1
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
2
|
Caglak E, Ogretmen OY, Karsli B. The effect of pomegranate peel extract added as a natural preservative on the quality parameters of thornback ray ( Raja clavata) sausages stored at +4°C. Food Sci Nutr 2024; 12:6011-6021. [PMID: 39139922 PMCID: PMC11317683 DOI: 10.1002/fsn3.4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024] Open
Abstract
In this study, three different groups of sausages were produced from thornback ray (Raja clavata) without additives (control group), waste pomegranate peel extract (natural group), and ascorbic acid (synthetic group). Biochemical, physicochemical, and microbiological changes of sausages were examined under refrigerator conditions (+4°C), and the shelf life was determined. The best results in terms of nutritional and physicochemical values were obtained in sausages treated with pomegranate peel extract. All sausage groups were spoiled on the 15th day in terms of the total volatile basic nitrogen (TVB-N); however, the pomegranate peel extract group showed a more positive effect compared to the other sausage groups. However, this value was not considered because cartilaginous fish such as stingrays contain higher levels of nonprotein nitrogenous compounds. It was observed that microbial growth was less in the natural group and the antimicrobial effect of pomegranate peel extract was higher than that of ascorbic acid. In addition, it was determined that the pomegranate peel extract group extended the shelf life up to 6 days in terms of total viable count (TVC) and yeast/mold compared to the control and synthetic groups, respectively. This study showed that pomegranate peel extract has a better protective effect than ascorbic acid and it can be used as a natural additive in preserving the quality of seafood products.
Collapse
Affiliation(s)
- Emre Caglak
- Department of Seafood Processing Technology, Faculty of FisheriesRecep Tayyip Erdoğan UniversityRizeTurkey
| | - Ozen Yusuf Ogretmen
- Department of Seafood Processing Technology, Faculty of FisheriesRecep Tayyip Erdoğan UniversityRizeTurkey
| | - Baris Karsli
- Department of Seafood Processing Technology, Faculty of FisheriesRecep Tayyip Erdoğan UniversityRizeTurkey
| |
Collapse
|
3
|
Fogarasi M, Urs MJ, Socaciu MI, Ranga F, Semeniuc CA, Vodnar DC, Mureșan V, Țibulcă D, Fogarasi S, Socaciu C. Polyphenols-Enrichment of Vienna Sausages Using Microcapsules Containing Acidic Aqueous Extract of Boletus edulis Mushrooms. Foods 2024; 13:979. [PMID: 38611285 PMCID: PMC11011306 DOI: 10.3390/foods13070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Polyphenols are ubiquitous by-products in many plant foods. Their intake has been linked to health benefits like the reduced incidence of cardiovascular disease, diabetes, and cancer. These bioactive compounds can be successfully extracted from Boletus edulis mushrooms with acidic water. However, such extract could influence the sensory or textural properties of the product to be enriched; this inconvenience can be avoided by microencapsulating it using spray drying. In this study, the Vienna sausages were reformulated by replacing 2% of the cured meat with microcapsules containing an acidic aqueous extract of Boletus edulis mushrooms and by replacing ice flakes, an ingredient that represents 22.9% of the manufacturing recipe, with ice cubes from the same extract aiming to obtain a polyphenol enriched product. The results showed a higher content of polyphenols in sausages with extract (VSe; 568.92 μg/g) and microcapsules (VSm; 523.03 μg/g) than in the control ones (455.41 μg/g), with significant differences for 2,4-dihydroxybenzoic acid, protocatechuic acid, and 1-O-galloyl-β-D-glucose. However, because of the oxidative stress caused to the microcapsules by the extract's spray drying, VSm had the highest oxidation state. PV and TBARS levels varied with storage time in all formulations, but given the short period tested, they were well below the allowed/recommended limit. The extract, as such, negatively affected the appearance, odor, and taste of Vienna sausages. The microcapsules, instead, determined an increase in their acceptance rate among consumers; they also prevented moisture loss and color changes during storage. In conclusion, microcapsules are more suitable for use as a polyphenol enrichment ingredient in Vienna sausages than the extract.
