1
|
Caukwell J, Assenza S, Hassan KA, Neilan BA, Clulow AJ, Salvati Manni L, Fong WK. Lipidic drug delivery systems are responsive to the human microbiome. J Colloid Interface Sci 2025; 677:293-302. [PMID: 39146817 DOI: 10.1016/j.jcis.2024.07.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
In vitro and in vivo tests for therapeutic agents are typically conducted in sterile environments, but many target areas for drug delivery are home to thousands of microbial species. Here, we examine the behaviour of lipidic nanomaterials after exposure to representative strains of four bacterial species found in the gastrointestinal tract and skin. Small angle X-ray scattering measurements show that the nanostructure of monoolein cubic and inverse hexagonal phases are transformed, respectively, into inverse hexagonal and inverse micellar cubic phases upon exposure to a strain of live Staphylococcus aureus often present on skin and mucosa. Further investigation demonstrates that enzymatic hydrolysis and cell membrane lipid transfer are both likely responsible for this effect. The structural responses to S. aureus are rapid and significantly reduce the rate of drug release from monoolein-based nanomaterials. These findings are the first to demonstrate how a key species in the live human microbiome can trigger changes in the structure and drug release properties of lipidic nanomaterials. The effect appears to be strain specific, varies from patient to patient and body region to body region, and is anticipated to affect the bioapplication of monoglyceride-based formulations.
Collapse
Affiliation(s)
- Jonathan Caukwell
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Livia Salvati Manni
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia; School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Wye-Khay Fong
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| |
Collapse
|
2
|
Ejskjær L, O'Dwyer PJ, Ryan CD, Holm R, Kuentz M, Box KJ, Griffin BT. Developing an in vitro lipolysis model for real-time analysis of drug concentrations during digestion of lipid-based formulations. Eur J Pharm Sci 2024; 194:106681. [PMID: 38128839 DOI: 10.1016/j.ejps.2023.106681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Understanding the effect of digestion on oral lipid-based drug formulations is a critical step in assessing the impact of the digestive process in the intestine on intraluminal drug concentrations. The classical pH-stat in vitro lipolysis technique has traditionally been applied, however, there is a need to explore the establishment of higher throughput small-scale methods. This study explores the use of alternative lipases with the aim of selecting digestion conditions that permit in-line UV detection for the determination of real-time drug concentrations. A range of immobilised and pre-dissolved lipases were assessed for digestion of lipid-based formulations and compared to digestion with the classical source of lipase, porcine pancreatin. Palatase® 20000 L, a purified liquid lipase, displayed comparable digestion kinetics to porcine pancreatin and drug concentration determined during digestion of a fenofibrate lipid-based formulation were similar between methods. In-line UV analysis using the MicroDISS ProfilerTM demonstrated that drug concentration could be monitored during one hour of dispersion and three hours of digestion for both a medium- and long-chain lipid-based formulations with corresponding results to that obtained from the classical lipolysis method. This method offers opportunities exploring the real-time dynamic drug concentration during dispersion and digestion of lipid-based formulations in a small-scale setup avoiding artifacts as a result of extensive sample preparation.
Collapse
Affiliation(s)
- Lotte Ejskjær
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Callum D Ryan
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - René Holm
- University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, Muttenz 4132, Switzerland
| | - Karl J Box
- Pion Inc (UK), Forest Row, East Sussex, UK
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork, Ireland.
| |
Collapse
|
3
|
Murshed M, Salim M, Boyd BJ. Existing and emerging mitigation strategies for the prevention of accidental overdose from oral pharmaceutical products. Eur J Pharm Biopharm 2022; 180:201-211. [DOI: 10.1016/j.ejpb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
4
|
Murshed M, Pham A, Vithani K, Salim M, Boyd BJ. Controlling drug release by introducing lipase inhibitor within a lipid formulation. Int J Pharm 2022; 623:121958. [PMID: 35760262 DOI: 10.1016/j.ijpharm.2022.121958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Drug overdose connected to marketed pharmaceutical products, particularly opioids, occurs at an alarming rate. Novel strategies through innovative formulation approaches that reduce the likelihood of overdose while allowing safe therapeutic outcomes are urgently required. The current study provides a proof-of-concept for a new formulation approach by co-formulating drug with a lipase inhibitor within a solid lipid formulation in order to prevent or reduce the harmful effects of taking multiple doses of an oral solid dose form. Lipase inhibitor controlled-release (LICR) formulations were created using a simple hot melt method to co-formulate the inhibitor (orlistat) and ibuprofen, as the model drug, within the lipid matrix. The digestion and drug release kinetics were determined using an in vitro lipolysis model. Above a threshold level of orlistat there was decreased digestibility of multiple doses of the LICR formulations, leading to reduced drug release. Upon administration of the formulations in capsules to rats, the LICR formulation displayed the lowest exposure of ibuprofen during the pharmacokinetic studies. This novel formulation approach shows promise in preventing accidental drug overdose after oral administration of multiple doses of formulation.
