1
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Qian Y, Wei X, Wang Y, Yin S, Chen J, Dong J. Development of a novel human stratum corneum mimetic phospholipid -vesicle-based permeation assay models for in vitro permeation studies. Drug Dev Ind Pharm 2024; 50:410-419. [PMID: 38497274 DOI: 10.1080/03639045.2024.2331242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.
Collapse
Affiliation(s)
- Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
3
|
Topical Semisolid Products-Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties. Pharmaceutics 2022; 14:pharmaceutics14112487. [PMID: 36432678 PMCID: PMC9692522 DOI: 10.3390/pharmaceutics14112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Recently, the United States Food and Drug Administration published a series of product-specific guidance for the development of topical drugs, with in vitro options consisting of qualitative sameness (Q1) and quantitative sameness (Q2) assessment of formulations, physiochemical and structural characterization of formulations (Q3), and, potentially, in vitro drug release and permeation tests. In these tests, the topical semisolid product's critical quality attributes (CQAs), such as rheological properties, thermodynamic activity, particle size, globule size, and rate/extent of drug release/permeation, are evaluated to ensure the desired product quality. However, alterations in these CQAs of the drug products may occur under 'in use' conditions because of various metamorphosis events, such as evaporation that leads to supersaturation and crystallization, which may eventually result in specific failure modes of semisolid products. Under 'in use' conditions, a limited amount of formulation is applied to the skin, where physicochemical characteristics of the formulation are substantially altered from primary state to secondary and, eventually, tertiary state on the skin. There is an urgent need to understand the behavior of topical semisolid products under 'in use' conditions. In this review, we attempt to cover a series of metamorphosis events and their impact on CQAs (Q3 attributes), such as viscosity, drug activity, particle size, globule size, and drug release/permeation of topical semisolid products.
Collapse
|
4
|
Validation and testing of a new artificial biomimetic barrier for estimation of transdermal drug absorption. Int J Pharm 2022; 628:122266. [DOI: 10.1016/j.ijpharm.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
5
|
WIND-PVPA: Water/Ion NMR Detected PVPA to assess lipid barrier integrity in vitro through quantification of passive water- and ion transport. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183911. [PMID: 35331693 DOI: 10.1016/j.bbamem.2022.183911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
Abstract
Water/Ion NMR Detected - Phospholipid Vesicle Permeability Assay (WIND-PVPA), is presented as a novel, straightforward and automatable method to assess lipid barrier integrity in vitro. The apparent permeability constants of water- and ions across the PVPA barriers are determined in a one-pot experiment under the influence of membrane-active guest molecules. NMR spectroscopy is used to quantify the water directly (D2O) and the ions indirectly (complexed with EDTA) as a function of time. WIND-PVPA is demonstrated using four anti-microbial peptides, to show that membrane active molecules can be differentiated by their disruptive influence on the PVPA system. The results obtained are compared with explicit molecular dynamics simulations of lipid bilayers, AMPs, water and salt, where the motions of all individual water molecules relative to the lipid bilayer are monitored over the course of the simulations, allowing the calculation of theoretical apparent permeability constants of the corresponding single bilayer systems. Proof-of-principle is presented that WIND-PVPA can be used to evaluate the lipid barrier destabilizing effect of active guest molecules by measuring changes in passive water- and ion permeabilities upon exposure. The method is highly flexible in terms of barrier composition, choice of probes and membrane active compounds.
Collapse
|
6
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
7
|
Dermal Delivery of Lipid Nanoparticles: Effects on Skin and Assessment of Absorption and Safety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:83-114. [DOI: 10.1007/978-3-030-88071-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Moniz T, Lima SAC, Reis S. Protocol for the Isolation of Stratum Corneum from Pig Ear Skin: Evaluation of the Trypsin Digestion Conditions. Methods Protoc 2021; 4:mps4040080. [PMID: 34842773 PMCID: PMC8628882 DOI: 10.3390/mps4040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Stratum corneum (SC) represents the outermost layer of the skin, being an effective barrier against the entry of molecules and pathogens. Skin research has given particular focus to SC as it hampers effective drug delivery for cosmetical and therapeutical purposes. Following recommendations to develop alternative models to animals, the SC isolated from skin obtained from medical procedures or from pigs has gained extensive attention. Yet, there is still missing a standard and simple procedure accepted within the scientific community to avoid application of different isolated SC methodologies, a fact that may hamper progress in skin research. Considering this challenge, the present study evaluated different experimental conditions aiming to establish a useful and sustainable solvent-free procedure for the obtention of a realistic SC model. The studied trypsin digestion parameters included concentration, incubation period and temperature. Isolated SC was characterized using histological analysis and calcein’s permeability, after the procedure and during a 6-week storage period. Data recommend trypsin digestion at 4 °C for 20 h as the most effective procedure to isolate SC from pig ear skin. This work contributes to standardize the SC isolation procedure, and to obtain a valuable and reliable SC mimetic model for skin drug development.
