1
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Buddington KK, Pierzynowski SG, Holmes WE, Buddington RK. Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs. Antibiotics (Basel) 2023; 13:12. [PMID: 38275322 PMCID: PMC10812520 DOI: 10.3390/antibiotics13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Antibiotics that are efficacious for infectious pancreatitis are present in pancreatic exocrine secretion (PES) after intravenous administration and above minimal inhibitory concentrations. We measured concentrations of four antibiotics by tandem liquid chromatography-mass spectroscopy in plasma and PES after enteral administration to juvenile pigs with jugular catheters and re-entrant pancreatic-duodenal catheters. Nystatin, which is not absorbed by the intestine nor used for infectious pancreatitis (negative control), was not detected in plasma or PES. Concentrations of amoxicillin increased in plasma after administration (p = 0.035), but not in PES (p = 0.51). Metronidazole and enrofloxacin that are used for infectious pancreatitis increased in plasma after enteral administration and even more so in PES, with concentrations in PES averaging 3.1 (±0.5)- and 2.3 (±0.6)-fold higher than in plasma, respectively (p's < 0.001). The increase in enrofloxacin in PES relative to plasma was lower after intramuscular administration (1.8 ± 0.5; p = 0.001). The present results demonstrate the presence of a selective and concentrative enteropancreatic pathway of secretion for some antibiotics. Unlike the regulated secretion of bile, the constitutive secretion of PES and intestinal reabsorption may provide a continuous exposure of pancreas tissue and the small intestine to recirculated antibiotics and potentially other therapeutic molecules. There is a need to better understand the enteropancreatic recirculation of antibiotics and the associated mechanisms.
Collapse
Affiliation(s)
| | - Stefan G. Pierzynowski
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden;
- Department of Medical Biology, IMW, Jaczewskiego 2, 20-950 Lublin, Poland
| | - William E. Holmes
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70503, USA;
| | - Randal K. Buddington
- Department of Health Sciences, University of Memphis, Memphis, TN 38152, USA
- Stonewall Research Facility, LSU Health Sciences, Stonewall, LA 71078, USA
| |
Collapse
|
4
|
Algharably EA, Kreutz R, Gundert-Remy U. Infant Exposure to Antituberculosis Drugs via Breast Milk and Assessment of Potential Adverse Effects in Breastfed Infants: Critical Review of Data. Pharmaceutics 2023; 15:pharmaceutics15041228. [PMID: 37111713 PMCID: PMC10143885 DOI: 10.3390/pharmaceutics15041228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Infants of mothers treated for tuberculosis might be exposed to drugs via breast milk. The existing information on the exposure of breastfed infants lacks a critical review of the published data. We aimed to evaluate the quality of the existing data on antituberculosis (anti-TB) drug concentrations in the plasma and milk as a methodologically sound basis for the potential risk of breastfeeding under therapy. We performed a systematic search in PubMed for bedaquiline, clofazimine, cycloserine/terizidone, levofloxacin, linezolid, pretomanid/pa824, pyrazinamide, streptomycin, ethambutol, rifampicin and isoniazid, supplemented with update references found in LactMed®. We calculated the external infant exposure (EID) for each drug and compared it with the recommended WHO dose for infants (relative external infant dose) and assessed their potential to elicit adverse effects in the breastfed infant. Breast milk concentration data were mainly not satisfactory to properly estimate the EID. Most of the studies suffer from limitations in the sample collection, quantity, timing and study design. Infant plasma concentrations are extremely scarce and very little data exist documenting the clinical outcome in exposed infants. Concerns for potential adverse effects in breastfed infants could be ruled out for bedaquiline, cycloserine/terizidone, linezolid and pyrazinamide. Adequate studies should be performed covering the scenario in treated mothers, breast milk and infants.
Collapse
Affiliation(s)
- Engi Abdelhady Algharably
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Gundert-Remy
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Viel A, Nouichi A, Le Van Suu M, Rolland JG, Sanders P, Laurentie M, Manceau J, Henri J. PBPK Model To Predict Marbofloxacin Distribution in Edible Tissues and Intestinal Exposure in Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4358-4370. [PMID: 36877630 DOI: 10.1021/acs.jafc.2c06561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Marbofloxacin (MAR) is a fluoroquinolone antibiotic used in food-producing animals in European Union, especially in pigs. In this study, MAR concentrations in plasma, comestible tissues, and intestinal segments were determined in pigs injected with MAR. Based on these data and the literature, a flow-limited PBPK model was developed to predict the tissue distribution of MAR and estimate the withdrawal period after label-use in Europe. A submodel describing the different segments of the intestinal lumen was also developed to assess the intestinal exposure of MAR for the commensal bacteria. During model calibration, only four parameters were estimated. Then, Monte Carlo simulations were performed to generate a virtual population of pigs. The simulation results were compared with the observations from an independent data set during the validation step. A global sensitivity analysis was also carried out to identify the most influential parameters. Overall, the PBPK model was able to adequately predict the MAR kinetics in plasma and edible tissues, as well as in small intestines. However, the simulated concentrations in the large intestine were mostly underestimated, highlighting the need for improvements in the field of PBPK modeling to assess the intestinal exposure of antimicrobials in food animals.
Collapse
Affiliation(s)
- Alexis Viel
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Anis Nouichi
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Mélanie Le Van Suu
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jean-Guy Rolland
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Pascal Sanders
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Michel Laurentie
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jacqueline Manceau
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Jérôme Henri
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| |
Collapse
|
6
|
Olavarría-Ramírez L, Cooney-Quane J, Murphy G, McCafferty CP, Cryan JF, Dockray S. A systematic review of the effects of gut microbiota depletion on social and anxiety-related behaviours in adult rodents: Implications for translational research. Neurosci Biobehav Rev 2023; 145:105013. [PMID: 36566805 DOI: 10.1016/j.neubiorev.2022.105013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The microbiota-gut-brain axis is associated with several behaviours, including those relevant to anxiety or sociability in rodents, however, no conceptual framework has yet been available. Summary of the effects of antibiotic-mediated gut microbiota depletion on anxiety and sociability is essential to both inform further preclinical investigations and to guide translational research into human studies. The main objective is to examine the role of gut microbiota depletion on anxiety and sociability in rodents, and to consider how the findings can be translated to inform the design of research in humans. We reviewed 13 research articles, indicating significant changes in gut microbiota composition and diversity have been found in animals treated with a mix or a single antibiotic. Nonetheless, there is no consensus regarding the impact of gut microbiota depletion on anxiety-like or social behaviour. Gut microbiota depletion may be a useful strategy to examine the role of gut microbes in anxiety and sociability, but the lack of data from rigorous animal investigations precludes any definitive interpretations for a translational impact on human health.
Collapse
Affiliation(s)
- Loreto Olavarría-Ramírez
- School of Applied Psychology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Jennifer Cooney-Quane
- School of Applied Psychology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Gillian Murphy
- School of Applied Psychology, University College Cork, Cork, Ireland.
| | - Cian P McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Samantha Dockray
- School of Applied Psychology, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Ahmadzai H, Tee LBG, Crowe A. Are active efflux transporters contributing to infant drug exposure via breastmilk? A longitudinal study. Basic Clin Pharmacol Toxicol 2022; 131:487-499. [PMID: 36130042 PMCID: PMC9827846 DOI: 10.1111/bcpt.13794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Although most drugs are considered safe and compatible with breastfeeding, cases of toxic drug exposure have been reported. Active efflux transporters have been implicated as a mechanism in the transfer of drugs from mother to baby via breastmilk. Using breastmilk as a source of human mammary epithelial cells, this novel longitudinal study investigated the expression of four active transporters, namely, MDR1, MRP1, MRP2 and BCRP in the lactating human breast. BCRP gene was found to be strongly overexpressed with levels peaking at 5 months postpartum, potentially indicating a time where a breastfed infant may be at risk of inadvertent exposure to BCRP substrates. Serum albumin, a major component of human breastmilk was increasingly downregulated as lactation progresses. Xanthine oxidase/dehydrogenase, an enzyme in breastmilk attributed to a reduced risk of gastroenteritis caused by Escherichia coli and Salmonella enteritides, was downregulated. Lysozyme and fatty acid synthase are progressively upregulated. This study also shows that breastmilk-derived epithelial cells, when propagated in culture, exhibit characteristics significantly different to those derived directly from breastmilk. This serves to warn that in vitro studies are not a true representation of in vivo processes in the lactating breast; hence, application of in vitro data should be conducted with caution.
