1
|
Wang D, Ikemura K, Hasegawa T, Yamane F, Okuda M. Contribution of human organic anion transporter 3-mediated transport of a major linezolid metabolite, PNU-142586, in linezolid-induced thrombocytopenia. Biomed Pharmacother 2024; 175:116801. [PMID: 38781867 DOI: 10.1016/j.biopha.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Thrombocytopenia, a common adverse effect of linezolid, often occurs in patients lacking typical risk factors. In this study, we investigated the key risk factors for linezolid-induced thrombocytopenia using two real-world clinical databases and explored its underlying mechanism through in vitro and in vivo experiments. In a retrospective analysis of 150 linezolid-treated patients, multivariate analysis identified coadministration of lansoprazole, a proton pump inhibitor, as a significant independent risk factor for thrombocytopenia (odds ratio: 2.33, p = 0.034). Additionally, analysis of the Food and Drug Administration Adverse Event Reporting System database revealed a reporting odds ratio of thrombocytopenia for lansoprazole of 1.64 (95% CI: 1.25-2.16). In vitro studies showed that the uptake of PNU-142586, a major linezolid metabolite, was significantly higher in human organic anion transporter 3-expressing HEK293 (HEK-hOAT3) cells compared to HEK-pBK cells. The apparent IC50 value of lansoprazole against hOAT3-mediated transport of PNU-142586 was 0.59 ± 0.38 µM. In a pharmacokinetic study using rats, coadministration of linezolid with lansoprazole intravenously resulted in approximately a 1.7-fold increase in the area under the plasma concentration-time curve of PNU-142586, but not linezolid and PNU-142300. Moreover, PNU-142586, but not linezolid, exhibited concentration-dependent cytotoxicity in a human megakaryocytic cell line. These findings suggest that linezolid-induced thrombocytopenia should be due to delayed elimination of PNU-142586. Furthermore, delayed elimination of PNU-142586 due to renal failure and hOAT3-mediated transport inhibition by lansoprazole should exacerbate linezolid-induced thrombocytopenia.
Collapse
Affiliation(s)
- Danni Wang
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan
| | - Kenji Ikemura
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan; Department of Pharmacy, Osaka University Hospital, Suita, Osaka 5650871, Japan.
| | - Tsubasa Hasegawa
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan
| | - Fumihiro Yamane
- Department of Hospital Pharmacy, School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Masahiro Okuda
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan; Department of Pharmacy, Osaka University Hospital, Suita, Osaka 5650871, Japan
| |
Collapse
|
2
|
Karbowska M, Pawlak K, Sieklucka B, Domaniewski T, Lebkowska U, Zawadzki R, Pawlak D. Dose-dependent exposure to indoxyl sulfate alters AHR signaling, sirtuins gene expression, oxidative DNA damage, and bone mineral status in rats. Sci Rep 2024; 14:2583. [PMID: 38297036 PMCID: PMC10831046 DOI: 10.1038/s41598-024-53164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Indoxyl sulfate (IS), an agonist of aryl hydrocarbon receptors (AhR), can accumulate in patients with chronic kidney disease, but its direct effect on bone is not clear. The present study investigated the effect of chronic exposure to low (100 mg/kg b.w.; 100 IS) and high (200 mg/kg b.w.; 200 IS) dose of IS on bone AhR pathway, sirtuins (SIRTs) expression, oxidative DNA damage and bone mineral status in Wistar rats. The accumulation of IS was observed only in trabecular bone tissue in both doses. The differences were observed in the bone parameters, depending on the applied IS dose. The exposure to 100 IS increased AhR repressor (AhRR)-CYP1A2 gene expression, which was associated with SIRT-1, SIRT-3 and SIRT-7 expression. At the low dose group, the oxidative DNA damage marker was unchanged in the bone samples, and it was inversely related to the abovementioned SIRTs expression. In contrast, the exposure to 200 IS reduced the expression of AhRR, CYP1A, SIRT-3 and SIRT-7 genes compared to 100 IS. The level of oxidative DNA damage was higher in trabecular bone in 200 IS group. Femoral bone mineral density was decreased, and inverse relations were noticed between the level of trabecular oxidative DNA damage and parameters of bone mineral status. In conclusion, IS modulates AhR-depending signaling affecting SIRTs expression, oxidative DNA damage and bone mineral status in a dose dependent manner.
Collapse
Affiliation(s)
- Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland.
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Urszula Lebkowska
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Radoslaw Zawadzki
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
3
|
Zhi H, Dai Y, Su L, Yang L, Wu W, Wang Z, Zhu X, Liu L, Aa J, Yang H. Thioacetamide-Induced Acute Liver Injury Increases Metformin Plasma Exposure by Downregulating Renal OCT2 and MATE1 Expression and Function. Biomedicines 2023; 11:3314. [PMID: 38137535 PMCID: PMC10741527 DOI: 10.3390/biomedicines11123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin plasma exposure is increased in rats with thioacetamide (TAA)-induced liver failure. The absorption, distribution, and excretion process of metformin is mainly mediated by organic cation transporters (OCTs) and multidrug and toxin extrusion transporters (MATEs). To investigate the mechanisms of the increase in TAA-induced metformin plasma exposure, we employed intestinal perfusion and urinary excretion assays to evaluate the changes in the absorption and excretion of metformin and used Western blotting to investigate the metformin-related transport proteins' expression changes and mechanisms. The results showed that neither intestinal OCT2 expression nor metformin intestinal absorption were significantly altered by TAA-induced liver failure, while significantly decreased expression and function of renal OCT2 and MATE1 as well as impaired metformin excretion were observed in TAA rats. HK-2 cells were used as an in vitro model to explore the mechanism of liver-failure-mediated downregulation in renal OCT2 and MATE1. The results demonstrated that among numerous abnormal substances that changed in acute liver failure, elevated estrogen levels and tumor necrosis factor-α were the main factors mediating the downregulation of OCT2 and MATE1. In conclusion, this study highlights the downregulation of renal OCT2 and MATE1 in liver injury and its regulatory mechanism and reveals its roles in the increase in TAA-mediated metformin plasma exposure.
Collapse
Affiliation(s)
- Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Yidong Dai
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Lin Su
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Lu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Wenhan Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Zehua Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Xinyue Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hanyu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (Y.D.); (L.S.); (L.Y.); (W.W.); (Z.W.); (X.Z.); (L.L.)
