1
|
El-Sayed HM, Rasheed DM, Mahrous EA, Eltanany BM, Goda ZM, Pont L, Benavente F, Abdel-Sattar E. Metabolomics analysis of Cucumis melo var. flexuosus organs in correlation to its anti-inflammatory activity aided by chemometrics. J Pharm Biomed Anal 2025; 252:116512. [PMID: 39405783 DOI: 10.1016/j.jpba.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024]
Abstract
Snake melon (Cucumis melo var. flexuosus, CM) is a gourd with health-promoting nutritional traits and unexplored phytochemicals. This study aims to comprehensively investigate the phytoconstituents in the fruits, leaves, roots, seeds, and stems of CM, using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Consequently, 118 metabolites were identified, encompassing phenolic compounds, flavonoids, megastigmanes, lignans, cucurbitacins, and fatty acids. Multivariate data analysis revealed differences in the metabolite composition of CM organs and correlated these variations with the potential in-vitro anti-inflammatory properties assessed against RAW 264.7 macrophages through the down-regulation of cyclo-oxygenase-Ⅱ, nuclear factor-kappa B, and tumor necrosis factor-α. The results indicated that leaf and seed extracts showed the highest anti-inflammatory activity due to their enrichment in several flavonoids, phenolic glycosides, and a megastigmane. These findings emphasize the health benefits of CM organs as potential functional foods and functional food by-products, serving as a natural source for developing new anti-inflammatory agents.
Collapse
Affiliation(s)
- Hesham M El-Sayed
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, 12585, Egypt
| | - Dalia M Rasheed
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, 12585, Egypt.
| | - Engy A Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Basma M Eltanany
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Zeinab M Goda
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Mayobre C, Garcia-Mas J, Pujol M. A matter of smell: The complex regulation of aroma production in melon. Food Chem 2024; 460:140640. [PMID: 39096801 DOI: 10.1016/j.foodchem.2024.140640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Melon fruit flavor is one of the most valuable traits for consumers. Aroma, formed by volatile organic compounds (VOCs), is a major component of flavor but has been neglected in breeding programs because of its complex regulation. Although the genetic regulation of VOCs biosynthesis is not fully understood, several advances have been recently achieved. VOCs originate from the degradation of fatty acids, aminoacids and terpenes, and the role of newly described enzymes, transcription factors and putative regulators is here discussed. Furthermore, ethylene plays a key role in fruit aroma production in melon, triggering the conversion of green-flavored aldehydes into fruity-flavored esters. A current challenge is to understand the ethylene-independent regulation of VOCs formation. Environmental conditions and human processing can also shape the melon volatile profile, and future research should focus on studying the effect of climate change in aroma formation.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
3
|
Zheng YY, Chen LH, Fan BL, Xu Z, Wang Q, Zhao BY, Gao M, Yuan MH, Tahir Ul Qamar M, Jiang Y, Yang L, Wang L, Li W, Cai W, Ma C, Lu L, Song JM, Chen LL. Integrative multiomics profiling of passion fruit reveals the genetic basis for fruit color and aroma. PLANT PHYSIOLOGY 2024; 194:2491-2510. [PMID: 38039148 DOI: 10.1093/plphys/kiad640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 12/03/2023]
Abstract
Passion fruit (Passiflora edulis) possesses a complex aroma and is widely grown in tropical and subtropical areas. Here, we conducted the de novo assembly, annotation, and comparison of PPF (P. edulis Sims) and YPF (P. edulis f. flavicarpa) reference genomes using PacBio, Illumina, and Hi-C technologies. Notably, we discovered evidence of recent whole-genome duplication events in P. edulis genomes. Comparative analysis revealed 7.6∼8.1 million single nucleotide polymorphisms, 1 million insertions/deletions, and over 142 Mb presence/absence variations among different P. edulis genomes. During the ripening of yellow passion fruit, metabolites related to flavor, aroma, and color were substantially accumulated or changed. Through joint analysis of genomic variations, differentially expressed genes, and accumulated metabolites, we explored candidate genes associated with flavor, aroma, and color distinctions. Flavonoid biosynthesis pathways, anthocyanin biosynthesis pathways, and related metabolites are pivotal factors affecting the coloration of passion fruit, and terpenoid metabolites accumulated more in PPF. Finally, by heterologous expression in yeast (Saccharomyces cerevisiae), we functionally characterized 12 terpene synthases. Our findings revealed that certain TPS homologs in both YPF and PPF varieties produce identical terpene products, while others yield distinct compounds or even lose their functionality. These discoveries revealed the genetic and metabolic basis of unique characteristics in aroma and flavor between the 2 passion fruit varieties. This study provides resources for better understanding the genome architecture and accelerating genetic improvement of passion fruits.
