1
|
Wang X, Chen H, Xu Y, Deng Q. The role of micro-structures in the aqueous phase of emulsion in lipid oxidation process. Food Chem 2025; 464:141760. [PMID: 39471561 DOI: 10.1016/j.foodchem.2024.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Yingying Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
2
|
Pei XC, Zeng XB, Li DY, Wang XM, Yin FW, Liu HL, Zhou DY. The change rule of lipid oxidation and hydrolysis driven via water in Antarctic krill oil: Based on association colloid formation. Food Chem 2025; 463:141448. [PMID: 39348769 DOI: 10.1016/j.foodchem.2024.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
The residual water and amphiphilic compounds such as phospholipids in bulk oil can form reverse micelles, which affect oxidative stability. In this study, the Antarctic krill oil (AKO) samples with different water contents were subjected to accelerated storage. During storage, AKO exhibited oxidative changes, manifested as increased POV, TBARS values, and volatile compound levels but decreased PUFA percentages. Meanwhile, AKO underwent hydrolysis, evidenced by decreased PC, PE, and TG contents but increased FFA contents. Moreover, the degree of lipid oxidation and hydrolysis is dose-dependent with water added. Cryogenic scanning electron microscopy imaging and micelle size distribution measurement proved the presence of reverse micelle, and their size and interfacial area improved with increased water contents. Correlation analysis suggested that lipid oxidation and hydrolysis positively correlated with the size and interfacial area of reverse micelle. Therefore, it is speculated that the oil-water interface may be the site of lipid oxidation and hydrolysis.
Collapse
Affiliation(s)
- Xue-Chen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiang-Bo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xin-Miao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
3
|
Zhang Y, Diao Y, Raza SHA, Huang J, Wang H, Tu W, Zhang J, Zhou J, Tan Y. Flavor characterization of pork cuts in Chalu black pigs using multi-omics analysis. Meat Sci 2025; 219:109668. [PMID: 39321667 DOI: 10.1016/j.meatsci.2024.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The study investigated the flavor variations in four different fresh pork cuts (longissimus thoracis, LT; trapezius muscle, TM; hamstring muscle, HM; Pork Belly, PB) from Chalu black pigs (ten castrated boars) using multi-omics techniques. The research also explored the influence of muscle fiber type on the flavor profiles of these cuts. Results from quantitative real-time PCR (qRT-PCR) indicated significant differences in muscle fiber type across the four pork cuts in various anatomical locations. Each cut exhibited distinctive volatile organic compounds (VOCs) profiles, with HM displaying a sweet and fruity green flavor, LT showcasing a fatty and nutty taste, PB presenting a fresh, citrusy, and green flavor, and TM offering a floral and bitter note. Variations in fatty acid carbon number and saturation were observed among the cuts, with HM, LT, and PB being rich in fatty acids with C16-18, C19-21, and 3 double bonds, respectively. The metabolites specific to each cut were found to play key roles in different metabolic pathways, such as protein-related pathways for HM, arginine biosynthesis for LT, lysine biosynthesis for PB, and D-arginine and D-ornithine metabolism for TM. Differentially expressed genes (DEGs) were associated with amino acid metabolism for HM, glycolysis/gluconeogenesis for LT, and cellular aromatic compound organization for PB. Notably, HM and PB displayed unique flavor characteristics, while TM exhibited relatively neutral features. The study also identified correlations among VOCs, muscle fiber type, lipids, metabolites, and gene patterns specific to each cut, highlighting the complex interplay of factors influencing pork flavor.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| | - Yuduan Diao
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Ji Huang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Hongyang Wang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Weilong Tu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Jiajie Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jieke Zhou
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yongsong Tan
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
4
|
Capece U, Gugliandolo S, Morciano C, Avolio A, Splendore A, Di Giuseppe G, Ciccarelli G, Soldovieri L, Brunetti M, Mezza T, Pontecorvi A, Giaccari A, Cinti F. Erythrocyte Membrane Fluidity and Omega-3 Fatty Acid Intake: Current Outlook and Perspectives for a Novel, Nutritionally Modifiable Cardiovascular Risk Factor. Nutrients 2024; 16:4318. [PMID: 39770939 PMCID: PMC11676811 DOI: 10.3390/nu16244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs). Two trials, REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), with highly purified EPA, and STRENGTH (Effect of High-Dose Omega-3 Fatty Acids vs. Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk), with a combination of EPA and DHA, have produced different outcomes, triggering a scientific debate on possible explanations for the discrepancies. Furthermore, doubts have arisen as to the anti-inflammatory and anti-aggregating activity of these compounds. Recent studies have, however, highlighted interesting effects of EPA and DHA on erythrocyte membrane fluidity (EMF). EMF is governed by a complex and dynamic biochemical framework, with fatty acids playing a central role. Furthermore, it can be easily measured in erythrocytes from a blood sample using fluorescent probes. Recent research has also shown that EMF could act as a possible cardiovascular risk factor biomarker. This review aims to synthetize the latest evidence on erythrocyte membrane fluidity, exploring its potential role as a biomarker of residual cardiovascular risk and discussing its clinical relevance. Further, we aim to dissect the possible biological mechanisms that link omega-3 modifiable membrane fluidity to cardiovascular health.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Shawn Gugliandolo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cassandra Morciano
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Adriana Avolio
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Amelia Splendore
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Zhang W, Jiang X, Liu L, Zhao Y, Bai F, Wang J, Gao R, Xu X. The influence mechanism of phospholipids structure and composition changes caused by oxidation on the formation of flavor substances in sturgeon caviar. Food Chem 2024; 460:140585. [PMID: 39111141 DOI: 10.1016/j.foodchem.2024.140585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
The oxidation-induced phospholipids (PLs) underwent structural and compositional analysis, alongside the establishment of a simulation system to verify the link between phospholipid oxidation and flavor substances formation in sturgeon caviar. Structural alterations of PLs were tracked using 31P and 1H nuclear magnetic resonance (NMR), electron spin resonance spectroscopy (ESR), and Raman spectroscopy. The findings revealed a reduction in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) from 82.3% and 10.4% to 58.2% and 5.8% respectively. Free radical signals exhibited an initial increase followed by a decrease. The diminished intensity in Raman spectra at 970 and 1080 cm-1 indicated reduced fat unsaturation attributable to PLs oxidation. Correlation analysis highlighted a significant association between PC and PE containing C22:6, C20:5, C20:4, and C18:2 with flavor substances, suggesting their role as key precursors for flavor development. This study established a theoretical basis for understanding the change of flavor quality in sturgeon caviar during storage.
Collapse
Affiliation(s)
- Weijia Zhang
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Xinyu Jiang
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Li Liu
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Fan Bai
- Quzhon Sturgeon Aquatic Food Science and Technology Development Co, Ltd, Quzhou 324002, China.
| | - Jinlin Wang
- Quzhon Sturgeon Aquatic Food Science and Technology Development Co, Ltd, Quzhou 324002, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| |
Collapse
|
6
|
Zeng XB, Pei XC, Li DY, Yin FW, Liu HL, Jin ML, Zhang JH, Zhou DY. Mechanism of discoloration of Antarctic krill oil upon storage: A study based on model systems. Food Chem 2024; 459:140376. [PMID: 39002334 DOI: 10.1016/j.foodchem.2024.140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1μg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.