| |
Collapse
|
4
|
Lin K, Kong X, Tao X, Zhai X, Lv L, Dong D, Yang S, Zhu Y. Research Methods and New Advances in Drug-Drug Interactions Mediated by Renal Transporters. Molecules 2023; 28:5252. [PMID: 37446913 DOI: 10.3390/molecules28135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
5
|
Hong S, Li S, Meng X, Li P, Wang X, Su M, Liu X, Liu L. Bile duct ligation differently regulates protein expressions of organic cation transporters in intestine, liver and kidney of rats through activation of farnesoid X receptor by cholate and bilirubin. Acta Pharm Sin B 2023; 13:227-245. [PMID: 36815051 PMCID: PMC9939304 DOI: 10.1016/j.apsb.2022.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Body is equipped with organic cation transporters (OCTs). These OCTs mediate drug transport and are also involved in some disease process. We aimed to investigate whether liver failure alters intestinal, hepatic and renal Oct expressions using bile duct ligation (BDL) rats. Pharmacokinetic analysis demonstrates that BDL decreases plasma metformin exposure, associated with decreased intestinal absorption and increased urinary excretion. Western blot shows that BDL significantly downregulates intestinal Oct2 and hepatic Oct1 but upregulates renal and hepatic Oct2. In vitro cell experiments show that chenodeoxycholic acid (CDCA), bilirubin and farnesoid X receptor (FXR) agonist GW4064 increase OCT2/Oct2 but decrease OCT1/Oct1, which are remarkably attenuated by glycine-β-muricholic acid and silencing FXR. Significantly lowered intestinal CDCA and increased plasma bilirubin levels contribute to different Octs regulation by BDL, which are confirmed using CDCA-treated and bilirubin-treated rats. A disease-based physiologically based pharmacokinetic model characterizing intestinal, hepatic and renal Octs was successfully developed to predict metformin pharmacokinetics in rats. In conclusion, BDL remarkably downregulates expressions of intestinal Oct2 and hepatic Oct1 protein while upregulates expressions of renal and hepatic Oct2 protein in rats, finally, decreasing plasma exposure and impairing hypoglycemic effects of metformin. BDL differently regulates Oct expressions via Fxr activation by CDCA and bilirubin.
Collapse
Affiliation(s)
- Shijin Hong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Shuai Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaoyan Meng
- Tianjin Institutes of Pharmaceutical Research, Tianjin 300301, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xun Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Mengxiang Su
- Departments of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| |
Collapse
|
6
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
7
|
Bile Acid-Drug Interaction via Organic Anion-Transporting Polypeptide 4C1 Is a Potential Mechanism of Altered Pharmacokinetics of Renally Excreted Drugs. Int J Mol Sci 2022; 23:ijms23158508. [PMID: 35955643 PMCID: PMC9369231 DOI: 10.3390/ijms23158508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with liver diseases not only experience the adverse effects of liver-metabolized drugs, but also the unexpected adverse effects of renally excreted drugs. Bile acids alter the expression of renal drug transporters, however, the direct effects of bile acids on drug transport remain unknown. Renal drug transporter organic anion-transporting polypeptide 4C1 (OATP4C1) was reported to be inhibited by chenodeoxycholic acid. Therefore, we predicted that the inhibition of OATP4C1-mediated transport by bile acids might be a potential mechanism for the altered pharmacokinetics of renally excreted drugs. We screened 45 types of bile acids and calculated the IC50, Ki values, and bile acid−drug interaction (BDI) indices of bile acids whose inhibitory effect on OATP4C1 was >50%. From the screening results, lithocholic acid (LCA), glycine-conjugated lithocholic acid (GLCA), and taurine-conjugated lithocholic acid (TLCA) were newly identified as inhibitors of OATP4C1. Since the BDI index of LCA was 0.278, LCA is likely to inhibit OATP4C1-mediated transport in clinical settings. Our findings suggest that dose adjustment of renally excreted drugs may be required in patients with renal failure as well as in patients with hepatic failure. We believe that our findings provide essential information for drug development and safe drug treatment in clinics.
Collapse
|
8
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Taniguchi T, Omura K, Motoki K, Sakai M, Chikamatsu N, Ashizawa N, Takada T, Iwanaga T. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2. Sci Rep 2021; 11:7232. [PMID: 33790363 PMCID: PMC8012596 DOI: 10.1038/s41598-021-86662-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
Indoxyl sulfate (IS) accumulates in the body in chronic kidney disease (CKD). In the renal proximal tubules, IS excretion is mediated by OAT1/3 and ABCG2. These transporters are inhibited by some hypouricemic agents; OATs by probenecid and benzbromarone, ABCG2 by febuxostat and benzbromarone. Thus, we evaluated whether hypouricemic agents including dotinurad, a novel selective urate reabsorption inhibitor with minimal effect on OATs or ABCG2, affect IS clearance in rats. Intact and adenine-induced acute renal failure rats were orally administered hypouricemic agents, and both endogenous IS and exogenously administered stable isotope-labeled d4-IS in the plasma and kidney were measured. Our results demonstrated that OATs inhibitors, such as probenecid, suppress IS uptake into the kidney, leading to increased plasma IS concentration, whereas ABCG2 inhibitors, such as febuxostat, cause renal IS accumulation remarkably by suppressing its excretion in intact rats. The effects of these agents were reduced in adenine-induced acute renal failure rats, presumably due to substantial decrease in renal OAT1/3 and ABCG2 expression. Dotinurad did not significantly affected the clearance of IS under both conditions. Therefore, we suggest that hypouricemic agents that do not affect OATs and ABCG2 are effective therapeutic options for the treatment of hyperuricemia complicated by CKD.
Collapse
Affiliation(s)
- Tetsuya Taniguchi
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan.
| | - Koichi Omura
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan
| | - Keisuke Motoki
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan
| | - Miku Sakai
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan
| | - Noriko Chikamatsu
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan
| | - Naoki Ashizawa
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Iwanaga
- Research Laboratories 2, Fuji Yakuhin Co., Ltd., 636-1, Iida-Shinden, Nishi-ku, Saitama, Japan
| |
Collapse
|
10
|
Melchior M, Dingemanse J, Alatrach A, Feldkamp T, Sidharta PN, Géhin M. Effect of Renal Function Impairment on the Pharmacokinetics, Safety, and Tolerability of the Iminosugar Sinbaglustat. J Clin Pharmacol 2021; 61:932-938. [PMID: 33368330 DOI: 10.1002/jcph.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 11/07/2022]
Abstract
Sinbaglustat (ACT-519276), a brain-penetrating inhibitor of glucosylceramide synthase and nonlysosomal glucosylceramidase, is developed as a new therapy for lysosomal storage disorders. In the first-in-human study, sinbaglustat was primarily excreted unchanged in urine. This study was conducted to evaluate the effect of mild, moderate, and severe renal function impairment on the safety, tolerability, and pharmacokinetics (PK) of sinbaglustat. In this single-center, open-label study, 32 subjects (8 per renal function group, assessed by the Cockcroft-Gault formula, and 8 healthy subjects) received a single oral dose of 200 mg sinbaglustat. Plasma PK parameters of sinbaglustat were derived by noncompartmental analysis. Standard safety and tolerability evaluations were analyzed descriptively. When compared with healthy subjects, Cmax did not present clinically relevant differences in subjects with impaired renal function, but median tmax was slightly longer in subjects with moderate and severe renal function impairment. Overall, when compared with healthy subjects, exposure to sinbaglustat based on AUC0-t (geometric mean and 90% confidence interval) increased in subjects with mild, moderate, and severe renal function impairment by 1.2-fold (1.08- to 1.36-fold), 1.8-fold (1.47- to 2.17-fold), and 2.6-fold (2.23- to 3.00-fold), respectively. There were no clinically relevant findings on electrocardiogram, vital signs, and clinical laboratory variables. Headache was reported by 2 of 24 subjects with renal function impairment and by 2 of 8 healthy subjects. In conclusion, 200 mg of sinbaglustat was well tolerated in all groups. In future studies, a 2- and 3-fold dose reduction is needed for subjects with moderate and severe renal function impairment, respectively.