Collapse
Affiliation(s)
- Mubtasim Murshed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Anna Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kapilkumar Vithani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Clulow AJ, Salim M, Hawley A, Boyd BJ. Milk mimicry – Triglyceride mixtures that mimic lipid structuring during the digestion of bovine and human milk. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Clulow AJ, Binte Abu Bakar SY, Salim M, Nowell CJ, Hawley A, Boyd BJ. Emulsions containing optimum cow milk fat and canola oil mixtures replicate the lipid self-assembly of human breast milk during digestion. J Colloid Interface Sci 2020; 588:680-691. [PMID: 33309144 DOI: 10.1016/j.jcis.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The digestion of different milks and milk substitutes leads to the formation of a variety of self-assembled lipid structures, with the structuring of human milk being paramount for infant nutrition. It was hypothesised that mixing cow milk fat rich in medium/long-chain lipids with canola oil rich in long-chain unsaturated lipids would replicate the structuring of human milk by balancing lipid chain lengths and saturation levels. EXPERIMENTS Emulsions of cow milk fat/canola oil mixtures were prepared in two ways - by pre-mixing ghee and canola oil before dispersing them and by dispersing canola oil directly into commercial cow milk. Small angle X-ray scattering combined with titration of the fatty acids produced during digestion allowed for the correlation of dynamic lipid self-assembly with the extent of lipid digestion. Laser light scattering was used to show that the particle sizes in the digesting mixtures were similar and coherent anti-Stokes Raman spectroscopy (CARS) microscopy was used to confirm the mixing of canola oil into cow milk fat globules. FINDINGS As the amount of long-chain unsaturated canola oil lipids in the mixtures increased, the lipid self-assembly tended towards colloidal structures of greater interfacial curvature. When the ratio of cow milk fat to canola oil lipids was 1:1 (w/w), the digesting lipids assembled themselves into the same liquid crystalline structures as human breast milk. This observation was independent of the method used to mix the lipids, with CARS microscopy indicating uniform mixing of the canola oil into cow milk upon ultrasonication.
Collapse
Affiliation(s)
- Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
Pham AC, Peng KY, Salim M, Ramirez G, Hawley A, Clulow AJ, Boyd BJ. Correlating Digestion-Driven Self-Assembly in Milk and Infant Formulas with Changes in Lipid Composition. ACS APPLIED BIO MATERIALS 2020; 3:3087-3098. [PMID: 32455340 PMCID: PMC7241073 DOI: 10.1021/acsabm.0c00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
![]()
Lipids in mammalian
milks such as bovine milk and human breast
milk have been shown to self-assemble into various liquid crystalline
materials during digestion. In this study, the direct correlation
between the composition of the lipids from three types of mammalian
milk, three brands of infant formulas (IFs), and soy milk and the
liquid crystalline structures that form during their digestion was
investigated to link the material properties to the composition. The
self-assembly behavior was assessed using in vitro digestion coupled with in situ small-angle X-ray
scattering (SAXS). Lipid composition was determined during in vitro digestion using ex situ liquid
chromatography–mass spectrometry. All tested milks self-assembled
into ordered structures during digestion, with the majority of milks
displaying nonlamellar phases. Milks that released mostly long-chain
fatty acids (>95 mol % of the top 10 fatty acids released) with
more
than 47 mol % unsaturation predominantly formed a micellar cubic phase
during digestion. Other milks released relatively more medium-chain
fatty acids and medium-chain monoglycerides and produced a range of
ordered liquid crystalline structures including the micellar cubic
phase, the hexagonal phase, and the bicontinuous cubic phase. One
infant formula did not form liquid crystalline structures at all as
a consequence of differences in fatty acid distributions. The self-assembly
phenomenon provides a powerful discriminator between different classes
of nutrition and a roadmap for the design of human milklike systems
and is anticipated to have important implications for nutrient transport
and the delivery of bioactives.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Alvebratt C, Keemink J, Edueng K, Cheung O, Strømme M, Bergström CA. An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems. Eur J Pharm Biopharm 2020; 149:21-29. [DOI: 10.1016/j.ejpb.2020.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