Collapse
Affiliation(s)
- Xiang-Bo Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xue-Chen Pei
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - De-Yang Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Fa-Wen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Hui-Lin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Meng-Ling Jin
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiang-Hua Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Da-Yong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
7
|
Jin W, Zhao S, Li J, Cheng K, Xi L, Pei J, Gao R, Jiang P. Unraveling gender-specific lipids and flavor volatiles in giant salamander ( Andrias davidianus) livers via lipidomics and GC-IMS. Food Chem X 2024; 23:101786. [PMID: 39286042 PMCID: PMC11403451 DOI: 10.1016/j.fochx.2024.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
To uncover the relationships between lipid components and flavor volatiles, distinctness in lipid components and odor substances in giant salamander livers of different genders were comparatively characterized through UPLC-Q Exactive-MS lipidomics and gas chromatography-ion migration spectrometry (GC-IMS). A total of 2171 and 974 lipid metabolites were detected in positive and negative ion modes, respectively. Triglycerides (TG) and phosphatidylcholines (PC) are the most abundant types of lipids. TG level in male livers was higher than that in female livers (P < 0.05), whereas PC level showed no marked variation (P > 0.05). Additionally, a total of 51 volatile components were detected through GC-IMS. Ketones (42.18 % ∼ 45.44 %) and alcohols (24.19 % ∼ 26.50 %) were the predominant categories, and their relative contents were higher in female livers. Finally, 30 differential lipid metabolites and 12 differential odor substances were screened and could be used as distinguishing labels in giant salamander livers of different genders. Correlation analysis indicated that PS(36:2e), TG(48:13), ZyE(37:6), and ZyE(33:6) correlated positively with 3-methyl butanal, 3-hydroxy-2-butanone, and 2-methyl-1-propanol (P < 0.05), but adversely linked with 1-penten-3-one, and 1-octen-3-one (P < 0.01). By three-fold cross-validation, prediction accuracies of these differential lipids and volatile compounds for gender recognition based on random forest model were 100 % and 92 %, respectively. These findings might not only add knowledge on lipid and volatile profiles in giant salamander livers as affected by genders, but also provide clues for their gender recognition.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi, University of Technology, Hanzhong, 723001, China
| | - Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiayao Li
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Kaiqi Cheng
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Linjie Xi
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ruichang Gao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Gu F, Hou L, Gao K, Wen X, Mi S, Qin G, Huang L, Wu Q, Yang X, Wang L, Jiang Z, Xiao H. Effects of Dietary Net Energy Concentration on Reproductive Performance, Immune Function, Milk Composition, and Gut Microbiota in Primiparous Lactating Sows. Animals (Basel) 2024; 14:3044. [PMID: 39457974 PMCID: PMC11504852 DOI: 10.3390/ani14203044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the optimal dietary net energy concentration for the reproductive performance, immune function, milk composition, and gut microbiota of primiparous sows during lactation. Forty primiparous lactating sows (Landrace × Yorkshire) with similar body backfat thicknesses were randomly allocated into five treatment groups and fed diets with different dietary net energy concentrations of 10.05 MJ/kg, 10.47 MJ/kg, 10.89 MJ/kg, 11.30 MJ/kg, and 11.72 MJ/kg. The results showed that there were no differences in the performance of piglets, while there was a decrease in the daily feed intake of sows (p = 0.079, linear) as dietary net energy concentration increased. With the increasing dietary net energy concentration, the plasma insulin levels of sows increased (p < 0.01, linear), the plasma glucose levels tended to increase (p = 0.074, linear), and the blood urea nitrogen levels tended to decrease (p = 0.063, linear). Moreover, the plasma total superoxide dismutase activity of sows increased (p < 0.05, quadratic) and the plasma malondialdehyde content of sows decreased (p < 0.05, quadratic) by increasing the dietary net energy concentration. Interestingly, with the increase in dietary net energy concentration, the plasma immunoglobulin M content of sows increased, the milk immunoglobulin M, immunoglobulin G, immunoglobulin A and the percentage of milk fat increased (p < 0.05, linear), and the milk secretory immunoglobulin A content also increased (p < 0.05, linear and quadratic). The milk immunoglobulins and milk fat content of sows fed with net energy concentration of 11.72 MJ/kg were highest. Moreover, there were significant differences in the α-diversity, β-diversity, and relative abundance of gut microbiota in sows fed with different dietary net energy concentrations. At the phylum level, Spirochaetota and Bacteroidota in the gut microbiota of sows were mainly affected by increasing the dietary net energy concentration. Furthermore, the correlation analysis showed that milk immunoglobulin content had a significant negative correlation with the relative abundance of Bacteroidota, and plasma malondialdehyde content also had a significant negative correlation with the relative abundance of Spirochaetota. In summary, these results suggest that increasing the dietary net energy concentration to 11.72 MJ/kg can increase immunological substances in milk, improve milk quality, and alter the composition of gut microbiota in primiparous lactating sows.
Collapse
Affiliation(s)
- Fang Gu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Lei Hou
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., No. 135 Qixing Road, Nanning 530022, China; (L.H.); (S.M.); (G.Q.)
| | - Kaiguo Gao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Xiaolu Wen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Shuyun Mi
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., No. 135 Qixing Road, Nanning 530022, China; (L.H.); (S.M.); (G.Q.)
| | - Guoxi Qin
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., No. 135 Qixing Road, Nanning 530022, China; (L.H.); (S.M.); (G.Q.)
| | - Lijun Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Qiwen Wu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Xuefen Yang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Li Wang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Zongyong Jiang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| | - Hao Xiao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Dafeng 1st Street, Guangzhou 510640, China; (F.G.); (K.G.); (X.W.); (L.H.); (Q.W.); (X.Y.); (L.W.)
| |
Collapse
|
9
|
Bojórquez-Quintal E, Xotlanihua-Flores D, Bacchetta L, Diretto G, Maccioni O, Frusciante S, Rojas-Abarca LM, Sánchez-Rodríguez E. Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico. PLANTS (BASEL, SWITZERLAND) 2024; 13:2741. [PMID: 39409611 PMCID: PMC11478550 DOI: 10.3390/plants13192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive compounds of green coffee and the coffee by-products related to the production of origin, such as dried cascara (skin-pulp), parchment and silverskin (unroasted), in order to investigate the role their biomolecules may have in reuse through practices and local knowledge, not yet valued. The metabolomic profile by HPLC-ESI-HRMS of the aqueous extract of the dried cascara highlighted 93 non-volatile molecules, the highest number reported for dried cascara. They belong to groups of organic acids (12), alkaloids (5), sugars (5), fatty acids (2), diglycerides (1), amino acids (18), phospholipids (7), vitamins (5), phenolic acids (11), flavonoids (8), chlorogenic acids (17), flavones (1) and terpenes (1). For the first time, we report the use of direct analysis in real-time mass spectrometry (DART-MS) for the identification of metabolites in aqueous extracts of dried cascara, parchment, silverskin and green coffee. The DART analysis mainly showed the presence of caffeine and chlorogenic acids in all the extracts; additionally, sugar adducts and antioxidant compounds such as polyphenols were detected. The mineral content (K, Ca, P, S, Mg and Cl) by EDS spectrometry in the by-products and green coffee showed a relatively high content of K in the dried cascara and green coffee, while Ca was detected in double quantity in the silverskin. These metabolomic and mineral profile data allow enhancement of the link between the quality of green coffee and its by-products and the traditional local practices in the crop-growing area. This consolidates the community's experience in reusing by-products, thereby minimizing the impact on the environment and generating additional income for coffee growers' work, in accordance with the principles of circular economy and bioeconomy.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONAHCYT, Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico
| | - Damián Xotlanihua-Flores
- Ingeniería en Desarrollo Comunitario, Instituto Tecnológico Superior de Zongolica, Km 4 Carretera a la Compañía S/N, Tepetlitlanapa, Zongolica 95005, Veracruz, Mexico;
| | - Loretta Bacchetta
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Gianfranco Diretto
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Oliviero Maccioni
- Regenerative Circular Bioeconomy Laboratory, AGROS Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (L.B.); (O.M.)
| | - Sarah Frusciante
- GREEN Biotechnology Laboratory, BIOAG Division, SSPT Department, ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Luis M. Rojas-Abarca
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| | - Esteban Sánchez-Rodríguez
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico; (L.M.R.-A.); (E.S.-R.)
| |
Collapse
|
10
|
Zhao S, Yu J, Xi L, Kong X, Pei J, Jiang P, Gao R, Jin W. Sex-Specific Lipid Profiles and Flavor Volatiles in Giant Salamander ( Andrias davidianus) Tails Revealed by Lipidomics and GC-IMS. Foods 2024; 13:3048. [PMID: 39410083 PMCID: PMC11476126 DOI: 10.3390/foods13193048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
To elucidate the relationships between lipid components and odor traits, this study comparatively characterized the distinct lipid compositions and flavor volatiles in giant salamander tails of different sexes via mass-spectrometry-based lipidomics and GC-IMS. A total of 3145 fat metabolites were detected in male and female giant salamander tails, with the largest contributors being triglycerides (TGs, 840) and phosphatidylcholines (PCs, 383). Notably, the contents of PCs and TGs were greater in female tails than in male tails, and the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also greater in the female group. Additionally, a total of 45 volatile components were detected, namely, 14 aldehydes, 14 alcohols, 9 ketones, 3 acids, 3 esters, 1 ether, and 1 amine. Alcohols (29.96% to 34.85%) and aldehydes (21.07% to 22.75%) were the predominant volatiles. Multivariate statistical analysis revealed 22 key differential fats and 26 differential odor substances as distinguishing labels between sexes. Correlation analysis revealed that the concentrations of triethylamine, dimethyl sulfide, ethanol-D, and 3-methyl butanal-D were significantly positively correlated with the concentrations of diglyceride (DG) (26:6e), cardiolipin (CL) (59:4), acylcarnitine (AcCa) (22:4), and triglyceride (TG) (52:10) (p < 0.01). Threefold cross-validation revealed that the prediction accuracies of these differential lipids and volatile compounds for sex recognition via the random forest model were 100%. These findings might not only provide insight into the effects of sexes on the lipid and volatile profiles of giant salamander tails but also provide clues for their gender recognition.
