1
|
Akman F. A detailed TD-DFT and intermolecular interaction study of vitamin K in soluble, poorly soluble and insoluble solvents, as well as an ADME and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125130. [PMID: 39299070 DOI: 10.1016/j.saa.2024.125130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Vitamin K is one of the most important fat-soluble vitamins and while there are two main types of vitamin K in nature, known as K1 (phylloquinone) and K2 (menaquinones), there is also a synthetic type of vitamin K known as K3 (menadione). Recent studies have shown that it is crucial to know the non-covalent interactions, ADME and molecular docking of molecules in different solvent media. Therefore, we have performed some quantum chemical calculations, ADME and intra-and intermolecular interaction calculations of a number of K1, K2 and K3 such as K1-water (K1 + W), K1-methanol (K1 + M), K1-triacetin (K1 + T), K2-water (K2 + W), K2-methanol (K2 + M), K2-triacetin (K2 + T), K3-water (K3 + W), K3-methanol (K3 + M), K3-triacetin (K3 + T) performed by Density Functional Theory (DFT) and Multiwfn: A multifunctional wavefunction analyzer. Molecular structures, HOMO-LUMO energies, MEP and electronic properties have been calculated and described using DFT at the level of B3LYP/6-311G (d,p) level. The nature of the molecular interactions between vitamin K and solvents such as water, methanol and triacetin were also investigated using topological analyses such as atoms in molecule (AIM), non-covalent interaction index (NCI), reduced density gradient (RDG), Localized orbital locator (LOL) and electron localization function (ELF). In addition, FMO for electronic transitions, MEP for electrophilic and nucleophilic attack, ADME to investigate how a chemical is processed by a living organism, and Fukui functions to determine electron density are explained. Finally, molecular docking was used to determine the biological activity of the vitamin K.
Collapse
Affiliation(s)
- Feride Akman
- Vocational School of Food, Agriculture and Livestock, Bingol University, 12000 Bingol, Turkey; Chemistry Programme, Institute of Sciences, Bingol University, 12000 Bingol, Turkey.
| |
Collapse
|
2
|
Syed MI, Kandagatla HP, Avdeef A, Serajuddin ATM. Supersolubilization and Amorphization of a Weakly Acidic Drug, Flurbiprofen, by applying Acid-Base supersolubilization (ABS) principle. Int J Pharm 2024; 663:124548. [PMID: 39098746 DOI: 10.1016/j.ijpharm.2024.124548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Improvement in drug solubility is a major challenge for developing pharmaceutical products. It was demonstrated earlier that aqueous solubilities of weakly basic drugs could be increased greatly by interaction with weak acids that would not form salts with the drugs, and the highly concentrated solutions thus produced converted to amorphous solids upon drying. The technique was called acid-base supersolubilization (ABS). The current investigation explored whether the ABS principle could also be applied to weakly acidic drugs. By taking flurbiprofen (pKa 4.09; free acid solubility 0.011 mg/mL) as the model weakly acidic drug and tromethamine, lysine, meglumine, and NaOH as bases, it was studied which of the bases would result in ABS. While in the presence of NaOH and tromethamine, flurbiprofen converted to salts having aqueous solubility of 11-19 mg/mL, the solubility increased to > 399 mg/mL with lysine and > 358 mg/mL with meglumine, producing supersolubilization. However, crystallization of lysine salt was observed with time, followed by some decrease in solubility after reaching maximum solubility with lysine. In contrast, the supersolubilization was maintained with meglumine, and no crystallization of meglumine salt was observed. Upon drying, flurbiprofen-meglumine solutions produced amorphous materials that dissolved rapidly and produced high drug concentrations in aqueous media. Thus, the ABS principle also applies to acidic drugs depending on the weak base used.
Collapse
Affiliation(s)
- Mohammed I Syed
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Hari P Kandagatla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue #102, New York, NY 10128, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
3
|
Yousef M, Park C, Chacra NB, Davies NM, Löbenberg R. Novel First-Generation Dissolution Models to Investigate the Release and Uptake of Oral Lymphotropic Drug Products. AAPS PharmSciTech 2024; 25:187. [PMID: 39143365 DOI: 10.1208/s12249-024-02866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 08/16/2024] Open
Abstract
Conventional dissolution tests only assess the aqueous release of drugs to ensure quality and performance, without indicating whether absorption occurs through the portal or the lymphatic circulation. To address this issue, this study aimed to develop novel first-generation dissolution models that could investigate the release and uptake of oral lymphotropic drugs and examine relevant formulation issues. Dissolution of three commercial lymphotropic drug products (Terbinafina, Apo-terbinafine, and Lamisil) was done using modified versions of USP Apparatus II and IV. The developed models contained a lymphatic compartment filled with artificial chylomicrons to account for absorption through intestinal lymphatic pathway. The various products exhibited different release profiles into the aqueous media and the lymphatic media across the two tested models. The modified USP IV apparatus demonstrated greater distinction in aqueous release patterns. However, the release pattern into the lymphatic media remained similar in both models. This work represents a progress in meeting the challenges posed by the increasing complexity of pharmaceutical products containing lipophilic drugs or formulations, and has the potential to contribute towards the development of in-vitro bioequivalence standards for formulations targeting intestinal lymphatics.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11315 - 87 Avenue, Edmonton, AB, T6G 2T9, Canada
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11315 - 87 Avenue, Edmonton, AB, T6G 2T9, Canada.