Collapse
|
9
|
Costa Duarte FÍ, Sabino de Mendonça Costa AB, Vieira Filho JF, Pinto Freite VL, Alves Freire JV, Converti A, Ferrari M, Barreto Gomes AP, Ostrosky EA, Neves de Lima ÁA. In vitro release studies of ferulic acid in semi-solid formulations with optimized synthetic membrane. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Moniz T, Costa Lima SA, Reis S. Application of the human stratum corneum lipid-based mimetic model in assessment of drug-loaded nanoparticles for skin administration. Int J Pharm 2020; 591:119960. [PMID: 33049358 DOI: 10.1016/j.ijpharm.2020.119960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
A lipid-based permeation assay (PVPASC) with a lipid composition similar to Human stratum corneum layer has been previously reported. The aim of this study was to further characterize the PVPASC model in the presence of co-solvents and to determine its applicability to evaluate drug permeability with drug-loaded nanoparticles. Data obtained from PVPASC model were compared with results from isolated SC from pig ear skin. The characterization revealed that the PVPASC barriers retain integrity and calcein permeability when stored up to 12 weeks at -20 °C, in the presence of different co-solvents, and under a skin environment pH range. The permeation profile of calcein in the lipid-based barrier correlated well with data obtained for the isolated SC model and revealed higher reproducibility. Cyclosporine A (CsA) was selected as a model drug, given its relevance for skin-inflammatory diseases and two types of lipid nanoparticles were used to assess the permeability of the PVPASC model. It was possible to distinguish the permeability between free and nanoparticles' loaded cyclosporine. Data obtained with CsA-loaded nanoformulations indicated a higher permeation rate than the obtained for the solid lipid nanoparticles or the free drug. The PVPASC model could be applied as a cost-effective alternative for skin early drug development.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Moniz T, Costa Lima SA, Reis S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications. Br J Pharmacol 2020; 177:4314-4329. [PMID: 32608012 PMCID: PMC7484561 DOI: 10.1111/bph.15184] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Skin drug delivery is an emerging route in drug development, leading to an urgent need to understand the behaviour of active pharmaceutical ingredients within the skin. Given, As one of the body's first natural defences, the barrier properties of skin provide an obstacle to the successful outcome of any skin drug therapy. To elucidate the mechanisms underlying this barrier, reductionist strategies have designed several models with different levels of complexity, using non-biological and biological components. Besides the detail of information and resemblance to human skin in vivo, offered by each in vitro model, the technical and economic efforts involved must also be considered when selecting the most suitable model. This review provides an outline of the commonly used skin models, including healthy and diseased conditions, in-house developed and commercialized models, their advantages and limitations, and an overview of the new trends in skin-engineered models.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| |
Collapse
|
12
|
Bailey-Hytholt CM, Shen TL, Nie B, Tripathi A, Shukla A. Placental Trophoblast-Inspired Lipid Bilayers for Cell-Free Investigation of Molecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31099-31111. [PMID: 32558532 DOI: 10.1021/acsami.0c06197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The placenta plays a key role in regulating the maternal-fetal transport but it is a difficult organ to study due to a lack of existing in vitro models. Lipid bilayers inspired by the placenta can provide a facile new in vitro tool with promise for screening molecular transport across this important organ. Here we developed lipid bilayers that mimic the composition of human placental trophoblast cells at different times during the course of pregnancy. Mass spectrometry identified five major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin) present at varying concentrations in trophoblasts representative of the first and third trimesters and full-term placenta. We successfully developed supported and suspended lipid bilayers mimicking these trophoblast lipid compositions and then demonstrated the utility of these synthetic placenta models for investigating molecular interactions. Specifically, we investigated the interactions with di(2-ethylhexyl) phthalate (DEHP), a common plasticizer and environmental toxicant, and amphotericin B, a common yet toxic, antifungal therapeutic. Overall, we observed that DEHP adsorbs and potentially embeds itself within all placental lipid bilayers, with varying levels of interaction. For both amphotericin B and a liposomal formulation of amphotericin B, AmBisome, we noted lower levels of permeation in transport studies with bilayers and trophoblast cells compared with DEHP, likely driven by differences in size. AmBisome interacted less with both the supported and suspended placental lipid bilayers in comparison to amphotericin B, suggesting that drug delivery carriers can vary the impact of a pharmaceutical agent on these lipid structures. We found that the apparent permeability observed in suspended bilayers was approximately an order of magnitude less than those observed for trophoblast monolayers, which is typical of lipid bilayers. Ultimately, these placenta mimetic lipid bilayers can serve as a platform for the rapid initial screening of molecular interactions with the maternal-fetal interface to better inform future testing.