Collapse
Affiliation(s)
- Meggane Melchior
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Thorsten Feldkamp
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, Kiel, Germany
| | - Patricia N Sidharta
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Martine Géhin
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
11
|
Chen H, Wang T, Yang J, Huang S, Zeng P. Improved Detection of Potentially Pleiotropic Genes in Coronary Artery Disease and Chronic Kidney Disease Using GWAS Summary Statistics. Front Genet 2020; 11:592461. [PMID: 33343632 PMCID: PMC7744760 DOI: 10.3389/fgene.2020.592461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
The coexistence of coronary artery disease (CAD) and chronic kidney disease (CKD) implies overlapped genetic foundation. However, the common genetic determination between the two diseases remains largely unknown. Relying on summary statistics publicly available from large scale genome-wide association studies (n = 184,305 for CAD and n = 567,460 for CKD), we observed significant positive genetic correlation between CAD and CKD (rg = 0.173, p = 0.024) via the linkage disequilibrium score regression. Next, we implemented gene-based association analysis for each disease through MAGMA (Multi-marker Analysis of GenoMic Annotation) and detected 763 and 827 genes associated with CAD or CKD (FDR < 0.05). Among those 72 genes were shared between the two diseases. Furthermore, by integrating the overlapped genetic information between CAD and CKD, we implemented two pleiotropy-informed informatics approaches including cFDR (conditional false discovery rate) and GPA (Genetic analysis incorporating Pleiotropy and Annotation), and identified 169 and 504 shared genes (FDR < 0.05), of which 121 genes were simultaneously discovered by cFDR and GPA. Importantly, we found 11 potentially new pleiotropic genes related to both CAD and CKD (i.e., ARHGEF19, RSG1, NDST2, CAMK2G, VCL, LRP10, RBM23, USP10, WNT9B, GOSR2, and RPRML). Five of the newly identified pleiotropic genes were further repeated via an additional dataset CAD available from UK Biobank. Our functional enrichment analysis showed that those pleiotropic genes were enriched in diverse relevant pathway processes including quaternary ammonium group transmembrane transporter, dopamine transport. Overall, this study identifies common genetic architectures overlapped between CAD and CKD and will help to advance understanding of the molecular mechanisms underlying the comorbidity of the two diseases.
Collapse
Affiliation(s)
- Haimiao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinna Yang
- Department of Infectious Diseases, People's Hospital of Zhuji, Shaoxing, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
13
|
Jiang LL, Gong X, Ji MY, Wang CC, Wang JH, Li MH. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia. Foods 2020; 9:foods9080973. [PMID: 32717824 PMCID: PMC7466221 DOI: 10.3390/foods9080973] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperuricemia is a common metabolic disease that is caused by high serum uric acid levels. It is considered to be closely associated with the development of many chronic diseases, such as obesity, hypertension, hyperlipemia, diabetes, and cardiovascular disorders. While pharmaceutical drugs have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional foods have been demonstrated to be active in the treatment of hyperuricemia with only minimal side effects. Indeed, previous reports have revealed the significant impact of bioactive compounds from plant-based functional foods on hyperuricemia. This review focuses on plant-based functional foods that exhibit a hypouricemic function and discusses the different bioactive compounds and their pharmacological effects. More specifically, the bioactive compounds of plant-based functional foods are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins, polysaccharides, and others. In addition, the mechanism by which these bioactive compounds exhibit a hypouricemic effect is summarized into three classes, namely the inhibition of uric acid production, improved renal uric acid elimination, and improved intestinal uric acid secretion. Overall, this current and comprehensive review examines the use of bioactive compounds from plant-based functional foods as natural remedies for the management of hyperuricemia.
Collapse
Affiliation(s)
- Lin-Lin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Ming-Yue Ji
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Cong-Cong Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Jian-Hua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| | - Min-Hui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
- Department of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| |
Collapse
|
14
|
Schijvens AM, de Wildt SN, Schreuder MF. Pharmacokinetics in children with chronic kidney disease. Pediatr Nephrol 2020; 35:1153-1172. [PMID: 31375913 PMCID: PMC7248054 DOI: 10.1007/s00467-019-04304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
In children, the main causes of chronic kidney disease (CKD) are congenital diseases and glomerular disorders. CKD is associated with multiple physiological changes and may therefore influence various pharmacokinetic (PK) parameters. A well-known consequence of CKD on pharmacokinetics is a reduction in renal clearance due to a decrease in the glomerular filtration rate. The impact of renal impairment on pharmacokinetics is, however, not limited to a decreased elimination of drugs excreted by the kidney. In fact, renal dysfunction may lead to modifications in absorption, distribution, transport, and metabolism as well. Currently, insufficient evidence is available to guide dosing decisions on many commonly used drugs. Moreover, the impact of maturation on drug disposition and action should be taken into account when selecting and dosing drugs in the pediatric population. Clinicians should take PK changes into consideration when selecting and dosing drugs in pediatric CKD patients in order to avoid toxicity and increase efficiency of drugs in this population. The aim of this review is to summarize known PK changes in relation to CKD and to extrapolate available knowledge to the pediatric CKD population to provide guidance for clinical practice.
Collapse
Affiliation(s)
- Anne M Schijvens
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel F Schreuder
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Oakley CI, Vallejo JA, Wang D, Gray MA, Tiede-Lewis LM, Shawgo T, Daon E, Zorn G, Stubbs JR, Wacker MJ. Trimethylamine- N-oxide acutely increases cardiac muscle contractility. Am J Physiol Heart Circ Physiol 2020; 318:H1272-H1282. [PMID: 32243768 DOI: 10.1152/ajpheart.00507.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine-N-oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated. We hypothesized that pathological concentrations of TMAO would acutely increase cardiac and smooth muscle contractility. These effects may ultimately contribute to cardiac dysfunction during CKD. High levels of TMAO significantly increased paced, ex vivo human cardiac muscle biopsy contractility (P < 0.05). Similarly, TMAO augmented contractility in isolated mouse hearts (P < 0.05). Reverse perfusion of TMAO through the coronary arteries via a Langendorff apparatus also enhanced cardiac contractility (P < 0.05). In contrast, the precursor molecule, trimethylamine (TMA), did not alter contractility (P > 0.05). Multiphoton microscopy, used to capture changes in intracellular calcium in paced, adult mouse hearts ex vivo, showed that TMAO significantly increased intracellular calcium fluorescence (P < 0.05). Interestingly, acute administration of TMAO did not have a statistically significant influence on isolated aortic ring contractility (P > 0.05). We conclude that TMAO directly increases the force of cardiac contractility, which corresponds with TMAO-induced increases in intracellular calcium but does not acutely affect vascular smooth muscle or endothelial function of the aorta. It remains to be determined if this acute inotropic action on cardiac muscle is ultimately beneficial or harmful in the setting of CKD.NEW & NOTEWORTHY We demonstrate for the first time that elevated concentrations of TMAO acutely augment myocardial contractile force ex vivo in both murine and human cardiac tissue. To gain mechanistic insight into the processes that led to this potentiation in cardiac contraction, we used two-photon microscopy to evaluate intracellular calcium in ex vivo whole hearts loaded with the calcium indicator dye Fluo-4. Acute treatment with TMAO resulted in increased Fluo-4 fluorescence, indicating that augmented cytosolic calcium plays a role in the effects of TMAO on force production. Lastly, TMAO did not show an effect on aortic smooth muscle contraction or relaxation properties. Our results demonstrate novel, acute, and direct actions of TMAO on cardiac function and help lay the groundwork for future translational studies investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during CKD.