Collapse
Affiliation(s)
- Yu-Yu Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin-Hua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Bing-Liang Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhenni Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuxia Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Bo-Yuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Min Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Min-Hui Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyuan Jiang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Liu Yang
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenguo Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Chongjian Ma
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Li Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Hongshan Laboratory, Wuhan 430071, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Guo K, Zhao J, Fang S, Zhang Q, Nie L, Zhao W. The effects of different rootstocks on aroma components, activities and genes expression of aroma-related enzymes in oriental melon fruit. PeerJ 2024; 12:e16704. [PMID: 38192601 PMCID: PMC10773451 DOI: 10.7717/peerj.16704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Grafting is widely applied in the cultivation of melon. In this study, 'Qinmi No.1' (Cucumis melo L.(QG)) and 'Ribenxuesong' (Cucurbita maxima Duch. (RG)) were used as rootstocks for 'Qingxin Yangjiaocui' (Cucumis melo L.). The results showed that grafting with muskmelon rootstocks had no significant effect on fruit aroma, but grafting with pumpkin rootstocks significantly reduced the odor intensity and odor preference scores of melon fruits. Compared with the fruits from self-grafted plants (SG), four new aromatic volatiles with a sweet smell were detected, the alcohol dehydrogenase (ADH) activity was significantly decreased at 30 DAP, but unaffected at 42 DAP in QG fruits. There was no difference for alcohol acetyltransferase (AAT) activity between QG and SG fruits. The expression level of CmADH2 was significantly higher at 30 DAP and 42 DAP, but CmAAT2 was significantly lower at 42 DAP in QG fruits compared with SG fruits. In RG fruits, the main aroma compounds including butanoic acid ethyl ester, 2-methyl-2-butene-1-al, and 2-methylheptan-1-al were absent, while the volatile compounds with unpleasant odor characteristics including trans, cis-2,6-nonadien-1-ol, (E,E)-2,4-heptadienal, octanoic acid, and styrene were detected. Compared with SG fruits, 1-nonanol and 1-heptanol with green odor characteristics were significantly increased, but eucalyptol and farnesene with fruity aroma characteristics were significantly decreased in RG fruits. The ADH activity of RG fruits was significantly lower than that of SG fruits at 30 DAP and the AAT activity was significantly lower than that of SG fruits at 42 DAP. In addition, the expression levels of CmADH and CmAAT homologs in RG fruits were significantly lower than those in SG or QG fruits. These results show that grafting with pumpkin rootstocks affected the main aroma components, reduced ADH and AAT activities, and down-regulated the expression levels of CmADHs and CmAATs in the melon fruits. This study reveals the mechanism of different rootstocks on melon fruit aroma quality, and lays a theoretical foundation for the selection of rootstocks in melon production. Future studies using overexpression or CRISPR/CAS system to obtain stable transgenic lines of genes encoding key aromatic volatiles, would be promising to effectively improve the flavor quality of melon.
Collapse
Affiliation(s)
- Kedong Guo
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Siyu Fang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Qian Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
- Collaborative Innovation Center of Vegetative Industry of Hebei Province, BaoDing, Hebei, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, BaoDing, Hebei, China
- Collaborative Innovation Center of Vegetative Industry of Hebei Province, BaoDing, Hebei, China
| |
Collapse
|
5
|
Pujol M, Garcia-Mas J. Regulation of climacteric fruit ripening in melon: recent advances and future challenges. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6224-6236. [PMID: 37399085 DOI: 10.1093/jxb/erad256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Fruit ripening is a complex and highly regulated process where tomato and strawberry have been the model species classically used for studying climacteric and non-climacteric fleshy fruit ripening types, respectively. Melon has emerged as an alternative ripening model because climacteric and non-climacteric cultivars exist, which makes it possible to dissect the regulation of ripening using a genetic approach. Several quantitative trait loci that regulate climacteric fruit ripening have been identified to date, and their combination in both climacteric and non-climacteric genetic backgrounds resulted in lines with different ripening behaviors, demonstrating that the climacteric intensity can be genetically modulated. This review discusses our current knowledge of the physiological changes observed during melon climacteric fruit ripening such as ethylene production, fruit abscission, chlorophyll degradation, firmness, and aroma, as well as their complex genetic control. From pioneer experiments in which ethylene biosynthesis was silenced, to the recent genetic edition of ripening regulators, current data suggest that the climacteric response is determined by the interaction of several loci under quantitative inheritance. The exploitation of the rich genetic diversity of melon will enable the discovery of additional genes involved in the regulation of the climacteric response, ultimately leading to breeding aromatic melon fruits with extended shelf life.
Collapse
Affiliation(s)
- Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Diao Q, Tian S, Cao Y, Yao D, Fan H, Zhang Y. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon. Sci Rep 2023; 13:5004. [PMID: 36973323 PMCID: PMC10043268 DOI: 10.1038/s41598-023-31432-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractFlesh color is an important quality of melon (Cucumis melo L.) and is determined mainly by carotenoid content, awarding them with colors, aromas, and nutrients. enhancing the nutritional and health benefits of fruits and vegetables for humans. In this study, we performed transcriptomic analysis of two melon inbred line “B-14” (orange-flesh) and “B-6” (white-flesh) at three developmental stages. We observed that the β-carotene content of inbred line “B-6” (14.232 μg/g) was significantly lower than that of inbred line “B-14” (0.534 μg/g). RNA-sequencing and quantitative reverse transcription PCR analyses were performed to identify differentially expressed genes (DEGs) between the two inbred lines at different stages; the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). We identified 33 structural DEGs in different developmental periods of the two lines that were related to carotenoid metabolism. Among them, PSY, Z-ISO, ZDS, CRTISO, CCD4, VDE1, and NCED2 were highly correlated with carotenoid content. Thus, this study provides a basis for molecular mechanism of carotenoid biosynthesis and flesh color in melon fruit.
Collapse
|
7
|
Salas-Millán JÁ, Aguayo E, Conesa-Bueno A, Aznar A. Revalorization of Melon By-Product to Obtain a Novel Sparkling Fruity-Based Wine. Foods 2023; 12:foods12030491. [PMID: 36766020 PMCID: PMC9914186 DOI: 10.3390/foods12030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Fresh melons not meeting cosmetic standards were revaluated into sparkling melon-based wine. Firstly, still melon wine was elaborated and bottled into 750 mL bottles, closed with a crown seal, and stored for 10-weeks at 14 °C. The oenological parameters and polar compounds in must, still wine, and during the sparkling process were evaluated during the experiment. The volatile profile was qualified by GC-MS, and the odor activity value (OAV) and relative odor contribution (ROC) were measured for aroma characterization. Results show that sparkling wine resulted in 12% v/v ethanol. Certain amino acids contributed to the transformation and increase of volatile compounds via Ehrlich's pathway: leucine to isoamyl alcohol; valine to iso-butyl alcohol; and phenylalanine to phenethyl alcohol. The volatile compounds also increased after the first fermentation, principally in acetate and ethyl esters, and higher alcohols. Isoamyl acetate, ethyl decanoate, 3,6-nonadienyl acetate, and (E,Z)-nonadien-1-ol had the highest OAV and ROC values among the volatiles; this contributed to the sweet, fruity, banana, tropical, nutty and melon aroma in this sparkling wine. Sensory evaluation (100 to 40) was evaluated according to International Organisation of Vine and Wine compendium, the final product (10-week) scored 92 points, with great visual, nose, and taste values. This study demonstrates how by-products revalorization can provide new products such as this novel sparkling wine with a characteristic and distinctive aroma, good sensory acceptance and market potential.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
- JimboFresh International SLL, C/Mina Buena Suerte, 1, La Unión, 30360 Murcia, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
- Correspondence: (E.A.); (A.A.)