|
9
|
Hong L, Sesen M, Hawley A, Neild A, Spicer PT, Boyd BJ. Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering. SOFT MATTER 2019; 15:9565-9578. [PMID: 31724682 DOI: 10.1039/c9sm01440c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The performance of orally administered lipid-based drug formulations is crucially dependent on digestion, and understanding the colloidal structures formed during digestion is necessary for rational formulation design. Previous studies using the established bulk pH-stat approach (Hong et al. 2015), coupled to synchrotron small angle X-ray scattering (SAXS), have begun to shed light on this subject. Such studies of digestion using in situ SAXS measurements are complex and have limitations regarding the resolution of intermediate structures. Using a microfluidic device, the digestion of lipid systems may be monitored with far better control over the mixing of the components and the application of enzyme, thereby elucidating a finer understanding of the structural progression of these lipid systems. This work compares a simple T-junction microcapillary device and a custom-built microfluidic chip featuring hydrodynamic flow focusing, with an equivalent experiment with the full scale pH-stat approach. Both microfluidic devices were found to be suitable for in situ SAXS measurements in tracking the kinetics with improved time and signal sensitivity compared to other microfluidic devices studying similar lipid-based systems, and producing more consistent and controllable structural transformations. Particle sizing of the nanoparticles produced in the microfluidic devices were more consistent than the pH-stat approach.
Collapse
Affiliation(s)
- Linda Hong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Alskär LC, Parrow A, Keemink J, Johansson P, Abrahamsson B, Bergström CAS. Effect of lipids on absorption of carvedilol in dogs: Is coadministration of lipids as efficient as a lipid-based formulation? J Control Release 2019; 304:90-100. [PMID: 31047962 DOI: 10.1016/j.jconrel.2019.04.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
Lipid-based formulations (LBFs) is a formulation strategy for enabling oral delivery of poorly water-soluble drugs. However, current use of this strategy is limited to a few percent of the marketed products. Reasons for that are linked to the complexity of LBFs, chemical instability of pre-dissolved drug and a limited understanding of the influence of LBF intestinal digestion on drug absorption. The aim of this study was to explore intestinal drug solubilization from a long-chain LBF, and evaluate whether coadministration of LBF is as efficient as a lipid-based drug formulation containing the pre-dissolved model drug carvedilol. Thus, solubility studies of this weak base were performed in simulated intestinal fluid (SIF) and aspirated dog intestinal fluid (DIF). DIF was collected from duodenal stomas after dosing of water and two levels (1 g and 2 g) of LBF. Similarly, the in vitro SIF solubility studies were conducted prior to, and after addition of, undigested or digested LBF. The DIF fluid was further characterized for lipid digestion products (free fatty acids) and bile salts. Subsequently, carvedilol was orally administered to dogs in a lipid-based drug formulation and coadministered with LBF, and drug plasma exposure was assessed. In addition to these studies, in vitro drug absorption from the different formulation approaches were evaluated in a lipolysis-permeation device, and the obtained data was used to evaluate the in vitro in vivo correlation. The results showed elevated concentrations of free fatty acids and bile salts in the DIF when 2 g of LBF was administered, compared to only water. As expected, the SIF and DIF solubility data revealed that carvedilol solubilization increased by the presence of lipids and lipid digestion products. Moreover, coadministration of LBF and drug demonstrated equal plasma exposure to the lipid-based drug formulation. Furthermore, evaluation of in vitro absorption resulted in the same rank order for the LBFs as in the in vivo dog study. In conclusion, this study demonstrated increased intestinal solubilization from a small amount of LBF, caused by lipid digestion products and bile secretion. The outcomes also support the use of coadministration of LBF as a potential dosing regimen in cases where it is beneficial to have the drug in the solid form, e.g. due to chemical instability in the lipid vehicle. Finally, the in vitro lipolysis-permeation used herein established IVIVC for carvedilol in the presence of LBFs.