Collapse
Affiliation(s)
- Carlee I Oakley
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Julian A Vallejo
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Derek Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Mark A Gray
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Tilitha Shawgo
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Emmanuel Daon
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - George Zorn
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R Stubbs
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael J Wacker
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
16
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Impaired renal organic anion transport 1 (SLC22A6) and its regulation following acute myocardial infarction and reperfusion injury in rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2342-2355. [DOI: 10.1016/j.bbadis.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 01/10/2023]
|
18
|
Nishizawa K, Yoda N, Morokado F, Komori H, Nakanishi T, Tamai I. Changes of drug pharmacokinetics mediated by downregulation of kidney organic cation transporters Mate1 and Oct2 in a rat model of hyperuricemia. PLoS One 2019; 14:e0214862. [PMID: 30951542 PMCID: PMC6450621 DOI: 10.1371/journal.pone.0214862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
The effects of hyperuricemia on the expression of kidney drug transporters and on the pharmacokinetics of several substrate drugs were examined. We first established a rat model of hyperuricemia without marked symptoms of chronic kidney failure by 10-day co-administration of oxonic acid (uricase inhibitor) and adenine (biosynthetic precursor of uric acid). These hyperuricemic rats showed plasma uric acid concentrations of up to 6 mg/dL, which is similar to the serum uric acid level in hyperuricemic humans, with little change of inulin clearance. The mRNA levels of multidrug and toxin extrusion 1 (Mate1, Slc47a1), organic anion transporter 1 (Oat1, Slc22a6), organic cation transporter 2 (Oct2, Slc22a2), urate transporter 1 (Urat1, Slc22a12) and peptide transporter 1 (Pept1, Slc15a1) were significantly decreased in kidney of hyperuricemic rats. Since Oct2, Mate1 and Oat1 are important for renal drug elimination, we next investigated whether the pharmacokinetics of their substrates, metformin, cephalexin and creatinine, were altered. The plasma concentration of metformin was not affected, while its kidney tissue accumulation was significantly increased. The plasma concentration and kidney tissue accumulation of cephalexin and the plasma concentration of creatinine were also increased. Furthermore, the protein expression of kidney Mate1 was decreased in hyperuricemic rats. Accordingly, although multiple factors may influence renal handling of these drugs, these observations can be accounted for, at least in part, by downregulation of Mate1-mediated apical efflux from tubular cells and Oct2-mediated basolateral uptake. Our results suggest that hyperuricemia could alter the disposition of drugs that are substrates of Mate1 and/or Oct2.
Collapse
Affiliation(s)
- Kei Nishizawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriaki Yoda
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Drug Metabolism and Pharmacokinetics, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Fumi Morokado
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisakazu Komori
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
19
|
Simulation-Based Analysis of the Impact of Renal Impairment on the Pharmacokinetics of Highly Metabolized Compounds. Pharmaceutics 2019; 11:pharmaceutics11030105. [PMID: 30832339 PMCID: PMC6471170 DOI: 10.3390/pharmaceutics11030105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Abstract
Renal impairment (RI) is a highly prevalent disease which can alter the pharmacokinetics (PK) of xenobiotics, including those that are predominately metabolized. The expression and activity of drug metabolizing enzymes (DMEs) and protein binding of compounds has been demonstrated to be affected in RI. A simulation based approach allows for the characterization of the impact of changes in these factors on the PK of compounds which are highly metabolized and allows for improved prediction of PK in RI. Simulations with physiologically based pharmacokinetic (PBPK) modeling was utilized to define the impact of these factors in PK in RI for a model substrate, nifedipine. Changes in fraction unbound and DME expression/activity had profound effects on PK in RI. Increasing fraction unbound and DME expression resulted in a reduction in exposure of nifedipine, while the reduction of DME activity resulted in an increase in exposure. In vitro and preclinical data were utilized to inform simulations for nifedipine, sildenafil and zidovudine. Increasing fraction unbound and changes in the expression/activity of DMEs led to improved predictions of PK. Further characterization of the impact of RI on these factors is warranted in order to better inform a priori predictions of PK in RI.
Collapse
|
20
|
Follman KE, Dave RA, Morris ME. Effects of renal impairment on transporter-mediated renal reabsorption of drugs and renal drug-drug interactions: A simulation-based study. Biopharm Drug Dispos 2018; 39:218-231. [PMID: 29635775 DOI: 10.1002/bdd.2128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
Abstract
Renal impairment (RI) significantly impacts the clearance of drugs through changes in the glomerular filtration rate, protein binding and alterations in the expression of renal drug transport proteins and hepatic metabolizing enzymes. The objectives of this study were to evaluate quantitatively the effects of renal impairment on the pharmacokinetics of drugs undergoing renal transporter-mediated reabsorption. A previously published semi-mechanistic kidney model incorporating physiologically relevant fluid reabsorption and transporter-mediated active renal reabsorption (PMID: 26341876) was utilized in this study. The probe drug/transporter pair utilized was γ-hydroxybutyric acid (GHB) and monocarboxylate transporter 1 (SCL16A1, MCT1). γ-Hydroxybutyric acid concentrations in the blood and amount excreted into urine were simulated using ADAPT 5 for the i.v. dose range of 200-1500 mg/kg in rats and the impact of renal impairment on CLR and AUC was evaluated. A 90% decrease in GFR resulted in a > 100-fold decrease in GHB CLR . When expression of reabsorptive transporters was decreased and fu was increased, CLR approached GFR. The effect of renal impairment on CLR was reduced when the expression of drug metabolizing enzymes (DME) was increased as a result of increased metabolic clearance; the converse held true when the DME expression was decreased. In conclusion, this study quantitatively demonstrated that the effects of renal insufficiency on the clearance of drugs is modulated by transporter expression, contribution of renal clearance to overall clearance, expression of drug metabolizing enzymes, fraction unbound and drug-drug interactions with inhibitors of renal transporters that may be increased in the presence of renal impairment.
Collapse
Affiliation(s)
- Kristin E Follman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rutwij A Dave
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
21
|
Rhee SJ, Chung H, Yi S, Yu KS, Chung JY. Physiologically Based Pharmacokinetic Modelling and Prediction of Metformin Pharmacokinetics in Renal/Hepatic-Impaired Young Adults and Elderly Populations. Eur J Drug Metab Pharmacokinet 2018; 42:973-980. [PMID: 28536774 DOI: 10.1007/s13318-017-0418-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Physiologically based pharmacokinetic (PBPK) modelling and simulation enable researchers to overcome practical limitations for clinical trials on special populations. This study was conducted to investigate how the PBPK model describes the pharmacokinetics of metformin in young adult and elderly populations and to predict the pharmacokinetics of metformin in patients with renal or hepatic impairment in both populations. METHODS A first-order absorption/PBPK model for metformin was built in the Simcyp simulator version 14 release 1. A full PBPK model was constructed for metformin based on physicochemical properties and clinical observations. The model was refined and validated using clinical plasma concentration data obtained in healthy young adults and elderly after the oral administration of metformin. Metformin pharmacokinetics in patients with renal or hepatic impairment were then investigated and compared by simulation. RESULTS The PBPK model reasonably predicted the pharmacokinetic profiles of metformin for both young adults and the elderly. The predicted pharmacokinetic parameters, including maximum concentration, area under the time-concentration curve, and apparent oral clearance values, were within 1.5-fold of the observed data of metformin. In the simulation results, the systemic exposure of metformin was expected to be markedly increased not only with a decrease in renal function but also with severe hepatic impairments. CONCLUSIONS The PBPK model adequately characterised the pharmacokinetics of metformin in both young adult and elderly populations. PBPK modelling and simulation can be used as a useful tool to investigate and compare the pharmacokinetics in geriatric populations incorporating various disease conditions.