| | - Andrés Conesa-Bueno
- JimboFresh International SLL, C/Mina Buena Suerte, 1, La Unión, 30360 Murcia, Spain
| | - Arantxa Aznar
- Department of Agronomical Engineering, Institute of Plant Biotechnology, UPCT, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
- Correspondence: (E.A.); (A.A.)
| |
Collapse
|
8
|
Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition. Foods 2023; 12:foods12020376. [PMID: 36673468 PMCID: PMC9858179 DOI: 10.3390/foods12020376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The effect of the QTL involved in climacteric ripening ETHQB3.5 on the fruit VOC composition was studied using a set of Near-Isogenic Lines (NILs) containing overlapping introgressions from the Korean accession PI 16375 on the chromosome 3 in the climacteric 'Piel de Sapo' (PS) genetic background. ETHQB3.5 was mapped in an interval of 1.24 Mb that contained a NAC transcription factor. NIL fruits also showed differences in VOC composition belonging to acetate esters, non-acetate esters, and sulfur-derived families. Cosegregation of VOC composition (23 out of 48 total QTLs were mapped) and climacteric ripening was observed, suggesting a pleiotropic effect of ETHQB3.5. On the other hand, other VOCs (mainly alkanes, aldehydes, and ketones) showed a pattern of variation independent of ETHQB3.5 effects, indicating the presence of other genes controlling non-climacteric ripening VOCs. Network correlation analysis and hierarchical clustering found groups of highly correlated compounds and confirmed the involvement of the climacteric differences in compound classes and VOC differences. The modification of melon VOCs may be achieved with or without interfering with its physiological behavior, but it is likely that high relative concentrations of some type of ethylene-dependent esters could be achieved in climacteric cultivars.
Collapse
|
9
|
Zhang H, Zhu X, Xu R, Yuan Y, Abugu MN, Yan C, Tieman D, Li X. Postharvest chilling diminishes melon flavor via effects on volatile acetate ester biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1067680. [PMID: 36684781 PMCID: PMC9853462 DOI: 10.3389/fpls.2022.1067680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In postharvest handling systems, refrigeration can extend fruit shelf life and delay decay via slowing ripening progress; however, it selectively alters the biosynthesis of flavor-associated volatile organic compounds (VOCs), which results in reduced flavor quality. Volatile esters are major contributors to melon fruit flavor. The more esters, the more consumers enjoy the melon fruit. However, the effects of chilling on melon flavor and volatiles associated with consumer liking are yet to be fully understood. In the present study, consumer sensory evaluation showed that chilling changed the perception of melon fruit. Total ester content was lower after chilling, particularly volatile acetate esters (VAEs). Transcriptomic analysis revealed that transcript abundance of multiple flavor-associated genes in fatty acid and amino acid pathways was reduced after chilling. Additionally, expression levels of the transcription factors (TFs), such as NOR, MYB, and AP2/ERF, also were substantially downregulated, which likely altered the transcript levels of ester-associated pathway genes during cold storage. VAE content and expression of some key genes recover after transfer to room temperature. Therefore, chilling-induced changes of VAE profiles were consistent with expression patterns of some pathway genes that encode specific fatty acid- and amino acid-mobilizing enzymes as well as TFs involved in fruit ripening, metabolic regulation, and hormone signaling.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Xiuxiu Zhu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Runzhe Xu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Yushu Yuan
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Modesta N. Abugu
- Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Congsheng Yan
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Influence of different rootstocks on quality and volatile constituents of cantaloupe and honeydew melons (Cucumis melo. L) grown in high tunnels. Food Chem 2022; 393:133388. [DOI: 10.1016/j.foodchem.2022.133388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
|
11
|
Flores-León A, Peréz Moro C, Martí R, Beltran J, Roselló S, Cebolla-Cornejo J, Picó B. Spanish Melon Landraces: Revealing Useful Diversity by Genomic, Morphological, and Metabolomic Analysis. Int J Mol Sci 2022; 23:7162. [PMID: 35806170 PMCID: PMC9266967 DOI: 10.3390/ijms23137162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/02/2022] Open
Abstract
Spain is a secondary centre of the diversification of the melon (Cucumis melo L.), with high diversity represented in highly appreciated landraces belonging to the Flexuosus and Ibericus groups. A collection of 47 accessions of Flexuosus, Chate, Piel de Sapo, Tendral, Amarillo, Blanco, and Rochet was analysed using a genotyping-by-sequencing (GBS) approach. A total of 66,971 quality SNPs were identified. Genetic analysis differentiated Ibericus accessions and exotic materials (Ameri, Momordica, Kachri, and Agrestis), while Flexuous accessions shared ancestry between them. Within the Ibericus group, no clear genomic distinction could be identified for the different landraces evaluated, with accessions of different landraces showing high genetic similarity. The morphological characterization confirmed that the external colour and fruit shape had been used as recognition patterns for Spanish melon landraces, but variability within a landrace exists. Differences were found in the sugars and acid and volatile profiles of the materials. Flexuosus and Chate melons at the immature commercial stage accumulated malic acid and low levels of hexoses, while Ibericus melons accumulated high contents of sucrose and citric acid. Specific trends could be identified in the Ibericus landraces. Tendral accumulated low levels of sugars and citric acid and high of malic acid, maintaining higher firmness, Rochet reached higher levels of sugars, and Amarillo tended to lower malic acid contents. Interestingly, high variability was found within landraces for the acidic profile, offering possibilities to alter taste tinges. The main volatile organic compounds (VOCs) in Flexuosus and Chate were aldehydes and alcohols, with clear differences between both groups. In the Ibericus landraces, general trends for VOC accumulation could be identified, but, again, a high level of variation exists. This situation highlights the necessity to develop depuration programs to promote on-farm in situ conservation and, at the same time, offers opportunities to establish new breeding program targets and to take advantage of these sources of variation.