Collapse
Affiliation(s)
- Christina M Bailey-Hytholt
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Tun-Li Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Bonnee Nie
- Department of Biochemistry and Molecular Biology, Brown University, Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
13
|
Shakel Z, Nunes C, Costa Lima SA, Reis S. Development of a novel human stratum corneum model, as a tool in the optimization of drug formulations. Int J Pharm 2019; 569:118571. [PMID: 31352050 DOI: 10.1016/j.ijpharm.2019.118571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/29/2022]
Abstract
Transdermal delivery represents a very attractive administration route that provides various advantages over other methods of administration, including enhanced patient compliance via non-invasive, painless and simple application and reduced side effects. Thereby, the research on suitable drugs for this route continues to increase. However, most of drug candidates face the challenges of low drug permeability across the skin's biologically active barrier - the stratum corneum (SC). In this context, a low cost, simple screening tool to evaluate penetration of drug candidates in a human SC barrier model was developed. The in vitro model is based on a modified phospholipid vesicle-based permeation assay (PVPA) with a lipid composition close to human SC layer. The new SC PVPA model can be stored up to 2 weeks at -20 °C, withstand a pH range from 2.0 to 8.0 and the presence of co-solvents (DMSO, oleic acid and cremophor®) without losing their integrity. The human mimicking SC PVPA model was able to detect calcein permeability differences when different drugs, applied in the therapy of skin-related diseases, were present. The obtained data correlated well with the well accepted pig ear model, which highlights the potential of this new human SC model.
Collapse
Affiliation(s)
- Zinaida Shakel
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Savoji H, Godau B, Hassani MS, Akbari M. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Front Bioeng Biotechnol 2018; 6:86. [PMID: 30094235 PMCID: PMC6070628 DOI: 10.3389/fbioe.2018.00086] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tremendous progress has been made over the past few decades to develop skin substitutes for the management of acute and chronic wounds. With the advent of tissue engineering and the ability to combine advanced manufacturing technologies with biomaterials and cell culture systems, more biomimetic tissue constructs have been emerged. Synthetic and natural biomaterials are the main constituents of these skin-like constructs, which play a significant role in tissue grafting, the body's immune response, and the healing process. The act of implanting biomaterials into the human body is subject to the body's immune response, and the complex nature of the immune system involves many different cell types and biological processes that will ultimately determine the success of a skin graft. As such, a large body of recent studies has been focused on the evaluation of the performance and risk assessment of these substitutes. This review summarizes the past and present advances in in vitro, in vivo and clinical applications of tissue-engineered skins. We discuss the role of immunomodulatory biomaterials and biomaterials risk assessment in skin tissue engineering. We will finally offer a roadmap for regulating tissue engineered skin substitutes.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
15
|
Berben P, Bauer-Brandl A, Brandl M, Faller B, Flaten GE, Jacobsen AC, Brouwers J, Augustijns P. Drug permeability profiling using cell-free permeation tools: Overview and applications. Eur J Pharm Sci 2018; 119:219-233. [PMID: 29660464 DOI: 10.1016/j.ejps.2018.04.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
Cell-free permeation systems are gaining interest in drug discovery and development as tools to obtain a reliable prediction of passive intestinal absorption without the disadvantages associated with cell- or tissue-based permeability profiling. Depending on the composition of the barrier, cell-free permeation systems are classified into two classes including (i) biomimetic barriers which are constructed from (phospho)lipids and (ii) non-biomimetic barriers containing dialysis membranes. This review provides an overview of the currently available cell-free permeation systems including Parallel Artificial Membrane Permeability Assay (PAMPA), Phospholipid Vesicle-based Permeation Assay (PVPA), Permeapad®, and artificial membrane based systems (e.g. the artificial membrane insert system (AMI-system)) in terms of their barrier composition as well as their predictive capacity in relation to well-characterized intestinal permeation systems. Given the potential loss of integrity of cell-based permeation barriers in the presence of food components or pharmaceutical excipients, the superior robustness of cell-free barriers makes them suitable for the combined dissolution/permeation evaluation of formulations. While cell-free permeation systems are mostly applied for exploring intestinal absorption, they can also be used to evaluate non-oral drug delivery by adjusting the composition of the membrane.