Collapse
Affiliation(s)
- Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jinghong Yu
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
| | - Linjie Xi
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Xiangdong Kong
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Pengfei Jiang
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environment (Incubation), Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi University of Technology, Hanzhong 723001, China; (S.Z.); (J.Y.); (L.X.); (X.K.); (J.P.)
- Key Laboratory of Bio-Resources of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
11
|
Dong H, Zeng X, Zheng X, Li C, Ming J, Zhang J. The Liver-Protective Effects of the Essential Oil from Amomum villosum in Tilapia ( Oreochromis niloticus): Antioxidant, Transcriptomic, and Metabolomic Modulations. Antioxidants (Basel) 2024; 13:1118. [PMID: 39334777 PMCID: PMC11428501 DOI: 10.3390/antiox13091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the effects of the essential oil from Amomum villosum (EOA) on liver-protective effects in Nile tilapia (Oreochromis niloticus), utilizing a multidisciplinary approach that integrates physiological assessments and transcriptomic and metabolomic analyses. Fish were fed diets containing 2 g/kg of EOA over a 56-day trial, with a no-EOA diet serving as the control. The results demonstrate that EOA supplementation improves liver histology, enhances antioxidant capacities, and reduces inflammation in tilapia. The transcriptomic analysis revealed significant alterations in gene expression profiles related to RNA splicing, metabolism, and disease pathways. The identification of differential genes and disease databases identified key target genes associated with the primary component of EOA for its anti-hepatobiliary disease effects. Furthermore, a molecular docking analysis of EOA major components with core differentially expressed genes in the hepatobiliary syndrome indicated that α-pinene is a potential Hsp90 inhibitor, which may prevent inflammation. A metabolomic analysis further demonstrated that EOA supplementation leads to notable changes in liver phospholipids, fatty acids, and carbohydrate metabolism. These findings underscore the potential of EOA as a natural additive for improving liver health in tilapia, offering valuable insights to the aquaculture industry for enhancing fish health and welfare in intensive farming systems.
Collapse
Affiliation(s)
- Hongbiao Dong
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Xiangbing Zeng
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Zheng
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Chenghui Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- National Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan 316000, China
| | - Junchao Ming
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Jiasong Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| |
Collapse
|
12
|
Bai X, Zhang Q, Zhou X, Yao J, Wan P, Chen DW. Use of egg yolk phospholipids to improve the thermal-oxidative stability of fatty acids, capsaicinoids and carotenoids in chili oil. Food Chem 2024; 451:139423. [PMID: 38677135 DOI: 10.1016/j.foodchem.2024.139423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Phospholipids can act as antioxidants in food. In this study, egg yolk phospholipids (EPL) and sunflower oil were utilized in making chili oil, and proton nuclear magnetic resonance spectroscopy was employed to quantify the concentrations of fatty acyl groups, carotenoids, capsaicinoids in chili oil according to their specific signals in the spectra. The results showed that the changes in the concentrations of fatty acyl groups in the control samples were greater than those in the EPL-treated samples at the same frying temperature, while the contents of carotenoids and capsaicinoids were significantly lower than those of the EPL-treated samples when fried at 150 °C (p < 0.05). Two-way ANOVA indicated that frying temperature and EPL treatment, as well as their interaction had significant impacts on the thermal-oxidative stability of chili oil (p < 0.05). The results suggest that EPL may act as antioxidants during frying, and EPL can improve the thermal-oxidative stability of chili oil.
Collapse
Affiliation(s)
- Xueying Bai
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China; Fisheries Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Qin Zhang
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiatao Zhou
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingyu Yao
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Wan
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530004, China.
| |
Collapse
|
13
|
Brüls-Gill M, Boerkamp VJ, Hohlbein J, van Duynhoven JP. Spatiotemporal assessment of protein and lipid oxidation in concentrated oil-in-water emulsions stabilized with legume protein isolates. Curr Res Food Sci 2024; 9:100817. [PMID: 39228684 PMCID: PMC11369386 DOI: 10.1016/j.crfs.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
The growing trend of substituting animal-based proteins with plant-based proteins requires more understanding of the functionality and stability of vegan mayonnaises, especially regarding their susceptibility to lipid and protein oxidation. Here, we investigate the spatial and temporal dynamics of lipid and protein oxidation in emulsions stabilized with legume ((hydrolyzed) soy, pea, and faba bean) protein isolates (hSPI, SPI, PPI, FPI). We assessed lipid oxidation globally by NMR and locally by confocal laser scanning microscopy using the oxidation-sensitive fluorescent dye BODIPY 665/676. Further, we assessed local protein oxidation by employing protein autofluorescence and the fluorescently labeled radical spin-trap CAMPO-AFDye 647. Oxidation of oil in droplets was governed by the presence of tocopherols in the oil phase and pro-oxidant transition metals that were introduced via the protein isolates. Non-stripped oil emulsions stabilized with PPI and hSPI displayed higher levels of lipid hydroperoxides as compared to emulsions prepared with SPI and FPI. We attribute this finding to higher availability of catalytically active transition metals in PPI and hSPI. For stripped oil emulsions stabilized with SPI and FPI, lipid hydroperoxide concentrations were negligible in the presence of ascorbic acid, indicating that this agent acted as antioxidant. For the emulsions prepared with PPI and hSPI, lipid hydroperoxide formation was only partly inhibited by ascorbic acid, indicating a role as prooxidant. Interestingly, we observed protein-lipid aggregates in all emulsions. The aggregates underwent fast and extensive co-oxidation, which was also modulated by transition metals and tocopherols originating from the oil phase. Our study demonstrates the potential of spatiotemporal imaging techniques to enhance our understanding of the oxidation processes in emulsions stabilized with plant proteins.
Collapse
Affiliation(s)
- Mariska Brüls-Gill
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Vincent J.P. Boerkamp
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Microspectroscopy Research Facility, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John P.M. van Duynhoven
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Unilever Global Foods Innovation Centre, Plantage 14, 6708 WJ Wageningen, the Netherlands
| |
Collapse
|
14
|
Morozova M, Andrejeva J, Snytnikova O, Boldyreva L, Tsentalovich Y, Kozhevnikova E. Phospholipid supplementation inhibits male and female odor discrimination in mice. Front Behav Neurosci 2024; 18:1397284. [PMID: 39132447 PMCID: PMC11310928 DOI: 10.3389/fnbeh.2024.1397284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Dietary phospholipids (PLs) are promising supplements that are commonly found as natural food ingredients and emulsifier additives. The present study aimed to evaluate the effect of major PLs found in food supplements on social behavior in mice. In this study, the effect of short-term high dietary PL content was studied in terms of social odor discrimination and social interactions with male and female intruders in male mice. We used odor discrimination and habituation tests to demonstrate that PL-fed male mice tend to lose preference toward female odor and fail to discriminate against socially significant scents. At the same time, test animals recognize non-social odors. We also found that PL affected the social behavior of the test males, who tend to behave indiscriminately toward male and female intruders during direct contact. Brain metabolomic profiling revealed no major changes in the intermediary metabolism or neurotransmitter biosynthesis. At the same time, intranasal PL application resembled the effects of dietary supplementation. These data suggest that certain PL might suppress pheromone perception in the olfactory system and affect the sense of socially important odor cues.
Collapse
Affiliation(s)
- Maryana Morozova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | | | | | - Lidiya Boldyreva
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | | | - Elena Kozhevnikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
15
|
Boerkamp VJP, Boras SD, Vincken JP, van Duynhoven JPM, Hennebelle M. Influence of emulsifier on lipid oxidation in spray-dried microencapsulated O/W emulsions. Food Res Int 2024; 187:114412. [PMID: 38763662 DOI: 10.1016/j.foodres.2024.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Lipid oxidation limits the shelf-life of dried microencapsulated oils (DMOs), such as infant formula. However, it is poorly understood how lipid oxidation is affected by different types of emulsifiers. To improve our understanding, we prepared DMOs with different emulsifiers (whey protein isolate (WPI), pea protein isolate (PPI), and non-proteinaceous CITREM) and studied lipid oxidation in both the free and encapsulated fat. Only a small difference in oxidation rate was observed between these fat fractions for all formulations. We ascribed this to a non-discrete distribution of the fractions and the subsequent low fractionation selectivity as shown by Raman microscopy. The DMO with PPI showed hardly any oxidation during a 7-week incubation at 40 °C, whereas the DMOs with WPI and CITREM both reached significantly higher contents of oxidation products (lipid hydroperoxides, aldehydes, and epoxides). The enhanced stability of DMO-PPI could not be ascribed to the presence of phytic acid. In conclusion, we demonstrate the potential of using PPI to produce oxidatively stable DMOs.