Collapse
Affiliation(s)
- Alejandro Flores-León
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain; (A.F.-L.); (C.P.M.); (B.P.)
| | - Clara Peréz Moro
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain; (A.F.-L.); (C.P.M.); (B.P.)
| | - Raul Martí
- Joint Research Unit UJI/UPV—Improvement of Agri-Food Quality, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain;
| | - Joaquin Beltran
- Instituto Universitario de Plaguicidas y Aguas (IUPA), Campus de Riu Sec, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain;
| | - Salvador Roselló
- Joint Research Unit UJI/UPV—Improvement of Agri-Food Quality, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain;
| | - Jaime Cebolla-Cornejo
- Joint Research Unit UJI/UPV—Improvement of Agri-Food Quality, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain;
| | - Belen Picó
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, Cno. de Vera, s.n., 46022 València, Spain; (A.F.-L.); (C.P.M.); (B.P.)
| |
Collapse
|
12
|
Hinge VR, Shaikh IM, Chavhan RL, Deshmukh AS, Shelake RM, Ghuge SA, Dethe AM, Suprasanna P, Kadam US. Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Sci Rep 2022; 12:7979. [PMID: 35562398 PMCID: PMC9106755 DOI: 10.1038/s41598-022-11992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Banana is an important fruit crop in the tropics and subtropics; however, limited information on biomarkers and signature volatiles is available for selecting commercial cultivars. Clonal fidelity is a major contributor to banana yield and aroma; however, there are no useful biomarkers available to validate clonal fidelity. In this study, we performed the molecular profiling of 20 banana cultivars consisting of diploid (AA or AB) and triploid (AAA or AAB or ABB) genomic groups. We screened 200 molecular markers, of which 34 markers (11 RAPD, 11 ISSR, and 12 SSR) yielded unequivocally scorable biomarker profiles. About 75, 69, and 24 allelic loci per marker were detected for RAPD, ISSR, and SSR markers, respectively. The statistical analysis of molecular variance (AMOVA) exhibited a high genetic difference of 77% with a significant FST value of 0.23 (p < 0.001). Interestingly, the UBC-858 and SSR CNMPF-13 markers were unique to Grand Nain and Ardhapuri cultivars, respectively, which could be used for clonal fidelity analysis. Furthermore, the analysis of banana fruit volatilome using headspace solid-phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GCMS) revealed a total of fifty-four volatile compounds in nine banana cultivars with 56% of the total volatile compounds belonging to the ester group as the significant contributor of aroma. The study assumes significance with informative biomarkers and signature volatiles which could be helpful in breeding and for the authentic identification of commercial banana cultivars.
Collapse
Affiliation(s)
- Vidya R Hinge
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Irfan M Shaikh
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Rahul L Chavhan
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Abhijit S Deshmukh
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P. O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Amol M Dethe
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Penna Suprasanna
- Homi Bhabha National Institute (HBNI) and Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Mumbai, India
| | - Ulhas Sopanrao Kadam
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India. .,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
13
|
Zhang J, Gu X, Yan W, Lou L, Xu X, Chen X. Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit. Foods 2022; 11:foods11081101. [PMID: 35454687 PMCID: PMC9027996 DOI: 10.3390/foods11081101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The cucumber is characterized by the presence of a wide range of volatile organic compounds (VOCs), which are recognized as the main responsible for its unique flavor. However, research on the types and contents of VOCs in different cucumber cultivars remains fragmentary. Here, using an automatic headspace solid-phase microextraction coupled with the gas chromatography-mass spectrometry method, the VOCs were analyzed in three representative cucumber cultivars, including YX, KX, and GX, with the best, middle, and worst flavor quality, respectively, which were selected from 30 cultivars after flavor quality evaluation. Principal component analysis revealed that the six biological replicates were grouped, indicating high reliability of the data. A total of 163 VOCs were detected. There were 28 differential VOCs in YX compared to GX, 33 differential VOCs in YX compared to KX, and 10 differential VOCs in KX compared to GX. Furthermore, K-means clustering analysis showed that 38 of the 43 no-overlapping differential VOCs were represented by the most abundant compounds detected in YX. The prevailing VOCs in YX included: hydrocarbons, aldehydes, and ketones. The data obtained in the present study extend our understanding the impact of cultivars on VOCs in cucumber and will help facilitate targeted breeding.
Collapse
Affiliation(s)
- Jie Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Xiuchao Gu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Wenjing Yan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Lina Lou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence:
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Maletti L, D’Eusanio V, Durante C, Marchetti A, Pincelli L, Tassi L. Comparative Analysis of VOCs from Winter Melon Pomace Fibers before and after Bleaching Treatment with H 2O 2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072336. [PMID: 35408736 PMCID: PMC9000214 DOI: 10.3390/molecules27072336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
In this study, the trend of Volatile Organic Compounds (VOCs) in dietary fiber samples from the winter melon (Cucumis Melo var. Inodorus, Yellow Canary type) were investigated. This foodstuff, obtained as a by-product of agri-food production, has gained increasing attention and is characterized by many bioactive components and a high dietary-fiber content. As regards fiber, it is poorly colored, but it may be whitened by applying a bleaching treatment with H2O2. The result is a fibrous material for specific applications in food manufacturing, for example, as a corrector for some functional and technological properties. This treatment is healthy and safe for consumers and widely applied in industrial food processes. In this study, a method based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) was applied for the characterization of the aromatic profile of the dried raw materials. Furthermore, VOC variation was investigated as function of the bleaching treatment with H2O2. The bleached samples were also analyzed after a long storage period (24 months), to assess their stability over time. As a result, the VOC fraction of the fresh raw fiber showed nine classes of analytes; these were restricted to seven for the bleached fiber at t0 time, and further reduced to four classes at the age of 24 months. Alcohols were the main group detected in the fresh raw sample (33.8 % of the total chromatogram area), with 2,3-butanediol isomers as the main compounds. These analytes decreased with time. An opposite trend was observed for the acids (9.7% at t0), which increased with time and became the most important class in the 24-month aged and bleached sample (57.3%).