Collapse
Affiliation(s)
- Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Maria Jenica Urs
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Maria-Ioana Socaciu
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Floricuța Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.); (C.S.)
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.); (C.S.)
| | - Vlad Mureșan
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Dorin Țibulcă
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (M.F.); (M.J.U.); (M.-I.S.); (V.M.); (D.Ț.)
| | - Szabolcs Fogarasi
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania; (F.R.); (D.C.V.); (C.S.)
| |
Collapse
|
4
|
Zhang E, Zhao Y, Ren Z, Shi L, Weng W. Comparative effects of W/O and O/W emulsions on the physicochemical properties of silver carp surimi gels. Food Chem X 2023; 20:100988. [PMID: 38144838 PMCID: PMC10740075 DOI: 10.1016/j.fochx.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
The comparative effects of water-in-oil (W/O) and oil-in-water (O/W) emulsions on the physicochemical characteristics of silver carp surimi gels were investigated. The breaking force of surimi gels was 188.72 g, which decreased with increasing W/O emulsion but remained constant by adding O/W emulsion. The hardness decreased with increasing W/O emulsion, while the other parameters to TPA maintained constant whether the W/O or O/W emulsion was added. The yellowness value of surimi gels was 1.30, which increased with increasing W/O emulsion while remained constant after adding O/W emulsion. The water-holding capacity of surimi gels was invariant when emulsions increased. After emulsions added to surimi gels, no changes in the surimi protein interactions were found in electrophoretic patterns and Fourier transform infrared spectra. The increasing W/O emulsion enlarged the droplet size of oil and then destroyed the surimi gel network structure, while the oil droplets were evenly dispersed with increasing O/W emulsion.
Collapse
Affiliation(s)
- Enhan Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yuan Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| |
Collapse
|
5
|
Pineda CG, Yamul DK, Navarro AS. Utilization of different by-products to produce nutritionally rich gelled products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2234-2243. [PMID: 37273569 PMCID: PMC10232693 DOI: 10.1007/s13197-023-05750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
Yellow corn cooking water with yerba mate (Ilex paraguariensis) extract, obtained as a by-product of snack manufacture, was combined with whey protein concentrate (7 g/100 g), flaxseed (Linum usitatissimum L.) flour (2 g/100 g), and honey (8 g/100 g) to obtain different gelled products. The effect of the composition on the physicochemical parameters was analyzed. Flaxseed flour was added directly or with a previous pre-heating, and, in both cases, it increased the solid behavior of gels. On the contrary, honey increased the gel liquid-like behavior, and both ingredients modified the color of the gels. Elastic and loss modulus decreased after storage for 7 and 14 days. Some of the textural parameters also changed during storage. Principal component analysis and cluster analysis revealed three groups of formulations according to their composition, and those samples containing only flaxseed flour were best described with the textural and rheological parameters. Yerba mate extract, mainly, flaxseed flour, and honey increased the phenolic composition of gels but decreased the sensory acceptability, despite the sweetness of honey. A variety of gelled products with different textures and flavors was obtained using by-products of the food industry. These gels could be used either for dessert formulations or as a matrix for gelled products.