Collapse
Affiliation(s)
- Vincent J P Boerkamp
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| | - Scarlett D Boras
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| |
Collapse
|
16
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Lautz LS, Dorne JLCM, Punt A. Application of partition coefficient methods to predict tissue:plasma affinities in common farm animals: Influence of ionisation state. Toxicol Lett 2024; 398:140-149. [PMID: 38925423 DOI: 10.1016/j.toxlet.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Tissue affinities are conventionally determined from in vivo steady-state tissue and plasma or plasma-water chemical concentration data. In silico approaches were initially developed for preclinical species but standardly applied and tested in human physiologically-based kinetic (PBK) models. Recently, generic PBK models for farm animals have been made available and require partition coefficients as input parameters. In the current investigation, data for species-specific tissue compositions have been collected, and prediction of chemical distribution in various tissues of livestock species for cattle, chicken, sheep and swine have been performed. Overall, tissue composition was very similar across the four farm animal species. However, small differences were observed in moisture, fat and protein content in the various organs within each species. Such differences could be attributed to factors such as variations in age, breed, and weight of the animals and general conditions of the animal itself. With regards to the predictions of tissue:plasma partition coefficients, 80 %, 71 %, 77 % of the model predictions were within a factor 10 using the methods of Berezhkovskiy (2004), Rodgers and Rowland (2006) and Schmitt (2008). The method of Berezhkovskiy (2004) was often providing the most reliable predictions except for swine, where the method of Schmitt (2008) performed best. In addition, investigation of the impact of chemical classes on prediction performance, all methods had very similar reliability. Notwithstanding, no clear pattern regarding specific chemicals or tissues could be detected for the values predicted outside a 10-fold change in certain chemicals or specific tissues. This manuscript concludes with the need for future research, particularly focusing on lipophilicity and species differences in protein binding.
Collapse
Affiliation(s)
- L S Lautz
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen, WB 6708, the Netherlands.
| | - J-L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, Parma 43126, Italy
| | - A Punt
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen, WB 6708, the Netherlands
| |
Collapse
|
18
|
Li L, Bai S, Zhao H, Tan J, Wang Y, Zhang A, Jiang L, Zhao Y. Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective. Antioxidants (Basel) 2024; 13:638. [PMID: 38929076 PMCID: PMC11200899 DOI: 10.3390/antiox13060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows' diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Sarula Bai
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
19
|
You S, Tian Y, Zhang W, Zheng B, Zhang Y, Zeng H. Quality properties of fish ball with abalone and its relationship with sensory properties. Food Chem X 2024; 21:101146. [PMID: 38304052 PMCID: PMC10832502 DOI: 10.1016/j.fochx.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
In this work, whiteness, water-holding capacity, gel strength, textural profile analysis were performed to examine the quality of fish balls with abalone (FBA). In addition, a correlation between quality and sensory properties was established. The addition of abalone significantly increased the water holding capacity, gel strength and textural properties of FBA, and decreased their whiteness, the best overall quality was achieved at 9 % w/w abalone addition. The E-nose and E-tongue results revealed that the addition of abalone changed the flavour of FBA. HS-SPME-GC-MS identified 65 volatile organic compounds (VOCs) and proved to be effective in reducing fishy flavour. E-nose can distinguish between the VOCs in FBA. Moreover, Umami and 1-octen-3-ol can serve as important indicators to observe changes in the quality of FBA, as they were positively connected with WHC, gumminess, chewiness, resilience, a*, hexanal, etc. The results provided a theoretical basis for the development of abalone and surimi products.
Collapse
Affiliation(s)
- Shuyi You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Yan Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Wenqi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fuzhou Ocean Research Institute, Fuzhou 350108, China
| |
Collapse
|
20
|
Wang X, Chen Y, McClements DJ, Meng C, Zhang M, Chen H, Deng Q. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil. Adv Colloid Interface Sci 2024; 325:103117. [PMID: 38394718 DOI: 10.1016/j.cis.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Chen Meng
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Mingkai Zhang
- College of Food and Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
21
|
Panpipat W, Chumin T, Thongkam P, Pinthong P, Shetty K, Chaijan M. Relatively Low Lecithin Inclusion Improved Gelling Characteristics and Oxidative Stability of Single-Washed Mackerel ( Auxis thazard) Surimi. Foods 2024; 13:546. [PMID: 38397523 PMCID: PMC10887992 DOI: 10.3390/foods13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of lecithin addition on the gelling characteristics and oxidative stability of single-washed mackerel (Auxis thazard) surimi was investigated in this study. Surimi was chopped in the presence of 2.5% (w/w) NaCl with different concentrations of lecithin (0, 0.1, 0.5, 1, and 1.5 g/100 g surimi). The rheological behavior, gel-forming ability, microstructure, and lipid oxidation of lecithin-added surimi varied significantly depending on lecithin content. When compared to the control, lecithin at 0.1, 0.5, and 1 g/100 g improved the breaking force of the gel (p < 0.05). The breaking force of the gel decreased significantly as lecithin concentration increased (up to 1.5 g/100 g) (p < 0.05). Deformation, on the other hand, reacted differently to the lecithin than it did to the breaking force. At a lecithin level of 0.1 g/100 g, the surimi gel displayed improved deformation (p < 0.05). Nonetheless, at higher doses (0.5-1.5 g/100 g), lecithin considerably reduced surimi gel deformation (p < 0.05), and the gel containing lecithin at 1.5 g/100 g showed significantly decreased deformation. Surimi with 0.1 g/100 g lecithin had the lowest expressible drip (p < 0.05). In general, lecithin at concentrations ranging from 0.1 to 1 g/100 g reduced expressible drip (p < 0.05), but not at 1.5 g/100 g, which was equivalent to the control (p > 0.05). Adding lecithin to mackerel surimi improved its whiteness slightly, regardless of concentration. Lecithin impacted the microstructures of surimi gel in a concentration-dependent manner. Lecithin at a concentration of 0.1 g/100 g produced a densely packed network with small, jointed clusters and minimal holes within the gel. Joined clusters in the gel were reduced by 0.5-1.5 g/100 g lecithin, and continuous aggregates predominated. Surprisingly, at higher doses of lecithin, notably 1.5 g/100 g, porous structures with continuous voids were perceived. Surimi gels treated with various lecithin doses had lower thiobarbituric acid reactive substances (TBARS) levels than the control (p < 0.05). Overall, lecithin at a low concentration of 0.1 g/100 g was most effective at improving the texture, increasing water-holding capacity, lightening the color, and delaying lipid oxidation of single-washed mackerel surimi.
Collapse
Affiliation(s)
- Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (W.P.); (T.C.); (P.T.); (P.P.)
| | - Thinnaphop Chumin
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (W.P.); (T.C.); (P.T.); (P.P.)
| | - Porntip Thongkam
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (W.P.); (T.C.); (P.T.); (P.P.)
| | - Pattaraporn Pinthong
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (W.P.); (T.C.); (P.T.); (P.P.)
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), North Dakota State University, 374 D Loftsgard Hall, 1360 Albrecht Blvd., Fargo, ND 58108, USA;
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (W.P.); (T.C.); (P.T.); (P.P.)
| |
Collapse
|
22
|
Quezada C, Urra M, Mella C, Zúñiga RN, Troncoso E. Plant-Based Oil-in-Water Food Emulsions: Exploring the Influence of Different Formulations on Their Physicochemical Properties. Foods 2024; 13:513. [PMID: 38397490 PMCID: PMC10888144 DOI: 10.3390/foods13040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The global focus on incorporating natural ingredients into the diet for health improvement encompasses ω-3 polyunsaturated fatty acids (PUFAs) derived from plant sources, such as flaxseed oil. ω-3 PUFAs are susceptible to oxidation, but oil-in-water (O/W) emulsions can serve to protect PUFAs from this phenomenon. This study aimed to create O/W emulsions using flaxseed oil and either soy lecithin or Quillaja saponins, thickened with modified starch, while assessing their physical properties (oil droplet size, ζ-potential, and rheology) and physical stability. Emulsions with different oil concentrations (25% and 30% w/w) and oil-to-surfactant ratio (5:1 and 10:1) were fabricated using high-pressure homogenization (800 bar, five cycles). Moreover, emulsions were thickened with modified starch and their rheological properties were measured. The physical stability of all emulsions was assessed over a 7-day storage period using the TSI (Turbiscan Stability Index). Saponin-stabilized emulsions exhibited smaller droplet diameters (0.11-0.19 µm) compared to lecithin (0.40-1.30 µm), and an increase in surfactant concentration led to a reduction in droplet diameter. Both surfactants generated droplets with a high negative charge (-63 to -72 mV), but lecithin-stabilized emulsions showed greater negative charge, resulting in more intense electrostatic repulsion. Saponin-stabilized emulsions showed higher apparent viscosity (3.9-11.6 mPa·s) when compared to lecithin-stabilized ones (1.19-4.36 mPa·s). The addition of starch significantly increased the apparent viscosity of saponin-stabilized emulsions, rising from 11.6 mPa s to 2117 mPa s. Emulsions stabilized by saponin exhibited higher stability than those stabilized by lecithin. This study confirms that plant-based ingredients, particularly saponins and lecithin, effectively produce stable O/W emulsions with flaxseed oil, offering opportunities for creating natural ingredient-based food emulsions.