Collapse
Affiliation(s)
- Laura Maletti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (C.D.); (A.M.); (L.P.); (L.T.)
- Correspondence:
| | - Veronica D’Eusanio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (C.D.); (A.M.); (L.P.); (L.T.)
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (C.D.); (A.M.); (L.P.); (L.T.)
| | - Andrea Marchetti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (C.D.); (A.M.); (L.P.); (L.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Luca Pincelli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (C.D.); (A.M.); (L.P.); (L.T.)
| | - Lorenzo Tassi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.D.); (C.D.); (A.M.); (L.P.); (L.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
15
|
Medina-Lozano I, Díaz A. Applications of Genomic Tools in Plant Breeding: Crop Biofortification. Int J Mol Sci 2022; 23:3086. [PMID: 35328507 PMCID: PMC8950180 DOI: 10.3390/ijms23063086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Crop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Aurora Díaz
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
16
|
Profiling carotenoid and sugar contents in unique Cucumis melo L. cultigens harvested from different climatic regions of the United States. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. Molecular research progress and improvement approach of fruit quality traits in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3535-3552. [PMID: 34181057 DOI: 10.1007/s00122-021-03895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/21/2021] [Indexed: 05/10/2023]
Abstract
Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.
Collapse
Affiliation(s)
- Kiros Gebretsadik
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Science, Aksum University, Shire Campus, Shire, Ethiopia
| | - Xiyan Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
18
|
Metrani R, Jayaprakasha GK, Patil BS. Optimization of Experimental Parameters and Chemometrics Approach to Identify Potential Volatile Markers in Seven Cucumis melo Varieties Using HS–SPME–GC–MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02119-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Extraseasonal Production in a Soilless System and Characterisation of Landraces of Carosello and Barattiere (Cucumis melo L.). SUSTAINABILITY 2021. [DOI: 10.3390/su132011425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Barattiere and Carosello are typical melon (Cucumis melo L.) landraces of Puglia’s (Southern Italy) biodiversity. Their unripe fruits are locally consumed as an alternative to cucumbers (C. sativus L.) and are appreciated for their qualitative profile. Nevertheless, they are underutilized crops. For the high variability and confusing denominations, a morphological characterization is essential to discriminate and valorise landraces; additionally, it is fundamental to implement the agronomic technique to allow the cultivation outside the natural growth period (summer) by soilless cultivation. Two genotypes of Barattiere (‘Allungato’ and ‘Tondo’), two of Carosello (‘Scopatizzo’ and ‘Tomentoso’ (CAT)) and two of cucumber (‘Baby Star’ and ‘Modan’ hybrids) were vertically grown in the winter–spring period in a rockwool soilless system in a glasshouse with supplemental light. Landraces were characterized by morpho-physiological descriptors of melon; fruit biometrics and colour were analysed for all genotypes; productive parameters, leaf fluorescence, and chlorophyll content were measured. Genotypes varied in seeds, stem, leaf, fruit traits and they were andromonoecious; Carosello flowered earlier and produced more than Barattiere; CAT fruits were hairy and elongate, while other genotypes tended to rounder and glabrous fruits. Although landraces grew slower than cucumbers, both produced marketable fruits and the production of Carosello was comparable to cucumbers. In conclusion, Barattiere and Carosello have a productive potential and one vertically trained stem in a soilless system is appropriate for their extra-seasonal production.
Collapse
|
20
|
Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Li C, Xin M, Li L, He X, Yi P, Tang Y, Li J, Zheng F, Liu G, Sheng J, Li Z, Sun J. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Food Chem 2021; 355:129685. [PMID: 33799248 DOI: 10.1016/j.foodchem.2021.129685] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022]
Abstract
Passion fruit is a tropical liana of the Passiflora family that is commonly consumed throughout the world due to its attractive aroma and flavor. However, very limited information is available on the mechanism of aroma formation and composition of the passion fruit during ripening. Therefore, HS-SPME-GC/MS combined with transcriptome analysis was used to study the mechanism of aroma formation during passion fruit ripening. The profile analyzed included 148 volatile organic compounds (VOCs) and related differentially expressed genes (DEGs). Compared with SA, 85 VOCs and related DEGs were identified as significantly upregulated at the SB and SC stages, including esters, alcohols, ketones, hydrocarbons, alkanes, and aldehydes. Two main pathways, ester and amino acid metabolism, and related genes were analyzed with VOC biosynthesis in passion fruit. This study is the first analysis of passion fruit VOC formation and provides new insights into the flavor mechanism and quality breeding of passion fruit.