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11315 - 87 Avenue, Edmonton, AB, T6G 2T9, Canada.
| |
Collapse
|
4
|
Mokgopa KP, Lobb KA, Tshiwawa T. A Computational Study of Green Tea Extracts and their Derivatives as Potential Inhibitors for Squalene Monooxygenase. Med Chem 2024; 20:721-732. [PMID: 38584555 DOI: 10.2174/0115734064280290240211170037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND According to the World Health Organisation, cardiovascular complications have been recognized as the leading course of death between 2000 and 2019. Cardiovascular complications are caused by excess LDL cholesterol in the body or arteries that can build up to form a plaque. There are drugs currently in clinical use called statins that target HMGCoA reductase. However, these drugs result in several side effects. This work investigated using computational approaches to lower cholesterol by investigating green tea extracts as an inhibitors for squalene monooxygenase (the second-rate-controlling step in cholesterol synthesis). METHODS Pharmacophore modeling was done to identify possible pharmacophoric sites based on the pIC50 values. The best hypothesis generated by pharmacophore modeling was further validated by atom-based 3D QSAR, where 70% of the data set was treated as the training set. Prior molecular docking ADMET studies were done to investigate the physiochemical properties of these molecules. Glide docking was performed, followed by molecular dynamics to evaluate the protein conformational changes. RESULTS Pharmacophore results suggest that the best molecules to interact with the biological target should have at least one hydrogen acceptor (A5), two hydrogen donors (D9 and D10), and two benzene rings (R14 and R15) for green tea polyphenols and theasinensin A. ADMET result shows that all molecules in this class have low oral adsorption. Molecular docking results showed that some green tea polyphenols have good binding affinities, with most of these structures having a docking score of less than -10 kcal/mol. Molecular dynamics further illustrated that the best-docked ligands perfectly stay within the active site over a 100 ns simulation. CONCLUSION The results obtained from this study suggest that green tea polyphenols have the potential for inhibition of squalene monooxygenase, except for theasinensin A.
Collapse
Affiliation(s)
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Makhanda, South Africa
- Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda, 6140, South Africa
| | | |
Collapse
|
5
|
Svoboda R, Nevyhoštěná M, Macháčková J, Vaculík J, Knotková K, Chromčíková M, Komersová A. Thermal degradation of Affinisol HPMC: Optimum Processing Temperatures for Hot Melt Extrusion and 3D Printing. Pharm Res 2023; 40:2253-2268. [PMID: 37610622 PMCID: PMC10547629 DOI: 10.1007/s11095-023-03592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Affinisol HPMC HME is a new popular form of hypromellose specifically designed for the hot melt extrusion and 3D printing of pharmaceutical products. However, reports of its thermal stability include only data obtained under inert N2 atmosphere, which is not consistent with the common pharmaceutical practice. Therefore, detailed investigation of its real-life thermal stability in air is paramount for identification of potential risks and limitations during its high-temperature processing. METHODS In this work, the Affinisol HPMC HME 15LV powder as well as extruded filaments will be investigated by means of thermogravimetry, differential scanning calorimetry and infrared spectroscopy with respect to its thermal stability. RESULTS The decomposition in N2 was proceeded in accordance with the literature data and manufacturer's specifications: onset at ~260°C at 0.5°C·min-1, single-step mass loss of 90-95%. However, in laboratory or industrial practice, high-temperature processing is performed in the air, where oxidation-induced degradation drastically changes. The thermogravimetric mass loss in air proceeded in three stages: ~ 5% mass loss with onset at 150°C, ~ 70% mass loss at 200°C, and ~ 15% mass loss at 380°C. Diffusion of O2 into the Affinisol material was identified as the rate-determining step. CONCLUSION For extrusion temperatures ≥170°C, Affinisol exhibits a significant degree of degradation within the 5 min extruder retention time. Hot melt extrusion of pure Affinisol can be comfortably performed below this temperature. Utilization of plasticizers may be necessary for safe 3D printing.