Collapse
Affiliation(s)
- Carolina Quezada
- Doctoral Program in Materials Science and Process Engineering, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Matías Urra
- School of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Camila Mella
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (C.M.); (R.N.Z.)
| | - Rommy N. Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (C.M.); (R.N.Z.)
- Universitary Institute for Research and Technology Development (UIRTD), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Elizabeth Troncoso
- Universitary Institute for Research and Technology Development (UIRTD), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
23
|
Bogojevic O, Zhang Y, Wolff CD, Johnsen NK, Arevång C, Guo Z. A Chemo-Enzymatic Cascade Strategy for the Synthesis of Phosphatidylcholine Incorporated with Structurally Diverse FAHFAs. J Org Chem 2024; 89:1035-1044. [PMID: 38156819 DOI: 10.1021/acs.joc.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs), a newly discovered class of human endogenous complex lipids showing great promise for treating diabetes and inflammatory diseases, exist naturally in extremely low concentrations. This work reports a chemo-enzymatic approach for the comprehensive synthesis of phospholipids containing FAHFAs via sequential steps: hydratase-catalyzed hydration of unsaturated fatty acids to generate structurally diverse hydroxy fatty acids (HFAs), followed by the selective esterification of these HFAs with fatty acids mediated by secondary alcohol-specific Candida antarctica lipase A (CALA), resulting in the formation of a series of diverse FAHFA analogs. The final synthesis is completed through carbodiimide-based coupling of FAHFAs with glycerophosphatidylcholine. Optimal reaction conditions are identified for each step, and the substrate affinity of CALA, responsible for the catalytic mechanisms during FAHFA production, is evaluated through molecular docking. Compared to multistep lab-tedious chemical synthesis, this route, relying on natural building blocks and natural biocatalysts, is significantly facile, scalable, and highly selective, affording high yields (74-98 mol %) in each step for the construction of higher FAHFA-PC series (10/12/13-FAHFAs). The developed strategy aims to increase the availability of naturally occurring FAHFA species and provide the tools for the construction of versatile and novel analogs of FAHFA conjugates.
Collapse
Affiliation(s)
- Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Christian Daugaard Wolff
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Niels Krabbe Johnsen
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | | | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| |
Collapse
|
24
|
Wang W, Zhang H, Wang D, Wang N, Liu C, Li Z, Wang L, Zhu X, Yu D. Self-powered biosensor using photoactive ternary nanocomposite: Testing the phospholipid content in rhodotorula glutinis oil. Biosens Bioelectron 2023; 242:115751. [PMID: 37839349 DOI: 10.1016/j.bios.2023.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
In the field of oil refining, the presence of excessive residual phosphorus in crude oil can significantly impact its quality, thereby emphasizing the necessity for compact and convenient testing equipment. This study primarily focuses on developing of self-powered biosensor (SPB) using immobilizing Choline Oxidase with a photoactive ternary nanocomposite complex (CHOx-BiOI-rGO-Fe3O4 NPs-ITO) as the anode and utilizing a Pt electrode as the cathode. The successful preparation of the ternary composite photoelectrode for the anode was confirmed through a range of characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 absorption/desorption, Dynamic light scattering (DLS), and Ultraviolet-visible diffuse reflection spectrometer (UV-vis DRS). The electrochemical and photoelectrochemical properties were assessed using an electrochemical workstation, revealing a significant enhancement photoelectrical responsiveness attributed to the formation of heterojunction structures. The SPB exhibited a remarkable linear relationship between the instantaneous photocurrent and phosphatidylcholine (PC) concentration, with a regression equation of I (μA) = 39.62071C (mM) + 3.47271. The linear range covered a concentration range of 0.01-10 mM, and the detection limit (S/N = 3) was determined to be 0.008 mM. It demonstrated excellent reproducibility and storage stability, positioning it a promising alternative to High-performance liquid chromatography (HPLC) for accurate quantification of PC content in rhodotorula glutinis oil. The standard recovery PC content ranged from 98.48% to 103.53%, with a relative standard deviation (RSD) ranging from 1.4% to 2.4%. This research presents a convenient and precise detection device that has the potential to address the issue of lagging detection in the oil refining process.
Collapse
Affiliation(s)
- Weining Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Donghua Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China; School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chang Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ziyue Li
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Xiuqing Zhu
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
25
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
López-Ruiz R, Jimenez-Carvelo AM, Cuadros-Rodríguez L. Recent Approaches for Analytical Characterization of Phospholipids in Food Matrices. Is the Phospholipid Fraction Exploited in the Authentication of Food Lipids? Crit Rev Anal Chem 2023; 55:99-108. [PMID: 37807655 DOI: 10.1080/10408347.2023.2264981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Phospholipids (PhLs) are essential components of cell membranes, characterized by a hydrophobic tail and a hydrophilic headgroup. They play several roles in biological systems, including energy storage, protection, and antioxidant properties. PhLs are found naturally in foods such as egg yolks, milk, or vegetable oils. The composition and concentration of PhLs observed in these foods vary according to the analytical methodology applied, mainly in the extraction and sample treatment process. Analytical targeted approaches for characterized PhLs involve liquid chromatography and mass spectrometry techniques. These methods provide insights into the composition and content of PhLs in food matrices. However, there is limited research on using PhL profiles for food quality evaluation and authentication purposes. Untargeted approaches, such as fingerprinting, have the potential to assess the authenticity of food products by capturing analytical signals linked to the PhL fraction. This review focusses on recent analytical strategies used in characterizing PhLs in distinctive foodstuffs (eggs, milk, and vegetable oils). It discusses sample preparation, analytical separation, and detection techniques. The review also highlights the potential of multivariate approaches to incorporate information on PhL composition to assess the authenticity of food products, an area that has been largely overlooked in previous studies.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, Almeria, Spain
| | - Ana M Jimenez-Carvelo
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, Almeria, Spain
| | - Luis Cuadros-Rodríguez
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Biohealth Research Institute (ibs.GRANADA), University of Granada, Granada, Spain
| |
Collapse
|
27
|
Sadeghi Vahid G, Farhoosh R. Frying Performance of Gallic Acid and/or Methyl Gallate Accompanied by Phosphatidylcholine. Foods 2023; 12:3560. [PMID: 37835212 PMCID: PMC10573040 DOI: 10.3390/foods12193560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
This study shows the possibility of using gallic acid (GA) and/or methyl gallate (MG) accompanied by phosphatidylcholine (PC) instead of tert-butylhydoquinone (TBHQ) for frying purposes. The antioxidants and PC were added in the concentrations of 1.2 mM and 500-2000 mg/kg, respectively. Oxidative stability index (OSI) and the kinetics of change in conjugated dienes (LCD), carbonyls (LCO), and acid value (AV) were used to assess the antioxidative treatments. GA alone and GA/MG (50:50) plus PC at 2000 mg/kg yielded the same OSI as that of TBHQ (18.4 h). The latter was of the highest frying performance in preventing the formation of LCD (rn = 0.0517/h and tT = 10.6 h vs. rn = 0.0976/h and tT = 4.5 h for TBHQ), LCO (rn = 0.0411/h and tT = 12.7 h vs. rn = 0.15/h and tT = 4.3 h for TBHQ), and hydrolytic products (AVm = 37.8 vs. 24.0 for TBHQ); rn: normalized the maximum rate of LCD/LCO accumulation; tT: the time at which the rate of LCD/LCO accumulation is maximized; AVm: quantitative measure of hydrolytic stability.