Collapse
Affiliation(s)
- Su-Jin Rhee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SoJeong Yi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
22
|
Johnson C, Prokopienko AJ, West RE, Nolin TD, Stubbs JR. Decreased Kidney Function Is Associated with Enhanced Hepatic Flavin Monooxygenase Activity and Increased Circulating Trimethylamine N-Oxide Concentrations in Mice. Drug Metab Dispos 2018; 46:1304-1309. [PMID: 29915157 DOI: 10.1124/dmd.118.081646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/07/2018] [Indexed: 01/14/2023] Open
Abstract
Circulating trimethylamine N-oxide (TMAO) predicts poor cardiovascular outcomes in patients with chronic kidney disease (CKD). Accumulation of serum TMAO has been observed in CKD patients; however, the mechanisms contributing to this finding have been inadequately explored. The purpose of this study was to investigate the mechanisms responsible for TMAO accumulation in the setting of decreased kidney function using a CKD mouse model. Mice were fed a diet supplemented with 0.2% adenine to induce CKD, which resulted in increased serum TMAO concentrations (females: CKD 29.4 ± 32.1 μM vs. non-CKD 6.9 ± 6.1 μM, P < 0.05; males: CKD 18.5 ± 13.1 μM vs. non-CKD 1.0 ± 0.5 μM, P < 0.001). As anticipated, accumulation of circulating TMAO was accompanied by a decrease in renal clearance (females: CKD 5.2 ± 3.8 μl/min vs. non-CKD 90.4 ± 78.1 μl/min, P < 0.01; males: CKD 10.4 ± 8.1 μl/min vs. non-CKD 260.4 ± 134.5 μl/min; P < 0.001) and fractional excretion of TMAO. Additionally, CKD animals exhibited an increase in hepatic flavin monooxygenase (FMO)-mediated formation of TMAO (females: CKD 125920 ± 2181 pmol/mg per 60 minutes vs. non-CKD 110299 ± 4196 pmol/mg per 60 minutes, P < 0.001; males: CKD 131286 ± 2776 pmol/mg per 60 minutes vs. non-CKD 74269 ± 1558 pmol/mg per 60 minutes, P < 0.001), which likely resulted from increased FMO3 expression in CKD mice. The current study provides evidence that both decreased renal clearance and increased hepatic production of TMAO may contribute to increments in serum TMAO in the setting of CKD. Hepatic FMO activity may represent a novel therapeutic target for lowering circulating TMAO in CKD patients.
Collapse
Affiliation(s)
- Cassandra Johnson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas (C.J., J.R.S.); and Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (A.J.P., R.E.W., T.D.N.)
| | - Alexander J Prokopienko
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas (C.J., J.R.S.); and Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (A.J.P., R.E.W., T.D.N.)
| | - Raymond E West
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas (C.J., J.R.S.); and Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (A.J.P., R.E.W., T.D.N.)
| | - Thomas D Nolin
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas (C.J., J.R.S.); and Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (A.J.P., R.E.W., T.D.N.)
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas (C.J., J.R.S.); and Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (A.J.P., R.E.W., T.D.N.)
| |
Collapse
|
23
|
Follman KE, Morris ME. Prediction of the Effects of Renal Impairment on Clearance for Organic Cation Drugs that Undergo Renal Secretion: A Simulation-Based Study. Drug Metab Dispos 2018; 46:758-769. [PMID: 29490902 DOI: 10.1124/dmd.117.079558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022] Open
Abstract
Renal impairment (RI) is a major health concern with a growing prevalence. RI leads to various physiologic changes, in addition to a decrease in glomerular filtration rate, that impact the pharmacokinetics (PK) and, specifically, the renal clearance (CLR) of compounds, including alterations of drug transporter (DT)/drug-metabolizing enzyme expression and activity, as well as protein binding. The objectives of this study were to use a physiologically based pharmacokinetic modeling platform to 1) assess the impact of alterations in DT expression, toxin-drug interactions (TDIs), and free fraction (fu) on PK predictions for the organic cation transporter 2/multidrug and toxin extrusion protein 1 substrate metformin in RI populations; and 2) use available in vitro data to improve predictions of CLR for two actively secreted substrates, metformin and ranitidine. The goal was to identify changes in parameters other than glomerular filtration rate-namely, fu and DT expression/activity-that are consistent with in vitro and clinical data in RI, and predict the importance of these parameters in the PK of metformin and ranitidine in RI patients. Our results demonstrated that including alterations in DT expression and fu, and including TDIs affecting DT activity, as indicated by in vitro data, improved the simulated predictions of CLR and other PK parameters for both metformin and ranitidine in RI. Our simulations suggest that modifications of DT expression/activity and fu are necessary for improved predictions of CLR in RI for compounds that are actively secreted, and that improvement of PK predictions in RI populations for metformin and ranitidine can be obtained by incorporating in vitro data.