Collapse
Affiliation(s)
- Hilai Ahmadzai
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia,Pharmacy DepartmentSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Lisa B. G. Tee
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Andrew Crowe
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
8
|
Hong J, Huang X, Wang Z, Luo X, Huang S, Zheng Z. Combined toxic effects of enrofloxacin and microplastics on submerged plants and epiphytic biofilms in high nitrogen and phosphorus waters. CHEMOSPHERE 2022; 308:136099. [PMID: 36037962 DOI: 10.1016/j.chemosphere.2022.136099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
With the wide application of plastic products, microplastic pollution has become a major environmental issue of global concern. Microplastics in aquatic environments can interact with organic pollutants, causing a combined effect on submerged macrophytes. This study investigated the response mechanisms of the submerged plant Myriophyllum verticillatum and epiphytic biofilm to the antibiotic enrofloxacin, microplastics, and their combined exposure in a high nitrogen and phosphorus environment. The results indicated that Myriophyllum verticillatum was not sensitive to enrofloxacin of 1 mg L-1, while 10 and 50 mg L-1 enrofloxacin inhibited the uptake of nitrogen and phosphorus by the plants, as well as triggered oxidative stress in the plant leaves, causing irreversible damage to the plant cells. In addition, enrofloxacin altered the structure of the leaf epiphytic biofilm community. Interestingly, 1, 5, and 20 mg L-1 microplastics had no significant effect on the plant, while they facilitated the aggregation of microorganisms, increasing the abundance of the leaf epiphyte biofilm. The combination of enrofloxacin and microplastics induced a synergistic effect on Myriophyllum verticillatum. Specifically, the rate of nitrogen and phosphorus uptake by the plant was reduced, the content of photosynthetic pigments decreased, and antioxidant enzyme activity was further increased. In addition, the diversity of the leaf epiphytic biofilm community was similar to the single enrofloxacin exposure. These results demonstrated the differences between single and combined exposures and provided a new theoretical basis to evaluate the harmful effects of enrofloxacin and microplastics on submerged macrophytes.
Collapse
Affiliation(s)
- Jun Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
9
|
ABCG2 Polymorphisms and Predictive Fluoroquinolone Phototoxicity in Nondomestic Felids. Genes (Basel) 2022; 13:genes13122178. [PMID: 36553444 PMCID: PMC9778035 DOI: 10.3390/genes13122178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Fluoroquinolones are a widely used class of chemotherapeutics within veterinary medicine, prized for their broad-spectrum bactericidal activity. These drugs present a known risk of retinal phototoxicity in domestic cats (Felis catus); therefore, using lower doses and alternative antibiotic classes is encouraged in this species. This adverse drug effect of fluoroquinolones, and enrofloxacin specifically, has been determined to be species-specific in domestic felids. Four feline-specific missense variants in ABCG2 result in four amino acid changes (E159M, S279L, H283Q, and T644I) that are unique to the domestic cat compared with multiple other nonfeline mammalian species. These changes alter the ABCG2 protein involved with the cellular transmembrane transport of drugs, including fluoroquinolones, making the protein functionally defective in domestic cats. The predisposition to fluoroquinolone-mediated phototoxicity in nondomestic felids was explored in this study. At least eight nondomestic felids share the four ABCG2 missense variants with domestic cats, and eleven other felids shared at least three of the four domestic cat variants. Taken together, these results suggest the genetic potential for nondomestic felids to also experience fluoroquinolone-induced retinal phototoxicity; therefore, cautions similar to those for domestic cats should be followed for these drugs in the entire feline taxon.
Collapse
|
10
|
Li Z, Du X, Tian S, Fan S, Zuo X, Li Y, Wang R, Wang B, Huang Y. Pharmacokinetic herb-drug interactions: Altered systemic exposure and tissue distribution of ciprofloxacin, a substrate of multiple transporters, after combined treatment with Polygonum capitatum Buch.-Ham. ex D. Don extracts. Front Pharmacol 2022; 13:1033667. [PMID: 36386188 PMCID: PMC9640990 DOI: 10.3389/fphar.2022.1033667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Combination of Polygonum capitatum Buch.-Ham. ex D. Don extract (PCE) and ciprofloxacin (CIP) was commonly prescribed in the treatment of urinary tract infections. Their pharmacokinetic herb-drug interactions (HDIs) were focused in this study to assess potential impact on the safety and effectiveness. Methods: A randomized, three-period, crossover trial was designed to study the pharmacokinetic HDI between PCE and CIP in healthy humans. Their pharmacokinetic- and tissue distribution-based HDIs were also evaluated in rats. Gallic acid (GA) and protocatechuic acid (PCA) were chosen as PK-markers of PCE in humans and rats. Potential drug interaction mechanisms were revealed by assessing the effects of PCE on the activity and expression of multiple transporters, including OAT1/3, OCT2, MDR1, and BCRP. Results: Concurrent use of PCE substantially reduced circulating CIP (approximately 40%–50%) in humans and rats, while CIP hardly changed circulating GA and PCA. PCE significantly increased the tissue distribution of CIP in the prostate and testis of rats, but decreased in liver and lungs. Meanwhile, CIP significantly increased the tissue distribution of GA or PCA in the prostate and testis of rats, but decreased in kidney and heart. In the transporter-mediated in vitro HDI, GA and PCA presented inhibitory effects on OAT1/3 and inductive effects on MDR1 and BCRP. Conclusion: Multiple transporter-mediated HDI contributes to effects of PCE on the reduced systemic exposure and altered tissue distribution of CIP. More attention should be paid on the potential for PCE-perpetrated interactions.
Collapse
Affiliation(s)
- Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Du
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang Tian
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xurui Zuo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanfen Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruihua Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
11
|
Petkova T, Milanova A, Poźniak B. The effects of cyclosporine A or activated charcoal co-administration on the pharmacokinetics of enrofloxacin in chickens. Poult Sci 2022; 102:102225. [PMID: 36343435 PMCID: PMC9646970 DOI: 10.1016/j.psj.2022.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The study aimed to investigate the possible role of efflux transporter proteins in the pharmacokinetics of enrofloxacin (ENR) in broilers in the model of co-administration of activated charcoal (AC) or cyclosporine A (CsA). The concentrations of enrofloxacin and its metabolite ciprofloxacin were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) and population approach was used for pharmacokinetic analysis. It was found that body weight has a significant effect on the volume of distribution in the central compartment and on the systemic clearance. Oral AC increased the systemic clearance of intravenously administered ENR suggesting some role of enterohepatic recirculation. For orally administered ENR, CsA increased the area under the curve which can be explained by the inhibition of efflux transporters. Metabolism of the antibacterial drug was not affected by cyclosporine. The data suggest a role of efflux transporter proteins in the pharmacokinetics of drugs in chickens and drug-drug interactions have to be considered when substrates and modulators of these transporters are co-administered.
Collapse
Affiliation(s)
- Tsvetelina Petkova
- Trakia University, Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Stara Zagora, 6000, Bulgaria
| | - Aneliya Milanova
- Trakia University, Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Stara Zagora, 6000, Bulgaria
| | - Błażej Poźniak
- Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology 50-375 Wrocław, Poland,Corresponding author:
| |
Collapse
|
12
|
Effect of Intramuscularly Administered Oxytetracycline or Enrofloxacin on Vancomycin-Resistant Enterococci, Extended Spectrum Beta-Lactamase- and Carbapenemase-Producing Enterobacteriaceae in Pigs. Animals (Basel) 2022; 12:ani12050622. [PMID: 35268191 PMCID: PMC8909026 DOI: 10.3390/ani12050622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Nowadays, there is great concern about the prevalence of multidrug resistant bacteria in food-producing animals since they are potential sources of transmission to humans. The aim of this work was to evaluate the effect of two antibiotics (oxytetracycline and enrofloxacin) treatments in pigs on resistant bacteria that are considered a threat to public health. This study highlights that the use of oxytetracycline or enrofloxacin in food-producing animals could select resistant bacteria in pig faeces. Special care should be taken to avoid faecal contamination of carcasses during slaughter. Abstract Nowadays, there is a great concern about the prevalence of multidrug resistant Enterococcus spp. and Enterobacteriaceae in food-producing animals. The aim of this work was to evaluate the effect of oxytetracycline or enrofloxacin treatment on vancomycin-resistant enterococci (VRE), extended spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae in pigs. A total of 26 piglets were received and distributed in three groups. Group 1 was treated with enrofloxacin (N = 12), group 2 with oxytetracycline (N = 10) and group 3 did not receive any treatment (control group) (N = 4). A higher number of vancomycin-resistant E. faecium were recovered compared to E. faecalis. In the pigs treated with enrofloxacin, vancomycin resistant E. faecium was found in a higher percentage of animals than in the control group. ESBL-producing E. coli was not detected in rectal samples from control animals. However, it was detected in 17–20% of animals treated with oxytetracycline on days 6 to 17 and in 17–50% of the animals treated with enrofloxacin. Carbapenemase-producing E. coli was isolated in animals treated with oxytetracycline, but not in animals treated with enrofloxacin or in the control group. This study highlights that the use of oxytetracycline or enrofloxacin in food-producing animals could select ESBL and carbapenemase-producing E. coli. Further studies shall be needed to validate the results obtained, considering a more robust and extended experimental design.