Collapse
Affiliation(s)
- Changbao Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Ming Xin
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Xuemei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Ping Yi
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Yayuan Tang
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jiemin Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Fengjin Zheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Guoming Liu
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jinfeng Sheng
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Zhichun Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, 530007 Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, 174 East Daxue Road, 530007 Nanning, China
| |
Collapse
|
23
|
Mayobre C, Pereira L, Eltahiri A, Bar E, Lewinsohn E, Garcia-Mas J, Pujol M. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem 2021; 353:129484. [PMID: 33812162 DOI: 10.1016/j.foodchem.2021.129484] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Aroma is an essential trait in melon fruit quality, but its complexity and genetic basis are still poorly understood. The aim of this study was the identification of quantitative trait loci (QTLs) underlying volatile organic compounds (VOCs) biosynthesis in melon rind and flesh, using a Recombinant Inbred Line (RIL) population from the cross 'Piel de Sapo' (PS) × 'Védrantais' (VED), two commercial varieties segregating for ripening behavior. A total of 82 VOCs were detected by gas chromatography-mass spectrometry (GC-MS), and 166 QTLs were identified. The main QTL cluster was on chromosome 8, collocating with the previously described ripening-related QTL ETHQV8.1, with an important role in VOCs biosynthesis. QTL clusters involved in esters, lipid-derived volatiles and apocarotenoids were also identified, and candidate genes have been proposed for ethyl 3-(methylthio)propanoate and benzaldehyde biosynthesis. Our results provide genetic insights for deciphering fruit aroma in melon and offer new tools for flavor breeding.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Lara Pereira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Abdelali Eltahiri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
24
|
Singh J, Jayaprakasha GK, Patil BS. Improved Sample Preparation and Optimized Solvent Extraction for Quantitation of Carotenoids. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:60-67. [PMID: 33420704 DOI: 10.1007/s11130-020-00862-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
Accurate, rapid quantitation of key antioxidants such as carotenoids is important for assessment of food quality. Carotenoids are lipid-soluble pigments that are susceptible to oxidation due to their highly conjugated carbon-carbon double bonds. Therefore, the present work focuses on improving sample preparation to facilitate rapid analysis of carotenoids. The method involves optimized carotenoid extraction followed by direct HPLC analysis without further concentration and redissolution. For extraction, we tested the effect of blending time (1, 3 and 5 min) and 12 different solvent combinations for carotenoid extraction from cantaloupe (Cucumis melo var. cantalupensis) and oranges (Citrus sinensis), two popular fruits that are high in carotenoids. The identification of carotenoids was performed by LC-APCI-QTOF-HR-MS in positive-ionization mode. In melon, 1 min blending time gave significantly higher β-carotene content with CHCl3: Ace (1:1) solvent. The optimized method was validated with tomato, watermelon, oranges, grapefruit, melon varieties and commercial products such as fruit juices. Among the different melon varieties, Western Shipper had significantly higher β-carotene (25.1 ± 0.4 µg/g) contents. In oranges, β-carotene and (all-E)-lycopene contents were 4.4 ± 0.1and 3.8 ± 0.1 µg/g, respectively. The optimized method has fewer unit operations and is reproducible for the quantitation of carotenoids and their isomers. This is the first report on the identification of ζ-carotene isomers, and lycopene isomers from cantaloupe varieties and lycopene from oranges. Graphical Abstract.
Collapse
Affiliation(s)
- Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX, 77845, USA
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX, 77845, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX, 77845, USA.
| |
Collapse
|
25
|
de Oliveira GLR, Medeiros I, Nascimento SSDC, Viana RLS, Porto DL, Rocha HAO, Aragão CFS, Maciel BLL, de Assis CF, Morais AHDA, Passos TS. Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chem 2021; 348:129055. [PMID: 33508595 DOI: 10.1016/j.foodchem.2021.129055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 02/09/2023]
Abstract
The study evaluated the potential and antioxidant stability of nanoencapsulated carotenoid-rich extract (CE) from Cantaloupe melon (EPG). DPPH and ABTS radical scavenging assays were used to investigate the nanoencapsulation effect on antioxidant potential. CE and EPG stability were evaluated at 25 °C and 5 °C, with and without light (1600 lx) for 60 days, determining the β-carotene concentration by UHPLC and antioxidant potential by ABTS. The antioxidant potential of carotenoids increased after nanoencapsulation (57-59%). After 60 days, there was low retention of β-carotene (0-43.6%) in the CE, mainly at 25 °C light (0.00%) and dark (10.0%), and total loss of activity in the four conditions. EPG preserved the β-carotene concentration in the dark at 25 °C (99.0%) and in the light (83.1%) and dark (99.0%) at 5 °C, maintaining the antioxidant potential (68.7-48.3%). Therefore, EPG enhanced and stabilized the antioxidant potential of carotenoids, beneficial to human health.
Collapse
Affiliation(s)
| | - Isaiane Medeiros
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Sara Sayonara da Cruz Nascimento
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Rony Lucas Silva Viana
- Postgraduate Program in Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Dayanne Lopes Porto
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59012-570, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Postgraduate Program in Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cícero Flávio Soares Aragão
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59012-570, Brazil
| | - Bruna Leal Lima Maciel
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59012-570, Brazil
| | - Ana Heloneida de Araújo Morais
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Postgraduate Program in Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Thaís Souza Passos
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| |
Collapse
|
26
|
Flores-León A, García-Martínez S, González V, Garcés-Claver A, Martí R, Julián C, Sifres A, Pérez-de-Castro A, Díez MJ, López C, Ferriol M, Gisbert C, Ruiz JJ, Cebolla-Cornejo J, Picó B. Grafting Snake Melon [ Cucumis melo L. subsp. melo Var. flexuosus (L.) Naudin] in Organic Farming: Effects on Agronomic Performance; Resistance to Pathogens; Sugar, Acid, and VOC Profiles; and Consumer Acceptance. FRONTIERS IN PLANT SCIENCE 2021; 12:613845. [PMID: 33679829 PMCID: PMC7933694 DOI: 10.3389/fpls.2021.613845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
The performance of snake melon [Cucumis melo var. flexuosus (L.)] in organic farming was studied under high biotic and salt stress conditions. Soilborne diseases (mainly caused by Macrophomina phaseolina and Neocosmospora falciformis), combined with virus incidence [Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Tomato leaf curl New Delhi virus (ToLCNDV)] and Podosphaera xanthii attacks, reduced yield by more than 50%. Snake melon susceptibility to M. phaseolina and Monosporascus cannonballus was proved in pathogenicity tests, while it showed some degree of resistance to Neocosmospora keratoplastica and N. falciformis. On the contrary, salt stress had a minor impact, although a synergic effect was detected: yield losses caused by biotic stress increased dramatically when combined with salt stress. Under biotic stress, grafting onto the melon F1Pat81 and wild Cucumis rootstocks consistently reduced plant mortality in different agroecological conditions, with a better performance compared to classic Cucurbita commercial hybrids. Yield was even improved under saline conditions in grafted plants. A negative effect was detected, though, on consumer acceptability, especially with the use of Cucurbita rootstocks. Cucumis F1Pat81 rootstock minimized this side effect, which was probably related to changes in the profile of sugars, acids, and volatiles. Grafting affected sugars and organic acid contents, with this effect being more accentuated with the use of Cucurbita rootstocks than with Cucumis. In fact, the latter had a higher impact on the volatile organic compound profile than on sugar and acid profile, which may have resulted in a lower effect on consumer perception. The use of Cucumis rootstocks seems to be a strategy to enable organic farming production of snake melon targeted to high-quality markets in order to promote the cultivation of this neglected crop.