Collapse
Affiliation(s)
- Kristin E Follman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
24
|
Huo X, Liu K. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci 2017; 112:8-19. [PMID: 29109021 DOI: 10.1016/j.ejps.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
The kidney plays a vital role in maintaining systemic homeostasis. Active tubular secretion and reabsorption, which are mainly mediated by transporters, is an efficient mechanism for retaining glucose, amino acids, and other nutrients and for the clearance of endogenous waste products and xenobiotics. These substances are recognized by uptake transporters located in the basolateral and apical membranes of renal proximal tubule cells and are extracted from plasma and urine. Organic anion transporters (OATs) belong to the solute carrier (SLC) 22 superfamily and facilitate organic anions across the plasma membranes of renal proximal tubule cells. OATs are responsible for the transmembrane transport of anionic and zwitterionic organic molecules, including endogenous substances and many drugs. The alteration in OAT expression and function caused by diseases, drug-drug interactions (DDIs) or other issues can thus change the renal disposition of substrates, induce the accumulation of toxic metabolites, and lead to unexpected clinically outcome. This review summarizes the recent information regarding the expression, regulation, and substrate spectrum of OATs and discusses the roles of OATs in diseases and DDIs. These findings will enables us to have a better understanding of the related disease therapy and the potential risk of DDIs mediated by OATs.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
25
|
Wu H, Zhou M, Lu G, Yang Z, Ji H, Hu Q. Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats. Biomed Pharmacother 2017; 96:727-735. [PMID: 29045935 DOI: 10.1016/j.biopha.2017.10.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
Emodinol, 1β, 3β, 23-trihydroxyolean-12-en-28-acid, as the main active ingredient firstly extracted from the rhizomes of Elaeagus pungens by our Research Group, was identified with apparent uricosuric and nephroprotective effects in hyperuricemia mice in our previous study. This study aimed to investigate the renal protective effect of emodinol in urate nephropathy rats. Rats were orally administrated by combined adenine and ethambutol to induce urate nephropathy. Emodinol at various doses were administered intragastrically to urate nephropathy rats daily. Serum uric acid (Sur), serum creatinine (Scr) and blood urea nitrogen (BUN) levels, as well as Interleukin-1beta (IL-1β) and tumor necrosis factor- alpha (TNF-α) concentrations in serum and kidney were determined. Renal protein expressions of organic ion transporters, components of NLR pyrin domain containing 3 (NLRP3) inflammasome, as well as key factors involved in toll-like receptors (TLRs)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway were analyzed by western blot. Emodinol significantly decreased Sur, Scr and BUN levels in adenine and ethambutol - induced urate nephropathy rats. More importantly, emodinol reversed dys-expression of organic ion transporters, inhibited NLRP3 inflammsome activation and suppressed TLRs/MyD88/NF-κB signaling pathway in the kidneys of urate nephropathy rats. Consistently, dilated tubules and tubular UA crystal formation, as well as tubular interstitial inflammatory cells infiltration in kidneys of urate nephropathy rats were obviously attenuated by emodinol, accompanied by restored renal and serum inflammatory cytokines concentrations. Taken together, the date suggested that emodinol ameliorated urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Natural Medicines, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China; School of Pharmacy, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China
| | - Mengze Zhou
- School of Pharmacy, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guo Lu
- School of Pharmacy, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhonglin Yang
- State Key Laboratory of Natural Medicines, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China; School of Pharmacy, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China; School of Pharmacy, Tongjia Lane 24#, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
26
|
An altered blood-brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson's disease. Neuroscience 2017; 362:141-151. [PMID: 28842186 DOI: 10.1016/j.neuroscience.2017.08.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022]
Abstract
Brain iron accumulation is a common feature shared by several neurodegenerative disorders including Parkinson's disease. However, what produces this accumulation of iron is still unknown. In this study, the 6-hydroxydopamine (6-OHDA) hemi-parkinsonian rat model was used to investigate abnormal iron accumulation in substantia nigra. We investigated three possible causes of iron accumulation; a compromised blood-brain barrier (BBB), abnormal expression of ferritin, and neuroinflammation. We identified alterations in the BBB subsequent to the injection of 6-OHDA using gadolinium-enhanced magnetic resonance imaging (MRI). Moreover, detection of extravasated IgG suggested that peripheral components are able to enter the brain through a leaky BBB. Presence of iron following dopamine cell degeneration was studied by MRI, which revealed hypointense signals in the substantia nigra. The presence of iron deposits was further validated in histological evaluations. Furthermore, iron inclusions were closely associated with active microglia and with increased levels of L-ferritin indicating a putative role for microglia and L-ferritin in brain iron accumulation and dopamine neurodegeneration.
Collapse
|
27
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
28
|
Almukainzi M, Gabr R, Abdelhamid G, Löbenberg R. Mechanistic understanding of the effect of renal impairment on metformin oral absorption using computer simulations. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Stefanko E, Rybka J, Jaźwiec B, Haus O, Stąpor S, Kuliczkowski K, Wróbel T. Significance of OCT1 Expression in Acute Myeloid Leukemia. Pathol Oncol Res 2016; 23:665-671. [PMID: 28025785 DOI: 10.1007/s12253-016-0161-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/14/2016] [Indexed: 01/11/2023]
Abstract
Organic cation transporter 1 (OCT1) is one of the membrane proteins in the large solute carrier (SLC) family. It participates in the transport of organic cations, i.e. nutrients, neurotransmitters, metabolites or drugs in an electrogenic manner and translocate various cationic cytostatics. Knowledge concerning the expression of drug transporters in tumor cells may help to develop cytotoxic agents that are targeted to specific tumors. OCT1 expression and its relationship to the proliferation of cancer cells, development of metastases and resistance to chemotherapy has been observed in solid tumors. There is no data concerning the significance of OCT1 expression in the clinical course and treatment results in acute myeloid leukemia (AML). The objective of the study was firstly to evaluate OCT1 mRNA expression in patients with newly diagnosed de novo AML, and secondly to compare the obtained results to the healthy control group as well as analyze them according to leukemia subtypes, CD34 expression, cytogenetic and molecular factors and treatment results. 101 patients with AML, excluding the subtype classified as M3 by French-American-British (FAB) criteria, were analyzed. The control group consisted of 26 healthy individuals. The evaluated material was bone marrow (BM). Real-time quantitative polymerase chain reaction (RQ-PCR) was used in the study as a method of evaluating OCT1 mRNA expression. The study showed a statistically significant lower expression of OCT1 mRNA in patients with AML in comparison to the control group. The level of OCT1 mRNA expression was lowest for CD34+ leukemia. No significant correlation between OCT1 mRNA expression and cytogenetic and molecular factors was observed. A significant influence of OCT1 mRNA expression on the clinical outcome of the disease was observed: patients with lower expression had higher chances of achieving complete remission (CR) and longer overall survival (OS).
Collapse
Affiliation(s)
- Ewa Stefanko
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland.
| | - Justyna Rybka
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Bożena Jaźwiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Olga Haus
- Department of Clinical Genetics, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Sylwia Stąpor
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
30
|
Gabr RQ, El-Sherbeni AA, Ben-Eltriki M, El-Kadi AO, Brocks DR. Pharmacokinetics of metformin in the rat: assessment of the effect of hyperlipidemia and evidence for its metabolism to guanylurea. Can J Physiol Pharmacol 2016; 95:530-538. [PMID: 28177686 DOI: 10.1139/cjpp-2016-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metformin pharmacokinetics are highly dependent upon organic cationic transporters. There is evidence of a change in its renal clearance in hyperlipidemic obese patients, and no information on its metabolic fate. To study some of these aspects, the influence of poloxamer 407 (P407)-induced hyperlipidemia on metformin pharmacokinetics was assessed. Control and P407-treated adult male rats were administered 30 mg/kg metformin intravenously (i.v.). The pharmacokinetic assessments were performed at 2 time points, 36 and 108 h, following the intraperitoneal dose of P407 (1 g/kg). mRNA and protein expressions of cationic drug transporters were also measured. There was no evidence of a change in metformin pharmacokinetics after i.v. doses as a consequence of short-term hyperlipidemia, and a change in transporter mRNA but not protein expression was observed in the P407- treated rats 108 h after P407 injection. Urinary recovery of unchanged drug was high (>90%) but incomplete. Presumed metabolite peaks were detected in chromatograms of hepatocytes and microsomal protein spiked with metformin. Comparative chromatographic elution times and mass spectra suggested that one of the predominant metabolites was guanylurea. Hyperlipidemia by itself did not affect the pharmacokinetics of metformin. Guanylurea is a putative metabolite of metformin in rats.
