1
|
Senn MK, Goodarzi MO, Ramesh G, Allison MA, Graff M, Young KL, Talavera GA, McClain AC, Garcia TP, Rotter JI, Wood AC. Associations between avocado intake and measures of glucose and insulin homeostasis in Hispanic individuals with and without type 2 diabetes: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Nutr Metab Cardiovasc Dis 2023; 33:2428-2439. [PMID: 37798236 PMCID: PMC10842938 DOI: 10.1016/j.numecd.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIMS To investigate associations between avocado intake and glycemia in adults with Hispanic/Latino ancestry. METHODS AND RESULTS The associations of avocado intake with measures of insulin and glucose homeostasis were evaluated in a cross-sectional analysis of up to 14,591 Hispanic/Latino adults, using measures of: average glucose levels (hemoglobin A1c; HbA1c), fasting glucose and insulin, glucose and insulin levels after an oral glucose tolerance test (OGTT), and calculated measures of insulin resistance (HOMA-IR, and HOMA-%β), and insulinogenic index. Associations were assessed using multivariable linear regression models, which controlled for sociodemographic factors and health behaviors, and which were stratified by dysglycemia status. In those with normoglycemia, avocado intake was associated with a higher insulinogenic index (β = 0.17 ± 0.07, P = 0.02). In those with T2D (treated and untreated), avocado intake was associated with lower hemoglobin A1c (HbA1c; β = -0.36 ± 0.21, P = 0.02), and lower fasting glucose (β = -0.27 ± 0.12, P = 0.02). In the those with untreated T2D, avocado intake was additionally associated with HOMA-%β (β = 0.39 ± 0.19, P = 0.04), higher insulin values 2-h after an oral glucose load (β = 0.62 ± 0.23, P = 0.01), and a higher insulinogenic index (β = 0.42 ± 0.18, P = 0.02). No associations were observed in participants with prediabetes. CONCLUSIONS We observed an association of avocado intake with better glucose/insulin homeostasis, especially in those with T2D.
Collapse
Affiliation(s)
- MacKenzie K Senn
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue Houston, TX 77030, USA; The University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler Street, Houston, TX 77030, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gautam Ramesh
- School of Medicine, University of California, La Jolla, San Diego, CA 92037, USA
| | - Matthew A Allison
- Division of Preventive Medicine, Department of Family Medicine, University of California, La Jolla, San Diego, CA 92037, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory A Talavera
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Amanda C McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Tanya P Garcia
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Avenue Houston, TX 77030, USA.
| |
Collapse
|
2
|
Montserrat-de la Paz S, Del Carmen Naranjo M, Lopez S, Del Carmen Millan-Linares M, Rivas-Dominguez A, Jaramillo-Carmona SM, Abia R, Muriana FJG, Bermudez B. Immediate-release niacin and a monounsaturated fatty acid-rich meal on postprandial inflammation and monocyte characteristics in men with metabolic syndrome. Clin Nutr 2023; 42:2138-2150. [PMID: 37774650 DOI: 10.1016/j.clnu.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND & AIM When considered separately, long-term immediate-release niacin and fatty meals enriched in monounsaturated fatty acids (MUFA) decrease postprandial triglycerides, but their effects on postprandial inflammation, which is common in individuals with metabolic syndrome, are less known. Moreover, successful combination is lacking and its impact on acute disorders of the innate immune cells in the metabolic syndrome remains unclear. Here, we aimed to establish the effects from combination with niacin of different fats [butter, enriched in saturated fatty acids (SFA), olive oil, enriched in MUFA, and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on plasma inflammatory markers and circulating monocyte subsets, activation and priming at the postprandial period in individuals with metabolic syndrome. METHODS A random-order within-subject crossover experiment was performed, in which 16 individuals with metabolic syndrome and 16 age-matched healthy volunteers took 2 g immediate-release niacin together with the corresponding fatty meal or a meal with no fat as control. In total, 128 postprandial curves were analysed. We sampled hourly over 6 h for plasma concentrations of soluble inflammatory markers and triglycerides. Circulating monocyte subsets (CD14/CD16 balance), activation (CCL2/CCR2 axis) and priming (M1/M2-like phenotype) at the time of postprandial hypertriglyceridemic peak were also addressed. RESULTS Dietary SFA (combined with niacin) promote postprandial excursions of circulating IL-6, IL-1β, TNF-α and CD14/CCR2-rich monocytes with a pro-inflammatory M1-like phenotype, particularly in individuals with metabolic syndrome. In contrast, dietary MUFA (combined with niacin) postprandially increased circulating CD16-rich monocytes with an anti-inflammatory M2-like phenotype. Omega-3 PUFA did not add to the effects of MUFA. CONCLUSION The co-administration of a single-dose of immediate-release niacin with a fatty meal rich in MUFA, in contrast to SFA, suppresses postprandial inflammation at the levels of both secretory profile and monocyte response in individuals with metabolic syndrome. These findings highlight a potential role of combining niacin and dietary MUFA for the homeostatic control of inflammation and the innate immune system, identifying a new search direction for the management of disorders associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013 Seville, Spain; Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Maria Del Carmen Naranjo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013 Seville, Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013 Seville, Spain; Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS/CSIC), Hospital Universitario Virgen del Rocio, University of Seville, 41013 Seville, Spain