Collapse
Affiliation(s)
- Alejandro Flores-León
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | | | - Vicente González
- Plant Protection Unit/Instituto Agroalimentario de Aragón-IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Garcés-Claver
- Horticulture Unit/Instituto Agroalimentario de Aragón-IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Raúl Martí
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Carmen Julián
- Plant Protection Unit/Instituto Agroalimentario de Aragón-IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Alicia Sifres
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Ana Pérez-de-Castro
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Carmelo López
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Carmina Gisbert
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Juan José Ruiz
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela, Spain
| | - Jaime Cebolla-Cornejo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Belén Picó
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Belén Picó,
| |
Collapse
|
27
|
Abstract
A melon core collection was analyzed for rind volatile compounds as, despite the fact that they are scarcely studied, these compounds play an important role in consumer preferences. Gas chromatography coupled to mass spectrometry allowed the detection of 171 volatiles. The high volatile diversity found was analyzed by Hierarchical Cluster Analysis (HCA), giving rise to two major clusters of accessions. The first cluster included climacteric and aromatic types such as Cantalupensis, Ameri, Dudaim and Momordica, rich in esters; the second one mainly included non-climacteric non-aromatic types such as Inodorus, Flexuosus, Acidulus, Conomon and wild Agrestis, with low volatiles content, specifically affecting esters. Many interesting accessions were identified, with different combinations of aroma profiles for rind and flesh, such as Spanish Inodorus landraces with low aroma flesh but rind levels of esters similar to those in climacteric Cantalupensis, exotic accessions sharing high contents of specific compounds responsible for the unique aroma of Dudaim melons or wild Agrestis with unexpected high content of some esters. Sesquiterpenes were present in rinds of some Asian Ameri and Momordica landraces, and discriminate groups of cultivars (sesquiterpene-rich/-poor) within each of the two most commercial melon horticultural groups (Cantalupensis and Inodorus), suggesting that the Asian germplasm is in the origin of specific current varieties or that this feature has been introgressed more recently from Asian sources. This rind characterization will encourage future efforts for breeding melon quality as many of the characterized landraces and wild accessions have been underexploited.
Collapse
|
28
|
Effect of ethanol pretreatment on melon convective drying. Food Chem 2020; 333:127502. [PMID: 32683257 DOI: 10.1016/j.foodchem.2020.127502] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/12/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the effectiveness of the use of ethanol, ultrasound and/or vacuum as a pretreatment to melon drying. Eight types of pretreatments were performed in which samples were immersed in ethanol solutions with different concentrations (50% and 100%) using four treatment conditions: immersion, immersion with ultrasound (US), with vacuum (VC) and with ultrasound and vacuum (USVC). Drying was performed at 60 °C and five different semi-theoretical drying mathematical models were examined to characterize the drying curves, and quality analyses were carried out. The condition that obtained the lower drying time was using the US pretreatment in 100% ethanol solution. Drying caused a diminution of bioactive compounds and influenced color parameters. However, the samples immersed in 50% ethanol solution and dried obtained minor losses of total phenolics, total carotenoids, and ascorbic acid contents.
Collapse
|
29
|
Bianchi T, Guerrero L, Weesepoel Y, Argyris J, Koot A, Gratacós-Cubarsí M, Garcia-Mas J, van Ruth S, Hortós M. Linking sensory and proton transfer reaction–mass spectrometry analyses for the assessment of melon fruit (Cucumis melo L.) quality traits. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Moing A, Allwood JW, Aharoni A, Baker J, Beale MH, Ben-Dor S, Biais B, Brigante F, Burger Y, Deborde C, Erban A, Faigenboim A, Gur A, Goodacre R, Hansen TH, Jacob D, Katzir N, Kopka J, Lewinsohn E, Maucourt M, Meir S, Miller S, Mumm R, Oren E, Paris HS, Rogachev I, Rolin D, Saar U, Schjoerring JK, Tadmor Y, Tzuri G, de Vos RC, Ward JL, Yeselson E, Hall RD, Schaffer AA. Comparative Metabolomics and Molecular Phylogenetics of Melon ( Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites 2020; 10:metabo10030121. [PMID: 32213984 PMCID: PMC7143154 DOI: 10.3390/metabo10030121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - J. William Allwood
- The James Hutton Institute, Environmental & Biochemical Sciences, Invergowrie, Dundee, DD2 5DA Scotland, UK;
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - John Baker
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Michael H. Beale
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Shifra Ben-Dor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Benoît Biais
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Federico Brigante
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dto. Química Orgánica, Córdoba 5000, Argentina
- CONICET, ICYTAC (Instituto de Ciencia y Tecnologia de Alimentos Córdoba), Córdoba 5000, Argentina
| | - Yosef Burger
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Amit Gur
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Thomas H. Hansen
- Department of Plant and Environmental Sciences & Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; (T.H.H.); (J.K.S.)