Collapse
Affiliation(s)
- Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| | - Marie Nevyhoštěná
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jana Macháčková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jan Vaculík
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Kateřina Knotková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Maria Chromčíková
- VILA - Joined Glass Centre of the IIC SAS, TnUAD, FChPT STU, Študentská 2, SK-911 50, Trenčín, Slovakia
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, SK-911 50, Trenčín, Slovakia
| | - Alena Komersová
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
6
|
Šestić TL, Ajduković JJ, Marinović MA, Petri ET, Savić MP. In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects. Steroids 2023; 189:109147. [PMID: 36410412 DOI: 10.1016/j.steroids.2022.109147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The major challenge in the fight against cancer is to design new drugs that will be more selective for cancer cells, with fewer side effects. Synthetic steroids such as cyproterone, fulvestrant, exemestane and abiraterone are approved powerful drugs for the treatment of hormone-dependent diseases such as breast and prostate cancers. Therefore, androstane derivatives in 17-substituted, 17a-homo lactone and 16,17-seco series, with potent anticancer activity, were selected for pharmacokinetic and druglike predictions from the absorption, distribution, metabolism and excretion (ADME) models. In silico determination of physico-chemical and ADMET properties was performed using SwissADME and ProTox-II web tools. The possibility of gastrointestinal absorption and brain penetration was analyzed using the BOILED-Egg model, while the in silico evaluation of the similarities between selected steroid derivatives and FDA-approved drugs was carried out using the SwissSimilarity tool. Of all tested, two compounds that showed good in silico ADMET results, in addition to promising cytotoxicity and molecular docking results, could potentially be evaluated in in vivo tests.
Collapse
Affiliation(s)
- Tijana Lj Šestić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Maja A Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Synthesis, crystal structure, Hirshfeld surface, energy framework, NCI-RDG, theoretical calculations and molecular docking of (Z)4,4′-bis[-3-N-ethyl-2-N'-(phenylimino) thiazolidin-4-one] methane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Okafor SN, Angsantikul P, Ahmed H. Discovery of Novel HIV Protease Inhibitors Using Modern Computational Techniques. Int J Mol Sci 2022; 23:12149. [PMID: 36293006 PMCID: PMC9603388 DOI: 10.3390/ijms232012149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 09/10/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.
Collapse
Affiliation(s)
- Sunday N. Okafor
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 41001, Nigeria
| | | | - Hashim Ahmed
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
9
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
10
|
Prajapati H, Serajuddin ATM. Development of Fully Redispersible Dried Nanocrystals by Using Sucrose Laurate as Stabilizer for Increasing Surface Area and Dissolution Rate of Poorly Water-Soluble Drugs. J Pharm Sci 2021; 111:780-793. [PMID: 34673097 DOI: 10.1016/j.xphs.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
There is much interest in converting poorly water-soluble drugs into nanocrystals as they provide extremely high surface area that increases dissolution rate and oral bioavailability. However, nanocrystals are prepared as aqueous suspensions, and once the suspensions are dried for development of solid dosage forms, the nanocrystals agglomerate as large particles to reduce the excess surface energy. For successful development of drug products, it is essential that any agglomeration is reversible, and the dried nanocrystals regain original particle sizes after redispersion in aqueous media. We have established that sucrose laurate serves as a superb stabilizer to ensure complete redispersion of dried nanocrystals in aqueous media with mild agitation. Nanocrystals (150-300 nm) of three neutral drugs (fenofibrate, danazol and probucol) were produced with sucrose laurate by media milling, and suspensions were dried by tray drying under vacuum, spray drying, and lyophilization. Dried solids and their tablets redispersed into original particle sizes spontaneously. Preliminary studies showed that sucrose laurate can also redisperse acidic and basic drugs, indicating its versatile application. Fatty acid ester of another disaccharide, lactose laurate, also performed like sucrose laurate. Thus, we have developed a method of retaining high dissolution rate and, by implication, high bioavailability of nanocrystals from solid formulations.