Collapse
Affiliation(s)
- Carolina Giraldo Pineda
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP–CCT La Plata–CONICET, 47 y 116, 1900 La Plata, Argentina
| | - Diego Karim Yamul
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, PROANVET, Tandil, Buenos Aires Argentina
- CONICET, Tandil, Buenos Aires Argentina
| | - Alba Sofía Navarro
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP–CCT La Plata–CONICET, 47 y 116, 1900 La Plata, Argentina
- Facultad de Ingeniería, UNLP, 47 y 116, 1900 La Plata, Buenos Aires Argentina
| |
Collapse
|
6
|
Tanislav AE, Pușcaș A, Mureșan V, Mudura E. The oxidative quality of bi-, oleo- and emulgels and their bioactives molecules delivery. Crit Rev Food Sci Nutr 2023; 64:8990-9016. [PMID: 37158188 DOI: 10.1080/10408398.2023.2207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During recent years, the applicability of bi-, oleo- and emulgels has been widely studied, proving several advantages as compared to conventional fats, such as increasing the unsaturated fat content of products and being more sustainable for temperate regions as compared to tropical fats. Moreover, these alternative fat systems improve the nutritional profile, increase the bioavailability of bioactive compounds, and can be used as preservation films and markers for the inactivation of pathogens, while in 3D printing facilitate the obtaining of superior food products. Furthermore, bi-, oleo- and emulgels offer food industries efficient, innovative, and sustainable alternatives to animal fats, shortenings, margarine, palm and coconut oil due to the nutritional improvements. According to recent studies, gels can be used as ingredients for the total or partial replacement of saturated and trans fats in the meat, bakery and pastry industry. The evaluation of the oxidative quality of this gelled systems is significant because the production process involves the use of heat treatments and continuous stirring where large amounts of air can be incorporated. The aim of this literature review is to provide a synthesis of studies to better understand the interaction of components and to identify future improvements that can be applied in oil gelling technology. Generally, higher temperatures used in obtaining polymeric gels, lead to more oxidation compounds, while a higher concentration of structuring agents leads to a better protection against oxidation. Due to the gel network ability to function as a barrier against oxidation factors, gelled matrices are able to provide superior protection for the bioactive compounds. The release percentage of bioactive molecules can be regulated by formulating the gel matrix (type and concentration of structuring agents and type of oil). In terms of food products, future research may include the use of antioxidants to improve the oxidative stability of the reformulated products.
Collapse
Affiliation(s)
- Anda Elena Tanislav
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Elena Mudura
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Norouzi Fard M, Nouri M. New formulation of fermented sausages towards healthier and quality rectification by adding <em>Ferulago angulata</em> essential oil. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The demand is improved for ready-to-eat meals by lifestyle changes and fermented sausages are popular meat products because of their flavor. Natural compositions are considered as substitutes of synthetic preservatives in products, which have been extensively employed. The aim of present research is to investigate the impact of Ferulago Angulata Essential Oil (FAEO) as an antimicrobial and antioxidant factor for preserving of dry fermented sausages throughout storage. Initially, FAEO was extracted using microwave assisted hydrodistillation and its components were identified by gas chromatography-mass spectroscopy. Fermented sausages were treated by starter culture (Biobak K) and FAEO at various concentrations (0, 400, 800 and 1000 ppm). Afterwards, tests such as pH, moisture, thiobarbituric acid, texture, microbial growth, electron microscope images, and sensory evaluation were conducted during storage (28 d). The high levels of bioactive compositions such as limonene (30.71%) and α-pinene (19.02%) were indicated in FAEO. The results illustrated that pH and moisture of all fermented sausages were within the standard range during storage. At different concentrations, FAEO significantly decreased thiobarbituric acid of treated samples compared to control (p<0.05). Furthermore, FAEO was able to improve cohesiveness and elasticity of fermented sausages, which were also visible in electron microscope images. Antimicrobial feature of FAEO was distinguished by evaluating microbial attributes (total viable count, lactic acid bacteria and yeast) in fermented sausages. Ultimately, FAEO at 800 ppm concentration was detected as a promising and appropriate natural preservative during storage in fermented sausages.
Collapse
|
8
|
Loading of fish oil into β-cyclodextrin nanocomplexes for the production of a functional yogurt. Food Chem X 2022; 15:100406. [PMID: 36211775 PMCID: PMC9532799 DOI: 10.1016/j.fochx.2022.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The main limitation of adding fish oil into food products is its instability and oxidation. It leads to the production of improper aroma, unpleasant odor/taste of final product. β-cyclodextrin (BCD) inclusion complexes were applied for encapsulation of fish oil. Physicochemical properties of produced yogurt were investigated during storage at 4 °C. Adding encapsulated fish oil into yogurt gave closer properties to control sample.