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Nurit Katzir
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
| | - Efraim Lewinsohn
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Mickael Maucourt
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Sonia Miller
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Roland Mumm
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
| | - Elad Oren
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Harry S. Paris
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Dominique Rolin
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Uzi Saar
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Jan K. Schjoerring
- Department of Plant and Environmental Sciences & Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; (T.H.H.); (J.K.S.)
| | - Yaakov Tadmor
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Galil Tzuri
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Ric C.H. de Vos
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
| | - Jane L. Ward
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Elena Yeselson
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Robert D. Hall
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
- Department of Plant Physiology, Wageningen University & Research, Laboratory of Plant Physiology, Post Box 16, 6700AA, Wageningen, Netherlands
| | - Arthur A. Schaffer
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
- Correspondence: ; Tel.: + 972(3)9683646
| |
Collapse
|
31
|
Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chem 2020; 316:126342. [PMID: 32044706 DOI: 10.1016/j.foodchem.2020.126342] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/31/2019] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
Abstract
The types and amounts of volatiles in the fruits of 39 melon cultivars were determined. We identified 146 volatiles, including 55 esters, 23 aldehydes, 30 alcohols, 15 ketones, 6 acids and 17 others. Ethyl acetate, (Z)-6-nonenal and 3,6-(E,Z)-nonadien-1-ol were the most three abundant volatiles (average content > 50 µg/kg FW). Aroma profiles showed significant differences among cultivars. Zhongtian49 and Zhongtian20 had the most abundant aroma components (76) and Jinguniang exhibited the least (23). One non-climacteric inodorus cultivar (Xizhoumi25) had the highest content of total volatiles (1840 µg/kg FW). Principal component analysis clustered the 39 melon cultivars into five groups. This work describes the comparative diversity of melon fruit volatiles for a large number of cultivars. Furthermore, this study could support the selection of cultivars with a flavor that suits the public and also future breeding work towards the genetic improvement of melon flavor.
Collapse
|
32
|
Abstract
Volatile compounds derived from carotenoid cleavage are biologically relevant molecules in plants, as they are involved in different processes of plant communication and also have a significant effect on our perception of food flavor.Here we describe two methods for the determination of volatile apocarotenoids in fruit based on extraction by means of headspace solid-phase microextraction (HS-SPME) and separation and detection by means of gas chromatography coupled to mass spectrometry (GC-MS). The first method is optimised for the detection of the complete volatile profile in Citrus fruit, including those compounds derived from carotenoids. The second is a shorter method focused to the detection of volatile apocarotenoids in the tomato fruit.
Collapse
Affiliation(s)
- José L Rambla
- Instituto de Biología Molecular y Celular de Plantas, CSIC- Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain
- Department of Agricultural and Environmental Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC- Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain.
| |
Collapse
|
33
|
Zhu X, Li Q, Li J, Luo J, Chen W, Li X. Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages. Molecules 2018; 23:molecules23102456. [PMID: 30257494 PMCID: PMC6222428 DOI: 10.3390/molecules23102456] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 01/06/2023] Open
Abstract
Aromatic compounds are important for fruit quality and can vary among fruit cultivars. Volatile compounds formed during the ripening of two banana cultivars, Brazilian and Fenjiao, were determined using headspace solid-phase micro-extraction (SPME) and gas chromatography coupled with mass spectrometry (GC-MS). These two cultivars exhibited different physiological characteristics during storage. Fenjiao fruit exhibited faster yellowing and softening, a higher respiration rate and greater ethylene production. Also, the soluble sugar content in Fenjiao fruit was much higher than in Brazilian fruit. In total, 62 and 59 volatile compounds were detected in Fenjiao and Brazilian fruits, respectively. The predominant volatile components isoamyl acetate, butanoic acid, 3-methyl-3-methylbutyl ester, hexanal, trans-2-hexenal and 1-hexanol varied during ripening stages. Moreover, esters were more abundant in Fenjiao, and propanoic acid 2-methylbutyl ester, and octanoic acid were only detected in Fenjiao. These compounds contribute to the unique flavors and aromas of the two cultivars.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Qiumian Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Medeiros AKDOC, Gomes CDC, Amaral MLQDA, Medeiros LDGD, Medeiros I, Porto DL, Aragão CFS, Maciel BLL, Morais AHDA, Passos TS. Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chem 2018; 270:562-572. [PMID: 30174087 DOI: 10.1016/j.foodchem.2018.07.099] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 01/27/2023]
Abstract
Cantaloupe melon carotenoids were encapsulated in porcine gelatin, whey protein isolate and concentrate by emulsification O/W to evaluate which agent could promote an increase in water solubility, and color stability in yogurt. The average particle size obtained was 59.3 (2.60) nm-161.0 (27.30) nm. Encapsulated crude extract in porcine gelatin presented the smallest size and polydispersity index [0.4 (0.04)], and showed sphericity, smooth surface and low agglomeration in SEM. These results associated to the good chemical interaction between the raw materials shown by FTIR, justify the increase in water solubility [0.072 (0.007) mg.mL-1] compared to the crude extract [0.026 (0.003) mg.mL-1]. The yogurt added with this nanoencapsulate remained stable for 60 days, unlike the crude extract. The results show that the nanoencapsulation using gelatin increased water solubility and the potential of application of melon carotenoids in food as natural dyes.
Collapse
Affiliation(s)
| | - Camila de Carvalho Gomes
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | | | - Isaiane Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Dayanne Lopes Porto
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cícero Flávio Soares Aragão
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Thais Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| |
Collapse
|
35
|
Methodology to Remove Strong Outliers of Non-Climacteric Melon Fruit Aroma at Harvest Obtained by HS-SPME GC-MS Analysis. SEPARATIONS 2018. [DOI: 10.3390/separations5020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|