Collapse
Affiliation(s)
- Hetal Prajapati
- College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Abu T M Serajuddin
- College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
11
|
Dhaval M, Vaghela P, Patel K, Sojitra K, Patel M, Patel S, Dudhat K, Shah S, Manek R, Parmar R. Lipid-based emulsion drug delivery systems - a comprehensive review. Drug Deliv Transl Res 2021; 12:1616-1639. [PMID: 34609731 DOI: 10.1007/s13346-021-01071-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Lipid-based emulsion system - a subcategory of emulsion technology, has emerged as an enticing option to improve the solubility of the steadily rising water-insoluble candidates. Along with enhancing solubility, additional advantages such as improvement in permeability, protection against pre-systemic metabolism, ease of manufacturing, and easy to scale-up have made lipid-based emulsion technology very popular among academicians and manufacturers. The present article provides a comprehensive review regarding various critical properties of lipid-based emulsion systems, such as microemulsion, nanoemulsion, SMEDDS (self microemulsifying drug delivery system), and SNEDDS (self nanoemulsifying drug delivery system). The present article also explains in detail the similarities and differences between them, the stabilization mechanism, methods of preparation, excipients used to prepare them, and evaluation techniques. Subtle differences between nearly related terminologies such as microemulsion and nanoemulsion, SMEDDS, and SNEDDS are also explained in detail to clarify the basic differences. The present article also gives in-depth information regarding the chemical structure of various lipidic excipients, various possible chemical modifications to modify their inherent properties, and their regulatory status for rational selection.
Collapse
Affiliation(s)
- Mori Dhaval
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India.
| | - Poonam Vaghela
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Kajal Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Keshvi Sojitra
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Mohini Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Sushma Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Kiran Dudhat
- K. V. Virani Institute of Pharmacy and Research Centre, Badhada, Gujarat, India
| | - Sunny Shah
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Ravi Manek
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Ramesh Parmar
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| |
Collapse
|
12
|
Ibrahim ZY, Uzairu A, Shallangwa GA, Abechi SE. Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The sixteen (16) designed data set of substituted aryl amine-based triazolopyrimidine were docked against Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) employing Molegro Virtual Docker (MVD) software and their pharmacokinetic property determined through SwissADME predictor.
Results
The docking studies shows compound D16, 5-((6-methoxy-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)amino)benzo[b]thiophen-4-ol to be the most interactive and stable derivative (re-rank score = − 114.205 kcal/mol) resulting from the hydrophobic as well as hydrogen interactions. The hydrogen interaction produced one hydrogen bond with the active residues LEU359 (H∙∙H∙∙O) at a bond distances of 2.2874 Å. All the designed derivatives were found to pass the Lipinski rule of five tests, supporting the drug-likeliness of the designed compounds.
Conclusion
The ADME analysis revealed a perfect concurrence with the Lipinski Ro5, where the derivatives were found to possess good pharmacokinetic properties such as molar refractivity (MR), number of rotatable bonds (nRotb), log of skin permeability (log Kp), blood-brain barrier (BBB). These results could a deciding factor for the optimization of novel antimalarial compounds.
Collapse
|
13
|
Janicka M, Mycka A, Sztanke M, Sztanke K. Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. Int J Mol Sci 2021; 22:ijms22084257. [PMID: 33923942 PMCID: PMC8072580 DOI: 10.3390/ijms22084257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
The Quantitative Structure-Activity Relationship (QSAR) methodology was used to predict biological properties, i.e., the blood–brain distribution (log BB), fraction unbounded in the brain (fu,brain), water-skin permeation (log Kp), binding to human plasma proteins (log Ka,HSA), and intestinal permeability (Caco-2), for three classes of fused azaisocytosine-containing congeners that were considered and tested as promising drug candidates. The compounds were characterized by lipophilic, structural, and electronic descriptors, i.e., chromatographic retention, topological polar surface area, polarizability, and molecular weight. Different reversed-phase liquid chromatography techniques were used to determine the chromatographic lipophilicity of the compounds that were tested, i.e., micellar liquid chromatography (MLC) with the ODS-2 column and polyoxyethylene lauryl ether (Brij 35) as the effluent component, an immobilized artificial membrane (IAM) chromatography with phosphatidylcholine column (IAM.PC.DD2) and chromatography with end-capped octadecylsilyl (ODS) column using aqueous solutions of acetonitrile as the mobile phases. Using multiple linear regression, we derived the statistically significant quantitative structure-activity relationships. All these QSAR equations were validated and were found to be very good. The investigations highlight the significance and possibilities of liquid chromatographic techniques with three different reversed-phase materials and QSARs methods in predicting the pharmacokinetic properties of our important organic compounds and reducing unethical animal testing.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland;
| | - Anna Mycka
- Doctoral School of Quantitative and Natural Sciences, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
- Correspondence: (M.S.); (K.S.); Tel.: +48-814486195 (M.S. & K.S.)