| | - Maria Del Carmen Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; Cell Biology Unit, Instituto de la Grasa, CSIC, 41013 Seville, Spain
| | | | | | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013 Seville, Spain; Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
3
|
Vazquez-Madrigal C, Lopez S, Grao-Cruces E, Millan-Linares MC, Rodriguez-Martin NM, Martin ME, Alba G, Santa-Maria C, Bermudez B, Montserrat-de la Paz S. Dietary Fatty Acids in Postprandial Triglyceride-Rich Lipoproteins Modulate Human Monocyte-Derived Dendritic Cell Maturation and Activation. Nutrients 2020; 12:nu12103139. [PMID: 33066622 PMCID: PMC7656296 DOI: 10.3390/nu12103139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary fatty acids have been demonstrated to modulate systemic inflammation and induce the postprandial inflammatory response of circulating immune cells. We hypothesized that postprandial triglyceride-rich lipoproteins (TRLs) may have acute effects on immunometabolic homeostasis by modulating dendritic cells (DCs), sentinels of the immunity that link innate and adaptive immune systems. In healthy volunteers, saturated fatty acid (SFA)-enriched meal raised serum levels of granulocyte/macrophage colony-stimulating factor GM-CSF (SFAs > monounsaturated fatty acids (MUFAs) = polyunsaturated fatty acids (PUFAs)) in the postprandial period. Autologous TRL-SFAs upregulated the gene expression of DC maturation (CD123 and CCR7) and DC pro-inflammatory activation (CD80 and CD86) genes while downregulating tolerogenic genes (PD-L1 and PD-L2) in human monocyte-derived DCs (moDCs). These effects were reversed with oleic acid-enriched TRLs. Moreover, postprandial SFAs raised IL-12p70 levels, while TRL-MUFAs and TRL-PUFAs increased IL-10 levels in serum of healthy volunteers and in the medium of TRL-treated moDCs. In conclusion, postprandial TRLs are metabolic entities with DC-related tolerogenic activity, and this function is linked to the type of dietary fat in the meal. This study shows that the intake of meals enriched in MUFAs from olive oil, when compared with meals enriched in SFAs, prevents the postprandial production and priming of circulating pro-inflammatory DCs, and promotes tolerogenic response in healthy subjects. However, functional assays with moDCs generated in the presence of different fatty acids and T cells could increase the knowledge of postprandial TRLs’ effects on DC differentiation and function.
Collapse
Affiliation(s)
- Carlos Vazquez-Madrigal
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Soledad Lopez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC, 41013 Seville, Spain; (M.C.M.-L.); (N.M.R.-M.)
| | - Noelia M. Rodriguez-Martin
- Department of Food & Health, Instituto de la Grasa, CSIC, 41013 Seville, Spain; (M.C.M.-L.); (N.M.R.-M.)
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain; (M.E.M.); (B.B.)
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain;
| | - Beatriz Bermudez
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain; (M.E.M.); (B.B.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
- Correspondence: ; Tel.: +34-954-559-850
| |
Collapse
|
4
|
Lee DPS, Low JHM, Chen JR, Zimmermann D, Actis-Goretta L, Kim JE. The Influence of Different Foods and Food Ingredients on Acute Postprandial Triglyceride Response: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11:1529-1543. [PMID: 32609800 PMCID: PMC7666897 DOI: 10.1093/advances/nmaa074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The use of postprandial triglyceride (ppTG) as a cardiovascular disease risk indicator has gained recent popularity. However, the influence of different foods or food ingredients on the ppTG response has not been comprehensively characterized. A systematic literature review and meta-analysis was conducted to assess the effects of foods or food ingredients on the ppTG response. PubMed, MEDLINE, Cochrane, and CINAHL databases were searched for relevant acute (<24-h) randomized controlled trials published up to September 2018. Based on our selection criteria, 179 relevant trials (366 comparisons) were identified and systematically compiled into distinct food or food ingredient categories. A ppTG-lowering effect was noted for soluble fiber (Hedges' giAUC = -0.72; 95% CI: -1.33, -0.11), sodium bicarbonate mineral water (Hedges' gAUC = -0.42; 95% CI: -0.79, -0.04), diacylglycerol oil (Hedges' giAUC = -0.38; 95% CI: -0.75, -0.00), and whey protein when it was contrasted with other proteins. The fats group showed significant but opposite effects depending on the outcome measure used (Hedges' giAUC = -0.32; 95% CI: -0.61, -0.03; and Hedges' gAUC = 0.16; 95% CI: 0.06, 0.26). Data for other important food groups (nuts, vegetables, and polyphenols) were also assessed but of limited availability. Assessing for oral fat tolerance test (OFTT) recommendation compliance, most trials were ≥4 h long but lacked a sufficiently high fat challenge. iAUC and AUC were more common measures of ppTG. Overall, our analyses indicate that the effects on ppTG by different food groups are diverse, largely influenced by the type of food or food ingredient within the same group. The type of ppTG measurement can also influence the response.