Collapse
Affiliation(s)
- Linda C Alskär
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Janneke Keemink
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | | | | | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
11
|
Keemink J, Mårtensson E, Bergström CAS. Lipolysis-Permeation Setup for Simultaneous Study of Digestion and Absorption in Vitro. Mol Pharm 2019; 16:921-930. [PMID: 30628771 PMCID: PMC6437649 DOI: 10.1021/acs.molpharmaceut.8b00811] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Lipid-based formulations (LBFs) are
a delivery strategy to enhance
intestinal absorption of poorly water-soluble drugs. LBF performance
is typically evaluated by in vitro lipolysis studies, but these do
not accurately predict the in vivo performance. One possible reason
is the absence of an absorptive membrane driving sink conditions in
the serosal compartment. To explore the impact of absorption under
sink conditions on the performance evaluation, we developed a lipolysis-permeation
setup that allows simultaneous investigation of intestinal digestion
of an LBF and drug absorption. The setup consists of two chambers,
an upper one for digestion (luminal), and a lower, receiving one (serosal),
separated by a Caco-2 monolayer. Digestions were performed with immobilized
lipase, instead of the pancreatic extract typically used during lipolysis,
since the latter has proven incompatible with Caco-2 cells. Danazol-loaded
LBFs were used to develop the setup, and fenofibrate-loaded LBFs were
used to establish an in vitro in vivo correlation. As in regular lipolysis
studies, our setup allows for the evaluation of (i) the extent of
digestion and (ii) drug distribution in different phases present during
lipolysis of drug-loaded LBFs (i.e., oil, aqueous, and solid phase).
In addition, our setup can determine drug permeation across Caco-2
monolayers and hence, the absorptive flux of the compound. The presence
of the absorptive monolayer and sink conditions tended to reduce aqueous
drug concentrations and supersaturation in the digestion chamber.
The drug transfer across the Caco-2 membrane accurately reflected
in vivo drug exposure upon administration of three different LBFs
loaded with fenofibrate, where the traditional lipolysis setup failed
to predict in vivo performance. As the new setup reflects the dynamic
processes occurring in the gastrointestinal tract, it is a valuable
tool that can be used in the development of LBFs prior to in vivo
studies.
Collapse
Affiliation(s)
- Janneke Keemink
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center , P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Elin Mårtensson
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center , P.O. Box 580, SE-751 23 Uppsala , Sweden
| | - Christel A S Bergström
- Department of Pharmacy , Uppsala University , Uppsala Biomedical Center , P.O. Box 580, SE-751 23 Uppsala , Sweden
| |
Collapse
|
12
|
Vithani K, Hawley A, Jannin V, Pouton C, Boyd BJ. Solubilisation behaviour of poorly water-soluble drugs during digestion of solid SMEDDS. Eur J Pharm Biopharm 2018; 130:236-246. [PMID: 29981444 DOI: 10.1016/j.ejpb.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/15/2023]
Abstract
Lipid based-formulations can enhance the bioavailability of poorly water-soluble lipophilic drugs through enhanced solubilisation of drugs in the gastrointestinal (GI) tract during digestion. This study investigates the solubilisation behaviour of poorly water-soluble drugs upon digestion of solid self-microemulsifying drug delivery system (S-SMEDDS). The S-SMEDDS were prepared using two different core lipids, Gelucire® 44/14 (GEL) or glyceryl monooleate (GMO), and were loaded with two model drugs, fenofibrate (FEN) and cinnarizine (CINN). S-SMEDDS formulations were characterized using wide-angle X-ray scattering (WAXS) and Raman spectroscopy, and their structural behaviour and drug solubilisation behaviour were monitored using drug-related diffraction peaks during digestion under fasted and fed simulated intestinal conditions using time-resolved small and wide-angle X-ray scattering (SAXS/WAXS). The concentrations of FEN and CINN released into the aqueous phase (AP) during digestion were quantified using high-performance liquid chromatography (HPLC). Both model drugs, FEN and CINN, had greater solubility in the GMO-based S-SMEDDS formulations and were partially solubilised into lipid matrix and uniformly distributed in solid formulations. The extent of digestion was greater for the GEL-based systems (92-94%) than GMO-based systems (65-75%) as was the rate of digestion. GEL-based S-SMEDDS formulations formed a lamellar phase during digestion in the fasted state and formed mixed micelles in the fed state. In contrast, the GMO-based system formed the mixed micelles in both intestinal conditions. The time-resolved SAXS profiles revealed solubilisation of crystalline drugs into the lipolysis products. Synchrotron SAXS results were in correlation with the HPLC measurements, confirming the ability of the SAXS technique to monitor drug behaviour and showing that the digestion of S-SMEDDS can enhance drug solubilisation.