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
- Correspondence: (M.S.); (K.S.); Tel.: +48-814486195 (M.S. & K.S.)
| |
Collapse
|
14
|
Klitgaard M, Müllertz A, Berthelsen R. Estimating the Oral Absorption from Self-Nanoemulsifying Drug Delivery Systems Using an In Vitro Lipolysis-Permeation Method. Pharmaceutics 2021; 13:pharmaceutics13040489. [PMID: 33918449 PMCID: PMC8065752 DOI: 10.3390/pharmaceutics13040489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to design an in vitro lipolysis-permeation method to estimate drug absorption following the oral administration of self-nanoemulsifying drug delivery systems (SNEDDSs). The method was evaluated by testing five oral formulations containing cinnarizine (four SNEDDSs and one aqueous suspension) from a previously published pharmacokinetic study in rats. In that study, the pharmacokinetic profiles of the five formulations did not correlate with the drug solubilization profiles obtained during in vitro intestinal lipolysis. Using the designed lipolysis-permeation method, in vitro lipolysis of the five formulations was followed by in vitro drug permeation in Franz diffusion cells equipped with PermeaPad® barriers. A linear in vivo–in vitro correlation was obtained when comparing the area under the in vitro drug permeation–time curve (AUC0–3h), to the AUC0–3h of the plasma concentration–time profile obtained from the in vivo study. Based on these results, the evaluated lipolysis-permeation method was found to be a promising tool for estimating the in vivo performance of SNEDDSs, but more studies are needed to evaluate the method further.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: ; Tel.: +45-35-33-65-13
| |
Collapse
|
15
|
Establishment of a clinically relevant specification for dissolution testing using physiologically based pharmacokinetic (PBPK) modeling approaches. Eur J Pharm Biopharm 2020; 151:45-52. [DOI: 10.1016/j.ejpb.2020.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 11/20/2022]
|
16
|
Kato T, Watanabe T, Nakamura K, Ando S. Integration of In Silico Pharmacokinetic Modeling Approaches Into In Vitro Dissolution Profiles to Predict Bioavailability of a Poorly Soluble Compound. J Pharm Sci 2019; 108:3723-3728. [DOI: 10.1016/j.xphs.2019.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022]
|
17
|
Rajawat GS, Belubbi T, Nagarsenker MS, Abrahamsson B, Cristofoletti R, Groot DW, Langguth P, Parr A, Polli JE, Mehta M, Shah VP, Tajiri T, Dressman J. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Ondansetron. J Pharm Sci 2019; 108:3157-3168. [DOI: 10.1016/j.xphs.2019.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
|
18
|
Assessment of Applications of Design of Experiments in Pharmaceutical Development for Oral Solid Dosage Forms. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09400-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Alkhalidi BA, AlKhatib HS, Saleh M, Hamed S, Bustanji Y, Al Bujuq N, Najib N, Torrado-Susana S, Sallam AS. Clarithromycin laurate salt: physicochemical properties and pharmacokinetics after oral administration in humans. Pharm Dev Technol 2018; 24:607-615. [PMID: 30472902 DOI: 10.1080/10837450.2018.1547749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To prepare and characterize the physicochemical and pharmacokinetic properties of clarithromycin laurate (CLM-L), a fatty acid salt of clarithromycin (CLM). METHODS CLM-L was prepared by a simple co-melting process. The formation of CLM-L was confirmed using FTIR, 1H NMR, and 13C NMR. Solubility, intrinsic dissolution rate (IDR), and partitioning properties of CLM-L were determined and compared to those of CLM. Bioavailability of CLM from CLM-L tablets was evaluated in healthy volunteers and compared to immediate release CLM tablets. RESULTS CLM-L showed lower aqueous solubility, higher partitioning coefficient, and slower dissolution rate. Tablets of CLM-L also showed a significantly slower in vitro release in comparison to CLM tablets. Cmax, Tmax and AUC0→∞ of CLM-L tablets and immediate release CLM tablets did not show a significant difference. However, the AUC0→∞ for the CLM-L tablets tended to be higher than that of CLM tablets at all-time points. CONCLUSION CLM-L was successfully prepared and its formation was confirmed. CLM-L was more hydrophobic than CLM. It exhibited a slight in vivo absorption enhancement in comparison to CLM. However, its pharmacokinetic behavior was comparable to that of CLM.