Collapse
Affiliation(s)
- Philippe Berben
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Annette Bauer-Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Martin Brandl
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Bernard Faller
- Novartis Institutes for BioMedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø the Arctic University of Norway, Universitetsveien 57, Tromsø 9037, Norway
| | - Ann-Christin Jacobsen
- Drug Transport and Delivery Group, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49, Box 921, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
The isolated perfused human skin flap model: A missing link in skin penetration studies? Eur J Pharm Sci 2016; 96:334-341. [PMID: 27720898 DOI: 10.1016/j.ejps.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022]
Abstract
Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration.
Collapse
|
17
|
Bibi HA, Holm R, Bauer-Brandl A. Use of Permeapad® for prediction of buccal absorption: A comparison to in vitro, ex vivo and in vivo method. Eur J Pharm Sci 2016; 93:399-404. [DOI: 10.1016/j.ejps.2016.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/09/2023]
|
18
|
Zhang H, Zhu X, Shen J, Xu H, Ma M, Gu W, Jiang Q, Chen J, Duan J. Characterization of a liposome-based artificial skin membrane for in vitro permeation studies using Franz diffusion cell device. J Liposome Res 2016; 27:302-311. [DOI: 10.1080/08982104.2016.1231205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hui Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China and
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuemin Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China and
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Shen
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haiheng Xu
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China and
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gu
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiudong Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China and
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China and
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China and
| |
Collapse
|
19
|
Engesland A, Škalko-Basnet N, Flaten GE. In vitro models to estimate drug penetration through the compromised stratum corneum barrier. Drug Dev Ind Pharm 2016; 42:1742-51. [PMID: 27019078 DOI: 10.3109/03639045.2016.1171334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The phospholipid vesicle-based permeation assay (PVPA) is a recently established in vitro stratum corneum model to estimate the permeability of intact and healthy skin. The aim here was to further evolve this model to mimic the stratum corneum in a compromised skin barrier by reducing the barrier functions in a controlled manner. METHODS To mimic compromised skin barriers, PVPA barriers were prepared with explicitly defined reduced barrier function and compared with literature data from both human and animal skin with compromised barrier properties. Caffeine, diclofenac sodium, chloramphenicol and the hydrophilic marker calcein were tested to compare the PVPA models with established models. RESULTS AND DISCUSSIONS The established PVPA models mimicking the stratum corneum in healthy skin showed good correlation with biological barriers by ranking drugs similar to those ranked by the pig ear skin model and were comparable to literature data on permeation through healthy human skin. The PVPA models provided reproducible and consistent results with a distinction between the barriers mimicking compromised and healthy skin. The trends in increasing drug permeation with an increasing degree of compromised barriers for the model drugs were similar to the literature data from other in vivo and in vitro models. CONCLUSIONS The PVPA models have the potential to provide permeation predictions when investigating drugs or cosmeceuticals intended for various compromised skin conditions and can thus possibly reduce the time and cost of testing as well as the use of animal testing in the early development of drug candidates, drugs and cosmeceuticals.