Collapse
Affiliation(s)
- Kapilkumar Vithani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamtime, Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Vincent Jannin
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest, France
| | - Colin Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), Parkville, Victoria 3052, Australia.
| |
Collapse
|
13
|
Keemink J, Bergström CAS. Caco-2 Cell Conditions Enabling Studies of Drug Absorption from Digestible Lipid-Based Formulations. Pharm Res 2018; 35:74. [PMID: 29484506 PMCID: PMC5847224 DOI: 10.1007/s11095-017-2327-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023]
Abstract
Purpose To identify conditions allowing the use of cell-based models for studies of drug absorption during in vitro lipolysis of lipid-based formulations (LBFs). Methods Caco-2 was selected as the cell-based model system. Monolayer integrity was evaluated by measuring mannitol permeability after incubating Caco-2 cells in the presence of components available during lipolysis. Pure excipients and formulations representing the lipid formulation classification system (LFCS) were evaluated before and after digestion. Porcine mucin was evaluated for its capacity to protect the cell monolayer. Results Most undigested formulations were compatible with the cells (II-LC, IIIB-LC, and IV) although some needed mucin to protect against damaging effects (II-MC, IIIB-MC, I-LC, and IIIA-LC). The pancreatic extract commonly used in digestion studies was incompatible with the cells but the Caco-2 monolayers could withstand immobilized recombinant lipase. Upon digestion, long chain formulations caused more damage to Caco-2 cells than their undigested counterparts whereas medium chain formulations showed better tolerability after digestion. Conclusions Most LBFs and components thereof (undigested and digested) are compatible with Caco-2 cells. Pancreatic enzyme is not tolerated by the cells but immobilized lipase can be used in combination with the cell monolayer. Mucin is beneficial for critical formulations and digestion products. Electronic supplementary material The online version of this article (10.1007/s11095-017-2327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janneke Keemink
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
14
|
Leonaviciute G, Adamovic NT, Lam HT, Rohrer J, Partenhauser A, Bernkop-Schnürch A. Self-emulsifying drug delivery systems (SEDDS): Proof-of-concept how to make them mucoadhesive. Eur J Pharm Biopharm 2016; 112:51-57. [PMID: 27876599 DOI: 10.1016/j.ejpb.2016.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 11/16/2022]
Abstract
AIM The objective of this study was to provide a proof-of-concept that self-emulsifying drug delivery systems can be made mucoadhesive by the incorporation of hydrophobic mucoadhesive polymers. METHODS In order to obtain such a hydrophobic mucoadhesive polymer, Eudragit® S100 was thiolated by covalent attachment of cysteamine. After determination of the thiol group content, in vitro mucoadhesion studies (rotating cylinder and rheological measurements) were performed. Then, synthesized conjugate was incorporated into self-emulsifying drug delivery systems (SEDDS) and their toxic potential as well as that of unmodified and thiolated Eudragit® S100 was examined on Caco-2 cell line. Lastly, the mucoadhesiveness of developed SEDDS on porcine intestinal mucosa was determined. RESULTS Generated thiolated Eudragit® S100 displaying 235±14μmol of free thiol groups and 878±101μmol of disulfide bonds per gram polymer showed a great improvement in both: dynamic viscosity with mucus and adhesion time on mucosal tissue compared to the unmodified polymer. Resazurin assay revealed that unmodified and thiolated polymers and also SEDDS dispersions were non-toxic over Caco-2 cells. Furthermore, the incorporation of 1.5% (w/w) of such thiomer into SEDDS led to remarkably improved mucoadhesiveness. Blank SEDDS were completely removed from the mucosa within 15min, whereas >60% of SEDDS containing thiolated Eudragit® S100 were still attached to it. CONCLUSION These results provide evidence that SEDDS can be made mucoadhesive by the incorporation of hydrophobic mucoadhesive polymers.
Collapse
Affiliation(s)
- Gintare Leonaviciute
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold - Franzens University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nada Trivic Adamovic
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold - Franzens University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hung Thanh Lam
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold - Franzens University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julia Rohrer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold - Franzens University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Alexandra Partenhauser
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold - Franzens University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, Leopold - Franzens University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Spizzirri UG, Curcio M, Cirillo G, Picci N, Nicoletta FP, Iemma F. Functional hydrogels with a multicatalytic activity for bioremediation: Single-step preparation and characterization. J Appl Polym Sci 2016. [DOI: 10.1002/app.43338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; I-87036 Rende (CS) Italy
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; I-87036 Rende (CS) Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; I-87036 Rende (CS) Italy
| | - Nevio Picci
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; I-87036 Rende (CS) Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; I-87036 Rende (CS) Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; I-87036 Rende (CS) Italy
| |
Collapse
|
16
|
Phan S, Salentinig S, Hawley A, Boyd BJ. How relevant are assembled equilibrium samples in understanding structure formation during lipid digestion? Eur J Pharm Biopharm 2015. [DOI: 10.1016/j.ejpb.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|