Collapse
|
13
|
Li Z, Du X, Li Y, Wang R, Liu C, Cao Y, Wu W, Sun J, Wang B, Huang Y. Pharmacokinetics of gallic acid and protocatechuic acid in humans after dosing with Relinqing (RLQ) and the potential for RLQ-perpetrated drug-drug interactions on organic anion transporter (OAT) 1/3. PHARMACEUTICAL BIOLOGY 2021; 59:757-768. [PMID: 34144662 PMCID: PMC8216263 DOI: 10.1080/13880209.2021.1934039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Relinqing granules (RLQ) are being used alone or in combination with antibacterial drugs to treat urological disorders. OBJECTIVE This study investigates the pharmacokinetics of RLQ in humans and the potential for RLQ-perpetrated interactions on transporters. MATERIALS AND METHODS Twelve healthy subjects (six women and six men) participated to compare single- and multiple-dose pharmacokinetics of RLQ. In the single-dose study, all 12 subjects received 8 g of RLQ orally. After a 7-d washout period, the subjects received 8 g of RLQ for seven consecutive days (t.i.d.) and then a single dose. Gallic acid (GA) and protocatechuic acid (PCA) in plasma and urine samples were analysed using LC-MS/MS. The transfected cells were used to study the inhibitory effect of GA (50-5000 μg/L) and PCA (10-1000 μg/L) on transporters OAT1, OAT3, OCT2, OATP1B1, P-gp and BCRP. RESULTS GA and PCA were absorbed into the blood within 1 h after administration and rapidly eliminated with a half-life of less than 2 h. The mean peak concentrations of GA (102 and 176 μg/L) and PCA (4.54 and 7.58 μg/L) were lower in males than females, respectively. The 24 h urine recovery rates of GA and PCA were about 10% and 5%, respectively. The steady-state was reached in 7 d without accumulation. GA was a potent inhibitor of OAT1 (IC50 = 3.73 μM) and OAT3 (IC50 = 29.41 μM), but not OCT2, OATP1B1, P-gp or BCRP. DISCUSSION AND CONCLUSIONS GA and PCA are recommended as PK-markers in RLQ-related pharmacokinetic and drug interaction studies. We should pay more attention to the potential for RLQ-perpetrated interactions on transporters.
Collapse
Affiliation(s)
- Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xi Du
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yanfen Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Ruihua Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Changxiao Liu
- Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
| | - Yanguang Cao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Weidang Wu
- TIPR Pharmaceutical Responsible Co., Ltd, Tianjin, PR China
| | - Jinxia Sun
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
14
|
Thomas L, Birangal SR, Ray R, Sekhar Miraj S, Munisamy M, Varma M, S V CS, Banerjee M, Shenoy GG, Rao M. Prediction of potential drug interactions between repurposed COVID-19 and antitubercular drugs: an integrational approach of drug information software and computational techniques data. Ther Adv Drug Saf 2021; 12:20420986211041277. [PMID: 34471515 PMCID: PMC8404633 DOI: 10.1177/20420986211041277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/24/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: Tuberculosis is a major respiratory disease globally with a higher prevalence in Asian and African countries than rest of the world. With a larger population of tuberculosis patients anticipated to be co-infected with COVID-19 infection, an ongoing pandemic, identifying, preventing and managing drug–drug interactions is inevitable for maximizing patient benefits for the current repurposed COVID-19 and antitubercular drugs. Methods: We assessed the potential drug–drug interactions between repurposed COVID-19 drugs and antitubercular drugs using the drug interaction checker of IBM Micromedex®. Extensive computational studies were performed at a molecular level to validate and understand the drug–drug interactions found from the Micromedex drug interaction checker database at a molecular level. The integrated knowledge derived from Micromedex and computational data was collated and curated for predicting potential drug–drug interactions between repurposed COVID-19 and antitubercular drugs. Results: A total of 91 potential drug–drug interactions along with their severity and level of documentation were identified from Micromedex between repurposed COVID-19 drugs and antitubercular drugs. We identified 47 pharmacodynamic, 42 pharmacokinetic and 2 unknown DDIs. The majority of our molecular modelling results were in line with drug–drug interaction data obtained from the drug information software. QT prolongation was identified as the most common type of pharmacodynamic drug–drug interaction, whereas drug–drug interactions associated with cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) inhibition and induction were identified as the frequent pharmacokinetic drug–drug interactions. The results suggest antitubercular drugs, particularly rifampin and second-line agents, warrant high alert and monitoring while prescribing with the repurposed COVID-19 drugs. Conclusion: Predicting these potential drug–drug interactions, particularly related to CYP3A4, P-gp and the human Ether-à-go-go-Related Gene proteins, could be used in clinical settings for screening and management of drug–drug interactions for delivering safer chemotherapeutic tuberculosis and COVID-19 care. The current study provides an initial propulsion for further well-designed pharmacokinetic-pharmacodynamic-based drug–drug interaction studies. Plain Language Summary
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | | | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Gautham G Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Professor and Head, Department of Pharmacy Practice, Coordinator, Centre for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
15
|
Ince I, Dallmann A, Frechen S, Coboeken K, Niederalt C, Wendl T, Block M, Meyer M, Eissing T, Burghaus R, Lippert J, Willmann S, Schlender J. Predictive Performance of Physiology-Based Pharmacokinetic Dose Estimates for Pediatric Trials: Evaluation With 10 Bayer Small-Molecule Compounds in Children. J Clin Pharmacol 2021; 61 Suppl 1:S70-S82. [PMID: 34185905 PMCID: PMC8361729 DOI: 10.1002/jcph.1869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Development and guidance of dosing schemes in children have been supported by physiology-based pharmacokinetic (PBPK) modeling for many years. PBPK models are built on a generic basis, where compound- and system-specific parameters are separated and can be exchanged, allowing the translation of these models from adults to children by accounting for physiological differences. Owing to these features, PBPK modeling is a valuable approach to support clinical decision making for dosing in children. In this analysis, we evaluate pediatric PBPK models for 10 small-molecule compounds that were applied to support clinical decision processes at Bayer for their predictive power in different age groups. Ratios of PBPK-predicted to observed PK parameters for the evaluated drugs in different pediatric age groups were estimated. Predictive performance was analyzed on the basis of a 2-fold error range and the bioequivalence range (ie, 0.8 ≤ predicted/observed ≤ 1.25). For all 10 compounds, all predicted-to-observed PK ratios were within a 2-fold error range (n = 27), with two-thirds of the ratios within the bioequivalence range (n = 18). The findings demonstrate that the pharmacokinetics of these compounds was successfully and adequately predicted in different pediatric age groups. This illustrates the applicability of PBPK for guiding dosing schemes in the pediatric population.
Collapse
Affiliation(s)
- Ibrahim Ince
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Sebastian Frechen
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Katrin Coboeken
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Christoph Niederalt
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Thomas Wendl
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Michael Block
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Michaela Meyer
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Thomas Eissing
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Rolf Burghaus
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Jörg Lippert
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Stefan Willmann
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| | - Jan‐Frederik Schlender
- Pharmacometrics/Modeling and Simulation, Research and DevelopmentPharmaceuticalsBayerAGGermany
| |
Collapse
|
16
|
Pharmacogenomics of Antibiotics. Int J Mol Sci 2020; 21:ijms21175975. [PMID: 32825180 PMCID: PMC7504675 DOI: 10.3390/ijms21175975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Although the introduction of antibiotics in medicine has resulted in one of the most successful events and in a major breakthrough to reduce morbidity and mortality caused by infectious disease, response to these agents is not always predictable, leading to differences in their efficacy, and sometimes to the occurrence of adverse effects. Genetic variability, resulting in differences in the pharmacokinetics and pharmacodynamics of antibiotics, is often involved in the variable response, of particular importance are polymorphisms in genes encoding for drug metabolizing enzymes and membrane transporters. In addition, variations in the human leukocyte antigen (HLA) class I and class II genes have been associated with different immune mediated reactions induced by antibiotics. In recent years, the importance of pharmacogenetics in the personalization of therapies has been recognized in various clinical fields, although not clearly in the context of antibiotic therapy. In this review, we make an overview of antibiotic pharmacogenomics and of its potential role in optimizing drug therapy and reducing adverse reactions.