Collapse
Affiliation(s)
- Raniah Q Gabr
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mohamed Ben-Eltriki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ayman O El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dion R Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
31
|
Xu YJ, Wang Y, Lu YF, Xu SF, Wu Q, Liu J. Age-associated differences in transporter gene expression in kidneys of male rats. Mol Med Rep 2016; 15:474-482. [DOI: 10.3892/mmr.2016.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/18/2016] [Indexed: 11/06/2022] Open
|
32
|
Zhang X, McCulloch CE, Lin F, Lin YC, Allen IE, Bansal N, Go AS, Hsu CY. Measurement Error as Alternative Explanation for the Observation that CrCl/GFR Ratio is Higher at Lower GFR. Clin J Am Soc Nephrol 2016; 11:1574-1581. [PMID: 27489301 PMCID: PMC5012489 DOI: 10.2215/cjn.12821215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/21/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Overestimation of GFR by urinary creatinine clearance (CrCl) at lower levels of GFR has long been attributed to enhanced creatinine secretion. However, this does not take into consideration the contribution of errors in measured GFR (and CrCl) due to short-term biologic variability or test imprecision. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We analyzed cross-sectional data among 1342 participants from the Chronic Renal Insufficiency Cohort study with baseline measurement of GFR by iothalamate clearance (iGFR) and CrCl by 24-hour urine collection. We examined the CrCl/iGFR ratio classified by categories of iGFR and also by categories of CrCl. RESULTS Overall, mean CrCl/iGFR ratio was 1.13. CrCl/iGFR ratio was higher at lower iGFR categories. In contrast, this ratio was lower at lower CrCl levels. We hypothesize these relationships could be due to measurement error, which is bolstered by replicating these trends in a simulation and modeling exercise in which there was no variation in the ratio of CrCl/iGFR with true kidney function but taking into account the effect of measurement error in both CrCl and iGFR (of magnitudes previously described in the literature). In our simulated data, the observed CrCl/iGFR ratio was higher at lower observed iGFR levels when patients were classified by categories of observed iGFR. When the same patients were classified by categories of observed CrCl, the observed CrCl/iGFR ratio was lower at lower observed CrCl levels. CONCLUSIONS The combined empirical and modeling results suggest that measurement errors (in both CrCl and iGFR) should be considered as an alternative explanation for the longstanding observation that the ratio of CrCl to iGFR gets larger as iGFR decreases.
Collapse
Affiliation(s)
- Xuehan Zhang
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medicine, and
| | - Charles E. McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Feng Lin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Yen-chung Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Nisha Bansal
- Department of Medicine, University of Washington, Seattle, Washington
| | - Alan S. Go
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Division of Research, Kaiser Permanente Northern California, Oakland, California; and
- Department of Health Research and Policy, Stanford University, Stanford, California
| | - Chi-yuan Hsu
- Department of Medicine, and
- Division of Research, Kaiser Permanente Northern California, Oakland, California; and
| |
Collapse
|
33
|
Jakobsen S, Busk M, Jensen JB, Munk OL, Zois NE, Alstrup AKO, Jessen N, Frøkiær J. A PET Tracer for Renal Organic Cation Transporters, ¹¹C-Metformin: Radiosynthesis and Preclinical Proof-of-Concept Studies. J Nucl Med 2016; 57:615-21. [PMID: 26769859 DOI: 10.2967/jnumed.115.169292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Organic cation transporters (OCTs) in the kidney proximal tubule (PT) participate in renal excretion of drugs and endogenous compounds. PT function is commonly impaired in kidney diseases, and consequently quantitative measurement of OCT function may provide an important estimate of kidney function. Metformin is a widely used drug and targets OCT type 2 located in the PT. Thus, we hypothesized that (11)C-labeled metformin would be a suitable PET tracer for quantification of renal function. METHODS (11)C-metformin was prepared by (11)C-methylation of 1-methylbiguanide. In vitro cell uptake of (11)C-metformin was studied in LLC-PK1 cells in the presence of increasing doses of unlabeled metformin. In vivo small-animal PET studies in Sprague-Dawley rats were performed at baseline and after treatment with OCT inhibitors to evaluate renal uptake of (11)C-metformin. Kidney and liver pharmacokinetics of (11)C-metformin was investigated in vivo by dynamic (11)C-metformin PET/CT in 6 anesthetized pigs, and renal clearance of (11)C-metformin was compared with renal clearance of (51)Cr-ethylenediaminetetraacetic acid (EDTA). Formation of (11)C metabolites was investigated by analysis of blood and urine samples. RESULTS The radiochemical yield of (11)C-metformin was 15% ± 3% (n= 40, decay-corrected), and up to 1.5 GBq of tracer were produced with a radiochemical purity greater than 95% in less than 30 min. Dose-dependent uptake of (11)C-metformin in LLC-PK1 cells was rapid. Rat small-animal PET images showed (11)C-metformin uptake in the kidney and liver, the kinetics of which were changed after challenging animals with OCT inhibitors. In pigs, 80% of the injected metformin dose was rapidly present in the kidney, and a high dose of metformin caused a delayed renal uptake and clearance compared with baseline consistent with transporter-mediated competition. Renal clearance of (11)C-metformin was approximately 3 times the renal clearance of (51)Cr-EDTA. CONCLUSION We successfully synthesized an (11)C-metformin tracer, and PET studies in rats and pigs showed a rapid kidney uptake from the blood and excretion into the bladder similar to other radiopharmaceuticals developed for γ-camera renography.
Collapse
Affiliation(s)
| | - Morten Busk
- Department of Experimental Oncology, Aarhus University Hospital, Aarhus, Denmark; and
| | - Jonas Brorson Jensen
- PET Center, Aarhus University Hospital, Aarhus, Denmark Department of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | - Niels Jessen
- Department of Clinical Medicine, Aarhus University, Denmark
| | | |
Collapse
|
34
|
Langer S, Kreutz R, Eisenreich A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J Nephrol 2016; 29:765-773. [PMID: 26733332 DOI: 10.1007/s40620-015-0258-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy, which is associated with loss of human (h) podocytes (PC), is a major complication in diabetes mellitus. High-glucose modulates AMP-activated protein kinase (AMPK) signaling and cell apoptosis. Metformin has been demonstrated to reduce apoptosis and albuminuria in type 2 diabetes. Here, we examined the effect of metformin on cell apoptosis and on pro-/anti-apoptotic signaling in hPC. Expression analyses were done by real-time polymerase chain reaction and western blotting. Moreover, a functional apoptosis assay was performed in hPC. Determination of kinase activation by phosphorylation was done via immunodetection analyses and digital quantification. We found that hPC express organic cation transporter 1 which is the major uptake transporter of metformin. High-glucose reduced AMPK phosphorylation and induced mammalian target of rapamycin (mTOR) activation in podocytes, which was abolished and reversed by pre-treatment with metformin. Furthermore, metformin reduced high-glucose-induced podocytes apoptosis in a concentration-dependent manner. In summary, metformin exhibits an anti-apoptotic impact on podocytes under high-glucose conditions via activation of AMPK and inhibition of mTOR signaling. These data support a beneficial effect of metformin in diabetic nephropathy.
