dosage form development in pharmaceuticals.
Collapse
Affiliation(s)
- Sachin K Jagdale
- a Department of Pharmaceutics , Marathwada Mitramandal's College of Pharmacy , Pune , Maharashtra , India.,b Y B Chavan College of Pharmacy , Rauza Bagh , Aurangabad , India
| | - Rajesh B Nawale
- c Department of Pharmacology , Government College of Pharmacy , Aurangabad , Maharashtra , India
| |
Collapse
|
44
|
Molecular polarity effect on the association constant of cyclodextrin-pyrimidine nucleobases in water. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Song Y, Zhu P, Wu Y, Tan L, Wei W, Liu S, Huang Q, Chen J. Epsilon-poly-l-lysine decorated ordered mesoporous silica contributes to the synergistic antifungal effect and enhanced solubility of a lipophilic drug. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:231-240. [PMID: 30889695 DOI: 10.1016/j.msec.2019.01.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022]
Abstract
The emergence of drug-resistant fungal strains remains a severe threat for the public health, which prompts strict restrictions on the uses of antifungal drugs. However, the majority of lipophilic fungistatic agents are poorly water soluble with a low oral adsorption characteristic posing challenges for the precise prescriptions. In this study, a natural antimicrobial cationic peptide of epsilon-poly-l-lysine (EPL) decorated ordered mesoporous silica (SBA-15) was facilely prepared for the efficient loading of antifungal itraconazole (ITZ) drugs. The characterized mesoporous SBA-15/EPL/ITZ composite exhibited remarkable antifungal performance against Aspergillus fumigatus as a model mold, which was attributed to synergistic antifungal activities of ITZ and EPL in the mesopores. Moreover, the in vitro release behaviors of ITZ in the composite nanoexcipients both in simulated gastric fluid and fasted state simulated intestinal fluid were studied. The observed release kinetics of ITZ demonstrated a contributing role of SBA-15/EPL to enhance the solubility of ITZ and thereby may promote its flux across the gastrointestinal epithelium, which is beneficial for the absorption of drugs. Additionally, SBA-15/EPL/ITZ composites showed desirable biocompatibility toward mammalian red blood cells, human cervical cancer cells (Hela) and human embryonic kidney cells (HEK-293T). Furthermore, the pharmacokinetic profiles of obtained nano-formulations were assessed in rats, among which the improved adsorption of SBA-15/EPL/ITZ composites (AUC0-24h sum: 8381.7 nM·h) was identified compared with that of pure ITZ (525.1 nM·h) and the commercial drug of Sporanox (7516.6 nM·h). Collectively, the prepared SBA-15/EPL/ITZ provides an ecofriendly and integrated nanocomposite with enhanced solubility of lipophilic drugs to combat proliferations of infectious fungi.
Collapse
Affiliation(s)
- Yiyan Song
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ping Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210009, China
| | - Wei Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qing Huang
- Jiangsu Institute for Food and Drug Control, Nanjing 210009, China
| | - Jin Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
46
|
Impact of polymers on the aggregation of wet-milled itraconazole particles and their dissolution from spray-dried nanocomposites. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Mehta RK, Jakhar D, Kaur I. An office-based evaluation of various itraconazole brands. J Am Acad Dermatol 2018; 80:e113-e114. [PMID: 30476521 DOI: 10.1016/j.jaad.2018.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Raj Kumar Mehta
- Department of Dermatology & STD, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, New Delhi, India
| | - Deepak Jakhar
- Department of Dermatology & STD, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, New Delhi, India.
| | - Ishmeet Kaur
- Department of Dermatology, ESI Post Graduate Institute of Medical Science and Research, New Delhi, India
| |
Collapse
|
48
|
Impact of dispersants on dissolution of itraconazole from drug-loaded, surfactant-free, spray-dried nanocomposites. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Berben P, Stappaerts J, Vink MJ, Domínguez-Vega E, Somsen GW, Brouwers J, Augustijns P. Linking the concentrations of itraconazole and 2-hydroxypropyl-β-cyclodextrin in human intestinal fluids after oral intake of Sporanox®. Eur J Pharm Biopharm 2018; 132:231-236. [DOI: 10.1016/j.ejpb.2018.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
|
50
|
Kozyra A, Mugheirbi NA, Paluch KJ, Garbacz G, Tajber L. Phase Diagrams of Polymer-Dispersed Liquid Crystal Systems of Itraconazole/Component Immiscibility Induced by Molecular Anisotropy. Mol Pharm 2018; 15:5192-5206. [PMID: 30252481 DOI: 10.1021/acs.molpharmaceut.8b00724] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid crystalline (LC) materials and their nonmedical applications have been known for decades, especially in the production of displays; however, the pharmaceutical implications of the LC state are inadequately appreciated, and the misunderstanding of experimental data is leading to possible errors, especially in relation to the physical stability of medicines. The aim of this work was to study LC phases of itraconazole (ITZ), an azole antifungal active molecule, and for the first time, to generate full thermodynamic phase diagrams for ITZ/polymer systems, taking into account isotropic and anisotropic phases that this drug can form. It was found that supercooled ITZ does not form an amorphous but a vitrified smectic (vSm) phase with a glass transition temperature of 59.35 °C (determined using a 10 °C/min heating rate), as is evident from X-ray diffraction and thermomicroscopic (PLM) experiments. Two endothermic LC events with the onset temperature values for a smectic to nematic transition of 73.2 ± 0.4 °C and a nematic to isotropic transformation at 90.4 ± 0.35 °C and enthalpies of transition of 416 ± 34 J/mol and 842 ± 10 J/mol, respectively, were recorded. For the binary supercooled mixtures, PLM and differential scanning calorimetry showed a phase separation with birefringent vSm persistent over a wide polymer range, as noticed especially for the hypromellose acetate succinate (HAS) systems. Both, smectic and nematic, phases were detected for the supercooled ITZ/HAS and ITZ/methacrylic acid-ethyl acrylate copolymer (EUD) mixtures, while geometric restrictions inhibited the smectic formation in the ITZ/poly(acrylic acid) (CAR) systems. The Flory-Huggins lattice theory coupled with the Maier-Saupe-McMillan approach to model anisotropic ordering of molecules was successfully utilized to create phase diagrams for all ITZ/polymer mixtures. It was concluded that in a supercooled ITR/polymer mix, if ITZ is present in a LC phase, immiscibility as a result of molecule anisotropy is afforded. This study shows that the LC nature of ITZ cannot be disregarded when designing stable formulations containing this molecule.
Collapse
Affiliation(s)
- Agnieszka Kozyra
- School of Pharmacy and Pharmaceutical Sciences , Trinity College Dublin , Dublin 2 , Ireland
| | - Naila A Mugheirbi
- School of Pharmacy and Pharmaceutical Sciences , Trinity College Dublin , Dublin 2 , Ireland.,Drug Product Science and Technology , Bristol-Myers Squibb , East Brunswick , New Jersey 08901 , United States
| | - Krzysztof J Paluch
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, Centre for Pharmaceutical Engineering Science , University of Bradford , Richmond Road , Bradford , W. Yorks BD7 1DP , U.K
| | - Grzegorz Garbacz
- Physiolution GmbH , Walther-Rathenau Strasse 49a , 17489 Greifswald , Germany
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences , Trinity College Dublin , Dublin 2 , Ireland
| |
Collapse
|