Collapse
|
17
|
Sun LN, Sun GX, Yang YQ, Shen Y, Huang FR, Xie LJ, Cheng J, Zhang HW, Zhang XH, Liu Y, Wang YQ. Effects of ABCB1, UGT1A1, and UGT1A9 Genetic Polymorphisms on the Pharmacokinetics of Sitafloxacin Granules in Healthy Subjects. Clin Pharmacol Drug Dev 2020; 10:57-67. [PMID: 32687695 PMCID: PMC7818398 DOI: 10.1002/cpdd.848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Sitafloxacin, a new fluoroquinolone, has strong antibacterial activity. We evaluated the effects of sitafloxacin granules in single‐dose and multidose cohorts and the effects of ABCB1, UGT1A1, and UGT1A9 genetic polymorphisms on the pharmacokinetics (PK) of sitafloxacin in healthy subjects. The single‐dose study included 3 fasted cohorts receiving 50, 100, and 200 mg of sitafloxacin granules and 1 cohort receiving 50 mg of sitafloxacin granules with a high‐fat meal. The multidose study included 1 cohort receiving 100 mg of sitafloxacin granules once daily for 5 days. PK parameters were calculated using noncompartmental parameters based on concentration‐time data. The genotypes for ABCB1, UGT1A1, and UGT1A9 single‐nucleotide polymorphisms were determined using Sanger sequencing. Subsequently, the association between sitafloxacin PK parameters and target single‐nucleotide polymorphisms was analyzed. Sitafloxacin granules were well tolerated up to 200 and 100 mg in the single‐dose and multidose studies, respectively. Sitafloxacin AUC and Cmax increased linearly within the detection range, and a steady state was reached within 3 days after the administration of multiple oral doses. Our findings showed that Cmax was lower in the ABCB1 (rs1045642) mutation group, whereas t1/2 was longer in the UGT1A1 (rs2741049) and UGT1A9 (rs3832043) mutation groups. In conclusion, sitafloxacin granules were safe at single doses and multiple doses up to 200 and 100 mg/day, respectively, with a linear plasma PK profile. However, ABCB1 (rs1045642), UGT1A1 (rs2741049), and UGT1A9 (rs3832043) genetic polymorphisms are likely to influence the Cmax or t1/2 and thereby merit further clinical evaluation.
Collapse
Affiliation(s)
- Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Xian Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yu-Qing Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Jun Xie
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Cheng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Wen Zhang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Suzhou, China
| | - Yun Liu
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, Jiangsu Shengze Hospital, Suzhou, China
| |
Collapse
|
18
|
Urzúa N, Messina MJ, Prieto G, Lüders C, Errecalde C. Pharmacokinetics and tissue disposition of enrofloxacin in rainbow trout after different routes of administration. Xenobiotica 2020; 50:1236-1241. [PMID: 32208796 DOI: 10.1080/00498254.2020.1747119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plasma pharmacokinetics (PK) and tissue disposition of enrofloxacin (EFX) was studied in rainbow trout (Oncorhynchus mykiss) after a single oral administration of 10 mg/kg, and by immersion baths of 20 ppm during 2.5 h and 100 ppm during 0.5 h, at water temperature of 16.3 ± 0.3 °C.Concentrations of EFX in plasma and tissues (skin, muscle, liver, kidney and gut) were determined using high performance liquid chromatography (HPLC) with fluorescence detection.Pharmacokinetic parameters were analyzed with a non-compartmental model. After oral administration, t½β, AUC and AUCtissues/AUCplasma ratio were 42.98 h, 21.80μg-h/ml and ≤ 18.63, respectively.After immersion baths of 20 ppm during 2.5 h and 100 ppm during 0.5 h, the t½β, AUC and AUCtissues/AUCplasma were 42.77 and 44.67, 9.83 and 12.83 μg-h/ml and ≤ 9.81 and ≤ 7.13, respectively.Therefore, oral (10 mg/kg) and bath administration in rainbow trout can provide AUC/MIC of ≥125 and Cmax/MIC of ≥10 to treat diseases caused by susceptible bacteria with MIC ≤ 0.04 μg/ml. This information can be helpful for the right use of EFX in rainbow trout. Also, this is the first study that determines the antibiotic tissue disposition in rainbow trout by using different administration routes.
Collapse
Affiliation(s)
- Natalia Urzúa
- Departamento de Clínica Animal, Universidad Nacional de Río Cuarto, Rio cuarto, Argentina
| | - María Jimena Messina
- Departamento de Clínica Animal, Universidad Nacional de Río Cuarto, Rio cuarto, Argentina
| | - Guillermo Prieto
- Departamento de Clínica Animal, Universidad Nacional de Río Cuarto, Rio cuarto, Argentina
| | - Carlos Lüders
- Departamento de Ciencias Veterinarias, Universidad Católica de Temuco, Temuco, Chile
| | - Carlos Errecalde
- Departamento de Clínica Animal, Universidad Nacional de Río Cuarto, Rio cuarto, Argentina
| |
Collapse
|
19
|
Álvarez-Esmorís C, Conde-Cid M, Ferreira-Coelho G, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M. Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136015. [PMID: 31855641 DOI: 10.1016/j.scitotenv.2019.136015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Adsorption and desorption processes were studied for the antibiotics sulfamethoxypyridazine (SMP) and enrofloxacin (ENR) in 20 agricultural soils devoted to wheat-potato and vine cultivation. Batch experiments were used to conduct kinetic studies, as well as to evaluate adsorption and desorption for different concentrations of antibiotics. The results indicated that adsorption curves were linear for SMP, while presented a certain curvature in the case of ENR. The adsorption of both antibiotics was fitted to a linear equation and to the Freundlich model. In the case of the linear equation, the values of the distribution coefficient Kd were lower for SMP (0.9-26.0 L kg-1) than for ENR (121-2345 L kg-1). In the Freundlich model, the values of the adsorption constant KF ranged between 1.7 and 34.0 Ln μmol1-n kg-1 for SMP, and between 829 and 3019 Ln μmol1-n kg-1 for ENR. A multiple regression analysis showed that, in the case of SMP, 78% of the variance of the adsorption parameter Kd was explained by soil organic carbon (SOC) and exchangeable magnesium (Mge) contents, while for ENR no significant relation was found. In addition, for SMP, 66% of the variance of KF was explained by SOC, and for ENR 45% of the variability of KF was explained by nitrogen content. Desorption rates were higher for SMP (reaching up to 24%) than for ENR (which reached up to 7%). Desorption percentages showed a potential relation with the adsorption parameter Kd for both SMP and ENR. These results could be useful to elucidate the evolution and dynamics of these emerging pollutants in soils and other environmental compartments, which could be of aid in controlling public health risks associated to them.
Collapse
Affiliation(s)
- C Álvarez-Esmorís
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - G Ferreira-Coelho
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain.
| |
Collapse
|
20
|
Erwin S, Foster DM, Jacob ME, Papich MG, Lanzas C. The effect of enrofloxacin on enteric Escherichia coli: Fitting a mathematical model to in vivo data. PLoS One 2020; 15:e0228138. [PMID: 32004337 PMCID: PMC6993981 DOI: 10.1371/journal.pone.0228138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial drugs administered systemically may cause the emergence and dissemination of antimicrobial resistance among enteric bacteria. To develop logical, research-based recommendations for food animal veterinarians, we must understand how to maximize antimicrobial drug efficacy while minimizing risk of antimicrobial resistance. Our objective is to evaluate the effect of two approved dosing regimens of enrofloxacin (a single high dose or three low doses) on Escherichia coli in cattle. We look specifically at bacteria above and below the epidemiological cutoff (ECOFF), above which the bacteria are likely to have an acquired or mutational resistance to enrofloxacin. We developed a differential equation model for the antimicrobial drug concentrations in plasma and colon, and bacteria populations in the feces. The model was fit to animal data of drug concentrations in the plasma and colon obtained using ultrafiltration probes. Fecal E. coli counts and minimum inhibitory concentrations were measured for the week after receiving the antimicrobial drug. We predict that the antimicrobial susceptibility of the bacteria above the ECOFF pre-treatment strongly affects the composition of the bacteria following treatment. Faster removal of the antimicrobial drugs from the colon throughout the study leads to improved clearance of bacteria above the ECOFF in the low dose regimen. If we assume a fitness cost is associated with bacteria above the ECOFF, the increased fitness costs leads to reduction of bacteria above the ECOFF in the low dose study. These results suggest the initial E. coli susceptibility is a strong indicator of how steers respond to antimicrobial drug treatment.
Collapse
Affiliation(s)
- Samantha Erwin
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Biomedical Sciences, Engineering, and Computing Group, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
- * E-mail:
| | - Derek M. Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Mark G. Papich
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
21
|
Schlender JF, Teutonico D, Coboeken K, Schnizler K, Eissing T, Willmann S, Jaehde U, Stass H. A Physiologically-Based Pharmacokinetic Model to Describe Ciprofloxacin Pharmacokinetics Over the Entire Span of Life. Clin Pharmacokinet 2019; 57:1613-1634. [PMID: 29737457 PMCID: PMC6267540 DOI: 10.1007/s40262-018-0661-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Physiologically-based pharmacokinetic (PBPK) modeling has received growing interest as a useful tool for the assessment of drug pharmacokinetics by continuous knowledge integration. Objective The objective of this study was to build a ciprofloxacin PBPK model for intravenous and oral dosing based on a comprehensive literature review, and evaluate the predictive performance towards pediatric and geriatric patients. Methods The aim of this report was to establish confidence in simulations of the ciprofloxacin PBPK model along the development process to facilitate reliable predictions outside of the tested adult age range towards the extremes of ages. Therefore, mean data of 69 published clinical trials were identified and integrated into the model building, simulation and verification process. The predictive performance on both ends of the age scale was assessed using individual data of 258 subjects observed in own clinical trials. Results Ciprofloxacin model verification demonstrated no concentration-related bias and accurate simulations for the adult age range, with only 4.8% of the mean observed data points for intravenous administration and 12.1% for oral administration being outside the simulated twofold range. Predictions towards the extremes of ages for the area under the plasma concentration–time curve (AUC) and the maximum plasma concentration (Cmax) over the entire span of life revealed a reliable estimation, with only two pediatric AUC observations outside the 90% prediction interval. Conclusion Overall, this ciprofloxacin PBPK modeling approach demonstrated the predictive power of a thoroughly informed middle-out approach towards age groups of interest to potentially support the decision-making process. Electronic supplementary material The online version of this article (10.1007/s40262-018-0661-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan-Frederik Schlender
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany.