Collapse
Affiliation(s)
| | - Reza Farhoosh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91775-1163, Iran;
| |
Collapse
|
28
|
Cao A, Gesteiro N, Santiago R, Malvar RA, Butrón A. Maize kernel metabolome involved in resistance to fusarium ear rot and fumonisin contamination. FRONTIERS IN PLANT SCIENCE 2023; 14:1160092. [PMID: 37538055 PMCID: PMC10394704 DOI: 10.3389/fpls.2023.1160092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Fusarium verticillioides poses a threat to worldwide maize production due to its ability to infect maize kernel and synthesize fumonisins that can be accumulated above safety levels for humans and animals. Maize breeding has been proposed as key tool to decrease kernel contamination with fumonisins, but metabolic studies complementary to genomic approaches are necessary to disclose the complexity of maize resistance. An untargeted metabolomic study was proposed using inbreds genetically related but with contrasting levels of resistance in order to uncover pathways implicated in resistance to Fusarium ear rot (FER) and fumonisin contamination in the maize kernel and to look for possible biomarkers. Metabolite determinations were performed in kernels collected at 3 and 10 days after inoculation with F. verticillioides (dat). Discriminant metabolites between resistant and susceptible RILs were rather found at 10 than 3 dat, although metabolite differences at later stages of colonization could be driven by subtle variations at earlier stages of infection. Within this context, differences for membrane lipid homeostasis, methionine metabolism, and indolacetic acid conjugation seemed highly relevant to distinguish between resistant and susceptible inbreds, confirming the polygenic nature of resistance to FER and fumonisin contamination in the maize kernels. Nevertheless, some specific metabolites such as the polyamine spermidine and/or the alkaloid isoquinoline seemed to be promising indirect selection traits to improve resistance to FER and reduce fumonisin accumulation. Therefore, in vitro and in vivo experiments will be necessary to validate the inhibitory effects of these compounds on fumonisins biosynthesis.
Collapse
Affiliation(s)
- Ana Cao
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | | | - Rogelio Santiago
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
29
|
Van Wayenbergh E, Langenaeken NA, Struyf N, Goos P, Foubert I, Courtin CM. Stabilisation of vitamin A by wheat bran is affected by wheat bran antioxidants, bound lipids and endogenous lipase activity. Food Res Int 2023; 169:112911. [PMID: 37254347 DOI: 10.1016/j.foodres.2023.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Food fortification is an efficient strategy to combat vitamin A deficiency. However, the stability of vitamin A during storage is low. Cereal bran can be used as a natural and affordable stabilising agent, but the mechanism behind this stabilisation remains unclear. To unravel this mechanism, vitamin A stabilisation was studied during an accelerated storage experiment (60 °C, 70% relative humidity) using a set of 30 in-house modified wheat bran samples. The characteristics of these samples were linked to vitamin A stabilisation during storage using forward regression modelling. While all wheat bran samples could stabilise vitamin A to a significant extent, the stabilising effect was more pronounced for samples with a high antioxidant capacity, high bound lipid content and low lipase activity. The main effect of lipase activity was more than thrice as large as the main effects of antioxidant capacity and bound lipid content. These results suggest that wheat bran antioxidants and bound lipids protect vitamin A from degradation during storage, while endogenous lipase activity counteracts the stabilising effect. Based on these findings, modified wheat bran mixed with vitamin A can be a cost-effective and healthy aid in food fortification by providing high vitamin A stability.
Collapse
Affiliation(s)
- Eline Van Wayenbergh
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | - Niels A Langenaeken
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Nore Struyf
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Peter Goos
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium; Department of Engineering Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp, Belgium
| | - Imogen Foubert
- Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kulak, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| |
Collapse
|
30
|
Bao Y, Pignitter M. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Compr Rev Food Sci Food Saf 2023; 22:2678-2705. [PMID: 37097053 PMCID: PMC10962568 DOI: 10.1111/1541-4337.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.
Collapse
Affiliation(s)
- Yifan Bao
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Marc Pignitter
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
| |
Collapse
|
31
|
Chen DW, Wan P, Yao J, Yang X, Liu J. Egg yolk phospholipids as an ideal precursor of fatty note odorants for chicken meat and fried foods: A review. Food Chem 2023; 407:135177. [PMID: 36527950 DOI: 10.1016/j.foodchem.2022.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Egg yolk phospholipids (PLs) have been demonstrated to generate large quantities of lipid-derived odorants, especially the fatty note odorants. Recently, egg yolk PLs have been successfully used in chicken meat and fried foods to improve aroma. This review comprehensively summarizes the properties of egg yolk PLs as precursors of fatty note odorants, including their classes, extraction, identification, oxidation, decomposition and odorant formation, applications, considerations and future prospects in the food industry. Most likely, phosphatidylcholine (PC) is the most abundant class in egg yolk PLs, and PC is more efficient than phosphatidylethanolamine in generating fatty note odorants; moreover, the predominant polyunsaturated fatty acid is linoleic acid, and its corresponding predominant hydroperoxide is 9-hydroperoxy-10,12-octadecadienoic acid during autoxidation, which is the precursor of 2,4-decadienals and 2,4-nonadienals, the key fatty note odorants. Therefore, egg yolk PLs could be an ideal precursor of fatty note odorants for chicken meat and fried foods.
Collapse
Affiliation(s)
- De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China.
| | - Peng Wan
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingyu Yao
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoying Yang
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jie Liu
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
32
|
Ma G, Wang Y, Li Y, Zhang L, Gao Y, Li Q, Yu X. Antioxidant properties of lipid concomitants in edible oils: A review. Food Chem 2023; 422:136219. [PMID: 37148851 DOI: 10.1016/j.foodchem.2023.136219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Edible oils are indispensable for human life, providing energy and necessary fatty acids. Nevertheless, they are vulnerable to oxidation via a number of different mechanisms. Essential nutrients deteriorate as well as toxic substances are produced when edible oils are oxidized; thus, they should be retarded wherever possible. Lipid concomitants have a strong antioxidant capacity and are a large class of biologically active chemical substances in edible oils. They have shown remarkable antioxidant properties and were documented to improve the quality of edible oils in varied ways. An overview of the antioxidant properties of the polar, non-polar, and amphiphilic lipid concomitants present in edible oils is provided in this review. Interactions among various lipid concomitants and the probable mechanisms are also elucidated. This review may provide a theoretical basis and practical reference for food industry practitioners and researchers to understand the underlying cause of variations in the quality of edible oils.
Collapse
Affiliation(s)
- Gaiqin Ma
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuanyuan Wang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuefan Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Lingyan Zhang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuan Gao
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Qi Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
33
|
Antioxidative capacity of microalgal carotenoids for stabilizing n-3LC-PUFA rich oil: Initial quantity is key. Food Chem 2023; 406:135044. [PMID: 36455314 DOI: 10.1016/j.foodchem.2022.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The health-beneficial long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) are easily affected by the undesired process of lipid oxidation in fish oil, while being stable in the lipid extracts of photoautotrophic microalgae. The current research investigates the role of carotenoids by evaluating the oxidative stability of mixtures of fish oil with total lipid extracts of two different microalgae (Phaeodactylum and Isochrysis) throughout an accelerated storage experiment of 4 weeks at 37 °C. A clear separation between oxidatively stable and oxidatively unstable mixtures was observed for which the initial amount of carotenoids relative to the amount of n-3LC-PUFA was a good indicator. The lipid class composition, clearly differing between the two algae, was probably of minor influence. The antioxidative role of fucoxanthin, and diatoxanthin and β-carotene as minor carotenoids, was illustrated by their gradual degradation throughout storage. However, when their initial contents were too low, this role could not be exerted leading to thorough lipid oxidation.
Collapse
|
34
|
Tang J, Yang Z, Zhang Y, Huang R, Yu C, Yu C. Preparation of PEGylated nedaplatin liposomes with sustained release behavior for enhancing the antitumor efficacy of non-small cell lung cancer. Int J Pharm 2023; 635:122708. [PMID: 36764415 DOI: 10.1016/j.ijpharm.2023.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Nedaplatin (NDP) plays an important role in the chemotherapies of non-small cell lung cancer (NSCLC). However, dose-limiting toxicities such as myelosuppression and drug resistance restrict its clinical application. Herein, we intended to overcome these defects by developing a PEGylated liposomal formulation encapsulated NDP (NDP-LPs). For the first time, we found the incompatibility between NDP and natural phospholipids such as egg phosphatidylcholine (EPC) using the high-performance liquid chromatography (HPLC) method. The orthogonal experimental design was applied to optimize the conditions for preparing NDP-LPs, with encapsulation efficiency (EE) as the evaluation indicator. The physicochemical properties of optimized NDP-LPs were further characterized, including particle size, zeta potential, EE, drug release profiles, and so on. Results showed that a significantly sustained-release profile of NDP-LPs was observed and the releasing time of NDP could reach as long as 8 days. At the cellular level, NDP encapsulated in the PEGylated liposomes enhanced its cellular uptake and possessed potent cytotoxic activity. After intravenous injection, NDP-LPs could accumulate at tumor sites and effectivelyinhibit tumor growth of mice without obvious adverse effects. In conclusion, our results demonstrated that PEGylated liposomes could serve as a promising carrier to enhance the therapeutic effects of NDP.
Collapse
Affiliation(s)
- Jinsong Tang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ruixue Huang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chaoqun Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Chao Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
35
|
Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC-MS, and UV-Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics. Food Chem 2023; 417:135866. [PMID: 36913868 DOI: 10.1016/j.foodchem.2023.135866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV-Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC-MS unveiled monosaccharides as the main contributors to samples' segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes' metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.