Collapse
Affiliation(s)
- Bashar A Alkhalidi
- a Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy , University of Jordan , Amman , Jordan
| | - Hatim S AlKhatib
- a Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy , University of Jordan , Amman , Jordan
| | - Mohammad Saleh
- b Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy , University of Jordan , Amman , Jordan
| | - Saja Hamed
- c Department of Pharmaceutical Sciences , Hashemite University , Zarqa , Jordan
| | - Yasser Bustanji
- b Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy , University of Jordan , Amman , Jordan
| | - Nader Al Bujuq
- d Department of Chemistry , Taibah University , Medina , Saudi Arabia
| | - Naji Najib
- e International Pharmaceutical Research Center (IPRC) , Amman , Jordan
| | - Susana Torrado-Susana
- f Department of Pharmaceutics and Food Technology, Instituto Universitario de Farmacia Industrial , Universidad Complutense , Madrid , Spain
| | | |
Collapse
|
20
|
Development of a Clinically Relevant Dissolution Method for Metaxalone Immediate Release Formulations Based on an IVIVC Model. Pharm Res 2018; 35:163. [DOI: 10.1007/s11095-018-2434-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/21/2018] [Indexed: 10/28/2022]
|
21
|
Parikh T, Serajuddin ATM. Development of Fast-Dissolving Amorphous Solid Dispersion of Itraconazole by Melt Extrusion of its Mixture with Weak Organic Carboxylic Acid and Polymer. Pharm Res 2018; 35:127. [PMID: 29696402 DOI: 10.1007/s11095-018-2407-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 01/29/2023]
Abstract
PURPOSE The purpose of this study was to explore the feasibility of developing amorphous solid dispersion (ASD) by inducing acid-base interaction at an elevated temperature using hot melt extrusion. METHODS Itraconazole and glutaric acid, which do not form salt with each other, were selected as, respectively, model basic drug and weak organic acid. A 1:4:1w/w mixture of itraconazole, glutaric acid and a polymer, Kollidon®VA64, was melt extruded at 95°C. The ground extrudate was characterized by DSC and PXRD and then tested for dissolution at pH 1.2, followed by a change in pH to 5.5. RESULTS Despite the high melting point of 168°C, itraconazole dissolved in glutaric acid at around the melting temperature of acid (~98°C), and physically stable ASD was produced when the formulation was extruded at 95°C. Capsules containing 100-mg equivalent of itraconazole dissolved rapidly at pH 1.2 producing highly supersaturated solution. When the pH was changed from 1.2 to 5.5, very fine suspensions, facilitated by the presence of Kollidon®VA64, was formed. CONCLUSIONS Physically stable ASD of itraconazole with high drug load was prepared by interaction with glutaric acid in a hot melt extruder. This may be used as a platform technology for the development ASD of most poorly water-soluble basic drugs.
Collapse
Affiliation(s)
- Tapan Parikh
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
- Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA.
| |
Collapse
|
22
|
Gupta SS, Solanki N, Serajuddin ATM. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers. AAPS PharmSciTech 2016; 17:148-57. [PMID: 26511936 DOI: 10.1208/s12249-015-0426-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.
Collapse
|
23
|
Affiliation(s)
- Matthew C T Fyfe
- Topivert Limited, Imperial College Incubator, London, United Kingdom
| |
Collapse
|
24
|
Kesisoglou F, Hermans A, Neu C, Yee KL, Palcza J, Miller J. Development of In Vitro–In Vivo Correlation for Amorphous Solid Dispersion Immediate-Release Suvorexant Tablets and Application to Clinically Relevant Dissolution Specifications and In-Process Controls. J Pharm Sci 2015; 104:2913-22. [DOI: 10.1002/jps.24362] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/28/2014] [Accepted: 01/05/2015] [Indexed: 11/09/2022]
|
25
|
Gupta SS, Parikh T, Meena AK, Mahajan N, Vitez I, Serajuddin AT. Effect of carbamazepine on viscoelastic properties and hot melt extrudability of Soluplus ®. Int J Pharm 2015; 478:232-239. [DOI: 10.1016/j.ijpharm.2014.11.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/02/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|
26
|
Selen A, Dickinson PA, Müllertz A, Crison JR, Mistry HB, Cruañes MT, Martinez MN, Lennernäs H, Wigal TL, Swinney DC, Polli JE, Serajuddin AT, Cook JA, Dressman JB. The Biopharmaceutics Risk Assessment Roadmap for Optimizing Clinical Drug Product Performance. J Pharm Sci 2014; 103:3377-3397. [DOI: 10.1002/jps.24162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
|
27
|
Bredael GM, Bowers N, Boulineau F, Hahn D. In Vitro – In Vivo Correlation Strategy Applied to an Immediate-Release Solid Oral Dosage Form with a Biopharmaceutical Classification System IV Compound Case Study. J Pharm Sci 2014; 103:2125-2130. [DOI: 10.1002/jps.24036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 05/09/2014] [Indexed: 11/06/2022]
|
28
|
Abstract
Aromatase, a rate-limiting enzyme catalyzing the conversion of androgen to estrogen, is overexpressed in human breast cancer tissue. Aromatase inhibitors (AIs) have been used for the treatment of estrogen-dependent breast cancer in post-menopausal women by blocking the biosynthesis of estrogen. The undesirable side effects in current AIs have called for continued pursuit for novel candidates with aromatase inhibitory properties. This study explores the chemical space of all known AIs as a function of their physicochemical properties by means of univariate (i.e., statistical and histogram analysis) and multivariate (i.e., decision tree and principal component analysis) approaches in order to understand the origins of aromatase inhibitory activity. Such a non-redundant set of AIs spans a total of 973 compounds encompassing both steroidal and non-steroidal inhibitors. Substructure analysis of the molecular fragments provided pertinent information on the structural features important for ligands providing high and low aromatase inhibition. Analyses were performed on data sets stratified according to their structural scaffolds (i.e., steroids and non-steroids) and bioactivities (i.e., actives and inactives). These analyses have uncover a set of rules characteristic to active and inactive AIs as well as revealing the constituents giving rise to potent aromatase inhibition.