Omega-3 fatty acids play a role in achieving optimal health and in protection against diseases. Although instability and oxidation of its essential fatty acids has limited its use in food products. Among the strategies used to prevent these challenges, the encapsulation technique has been the most successful method. Therefore, in this study, β-cyclodextrin (BCD) inclusion complexes were applied for encapsulation of fish oil and its addition into yogurt for fortification. Physicochemical properties of produced yogurt as well as sensory tests were investigated during 21 days of storage at 4 °C. The results showed that encapsulation of fish oil with BCD significantly reduced the acidity, peroxide value, and syneresis of yogurt while increasing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In conclusion, the results demonstrated that yoghurt fortified with encapsulated fish oil has similar sensory qualities to the control sample than yoghurt fortified with free fish oil.
Collapse
|
9
|
Evaluation of Plant Protein Hydrolysates as Natural Antioxidants in Fish Oil-In-Water Emulsions. Antioxidants (Basel) 2022; 11:antiox11081612. [PMID: 36009330 PMCID: PMC9404908 DOI: 10.3390/antiox11081612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we evaluated the physical and oxidative stabilities of 5% w/w fish oil-in-water emulsions stabilized with 1%wt Tween20 and containing 2 mg/mL of protein hydrolysates from olive seed (OSM–H), sunflower (SFSM–H), rapeseed (RSM–H) and lupin (LUM–H) meals. To this end, the plant-based substrates were hydrolyzed at a 20% degree of hydrolysis (DH) employing a mixture 1:1 of subtilisin: trypsin. The hydrolysates were characterized in terms of molecular weight profile and in vitro antioxidant activities (i.e., DPPH scavenging and ferrous ion chelation). After incorporation of the plant protein hydrolysates as water-soluble antioxidants in the emulsions, a 14-day storage study was conducted to evaluate both the physical (i.e., ζ-potential, droplet size and emulsion stability index) and oxidative (e.g., peroxide and anisidine value) stabilities. The highest in vitro DPPH scavenging and iron (II)-chelating activities were exhibited by SFSM–H (IC50 = 0.05 ± 0.01 mg/mL) and RSM–H (IC50 = 0.41 ± 0.06 mg/mL). All the emulsions were physically stable within the storage period, with ζ-potential values below −35 mV and an average mean diameter D[4,3] of 0.411 ± 0.010 μm. Although LUM–H did not prevent lipid oxidation in emulsions, OSM–H and SFSM–H exhibited a remarkable ability to retard the formation of primary and secondary lipid oxidation products during storage when compared with the control emulsion without antioxidants. Overall, our findings show that plant-based enzymatic hydrolysates are an interesting alternative to be employed as natural antioxidants to retard lipid oxidation in food emulsions.