Collapse
Affiliation(s)
- André Engesland
- a Department of Pharmacy, Drug Transport and Delivery Research Group , University of Tromsø The Arctic University of Norway , Tromsø , N-9037 , Norway
| | - Nataša Škalko-Basnet
- a Department of Pharmacy, Drug Transport and Delivery Research Group , University of Tromsø The Arctic University of Norway , Tromsø , N-9037 , Norway
| | - Gøril Eide Flaten
- a Department of Pharmacy, Drug Transport and Delivery Research Group , University of Tromsø The Arctic University of Norway , Tromsø , N-9037 , Norway
| |
Collapse
|
20
|
Gomes MJ, Dreier J, Brewer J, Martins S, Brandl M, Sarmento B. A new approach for a blood-brain barrier model based on phospholipid vesicles: Membrane development and siRNA-loaded nanoparticles permeability. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Dumont C, Prieto P, Asturiol D, Worth A. Review of the Availability ofIn VitroandIn SilicoMethods for Assessing Dermal Bioavailability. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Coralie Dumont
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - David Asturiol
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
22
|
Naderkhani E, Vasskog T, Flaten GE. Biomimetic PVPA in vitro model for estimation of the intestinal drug permeability using fasted and fed state simulated intestinal fluids. Eur J Pharm Sci 2015; 73:64-71. [PMID: 25840125 DOI: 10.1016/j.ejps.2015.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/10/2015] [Accepted: 03/23/2015] [Indexed: 11/17/2022]
Abstract
A prerequisite for successful oral drug therapy is the drug's ability to cross the gastrointestinal barrier. Considering the increasing number of new chemical entities in modern drug discovery, reliable and fast in vitro models are required for early and efficient prediction of intestinal permeability. To mimic the intestinal environment, use of biorelevant media may provide valuable information on in vivo drug permeation. The present study aims at improving the novel biomimetic phospholipid vesicle-based permeation assay's (PVPAbiomimetic) biorelevance by investigating the applicability of the biorelevant media; fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF). The FaSSIF and FeSSIF's influence on the permeability of the model drugs acyclovir, indomethacin, griseofulvin and nadolol was then assessed. The barriers' robustness in terms of storage stability was also evaluated. The barriers were found to maintain their integrity in presence of FaSSIF and FeSSIF. The model drugs showed changes in permeability in presence of the different simulated intestinal fluids that were in agreement with previous reports. Moreover, the barrier showed improved storage stability by maintaining its integrity for 6months. Altogether, this study moves the PVPAbiomimetic an important step towards a better in vitro permeability model for use in drug development.
Collapse
Affiliation(s)
- Elenaz Naderkhani
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, Universitetsveien 57, NO-9037 Tromsø, Norway
| | - Terje Vasskog
- Norut (Northern Research Institute), Sykehusveien 23, NO-9294 Tromsø, Norway
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, Universitetsveien 57, NO-9037 Tromsø, Norway.
| |
Collapse
|
23
|
In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci 2015; 75:10-24. [PMID: 25746955 DOI: 10.1016/j.ejps.2015.02.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022]
Abstract
(Trans)dermal drug therapy is gaining increasing importance in the modern drug development. To fully utilize the potential of this route, it is important to optimize the delivery of active ingredient/drug into/through the skin. The optimal carrier/vehicle can enhance the desired outcome of the therapy therefore the optimization of skin formulations is often included in the early stages of the product development. A rational approach in designing and optimizing skin formulations requires well-defined skin models, able to identify and evaluate the intrinsic properties of the formulation. Most of the current optimization relies on the use of suitable ex vivo animal/human models. However, increasing restrictions in use and handling of animals and human skin stimulated the search for suitable artificial skin models. This review attempts to provide an unbiased overview of the most commonly used models, with emphasis on their limitations and advantages. The choice of the most applicable in vitro model for the particular purpose should be based on the interplay between the availability, easiness of the use, cost and the respective limitations.
Collapse
|
24
|
Phospholipid Vesicle-Based Permeation Assay and EpiSkin® in Assessment of Drug Therapies Destined for Skin Administration. J Pharm Sci 2015; 104:1119-27. [DOI: 10.1002/jps.24315] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 01/01/2023]
|
25
|
Naderkhani E, Isaksson J, Ryzhakov A, Flaten GE. Development of a Biomimetic Phospholipid Vesicle-based Permeation Assay for the Estimation of Intestinal Drug Permeability. J Pharm Sci 2014; 103:1882-90. [DOI: 10.1002/jps.23954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/15/2014] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
|
26
|
Palac Z, Engesland A, Flaten GE, Škalko-Basnet N, Filipović-Grčić J, Vanić Ž. Liposomes for (trans)dermal drug delivery: the skin-PVPA as a novel in vitro stratum corneum model in formulation development. J Liposome Res 2014; 24:313-22. [PMID: 24646434 DOI: 10.3109/08982104.2014.899368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Penetration potential of vesicles destined for trans(dermal) administration remains to be of great interests both in respect to drug therapy and cosmetic treatment. This study investigated the applicability of the phospholipid vesicle-based permeation assay (PVPA) as a novel in vitro skin barrier model for screening purposes in preformulation studies. Various classes of liposomes containing hydrophilic model drug were examined, including conventional liposomes (CLs), deformable liposomes (DLs) and propylene glycol liposomes (PGLs). The size, surface charge, membrane deformability and entrapment efficiency were found to be affected by the vesicle lipid concentration, the presence of the surfactant and propylene glycol. All liposomes exhibited prolonged drug release profiles with an initial burst effect followed by a slower release phase. The permeation of the drug from all of the tested liposomes, as assessed with the mimicked stratum corneum--PVPA model, was significantly enhanced as compared to the permeability of the drug in solution form. Although the DLs and the PGLs exhibited almost the same membrane elasticity, the permeability of the drug delivered by PGLs was higher (6.2 × 10⁻⁶ cm/s) than DLs (5.5 × 10⁻⁶ cm/s). Therefore, this study confirmed both the potential of liposomes as vesicles in trans(dermal) delivery and potential of the newly developed skin-PVPA for the screening and optimization of liposomes at the early preformulation stage.