Collapse
|
29
|
Nantasenamat C, Li H, Mandi P, Worachartcheewan A, Monnor T, Isarankura-Na-Ayudhya C, Prachayasittikul V. Exploring the chemical space of aromatase inhibitors. Mol Divers 2013; 17:661-77. [PMID: 23857318 DOI: 10.1007/s11030-013-9462-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/04/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Chanin Nantasenamat
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand,
| | | | | | | | | | | | | |
Collapse
|
30
|
Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties. Pharm Res 2012; 29:2738-53. [DOI: 10.1007/s11095-012-0759-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/11/2012] [Indexed: 11/28/2022]
|
31
|
Li ZQ, He X, Gao X, Xu YY, Wang YF, Gu H, Ji RF, Sun SJ. Study on dissolution and absorption of four dosage forms of isosorbide mononitrate: Level A in vitro–in vivo correlation. Eur J Pharm Biopharm 2011; 79:364-71. [DOI: 10.1016/j.ejpb.2011.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
32
|
Greco K, Mcnamara DP, Bogner R. Solution-Mediated Phase Transformation of Salts During Dissolution: Investigation Using Haloperidol as a Model Drug. J Pharm Sci 2011; 100:2755-68. [DOI: 10.1002/jps.22507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/09/2022]
|
33
|
Lu Y, Kim S, Park K. In vitro-in vivo correlation: perspectives on model development. Int J Pharm 2011; 418:142-8. [PMID: 21237256 DOI: 10.1016/j.ijpharm.2011.01.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/24/2010] [Accepted: 01/07/2011] [Indexed: 11/24/2022]
Abstract
In vitro-in vivo correlation (IVIVC) allows prediction of the in vivo performance of a drug based on the in vitro drug release profiles. To develop an effective IVIVC, the physicochemical and biopharmaceutical properties of the drug as well as the physiological environment in the body must be taken into consideration. Key factors include drug solubility, pK(a), drug permeability, octanol-water partition coefficient and pH of environment. In general, construction of an IVIVC involves three stages of mathematical manipulation: construct a functional relationship between input (in vitro dissolution) and output (in vivo dissolution); establish a structural relationship using data collected; parameterize the unknowns in the structural model. Some key mathematical relationships used in IVIVC development are presented. The establishment of an effective IVIVC has important implications in quality control and regulatory compliance.
Collapse
Affiliation(s)
- Ying Lu
- Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
34
|
Goodwin D, Picout D, Ross-Murphy S, Holland S, Martini L, Lawrence M. Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.08.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Heimbach T, Lakshminarayana SB, Hu W, He H. Practical anticipation of human efficacious doses and pharmacokinetics using in vitro and preclinical in vivo data. AAPS J 2009; 11:602-14. [PMID: 19707878 PMCID: PMC2758129 DOI: 10.1208/s12248-009-9136-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 07/30/2009] [Indexed: 01/30/2023] Open
Abstract
Accurate predictions of human pharmacokinetic and pharmacodynamic (PK/PD) profiles are critical in early drug development, as safe, efficacious, and "developable" dosing regimens of promising compounds have to be identified. While advantages of successful integration of preclinical PK/PD data in the "anticipation" of human doses (AHD) have been recognized, pharmaceutical scientists have faced difficulties with practical implementation, especially for PK/PD profile projections of compounds with challenging absorption, distribution, metabolism, excretion and formulation properties. In this article, practical projection approaches for formulation-dependent human PK/PD parameters and profiles of Biopharmaceutics Classification System classes I-IV drugs based on preclinical data are described. Case examples for "AHD" demonstrate the utility of preclinical and clinical PK/PD modeling for formulation risk identification, lead candidate differentiation, and prediction of clinical outcome. The application of allometric scaling methods and physiologically based pharmacokinetic approaches for clearance or volume of distribution projections is described using GastroPlus. Methods to enhance prediction confidence such as in vitro-in vivo extrapolations in clearance predictions using in vitro microsomal data are discussed. Examples for integration of clinical PK/PD and formulation data from frontrunner compounds via "reverse pharmacology strategies" that minimize uncertainty with PK/PD predictions are included. The use of integrated softwares such as GastroPlus in combination with established PK projection methods allow the projection of formulation-dependent preclinical and human PK/PD profiles required for compound differentiation and development risk assessments.