Collapse
|
10
|
Rice flour-emulgel as a bifunctional ingredient, stabiliser-cryoprotactant, for formulation of healthier frozen fish nugget. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Du Q, Zhou L, Li M, Lyu F, Liu J, Ding Y. Omega‐3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Linhui Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Minghui Li
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Fei Lyu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| |
Collapse
|
12
|
Yu J, Song L, Xiao H, Xue Y, Xue C. Structuring emulsion gels with peanut protein isolate and fish oil and analyzing the mechanical and microstructural characteristics of surimi gel. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Fruit and vegetable smoothies preservation with natural antimicrobials for the assurance of safety and quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Roy VC, Shiran Chamika WA, Park JS, Ho TC, Khan F, Kim YM, Chun BS. Preparation of bio-functional surimi gel incorporation of fish oil and green tea extracts: Physico-chemical activities, in-vitro digestibility, and bacteriostatic properties. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Gore SB, Xavier M, Nayak BB, Shitole SS, Tandale AT, Balange AK. Effects of cod liver oil fortification on the quality aspects of mince sausages from Indian Major Carp (
Labeo
rohita
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sandeep Bhaskar Gore
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Mumbai India
| | - Martin Xavier
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Mumbai India
| | - Binay Bhushan Nayak
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Mumbai India
| | - Snehal Shubhash Shitole
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Mumbai India
| | - Ajay Trimbak Tandale
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Mumbai India
| | - Amajad Khansaheb Balange
- Department of Post‐Harvest Technology ICAR‐Central Institute of Fisheries Education Mumbai India
| |
Collapse
|
16
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Chávez-González ML, Aguilar CN. Encapsulated Food Products as a Strategy to Strengthen Immunity Against COVID-19. Front Nutr 2021; 8:673174. [PMID: 34095193 PMCID: PMC8175800 DOI: 10.3389/fnut.2021.673174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
In December 2019, the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)-a novel coronavirus was identified which was quickly distributed to more than 100 countries around the world. There are currently no approved treatments available but only a few preventive measures are available. Among them, maintaining strong immunity through the intake of functional foods is a sustainable solution to resist the virus attack. For this, bioactive compounds (BACs) are delivered safely inside the body through encapsulated food items. Encapsulated food products have benefits such as high stability and bioavailability, sustained release of functional compounds; inhibit the undesired interaction, and high antimicrobial and antioxidant activity. Several BACs such as ω-3 fatty acid, curcumin, vitamins, essential oils, antimicrobials, and probiotic bacteria can be encapsulated which exhibit immunological activity through different mechanisms. These encapsulated compounds can be recommended for use by various researchers, scientists, and industrial peoples to develop functional foods that can improve immunity to withstand the coronavirus disease 2019 (COVID-19) outbreak in the future. Encapsulated BACs, upon incorporation into food, offer increased functionality and facilitate their potential use as an immunity booster. This review paper aims to target various encapsulated food products and their role in improving the immunity system. The bioactive components like antioxidants, minerals, vitamins, polyphenols, omega (ω)-3 fatty acids, lycopene, probiotics, etc. which boost the immunity and may be a potential measure to prevent COVID-19 outbreak were comprehensively discussed. This article also highlights the potential mechanisms; a BAC undergoes, to improve the immune system.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Ami R. Patel
- Division of Dairy and Food Microbiology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Mexico
| | - Cristobal N. Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Mexico
| |
Collapse
|
17
|
Physicochemical properties of silver carp (Hypophthalmichthys molitrix) mince sausages as influenced by washing and frozen storage. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Li D, Prinyawiwatkul W, Tan Y, Luo Y, Hong H. Asian carp: A threat to American lakes, a feast on Chinese tables. Compr Rev Food Sci Food Saf 2021; 20:2968-2990. [PMID: 33836118 DOI: 10.1111/1541-4337.12747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Asian carp, which are widely distributed in Asia and Europe, are nutritious and popular with consumers. In China, Asian carp is a tasty dish and has been consumed for thousands of years. However, they are considered aggressive invasive species that threaten rivers, lakes, and indigenous species in the United States. Asian carp have proliferated greatly in the water basin of the Mississippi River and its tributaries, and they have caused severe ecological problems over the past 20 years. In recent years, several state governments along the Mississippi River have implemented assistance programs to eliminate invasive Asian carp, but these did not alleviate the threat. We conducted a survey to understand consumers' attitudes toward Asian carp in the United States, and related reports were reviewed to explore the possibility of Asian carp as food fish on American tables. Emphasis is placed on the farming history, functional characteristics, consumption preferences, and successful utilization methods for Asian carp in China. In addition, suggestions and possible utilization methods were proposed to improve the negative impression of Asian carp in the United States. Further research is needed to take full advantage of this huge excellent source of food or health supplements. This review provides ideas and directions for the use of Asian carp in the United States. We believe that through effective cooperation between China and the United States, the negative aspects of Asian carp in the United States could be diminished, and a mutually beneficial situation could be achieved.
Collapse
Affiliation(s)
- Dapeng Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,College of Engineering, China Agricultural University, Beijing, China
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, Louisiana, USA
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|