Collapse
Affiliation(s)
- Zora Palac
- Department of Pharmaceutics, Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb , Croatia
| | | | | | | | | | | |
Collapse
|
27
|
Jain K, Mehra NK, Jain NK. Potentials and emerging trends in nanopharmacology. Curr Opin Pharmacol 2014; 15:97-106. [PMID: 24598376 DOI: 10.1016/j.coph.2014.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Nanopharmacology is a relatively newer branch of pharmacology which investigates interaction of a nanomedicine with living systems at the nanoscale level. Modern medicine is increasingly concerned with various surface modified nanocarriers, such as dendrimers, nanoparticles, carbon based nanomaterials, polymer-drug nanoconjugates, etc., which have immense therapeutic potential by target specific drug delivery, using nanoscaffolding and nanocontainers, owing to the specific physical, chemical and biological properties of these moieties that is related to their nanoscale size range. Nanopharmacology could have potential medical and pharmaceutical benefits via applications of nanotechnology in the delivery of therapeutic and diagnostic agents. Nanomaterials may be expected to find application in the cardiovascular, as well as, renal arena, in the near future.
Collapse
Affiliation(s)
- Keerti Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Neelesh Kumar Mehra
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Narendra Kumar Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
28
|
Naderkhani E, Erber A, Škalko-Basnet N, Flaten GE. Improved Permeability of Acyclovir: Optimization of Mucoadhesive Liposomes Using the Phospholipid Vesicle-Based Permeation Assay. J Pharm Sci 2014; 103:661-8. [DOI: 10.1002/jps.23845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/03/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023]
|
29
|
A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer. J Control Release 2013; 173:102-9. [PMID: 24211703 DOI: 10.1016/j.jconrel.2013.10.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/26/2013] [Accepted: 10/29/2013] [Indexed: 02/04/2023]
Abstract
Lipid bilayer permeation is considered the major route for in vivo barrier passage of drugs. Despite this fact, no technique is currently available to measure the kinetics of permeation across a single lipid bilayer of structurally unrelated drug-like solutes. We developed a liposomal fluorescence assay capable to determine permeation kinetics of basic drug-like solutes across lipid bilayers. The assay is based on the hypothesis that permeation of a weak base along a concentration gradient results in net proton release at the cis-side and net proton capture at the trans-side of the bilayer. The resulting pH changes were monitored with pH-sensitive fluorophores: Test compounds were incubated with liposomes containing a pH-sensitive fluorophore at the bilayer surfaces or in the aqueous lumen and fluorescence changes were monitored with a stopped-flow apparatus in solution or by total internal reflection fluorescence microscopy with surface-captured liposomes on a microfluidic platform. Incubation with lipophilic basic drugs resulted in the expected fluorescence changes while incubation with compounds without basic functionality or high polarity did not affect fluorescence. Kinetics of fluorescence changes followed bi-exponential functions. Logarithmic permeation coefficients (logPermapp) determined in solution and by microfluidics technology showed a good correlation (r(2)=0.94, n=7) and logPermapp increased with increasing lipophilicity. Neither diffusion in the aqueous phase nor partitioning into the bilayer was rate-limiting. PEGylation of 2% of the liposomal lipids reduced Permapp by a factor ~300. In conclusion, the presented liposomal fluorescence assay is capable to determine permeation kinetics of weak basic drug-like solutes across lipid bilayers. The method is adaptable to microfluidics technology for high-throughput measurements and can potentially be modified to work for weak acid solutes.
Collapse
|