Collapse
Affiliation(s)
- Tycho Heimbach
- DMPK-Translational Sciences, Novartis Institutes for BioMedical Research, One Health Plaza 436/3253, East Hanover, NJ 07470, USA.
| | | | | | | |
Collapse
|
36
|
D’Arcy DM, Healy AM, Corrigan OI. Towards determining appropriate hydrodynamic conditions for in vitro in vivo correlations using computational fluid dynamics. Eur J Pharm Sci 2009; 37:291-9. [DOI: 10.1016/j.ejps.2009.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 01/30/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
37
|
Abstract
Topological polar surface area (TPSA), which makes use of functional group contributions based on a large database of structures, is a convenient measure of the polar surface area that avoids the need to calculate ligand 3D structure or to decide which is the relevant biological conformation or conformations. We demonstrate the utility of TPSA in 2D-QSAR for 14 sets of diverse pharmacological activity data. Even though a large pool of reports showing the importance of the classic 2D descriptors such as calculated logP (ClogP) and calculated molar refractivity (CMR) exists in the 2D-QSAR literature, this is the first report to demonstrate the value of TPSA as a relevant descriptor applicable to a large, structurally and pharmacologically diverse set of classes of compounds. We also address the limitations of applicability of this descriptor for 2D-QSAR analysis. We observed a negative correlation of TPSA with activity data for anticancer alkaloids, MT1 and MT2 agonists, MAO-B and tumor necrosis factor-alpha inhibitors and a positive correlation with inhibitory activity data for telomerase, PDE-5, GSK-3, DNA-PK, aromatase, malaria, trypanosomatids and CB2 agonists.
Collapse
Affiliation(s)
- S Prasanna
- Department of Medicinal Chemistry, University of Mississippi, MS 38677-1848, USA
| | | |
Collapse
|
38
|
Hurst S, Loi CM, Brodfuehrer J, El-Kattan A. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.469] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007; 59:603-16. [PMID: 17619064 DOI: 10.1016/j.addr.2007.05.010] [Citation(s) in RCA: 825] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/10/2007] [Indexed: 11/15/2022]
Abstract
Salt formation is the most common and effective method of increasing solubility and dissolution rates of acidic and basic drugs. In this article, physicochemical principles of salt solubility are presented, with special reference to the influence of pH-solubility profiles of acidic and basic drugs on salt formation and dissolution. Non-ideality of salt solubility due to self-association in solution is also discussed. Whether certain acidic or basic drugs would form salts and, if salts are formed, how easily they would dissociate back into their free acid or base forms depend on interrelationships of several factors, such as S0 (intrinsic solubility), pH, pKa, Ksp (solubility product) and pHmax (pH of maximum solubility). The interrelationships of these factors are elaborated and their influence on salt screening and the selection of optimal salt forms for development are discussed. Factors influencing salt dissolution under various pH conditions, and especially in reactive media and in presence of excess common ions, are discussed, with practical reference to the development of solid dosage forms.
Collapse
Affiliation(s)
- Abu T M Serajuddin
- Science, Technology and Outsourcing Section, Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ 07936, USA.
| |
Collapse
|
40
|
Thomas VH, Bhattachar S, Hitchingham L, Zocharski P, Naath M, Surendran N, Stoner CL, El-Kattan A. The road map to oral bioavailability: an industrial perspective. Expert Opin Drug Metab Toxicol 2006; 2:591-608. [PMID: 16859407 DOI: 10.1517/17425255.2.4.591] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Optimisation of oral bioavailability is a continuing challenge for the pharmaceutical and biotechnology industries. The number of potential drug candidates requiring in vivo evaluation has significantly increased with the advent of combinatorial chemistry. In addition, drug discovery programmes are increasingly forced into more lipophilic and lower solubility chemical space. To aid in the use of in vitro and in silico tools as well as reduce the number of in vivo studies required, a team-based discussion tool is proposed that provides a 'road map' to guide the selection of profiling assays that should be considered when optimising oral bioavailability. This road map divides the factors that contribute to poor oral bioavailability into two interrelated categories: absorption and metabolism. This road map provides an interface for cross discipline discussions and a systematic approach to the experimentation that drives the drug discovery process towards a common goal - acceptable oral bioavailability using minimal resources in an acceptable time frame.
Collapse
Affiliation(s)
- V Hayden Thomas
- Pfizer Global Research and Development, Department of Pharmaceutical Sciences, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | |
Collapse
|