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany.
| | - Donato Teutonico
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
- Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Katrin Coboeken
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
| | - Katrin Schnizler
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
| | - Thomas Eissing
- Systems Pharmacology and Medicine, Bayer AG, 51373, Leverkusen, Germany
| | | | - Ulrich Jaehde
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Heino Stass
- Clinical Pharmacology, Bayer AG, Wuppertal, Germany
| |
Collapse
|
22
|
Effect of piperine and quercetin alone or in combination with marbofloxacin on CYP3A37 and MDR1 mRNA expression levels in broiler chickens. Res Vet Sci 2019; 126:178-183. [PMID: 31539794 DOI: 10.1016/j.rvsc.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
After oral route of administration, drug absorption is unpredictable and is governed by various factors such as multi drug resistance-1 (MDR1) an efflux transporter and drug metabolizing enzymes (like CYP3A4, CYP3A37, CYP2D6) at intestine and liver. Naturally available phyto chemicals like piperine and quercetin as well as some floroquinolones are known to inhibit MDR1 and CYP3A37 activity and increases bioavailability of co-administered drugs. This study was carried out to investigate the effect of piperine and quercetin alone or in combination with marbofloxacin on CYP3A37 and MDR1 mRNA expression levels in liver and intestine of broiler chicken. After oral administration of piperine and quercetin for 3 consecutive days followed by with or without oral administration of marbofloxacin for 5 days, CYP3A37 and MDR1 mRNA expression levels were determined using quantitative real-time PCR. Total of 36 broiler chickens in seven individual groups were treated with different regimen and the mRNA expression levels at duodenum and liver were analyzed with apt statistical tools. After piperine and quercetin combined treatment with marbofloxacin, CYP3A37 mRNA expression levels were significantly down regulated by 20.57 (p = .034) and 25.95 (p = .003) folds; and MDR1 mRNA expression levels were also significantly down regulated by 11.33 (p = .012) and 33.59 (p = .006) folds in liver and duodenum, respectively. Down regulation of CYP3A37 and MDR1 mRNA in liver and duodenum indicate the combined pretreatment of piperine and quercetin may be useful for improving the pharmacokinetics of orally administered drugs which are substrates for CYP3A37 and MDR1.
Collapse
|
23
|
Shiadeh SMJ, Hashemi A, Fallah F, Lak P, Azimi L, Rashidan M. First detection of efrAB, an ABC multidrug efflux pump in Enterococcus faecalis in Tehran, Iran. Acta Microbiol Immunol Hung 2019; 66:57-68. [PMID: 30246548 DOI: 10.1556/030.65.2018.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enterococcus faecalis is one of the most significant pathogen in both nosocomial and community-acquired infections. Reduced susceptibility to antibiotics is in part due to efflux pumps. This study was conducted on 80 isolates of E. faecalis isolated from outpatients with urinary tract infection during a period of 1 year from April 2014 to April 2015. The antibiotic susceptibility patterns of isolates were determined by the disk diffusion method and presence of efrA and efrB genes was detected by PCR and sequencing. Minimum inhibitory concentrations (MICs) to ciprofloxacin (CIP) were measured with and without carbonyl cyanide 3-chlorophenylhydrazone (CCCP) by broth microdilution. The highest resistance rate was observed to erythromycin (83.3%) and the prevalence of efrA and efrB genes in all E. faecalis isolates was 100%. This study showed that 9 out of 13 (69.2%) ciprofloxacin-resistant isolates became less resistant at least fourfolds to CIP in the presence of efflux pump inhibitor. Our result showed that CCCP as an efflux inhibitor can increase effect of CIP as an efficient antibiotic and it is suggested that efrAB efflux pumps are involved in resistance to fluoroquinolone.
Collapse
Affiliation(s)
| | - Ali Hashemi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- 2 Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parnian Lak
- 3 Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Leila Azimi
- 2 Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rashidan
- 4 School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
24
|
Ferguson KM, Jacob ME, Theriot CM, Callahan BJ, Prange T, Papich MG, Foster DM. Dosing Regimen of Enrofloxacin Impacts Intestinal Pharmacokinetics and the Fecal Microbiota in Steers. Front Microbiol 2018; 9:2190. [PMID: 30283418 PMCID: PMC6156522 DOI: 10.3389/fmicb.2018.02190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022] Open
Abstract
Objective: The intestinal concentrations of antimicrobial drugs that select for resistance in fecal bacteria of cattle are poorly understood. Our objective was to associate active drug concentrations in the intestine of steers with changes in the resistance profile and composition of the fecal microbiome. Methods: Steers were administered either a single dose (12.5 mg/kg) or 3 multiple doses (5 mg/kg) of enrofloxacin subcutaneously every 24 h. Enrofloxacin and ciprofloxacin concentrations in intestinal fluid were measured over 96 h, and the abundance and MIC of E. coli in culture and the composition of the fecal microbiota by 16S rRNA gene sequencing were assessed over 192 h after initial treatment. Results: Active drug concentrations in the ileum and colon exceeded plasma and interstitial fluid concentrations, but were largely eliminated by 48 h after the last dose. The concentration of E. coli in the feces significantly decreased during peak drug concentrations, but returned to baseline by 96 h in both groups. The median MIC of E. coli isolates increased for 24 h in the single dose group, and for 48 h in the multiple dose group. The median MIC was higher in the multiple dose group when compared to the single dose group starting 12 h after the initial dose. The diversity of the fecal microbiota did not change in either treatment group, and taxa-specific changes were primarily seen in phyla commonly associated with the rumen. Conclusions: Both dosing regimens of enrofloxacin achieve high concentrations in the intestinal lumen, and the rapid elimination mitigates long-term impacts on fecal E. coli resistance and the microbiota.
Collapse
Affiliation(s)
- Kaitlyn M Ferguson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Megan E Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Benjamin J Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Timo Prange
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Mark G Papich
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Derek M Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| |
Collapse
|
25
|
Mendes C, Meirelles GC, Silva MA, Ponchel G. Intestinal permeability determinants of norfloxacin in Ussing chamber model. Eur J Pharm Sci 2018; 121:236-242. [DOI: 10.1016/j.ejps.2018.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
|
26
|
Mendes C, Meirelles GC, Barp CG, Assreuy J, Silva MAS, Ponchel G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr Polym 2018; 195:586-592. [PMID: 29805015 DOI: 10.1016/j.carbpol.2018.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/06/2018] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
Abstract
Nanosponges are a novel class of hyperbranched cyclodextrin-based nanostructures that exhibits remarkable potential as a drug host system for the improvement in biopharmaceutical properties. This work aims the development of cyclodextrin-based nanosponge of norfloxacin to improve its physicochemical characteristics. β-cyclodextrin was used as base and diphenyl carbonate as crosslinker agent at different proportions to produce nanosponges that were evaluated by in vitro and in vivo techniques. The proportion cyclodextrin:crosslinker 1:2 M/M was chosen due to its higher encapsulation efficiency (80%), revealing an average diameter size of 40 nm with zeta potential of -19 mV. Norfloxacin-loaded nanosponges exhibited higher passage of norfloxacin in comparison to norfloxacin drug alone by Ussing chamber method. The nanosponge formulation also revealed a mucoadhesive property that could increase norfloxacin absorption thus improving its antibiotic activity in an in vivo sepsis model. Therefore, nanosponges may be suitable carrier of norfloxacin to maximize and facilitate oral absorption.
Collapse
Affiliation(s)
- Cassiana Mendes
- CNRS UMR 8612, Université Paris Sud XI, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France; Post Graduation Program in Pharmaceutical Sciences, Quality Control Laboratory, Universidade Federal de Santa Catarina, J/K 207, 88040-900, Florianópolis, SC, Brazil.
| | - Gabriela C Meirelles
- CNRS UMR 8612, Université Paris Sud XI, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France.
| | - Clarissa Germano Barp
- Department of Pharmacology, Universidade Federal de Santa Catarina, Biological Sciences Centre, Block D, CCB, 88040-900, Florianópolis, SC, Brazil.