Collapse
|
36
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2023:1-14. [PMID: 36607291 DOI: 10.1080/00071668.2022.2160626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. This experiment investigated the efficacy of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to one of nine treatment groups (six pens/treatment with 20 birds/pen) according to a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other eight groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).2. There were EB × BT × CT interactions for body weight (BW) at 24 d (P = 0.038) and average daily gain (ADG) during the 10-24 d period (P = 0.049), with the greatest values found with concurrent supplementation of three supplements.3. Inclusion of EB resulted in greater (P < 0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, digestible energy (DE) and the coefficient of apparent ileal digestibility (CAID) of dry matter, crude protein, and fat However, feed conversion ratio, mortality rate and heterophile to lymphocyte ratio were lower (P < 0.05).4. Dietary BT supplementation improved (P < 0.05) all performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth and the CAID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P < 0.05) in ADG (d 10-24) and a decrease (P < 0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).5. In conclusion, dietary supplementation of either EB or BT alone or in combination ameliorated some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- J Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - K Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - H A Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - M Akbari Gharaei
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Y Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - F Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
37
|
Zeng L, Lee J, Jo YJ, Choi MJ. Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Quantitative analysis of fatty acids and vitamin E and total lipid profiling of dietary supplements from the German market. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractCertain polyunsaturated fatty acids with n-3 double bonds are essential nutrients for the human body and are part of the bilayer of cell membranes or precursors of tissue hormones. The most abundant dietary n-3 fatty acids in human nutrition are α-linolenic, eicosapentaenoic, and docosahexaenoic acid and can be taken up through dietary sources such as vegetable oils or fish or, alternatively, dietary supplements with high levels of n-3 fatty acids. In previous studies, considerable variation of lipid patterns and quantities of n-3 fatty acids were observed. In this study, 33 dietary supplements from the German market, based on fish-, krill-, microalgae, and plant oil, have been analyzed. Lipid profiling (LC–MS) revealed triacylglycerols as the dominant lipid species in most samples. However, krill oil was rich in phospholipids and samples containing fatty acid concentrates featured abundant fatty acid ethyl esters and diacylglycerols. Furthermore, total lipid profiles showed considerable variance depending on the lipid sources (e.g., fish or plant oil), which was also apparent in fatty acid analysis. The contents of n-3 fatty acids ranged between 150 and 570 mg/g capsule content (GC–MS) and vitamin E (α-tocopherol and tocopheryl acetate) were found in quantities ranging from 1.2 to 86.1 mg/g capsule content (HPLC–UV/Vis). While our analyses indicated a good agreement between labeled and present quantities of total n-3 fatty acids and vitamin E for the majority of samples, significant differences in agreement between individual fatty acids were observed, as well as frequent mismatches between declared and present vitamin E derivatives.
Collapse
|
39
|
Parchem K, Baranowska M, Kościelak A, Kłosowska-Chomiczewska I, Domingues MR, Macierzanka A, Bartoszek A. Effect of oxidation and in vitro intestinal hydrolysis on phospholipid toxicity towards HT29 cell line serving as a model of human intestinal epithelium. Food Res Int 2023; 163:112227. [PMID: 36596156 DOI: 10.1016/j.foodres.2022.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Oxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used in in vitro intestinal digestion to assess the effect of PL oxidation and hydrolysis on the toxicity towards HT29 cell line. Based on the obtained results, we suggest that hexanal and (E)-2-nonenal, formed by the decomposition of PL hydroperoxides, inhibited PLA2 activity. The cell exposure to simulated intestinal fluid (SIF) containing BSs decreased HT29 cell viability and significantly damaged cellular DNA. However, the genotoxic effect was reversed in the presence of all tested PL samples, while the protective effect against the BS-induced cytotoxicity was observed for native non-hydrolyzed PLs, but was not clearly visible for other samples. This can result from an overlap of other toxic effects such as lipotoxicity or disturbance of cellular redox homeostasis. Taking into account the data obtained, it was proposed that the PLA2 activity decline in the presence of PL oxidation products may be a kind of protective mechanism against rapid release of oxidized FAs characterized by high cytotoxic effect towards intestinal epithelium cells.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Anna Kościelak
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Ilona Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
40
|
Wang J, Zhu H, Shang H, Guo B, Zhang M, Wang F, Zhang L, Xu J, Wang H. Development of a thiostrepton-free system for stable production of PLD in Streptomyces lividans SBT5. Microb Cell Fact 2022; 21:263. [PMID: 36529749 PMCID: PMC9761944 DOI: 10.1186/s12934-022-01992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Phospholipase D (PLD) is highly valuable in the food and medicine industries, where it is used to convert low-cost phosphatidylcholine into high-value phospholipids (PLs). Despite being overexpressed in Streptomyces, PLD production requires expensive thiostrepton feeding during fermentation, limiting its industrialization. To address this issue, we propose a new thiostrepton-free system. RESULTS We developed a system using a combinatorial strategy containing the constitutive promoter kasOp* and PLD G215S mutation fused to a signal peptide sigcin of Streptoverticillium cinnamoneum pld. To find a candidate vector, we first expressed PLD using the integrative vector pSET152 and then built three autonomously replicating vectors by substituting Streptomyces replicons to increase PLD expression. According to our findings, replicon 3 with stability gene (sta) inserted had an ideal result. The retention rate of the plasmid pOJ260-rep3-pld* was 99% after five passages under non-resistance conditions. In addition, the strain SK-3 harboring plasmid pOJ260-rep3-pld* produced 62 U/mL (3.48 mg/g) of PLD, which further improved to 86.8 U/mL (7.51 mg/g) at 32 °C in the optimized medium, which is the highest activity achieved in the PLD secretory expression to date. CONCLUSIONS This is the first time that a thiostrepton-free PLD production system has been reported in Streptomyces. The new system produced stable PLD secretion and lays the groundwork for the production of PLs from fermentation stock. Meanwhile, in the Streptomyces expression system, we present a highly promising solution for producing other complex proteins.
Collapse
Affiliation(s)
- Juntan Wang
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Haihua Zhu
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Huiyi Shang
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Bishan Guo
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Mengxue Zhang
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Fayun Wang
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Lipan Zhang
- grid.418515.cInstitute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou, 450002 Henan China
| | - Jun Xu
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Hui Wang
- grid.16821.3c0000 0004 0368 8293School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
41
|
Zhao Z, Wan P, Liu J, Yu S, Yang X, Chen DW. Monitoring of the oxidation process of egg yolk phospholipids at frying temperature by nuclear magnetic resonance. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Yang X, Xia H, Li Y, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Chu Z. In vitro and Ex vivo Antioxidant Activity and Sustained Release Properties of Sinomenine-Loaded Liposomes-in-Hydrogel Biomaterials Simulating Cells-in-Extracellular Matrix. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sinomenine (SIN), a natural product, has been used to treat rheumatoid arthritis (RA) in China for thousands of years. SIN has been developed for the treatment of RA by way of tablets and injections, but both dosage forms have been associated with severe adverse reactions. Making SIN into liposomes-in-hydrogel biomaterials for external use has a good slow-release effect and can play an important role in avoiding the first-pass effect, gastrointestinal reaction, and increasing the local action time of drugs. SIN-loaded liposomes were formed by the thin-film dispersion method, then SIN-loaded liposomes-in-hydrogels were prepared by combining the SIN-L with hyaluronic acid (HA) hydrogels. In this paper, the basic characteristics, In vitro and Ex vivo release, and antioxidant activity of SIN-loaded liposomes-in-hydrogels were studied. The results showed that SIN-loaded liposomes-in-hydrogels have good sustained-release and antioxidant effects, and the preparation is expected to be a good biomaterial.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei, People's Republic of China
- School of life science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Zhaoxing Chu
- Hefei Yigong Pharmaceutical Co., Ltd, Hefei, People's Republic of China
| |
Collapse
|
43
|
Culler MD, Bayram I, Decker EA. Enzymatic Modification of Lecithin for Improved Antioxidant Activity in Combination with Tocopherol in Emulsions and Bulk Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13404-13412. [PMID: 36215731 DOI: 10.1021/acs.jafc.2c05182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oxidized α-tocopherol can be regenerated by phosphatidylethanolamine (PE), but current commercial sources of PE are too expensive for use as a food additive. The present study aims to determine the optimal reaction conditions for generating high PE lecithin (MHPEL) enzymatically and to validate the MHPEL's synergism with tocopherol in delaying lipid oxidation in an oil-in-water emulsion system at pH 7 and 4 and in bulk oil. Under optimal conditions of pH 9.0, 37 °C and 4 h, a MHPEL with ∼71.6% PE was obtained from 96% phosphatidylcholine lecithin using phospholipase D from Streptomyces chromofuscus. Mixed tocopherols (300 μmol/kg oil) and MHPEL (1500 μmol/kg oil) synergistically increased both the hydroperoxide and hexanal lag phase of lipid oxidation in stripped soybean oil-in-water emulsions at pH 7 by 3 days. At pH 4, this combination increased the hydroperoxide and hexanal lag phases by 3 and 2 days, respectively. The combination of 50 μmol/kg oil α-tocopherol and 1000 μmol/kg oil MHPEL also synergistically increased the hydroperoxide (5 days) and hexanal (4 days) lag phases in stripped bulk soybean oil. This approach represents a potential clean-label antioxidant system that could have commercial applications to decrease food waste.