Collapse
Affiliation(s)
- Delia Pei Shan Lee
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | | | - Lucas Actis-Goretta
- Nestlé Research Singapore Hub, Singapore,Nestlé Research, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Paolella LM, Mukherjee S, Tran CM, Bellaver B, Hugo M, Luongo TS, Shewale SV, Lu W, Chellappa K, Baur JA. mTORC1 restrains adipocyte lipolysis to prevent systemic hyperlipidemia. Mol Metab 2019; 32:136-147. [PMID: 32029223 PMCID: PMC6961719 DOI: 10.1016/j.molmet.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Objective Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs is hyperlipidemia. Although multiple roles have been described for mTOR complex 1 (mTORC1) in lipid metabolism, the etiology of hyperlipidemia remains incompletely understood. The objective of this study was to determine the influence of adipocyte mTORC1 signaling in systemic lipid homeostasis in vivo. Methods We characterized systemic lipid metabolism in mice lacking the mTORC1 subunit Raptor (RaptoraKO), the key lipolytic enzyme ATGL (ATGLaKO), or both (ATGL-RaptoraKO) in their adipocytes. Results Mice lacking mTORC1 activity in their adipocytes failed to completely suppress lipolysis in the fed state and displayed prominent hypertriglyceridemia and hypercholesterolemia. Blocking lipolysis in their adipose tissue restored normal levels of triglycerides and cholesterol in the fed state as well as the ability to clear triglycerides in an oral fat tolerance test. Conclusions Unsuppressed adipose lipolysis in the fed state interferes with triglyceride clearance and contributes to hyperlipidemia. Adipose tissue mTORC1 activity is necessary for appropriate suppression of lipolysis and for the maintenance of systemic lipid homeostasis. Inhibition of adipose mTORC1 causes hypertriglyceridemia prior to lipodystrophy. Genetically inhibiting lipolysis reverses the increase in plasma TG. Acute pharmacological inhibition of lipolysis reverses the increase in plasma TG caused by rapamycin treatment. Unrestrained lipolysis impairs LPL activity and decreases TG clearance.
Collapse
Affiliation(s)
- Lauren M Paolella
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cassie M Tran
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruna Bellaver
- Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Programa de Pós-graduação em Ciência Biológicas-Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mindy Hugo
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy S Luongo
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Swapnil V Shewale
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Karthikeyani Chellappa
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph A Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Toscano R, Millan-Linares MC, Lemus-Conejo A, Claro C, Sanchez-Margalet V, Montserrat-de la Paz S. Postprandial triglyceride-rich lipoproteins promote M1/M2 microglia polarization in a fatty-acid-dependent manner. J Nutr Biochem 2019; 75:108248. [PMID: 31707281 DOI: 10.1016/j.jnutbio.2019.108248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/18/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Inhibiting M1 microglia phenotype while stimulating the M2 microglia has been suggested as a potential therapeutic approach for the treatment of neuroinflammatory diseases. Our hypothesis is that the type of dietary fatty acids (FAs) into human postprandial triglyceride-rich lipoproteins (TRLs) could modulate the plasticity of microglia. We isolated TRLs at the postprandial hypertriglyceridemic peak from blood samples of healthy volunteers after the ingestion of a meal rich in saturated FAs (SFAs), monounsaturated FAs (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated FAs. We observed that postprandial TRL-MUFAs enhance M2 microglia polarization, whereas postprandial TRL-SFAs made polarized microglia prone to an M1 phenotype. In addition, in contrast to dietary SFAs, dietary MUFAs primed for a reduced proinflammatory profile in the brain of mice fed with the different FA-enriched diets. Our study underlines a role of postprandial TRLs as a metabolic entity in regulating the plasticity of microglia and brings an understanding of the mechanisms by which dietary FAs are environmental factors fostering the innate immune responsiveness. These exciting findings open opportunities for developing nutraceutical strategies with olive oil as the principal source of MUFAs, notably oleic acid, to prevent development and progression of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Cell Biology Unit, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain.
| | - Ana Lemus-Conejo
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain
| | - Carmen Claro
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Victor Sanchez-Margalet
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41009 Seville, Spain.
| |
Collapse
|