Collapse
Affiliation(s)
- Sebastian Langer
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Reinhold Kreutz
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Eisenreich
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
35
|
Peng YH, Sweet DH, Lin SP, Yu CP, Lee Chao PD, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep 2015; 5:16226. [PMID: 26552961 PMCID: PMC4639770 DOI: 10.1038/srep16226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is a major health problem worldwide. Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are highly protein-bound nephro-cardiovascular toxins, which are not efficiently removed through hemodialysis. The renal excretions of IS and PCS were mediated by organic anion transporters (OATs) such as OAT1 and OAT3. Green tea (GT) is a popular beverage containing plenty of catechins. Previous pharmacokinetic studies of teas have shown that the major molecules present in the bloodstream are the glucuronides/sulfates of tea catechins, which are putative substrates of OATs. Here we demonstrated that GT ingestion significantly elevated the systemic exposures of endogenous IS and PCS in rats with chronic renal failure (CRF). More importantly, GT also significantly increased the levels of serum creatinine (Cr) and blood urea nitrogen (BUN) in CRF rats. Mechanism studies indicated that the serum metabolites of GT (GTM) inhibited the uptake transporting functions of OAT1 and OAT3. In conclusion, GT inhibited the elimination of nephro-cardiovascular toxins such as IS and PCS, and deteriorated the renal function in CRF rats.
Collapse
Affiliation(s)
- Yu-Hsuan Peng
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Douglas H Sweet
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, U.S.A
| | - Shiuan-Pey Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Chung-Ping Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Pei-Dawn Lee Chao
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C.,Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
36
|
Kim YC, Kim IB, Noh CK, Quach HP, Yoon IS, Chow ECY, Kim M, Jin HE, Cho KH, Chung SJ, Pang KS, Maeng HJ. Effects of 1α,25-dihydroxyvitamin D3 , the natural vitamin D receptor ligand, on the pharmacokinetics of cefdinir and cefadroxil, organic anion transporter substrates, in rat. J Pharm Sci 2014; 103:3793-3805. [PMID: 25266751 DOI: 10.1002/jps.24195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 01/31/2023]
Abstract
Evidence in the literature suggests that 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], the vitamin D receptor ligand, down-regulated the expression of the rat renal organic anion (renal organic anion transporter, rOAT) and oligopeptide (rPEPT) transporters, but increased intestinal rPEPT1 expression. We investigated, in rats, the intravenous and oral pharmacokinetics of 2 mg/kg cefdinir and cefadroxil, two cephalosporins that are eliminated via renal OAT1/OAT3 and are substrates of PEPT1/PEPT2, with and without 1,25(OH)2 D3 treatment. The area under the plasma concentration-time curve (AUC) of cefdinir or cefadroxil after 1,25(OH)2 D3 treatment was increased significantly because of decreased clearance (CL). Both kidney uptake and cumulative urinary recovery were significantly decreased, whereas liver uptake and fecal recovery remained unchanged in 1,25(OH)2 D3 -treated rats. Similar changes in AUC and CL were observed for both drugs upon coadministration of probenecid, the OAT inhibitor. Oral availability of cefdinir and cefadroxil remained unchanged with 1,25(OH)2 D3 treatment, suggesting lack of a role for intestinal rPEPT1. Rather, reduction of rOAT1/rOAT3 mRNA expression in kidney with 1,25(OH)2 D3 -treatment was observed, confirmed by decreased function in MDCKII cells overexpressing human OAT1 and OAT3. These composite results suggest that 1,25(OH)2 D3 treatment reduces cefdinir and cefadroxil clearances by diminution of renal OAT1/OAT3 expression, implicating a role for 1,25(OH)2 D3 in eliciting transporter-based drug interactions.
Collapse
Affiliation(s)
- Yu Chul Kim
- C&C Research Laboratories, Suwon, Gyeonggi, Republic of Korea
| | - In-Bong Kim
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Chi-Kyoung Noh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - In-Soo Yoon
- College of Pharmacy, and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Myungsoo Kim
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Han-Joo Maeng
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea.
| |
Collapse
|
37
|
Polyspecific organic cation transporters and their biomedical relevance in kidney. Curr Opin Nephrol Hypertens 2014; 22:533-8. [PMID: 23852330 DOI: 10.1097/mnh.0b013e328363ffaf] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Secretion and reabsorption of organic cations in kidney is mediated by polyspecific transporters with broadly overlapping substrate specificity. Knowledge concerning function, transported compounds, clinical impact of mutations in the transporters and drug-drug interactions is rapidly increasing. Recent research concerning properties of these transporters and their clinical significance for nephrology is summarized. RECENT FINDINGS Recent data showed that the organic cation transporters OCT1-3 form homo-oligomers, and that oligomerization is important for transporter targeting to the plasma membrane. A functional relevant substrate binding hinge domain in these transporters has been identified. Screening of 900 prescription drugs for interaction with the H-organic cation transporter hMATE1 indicated that 10% of the drugs are inhibitors and that 0.5% are effective under clinical conditions. The pivotal role of hOCT2 for renal secretion of creatinine and metformin was confirmed in clinical studies. SUMMARY Organic cation transporters of the transporter families SLC22 and SLC47 are critically involved in the renal secretion of various cationic drugs. Drug-drug interactions at the transporter level and mutations in the transporters lead to changes in pharmacokinetics and influence nephrotoxicity of drugs. Further studies are required to improve drug therapies.
Collapse
|
38
|
Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 2013; 57:6319-24. [PMID: 24100504 DOI: 10.1128/aac.00254-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochrome c, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochrome c or albumin fragments resulted in a significant decrease in urinary N-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochrome c with colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.
Collapse
|
39
|
Fructus Gardenia Extract ameliorates oxonate-induced hyperuricemia with renal dysfunction in mice by regulating organic ion transporters and mOIT3. Molecules 2013; 18:8976-93. [PMID: 23899832 PMCID: PMC6269767 DOI: 10.3390/molecules18088976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022] Open
Abstract
The potent anti-hyperuricemia activities of Fructus Gardenia Extract (FGE) have been well reported. The aim of this study was to evaluate the uricosuric and nephro-protective effects of FGE and explore its possible mechanisms of action in oxonate-induced hyperuricemic mice. FGE was orally administered to hyperuricemic and normal mice for 1 week. Serum and urinary levels of uric acid, creatinine and blood urea nitrogen (BUN), and fractional excretion of uric acid (FEUA) were measured. The mRNA and protein levels of mouse urate transporter 1 (mURAT1), glucose transporter 9 (mGLUT9), ATP-binding cassette, subfamily G, 2 (mABCG2), organic anion transporter 1 (mOAT1), mOAT3, oncoprotein induced transcript 3 (mOIT3), organic cation/carnitine transporters in the kidney were analyzed. Simultaneously, Tamm-Horsfall glycoprotein (THP) levels in urine and kidney were detected. FGE significantly reduced serum urate levels and increased urinary urate levels and FEUA in hyperuricemic mice. It could also effectively reverse oxonate-induced alterations in renal mURAT1, mGLUT9, mOAT1 and mOIT3 expressions, as well as THP levels, resulting in the enhancement of renal uric acid excretion. Moreover, FGE decreased serum creatinine and BUN levels, and up-regulated expression of organic cation/carnitine transporters, improving renal dysfunction in this model. Furthermore, FGE decreased renal mABCG2 expressions in hyperuricemic mice, contributing to its beneficial actions. However, further investigation is needed in clinical trials of FGE and its bioactive components.
Collapse
|