Collapse
Affiliation(s)
- Mitchell D Culler
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Ipek Bayram
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| |
Collapse
|
44
|
Huang YJ, Tu WC, Urban PL. Rapid Acid/Base Switching in Flow Injection Analysis and Isocratic Elution Liquid Chromatography with Mass Spectrometric Detection for Improved Sensitivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1865-1873. [PMID: 36129040 DOI: 10.1021/jasms.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ion signals in electrospray ionization (ESI) mass spectrometry (MS) are affected by addition of acid or base. Acids or bases are typically added to samples to enhance detection of analytes in positive- or negative-ion mode, respectively. To carry out simultaneous monitoring of analytes with different ionogenic moieties by ESI-MS, a rapid acid/base switching system was developed. The system was further coupled with flow injection analysis (FIA) and liquid chromatography (LC) MS. The two variants enable detection of separated analytes immediately after alternating addition of acid and base. The methods were tested using a set of phospholipids (PLs) as analytes. The rapid acid/base switching enhanced signals of some of the PL analytes in both ion modes of MS. Both FIA-MS and LC-MS with acid/base switching show signal enhancements (∼1.3-23.2 times) of some analyte signals when compared with analysis conducted without acid/base switching. The proposed methods are suitable for simultaneous analysis of cationic and anionic analytes. The FIA-MS and LC-MS methods with acid/base switching were also applied in analysis of lipid extract from real samples (sausage and porcine liver). However, the FIA-MS results were affected by ionization competition and isobaric interference due to the complexity of the sample matrix and diversity of PL species. In contrast, the LC-MS mode provides adequate selectivity to observe signal enhancement for specific analyte ions. Overall, alternating addition of acid and base immediately before the ESI source can improve analytical performance without the need to carry out separate analyses targeting different types of analytes.
Collapse
Affiliation(s)
- Yu-Jie Huang
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Wei-Chien Tu
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University 101, Section 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| |
Collapse
|
45
|
Doert M, Grebenteuch S, Kroh LW, Rohn S. A ternary system of α-tocopherol with phosphatidylethanolamine and l-ascorbyl palmitate in bulk oils provides antioxidant synergy through stabilization and regeneration of α-tocopherol. Food Chem 2022; 391:133084. [DOI: 10.1016/j.foodchem.2022.133084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
|
46
|
Yu X, Zhao Y, Sun M, Liu L, Li X, Zhang X, Sun Y, Bora AFM, Li C, Leng Y, Jiang S. Effects of egg yolk lecithin/milk fat globule membrane material ratio on the structure and stability of oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
47
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. RETRACTED ARTICLE: Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2022. [PMID: 36103130 DOI: 10.1080/00071668.2022.2124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. This experiment investigated the efficiency of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions.2. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to nine treatment groups (six pens/treatment with 20 birds/pen) in a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other 8 groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).3. There were EB × BT × CT interactions for body weight (BW) at 24 d (P=0.038) and average daily gain (ADG) during the 10-24 d period (P=0.049), with the greatest values with concurrent supplementation of all three ingredients.4. Inclusion of EB resulted in greater (P<0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility (AID) of dry matter, crude protein and fat, but lower (P<0.05) feed conversion ratio, mortality rate and heterophile to lymphocyte ratio.5. Dietary BT supplementation improved (P<0.05) overall performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth, AID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P<0.05) in ADG (d 10-24) and a decrease (P<0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).6. In conclusion, dietary supplementation of either EB or BT alone or in combination can ameliorate some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- Jalal Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | | | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Farhad Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
48
|
Zhou Z, Zhang YY, Xin R, Huang XH, Li YL, Dong X, Zhou D, Zhu B, Qin L. Metal Ion-Mediated Pro-oxidative Reactions of Different Lipid Molecules: Revealed by Nontargeted Lipidomic Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10284-10295. [PMID: 35944096 DOI: 10.1021/acs.jafc.2c02402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unsaturated fatty acids are easily affected by metal ions, leading to the changes of their flavor, nutrition, and safety through lipid oxidation. Nevertheless, there is a lack of comprehensive evaluation of the pro-oxidative ability of different metal ions, which have different effects on different lipids. Thus, in this work, crude lipids extracted from abalone were incubated with different metal ions, and the comprehensive lipid oxidation products were analyzed by nontargeted lipidomics approaches using an ultra-high-performance liquid chromatography-Q-Exactive HF-X Orbitrap Mass Spectrometer (UPLC-Q-Exactive HF-X). Results showed that the overall pro-oxidative ability from strong to weak was Fe3+, Fe2+, Cu2+, Zn2+, Mn2+, Mg2+, Na+, and K+. Among them, Fe3+ and Fe2+ could promote the accumulation of oxidation intermediates and branched fatty acid esters of hydroxy fatty acids. Na+, K+, Cu2+, and Mg2+ could accelerate the oxidation of N-acyl ethanolamines and ceramides. K+ and Na+ had more influences on the free fatty acids than Zn2+ and Mn2+. Slow oxidation of triglyceride may be attributed to its long distance from the oil-water interface and the restriction of the polar headgroups of phospholipids on free radicals.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Ying Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Xin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Lian Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
49
|
Advances in the Formation and Control Methods of Undesirable Flavors in Fish. Foods 2022; 11:foods11162504. [PMID: 36010504 PMCID: PMC9407384 DOI: 10.3390/foods11162504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Undesirable flavor formation in fish is a dynamic biological process, decreasing the overall flavor quality of fish products and impeding the sale of fresh fish. This review extensively summarizes chemical compounds contributing to undesirable flavors and their sources or formation. Specifically, hexanal, heptanal, nonanal, 1−octen−3−ol, 1−penten−3−ol, (E,E)−2,4−heptadienal, (E,E)−2,4−decadienal, trimethylamine, dimethyl sulfide, 2−methyl−butanol, etc., are characteristic compounds causing off−odors. These volatile compounds are mainly generated via enzymatic reactions, lipid autoxidation, environmentally derived reactions, and microbial actions. A brief description of progress in existing deodorization methods for controlling undesirable flavors in fish, e.g., proper fermenting, defatting, appropriate use of food additives, and packaging, is also presented. Lastly, we propose a developmental method regarding the multifunctional natural active substances made available during fish processing or packaging, which hold great potential in controlling undesirable flavors in fish due to their safety and efficiency in deodorization.
Collapse
|
50
|
Belugina R, Senchikhina A, Volkov S, Fedorov A, Legin A, Kirsanov D. Quantification of phosphatides in sunflower oils using a potentiometric e-tongue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3064-3070. [PMID: 35938623 DOI: 10.1039/d2ay00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Consisting of two fatty acyl groups, phospholipids are a vital part of vegetable oils and the source of essential fatty acids. Moreover, phospholipids influence oxidative and flavor stability and color evolution of vegetable oils, and their quantification has a significant role in the quality assessment of oils. In this study, we proposed a new highly efficient, affordable, environmentally friendly, and simple approach for the evaluation of phospholipid concentrations based on potentiometric multisensor systems coupled with chemometric data processing. Support vector machines, partial least squares, and multiple linear regressions were used to predict phosphatide concentrations based on potentiometric multisensor system responses. Application of multivariate regression tools yielded the following root mean square errors of prediction: 0.005 mg/100 g of oil in the range 0.0-59.4 mg/100 g for refined oils; 0.008 mg/100 g in the range 0.0-100 mg/100 g for low phosphatide oils and 0.24 mg/100 g in the range 100-2270 mg/100 g for high phosphatide oils. This approach can be considered as a rapid and straightforward method to quantify the phosphatides in sunflower oils.
Collapse
Affiliation(s)
| | | | - Sergey Volkov
- All-Russian Research Institute of Fats (ARRIF), St Petersburg, Russia
| | - Alexander Fedorov
- ITMO University, St Petersburg, Russia.
- All-Russian Research Institute of Fats (ARRIF), St Petersburg, Russia
| | - Andrey Legin
- ITMO University, St Petersburg, Russia.
- Institute of Chemistry, Saint Petersburg State University, St Petersburg, Russia
| | - Dmitry Kirsanov
- ITMO University, St Petersburg, Russia.
- Institute of Chemistry, Saint Petersburg State University, St Petersburg, Russia
| |
Collapse
|