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina, Biological Sciences Centre, Block D, CCB, 88040-900, Florianópolis, SC, Brazil.
| | - Marcos A S Silva
- Post Graduation Program in Pharmaceutical Sciences, Quality Control Laboratory, Universidade Federal de Santa Catarina, J/K 207, 88040-900, Florianópolis, SC, Brazil.
| | - Gilles Ponchel
- CNRS UMR 8612, Université Paris Sud XI, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
27
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
28
|
Silva N, Sousa M. Is marbofloxacin a good candidate for treating pigs in Europe? Vet Rec 2017. [PMID: 28623213 DOI: 10.1136/vr.j2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK
| | - Margarida Sousa
- Veterinary and Animal Science Research Center, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
29
|
Hwang YH, Yang HJ, Kim DG, Ma JY. Inhibitory Effects of Multiple-Dose Treatment with Baicalein on the Pharmacokinetics of Ciprofloxacin in Rats. Phytother Res 2016; 31:69-74. [PMID: 27671796 DOI: 10.1002/ptr.5728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
Ciprofloxacin is used as a treatment for urinary and respiratory tract infections in clinical practice. Baicalein, a major flavonoid present in Scutellaria baicalensis, is a well-known and potent antibacterial compound used in complementary and alternative medicine practices. The present study aimed to clarify the effects of multiple-dose treatment with baicalein on the pharmacokinetics of ciprofloxacin in rats. Following the oral administration of baicalein (20, 40, or 80 mg/kg) for five consecutive days, the rats received an oral administration of ciprofloxacin (20 mg/kg). Blood samples were collected at specific time points, and the plasma concentrations of ciprofloxacin were determined by using high-performance liquid chromatography. To evaluate the mechanisms underlying the interaction between baicalein and ciprofloxacin, a rhodamine 123 accumulation assay was performed in LS-180 cells. A pharmacokinetic study revealed that multiple-dose treatment with baicalein significantly decreased the peak serum concentration (Cmax ), area under the curve (AUC0 → 480 min ), and relative bioavailability (Frel ) of ciprofloxacin (p < 0.05). The rhodamine 123 accumulation assay revealed that treatment with baicalein for 48 h markedly reduced the intracellular accumulation of rhodamine 123. Taken together, these findings suggest that baicalein may result in the therapeutic failure of ciprofloxacin or other quinolone-based antibiotics used for chemotherapy in clinical practice. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Youn-Hwan Hwang
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Hye Jin Yang
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Dong-Gun Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| |
Collapse
|
30
|
Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers. PLoS One 2016; 11:e0161346. [PMID: 27584666 PMCID: PMC5008833 DOI: 10.1371/journal.pone.0161346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on transport of essential compounds and contaminants into milk.
Collapse
|
31
|
Toutain PL, Ferran AA, Bousquet-Melou A, Pelligand L, Lees P. Veterinary Medicine Needs New Green Antimicrobial Drugs. Front Microbiol 2016; 7:1196. [PMID: 27536285 PMCID: PMC4971058 DOI: 10.3389/fmicb.2016.01196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem.
Collapse
Affiliation(s)
- Pierre-Louis Toutain
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Aude A. Ferran
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Alain Bousquet-Melou
- Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM, Université de ToulouseToulouse, France
| | - Ludovic Pelligand
- Comparative Biomedical Sciences, The Royal Veterinary CollegeHatfield, UK
| | - Peter Lees
- Comparative Biomedical Sciences, The Royal Veterinary CollegeHatfield, UK
| |
Collapse
|
32
|
Vera-Candioti L, Teglia CM, Cámara MS. Dispersive liquid-liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design. Electrophoresis 2016; 37:2670-2677. [DOI: 10.1002/elps.201600103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/10/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Luciana Vera-Candioti
- Universidad Nacional del Litoral, CONICET, FBCB, Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ); Ciudad Universitaria; Santa Fe Argentina
| | - Carla M. Teglia
- Universidad Nacional del Litoral, CONICET, FBCB, Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ); Ciudad Universitaria; Santa Fe Argentina
| | - María S. Cámara
- UNL, FBCB, Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ); Cátedra de Química Analítica I; Santa Fe Argentina
| |
Collapse
|
33
|
Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters. Antimicrob Agents Chemother 2016; 60:3497-508. [PMID: 27021329 DOI: 10.1128/aac.03049-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/17/2016] [Indexed: 12/23/2022] Open
Abstract
Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters.
Collapse
|
34
|
Graouer-Bacart M, Sayen S, Guillon E. Adsorption of enrofloxacin in presence of Zn(II) on a calcareous soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:470-476. [PMID: 26408826 DOI: 10.1016/j.ecoenv.2015.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
As a result of their consumption, excretion, disposal and persistence, antibiotics enter the soil environment and may be transported to surface and ground waters. During their transfer through soils, retention processes play a key role in their mobility. Antibiotics often coexist with heavy metals in soils due to agricultural practices and other sources of inputs. In this context, this study deals with the co-adsorption of Zn(II) and enrofloxacin (ENR), a widely-used veterinary antibiotic, on a calcareous soil using batch retention experiments and X-ray Absorption Near Edge Structure (XANES) spectroscopy. To improve our understanding of the interaction of this emerging organic contaminant with metal cations at the water-soil interface, the ternary system containing ENR, Zn(II) and a selected calcareous soil was investigated over a pH range between 7 and 10, at different solid-solution contact times and ENR concentrations. The presence of Zn(II) slightly influenced the retention of the antibiotic, leading to an increase of the adsorbed ENR amounts. The distribution coefficient Kd value increased from 0.66 Lg(-1) for single ENR adsorption to 1.04 Lg(-1) in presence of Zn(II) at a 1/2 ENR/Zn(II) ratio. The combination of adsorption isotherm data, solution speciation diagrams and XANES spectra evidenced a small proportion of Zn(II)-ENR complexes at soil pH leading to the slight increase of ENR adsorption in presence of zinc. These results suggest that it is necessary to consider the interaction between ENR and metal cations when assessing the mobility of ENR in soils.
Collapse
Affiliation(s)
- Mareen Graouer-Bacart
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039-51687 Reims Cedex 2, France
| | - Stéphanie Sayen
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039-51687 Reims Cedex 2, France.
| | - Emmanuel Guillon
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, BP 1039-51687 Reims Cedex 2, France
| |
Collapse
|
35
|
Simultaneous Semimechanistic Population Analyses of Levofloxacin in Plasma, Lung, and Prostate To Describe the Influence of Efflux Transporters on Drug Distribution following Intravenous and Intratracheal Administration. Antimicrob Agents Chemother 2015; 60:946-54. [PMID: 26621623 DOI: 10.1128/aac.02317-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
Levofloxacin (LEV) is a broad-spectrum fluoroquinolone used to treat pneumonia, urinary tract infections, chronic bacterial bronchitis, and prostatitis. Efflux transporters, primarily P-glycoprotein (P-gp), are involved in LEV's tissue penetration. In the present work, LEV free lung and prostate interstitial space fluid (ISF) concentrations were evaluated by microdialysis in Wistar rats after intravenous (i.v.) and intratracheal (i.t.) administration (7 mg/kg of body weight) with and without coadministration of the P-gp inhibitor tariquidar (TAR; 15 mg/kg administered i.v.). Plasma and tissue concentration/time profiles were evaluated by noncompartmental analysis (NCA) and population pharmacokinetics (popPK) analysis. The NCA showed significant differences in bioavailability (F) for the control group (0.4) and the TAR group (0.86) after i.t. administration. A four-compartment model simultaneously characterized total plasma and free lung (compartment 2) and prostate (compartment 3) ISF concentrations. Statistically significant differences in lung and prostate average ISF concentrations and levels of kidney active secretion in the TAR group from those measured for the control group (LEV alone) were observed. The estimated population means were as follows: volume of the central compartment (V1), 0.321 liters; total plasma clearance (CL), 0.220 liters/h; TAR plasma clearance (CLTAR), 0.180 liters/h. The intercompartmental distribution rate constants (K values) were as follows: K12, 8.826 h(-1); K21, 7.271 h(-1); K13, 0.047 h(-1); K31, 7.738 h(-1); K14, 0.908 h(-1); K41, 0.409 h(-1); K21 lung TAR (K21LTAR), 8.883 h(-1); K31 prostate TAR (K31PTAR), 4.377 h(-1). The presence of P-gp considerably impacted the active renal secretion of LEV but had only a minor impact on the efflux from the lung following intratracheal dosing. Our results strongly support the idea of a role of efflux transporters other than P-gp contributing to LEV's tissue penetration into the prostrate.
Collapse
|
36
|
Arakawa H, Kamioka H, Kanagawa M, Hatano Y, Idota Y, Yano K, Morimoto K, Ogihara T. Possible interaction of quinolone antibiotics with peptide transporter 1 in oral absorption of peptide-mimetic drugs. Biopharm Drug Dispos 2015; 37:39-45. [PMID: 26590007 DOI: 10.1002/bdd.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
The study investigated whether quinolone antibiotics inhibit the PEPT1-mediated uptake of its substrates. Among the quinolones examined, lomefloxacin, moxifloxacin (MFLX) and purlifloxacin significantly inhibited the uptake of PEPT1 substrate phenylalanine-Ψ(CN-S)-alanine (Phe-Ψ-Ala) in HeLa/PEPT1 cells to 31.6 ± 1.3%, 27.6 ± 2.9%, 36.8 ± 2.2% and 32.6 ± 1.4%, respectively. Further examination showed that MFLX was an uncompetitive inhibitor, with an IC50 value of 4.29 ± 1.29 mm. In addition, MFLX significantly decreased the cephalexin and valacyclovir uptake in HeLa/PEPT1 cells. In an in vivo study in rats, the maximum plasma concentration (C(max)) of orally administered Phe-Ψ-Ala was significantly decreased in the presence of MFLX (171 ± 1 ng/ml) compared with that in its absence (244 ± 9 ng/ml). The area under the concentration-time curve (AUC) of orally administered Phe-Ψ-Ala in the presence of MFLX (338 ± 50 ng/ml · h) tended to decrease compared with that in its absence (399 ± 75 ng/ml · h). The oral bioavailability of Phe-Ψ-Ala in the presence and absence of MFLX was 41.7 ± 6.2% and 49.2 ± 9.2%, respectively. The results indicate that administration of quinolone antibiotics concomitantly with PEPT1 substrate drugs may potentially result in drug-drug interaction.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| | - Hiroki Kamioka
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| | - Masahiko Kanagawa
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| | - Yasuko Hatano
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| | - Yoko Idota
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| | - Kentaro Yano
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| | - Kaori Morimoto
- Department of Drug Absorption and Pharmacokinetics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi Takasaki-shi, Gunma, 370-0033, Japan
| |
Collapse
|
37
|
Zierath D, Kunze A, Fecteau L, Becker K. Effect of Antibiotic Class on Stroke Outcome. Stroke 2015; 46:2287-92. [PMID: 26138122 DOI: 10.1161/strokeaha.115.008663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/05/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Infections are common after stroke and associated with worse outcome. Clinical trials evaluating the benefit of prophylactic antibiotics have produced mixed results. This study explores the possibility that antibiotics of different classes may differentially affect stroke outcome. METHODS Lewis rats were subjected to transient cerebral ischemia (2 hours) and survived for 1 month. The day after stroke they were randomized to therapy with ceftiofur (a β-lactam antibiotic), enrofloxacin (a fluoroquinolone antibiotic), or vehicle (as controls) and underwent the equivalent of 7 days of treatment. Behavioral tests were performed weekly until euthanization. In a subset of animals, histology was done. RESULTS There were no differences in outcomes at 24 hours or 1 week after stroke among the different groups. At 1 month after stroke, however, performance on the rotarod was worse in enrofloxacin-treated animals when compared with control animals. CONCLUSIONS Independent of infection, the antibiotic enrofloxacin was associated with worse stroke outcome. These data echo the clinical observations to date and suggest that the secondary effects of antibiotics on stroke outcome should be considered when treating infection in subjects with stroke. The mechanism by which this antibiotic affects outcome needs to be elucidated.
Collapse
Affiliation(s)
- Dannielle Zierath
- From the Department of Neurology, University of Washington School of Medicine, Seattle
| | - Allison Kunze
- From the Department of Neurology, University of Washington School of Medicine, Seattle
| | - Leia Fecteau
- From the Department of Neurology, University of Washington School of Medicine, Seattle
| | - Kyra Becker
- From the Department of Neurology, University of Washington School of Medicine, Seattle.
| |
Collapse
|
38
|
Verstraelen J, Reichl S. Upregulation of P-glycoprotein expression by ophthalmic drugs in different corneal in-vitro models. ACTA ACUST UNITED AC 2015; 67:605-15. [PMID: 25643948 DOI: 10.1111/jphp.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/16/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to analyse P-glycoprotein (P-gp) expression in different human in-vitro cornea models (HCE-T epithelial model and Hemicornea construct) after stimulation with P-gp substrates (rhodamine 123, levofloxacin and acebutolol). METHODS The influence of P-gp substrates on mRNA expression was analysed using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR. The effect of stimulation on the transporter functionality was estimated with a digoxin efflux assay. The Caco-2 cell line was used as positive control. KEY FINDINGS The reverse transcriptase PCR results showed an increase in band intensity compared with the control medium for all substrates. The real-time PCR for the Caco-2 and HCE-T epithelial model yielded a similar outcome, in which all tested substrates upregulated P-gp. In contrast, the Hemicornea construct showed no significant increase in the mRNA expression after stimulation. Both in-vitro models possessed similar drug transport profiles after stimulation. A significantly increased efflux of digoxin was measured after 24 and 72 h of stimulation with levofloxacin and acebutolol. CONCLUSIONS The expression and functionality of the P-gp in corneal tissue can be influenced through time exposure with specific substrates. However, the exact mechanism still requires further elucidation.
Collapse
Affiliation(s)
- Jessica Verstraelen
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
39
|
Ahmadzai H, Tee LBG, Crowe A. Pharmacological role of efflux transporters: Clinical implications for medication use during breastfeeding. World J Pharmacol 2014; 3:153-161. [DOI: 10.5497/wjp.v3.i4.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
The World Health Organisation recommends exclusive breastfeeding for the first six months of an infant’s life and in combination with solid food thereafter. This recommendation was introduced based on research showing numerous health benefits of breastfeeding for both the mother and the infant. However, there is always concern regarding the transfer of medications from mother to their breastfed baby via milk. Pharmacokinetic properties of a drug are usually used to predict its transferability into breast milk. Although most drugs are compatible with breastfeeding, cases of toxic drug exposure have been reported. This is thought to be due to active transport mechanisms whereby efflux transporter proteins expressed in the epithelial cells of the mammary gland actively secrete drugs into milk. An example of such efflux transporters including the breast cancer resistance protein which is strongly induced during lactation and this could result in contamination of milk with the substrates of this transporter which may place the suckling infant at risk of toxicity. Furthermore, there is little known about the substrate specificity of most efflux transporters as we have highlighted in this review. There also exists some degree of contradiction between in vivo and in vitro studies which makes it difficult to conclusively predict outcomes and drug-drug interactions.
Collapse
|
40
|
Moreno-Sanz G, Barrera B, Armirotti A, Bertozzi SM, Scarpelli R, Bandiera T, Prieto JG, Duranti A, Tarzia G, Merino G, Piomelli D. Structural determinants of peripheral O-arylcarbamate FAAH inhibitors render them dual substrates for Abcb1 and Abcg2 and restrict their access to the brain. Pharmacol Res 2014; 87:87-93. [PMID: 24993496 DOI: 10.1016/j.phrs.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family - breast cancer resistance protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) - play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester). To define structure-activity relationships of the interaction of these molecules with Abcg2, in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the majority of compounds tested - even those able to enter the CNS in vivo - were substrates for Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also peripherally restricted in vivo. The extent of such restriction seems to depend upon other physicochemical features of the compounds, in particular the polar surface area. Consistent with these in vitro results, we found that URB937 readily enters the brain in dual knockout mice lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act together to restrict the access of URB937 to the CNS.
Collapse
Affiliation(s)
- Guillermo Moreno-Sanz
- Department of Anatomy and Neurobiology, University of California, Irvine 92697-4621, USA
| | - Borja Barrera
- INDEGSAL, Campus Vegazana s/n, University of Leon, 24071 Leon, Spain; Department of Biomedical Sciences - Physiology, Veterinary Faculty, Campus Vegazana s/n, University of Leon, 24071 Leon, Spain
| | - Andrea Armirotti
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Sine M Bertozzi
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Rita Scarpelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Tiziano Bandiera
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Julio G Prieto
- Department of Biomedical Sciences - Physiology, Veterinary Faculty, Campus Vegazana s/n, University of Leon, 24071 Leon, Spain
| | - Andrea Duranti
- Dipartimento di Scienze Biomolecolari, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, University of Urbino "Carlo Bo", Piazza del Rinascimento 6, I-61029 Urbino, Italy
| | - Gracia Merino
- INDEGSAL, Campus Vegazana s/n, University of Leon, 24071 Leon, Spain; Department of Biomedical Sciences - Physiology, Veterinary Faculty, Campus Vegazana s/n, University of Leon, 24071 Leon, Spain
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine 92697-4621, USA; Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy.
| |
Collapse
|
41
|
Marquez B, Pourcelle V, Vallet CM, Mingeot-Leclercq MP, Tulkens PM, Marchand-Bruynaert J, Van Bambeke F. Pharmacological Characterization of 7-(4-(Piperazin-1-yl)) Ciprofloxacin Derivatives: Antibacterial Activity, Cellular Accumulation, Susceptibility to Efflux Transporters, and Intracellular Activity. Pharm Res 2013; 31:1290-301. [DOI: 10.1007/s11095-013-1250-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/10/2013] [Indexed: 01/16/2023]
|
42
|
Guo M, Bughio S, Sun Y, Zhang Y, Dong L, Dai X, Wang L. Age-related P-glycoprotein expression in the intestine and affecting the pharmacokinetics of orally administered enrofloxacin in broilers. PLoS One 2013; 8:e74150. [PMID: 24066110 PMCID: PMC3774662 DOI: 10.1371/journal.pone.0074150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/27/2013] [Indexed: 01/02/2023] Open
Abstract
Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P<0.01) higher levels of P-gp mRNA in the liver, jejunum and ileum, than at other ages. However, there was no significant (P>0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg•ml-1, P=0.009), AUC(14.54 vs. 9.35 μg•ml-1•h, P=0.005) and Ka (1.38 vs. 0.43 h-1, P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy.
Collapse
Affiliation(s)
- Mengjie Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Shamsuddin Bughio
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Yong Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Yu Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Lingling Dong
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Xiaohua Dai
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- * E-mail:
| |
Collapse
|
43
|
Graouer-Bacart M, Sayen S, Guillon E. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu(II). J Colloid Interface Sci 2013; 408:191-9. [PMID: 23953649 DOI: 10.1016/j.jcis.2013.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 01/16/2023]
Abstract
The co-adsorption of copper and the fluoroquinolone antibiotic enrofloxacin (ENR) at the water-soil interface was studied by means of batch adsorption experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The system was investigated over a pH range between 6 and 10, at different contact times, ionic strengths, and ENR concentrations. Adsorption coefficient - Kd - was determined at relevant environmental concentrations and the value obtained in water at a ionic strength imposed by the soil and at soil natural pH was equal to 0.66Lg(-1). ENR adsorption onto the soil showed strong pH dependence illustrating the influence of the electrostatic interactions in the sorption processes. The simultaneous co-adsorption of ENR and Cu(II) on the soil was also investigated. The presence of Cu(II) strongly influenced the retention of the antibiotic, leading to an increase up to 35% of adsorbed ENR amount. The combined quantitative and spectroscopic results showed that Cu(II) and ENR directly interacted at the water-soil interface to form ternary surface complexes. Cu K-edge EXAFS data indicated a molecular structure where the carboxylate and carbonyl groups of ENR coordinate to Cu(II) to form a 6-membered chelate ring and where Cu(II) bridges between ENR and the soil surface sites. Cu(II) bonds bidentately to the surface in an inner-sphere mode. Thus, the spectroscopic data allowed us to propose the formation of ternary surface complexes with the molecular architecture soil-Cu(II)-ENR.
Collapse
Affiliation(s)
- Mareen Graouer-Bacart
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | | | | |
Collapse
|
44
|
Sweeney MT, Quesnell R, Tiwari R, Lemay M, Watts JL. In vitro activity and rodent efficacy of clinafloxacin for bovine and swine respiratory disease. Front Microbiol 2013; 4:154. [PMID: 23785362 PMCID: PMC3682159 DOI: 10.3389/fmicb.2013.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/29/2013] [Indexed: 01/16/2023] Open
Abstract
Clinafloxacin is a broad-spectrum fluoroquinolone that was originally developed and subsequently abandoned in the late 1990s as a human health antibiotic for respiratory diseases. The purpose of this study was to investigate the activity of clinafloxacin as a possible treatment for respiratory disease in cattle and pigs. Minimum inhibitory concentration (MIC) values were determined using Clinical and Laboratory Standards Institute recommended procedures with recent strains from the Zoetis culture collection. Rodent efficacy was determined in CD-1 mice infected systemically or intranasally with bovine Mannheimia haemolytica or Pasteurella multocida, or swine Actinobacillus pleuropneumoniae, and administered clinafloxacin for determination of ED50 (efficacious dose-50%) values. The MIC90 values for clinafloxacin against bovine P. multocida, M. haemolytica, Histophilus somni, and M. bovis were 0.125, 0.5, 0.125, and 1 μg/ml, respectively, and the MIC90 values against swine P. multocida, A. pleuropneumoniae, S. suis, and M. hyopneumoniae were í0.03, í0.03, 0.125, and í0.008 μg/ml, respectively. Efficacy in mouse models showed average ED50 values of 0.019 mg/kg/dose in the bovine M. haemolytica systemic infection model, 0.55 mg/kg in the bovine P. multocida intranasal lung challenge model, 0.08 mg/kg/dose in the bovine P. multocida systemic infection model, and 0.7 mg/kg/dose in the swine A. pleuropneumoniae systemic infection model. Clinafloxacin shows good in vitro activity and efficacy in mouse models and may be a novel treatment alternative for the treatment of respiratory disease in cattle and pigs.
Collapse
|
45
|
Wassermann L, Halwachs S, Lindner S, Honscha KU, Honscha W. Determination of Functional ABCG2 Activity and Assessment of Drug–ABCG2 Interactions in Dairy Animals Using a Novel MDCKII In Vitro Model. J Pharm Sci 2013. [DOI: 10.1002/jps.23399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Jin HE, Song B, Kim SB, Shim WS, Kim DD, Chong S, Chung SJ, Shim CK. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug. Xenobiotica 2012; 43:355-67. [DOI: 10.3109/00498254.2012.720740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Arakawa H, Shirasaka Y, Haga M, Nakanishi T, Tamai I. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm Drug Dispos 2012; 33:332-41. [DOI: 10.1002/bdd.1809] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/31/2012] [Accepted: 08/11/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Makoto Haga
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki; Noda; Chiba; 278-8510; Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi; Kanazawa; 920-1192; Japan
| | | |
Collapse
|
48
|
Lee J, Seong SJ, Lim MS, Park SM, Park J, Seo JJ, Lee HW, Yoon YR. Single-dose pharmacokinetics and dose proportionality of intravenous pazufloxacin mesilate in healthy Korean volunteers. Expert Opin Drug Metab Toxicol 2012; 8:921-8. [DOI: 10.1517/17425255.2012.688951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Mulgaonkar A, Venitz J, Sweet DH. Fluoroquinolone disposition: identification of the contribution of renal secretory and reabsorptive drug transporters. Expert Opin Drug Metab Toxicol 2012; 8:553-69. [PMID: 22435536 DOI: 10.1517/17425255.2012.674512] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Fluoroquinolones (FQs) exist as charged molecules in blood and urine making their absorption, distribution, and elimination likely to be influenced by active transport mechanisms. Greater understanding of in vivo FQ clearance mechanisms should help improve the predictability of drug-drug interactions, enhance the clinical safety and efficacy, and aid future novel drug design strategies. AREAS COVERED The authors present an overview of FQ development and associated drug-drug interactions, followed by systematic quantitative review of the physicochemical and in vivo pharmacokinetic properties for 15 representative FQs using historical clinical literature. These results were correlated with in vitro studies implicating drug transporters in FQ clearance to link clinical and in vitro evidence supporting the contribution of drug transport mechanisms to FQ disposition. Specific transporters likely to handle FQs in human renal proximal tubule cells are also identified. EXPERT OPINION Renal handling, that is, tubular secretion and reabsorption, appears to be the main determinant of FQ plasma half-life, clinical duration of action, and drug-drug interactions. Due to their zwitterionic nature, FQs are likely to interact with organic anion and cation transporters within the solute carrier (SLC) superfamily, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, and MATE2. The ATP-binding cassette (ABC) transporters MDR1, MRP2, MRP4, and BCRP also may interact with FQs.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Virginia Commonwealth University, School of Pharmacy, Department of Pharmaceutics, Richmond, VA 23298, USA
| | | | | |
Collapse
|
50
|
Puhl NJ, Uwiera RRE, Yanke LJ, Selinger LB, Inglis GD. Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice. Anaerobe 2011; 18:67-75. [PMID: 22185696 DOI: 10.1016/j.anaerobe.2011.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/24/2011] [Accepted: 12/06/2011] [Indexed: 01/16/2023]
Abstract
The influence of three antibiotics (bacitracin, enrofloxacin, and neomycin sulfate) on the mucosa-associated enteric microbiota and the intestines of mice was examined. Antibiotics caused conspicuous enlargement of ceca and an increase in overall length of the intestine. However, there were no pathologic changes associated with increased cecal size or length of the intestine. Conspicuous reductions in the richness of mucosa-associated bacteria and changes to community profiles within the small (duodenum, proximal jejunum, middle jejunum, distal jejunum, and ileum) and large (cecum, ascending colon, and descending colon) intestine occurred in mice administered antibiotics. Communities in antibiotic-treated mice were dominated by a limited number of Clostridium-like (i.e. clostridial cluster XIVa) and Bacteroides species. The richness of mucosa-associated communities within the small and large intestine increased during the 14-day recovery period. However, community profiles within the large intestine did not return to baseline (i.e. relative to the control). Although antibiotic administration greatly reduced bacterial richness, densities of mucosa-associated bacteria were not reduced correspondingly. These data showed that the antibiotics, bacitracin, enrofloxacin, and neomycin sulfate, administered for 21 days to mice did not sterilize the intestine, but did impart a tremendous and prolonged impact on mucosa-associated bacterial communities throughout the small and large intestine.
Collapse
Affiliation(s)
- Nathan J Puhl
- Agriculture and Agri-Food Canada Research Centre, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1, Canada
| | | | | | | | | |
Collapse
|