1
|
Honda Y, Ghosh A, Nishida Y, Honda M. Possibility of refining carotenoid geometrical isomer analysis utilizing DFT-based quantum chemical calculations. Biochem Biophys Res Commun 2024; 735:150858. [PMID: 39442448 DOI: 10.1016/j.bbrc.2024.150858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
We performed quantum chemical calculations based on the density functional theory (DFT) for the all-E- and several Z-isomers of three commercially important carotenoids (lycopene, β-carotene, and astaxanthin) and theoretically obtained the UV-Vis spectrum, response factor (determined from absorption intensities of the all-E- and the Z-isomers), and Q-ratio for each carotenoid isomer. The calculated spectra reproduced the experimental spectral shapes (e.g., the appearance of the Z-peaks and the blue shift of the main peaks for the Z-isomers) very well. The calculated response factors and Q-ratios also showed good agreement with reported values. Notably, response factors, which are difficult to determine experimentally, were well reproduced. These results suggest that quantum chemical calculations can be an effective tool for refining quantitative analysis and obtaining spectral data for carotenoids for which standards are difficult to obtain.
Collapse
Affiliation(s)
- Yasushi Honda
- West Japan Office, HPC Systems Inc., 646 Nijohanjikicho, Shimogyo-ku, Kyoto, 600-8412, Japan.
| | - Antara Ghosh
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama, 930-0405, Japan
| | - Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
2
|
Eckhof P, Márquez K, Kruger J, Nina N, Ramirez-Jara E, Frank J, Jiménez-Aspee F. Bioaccessibility of carotenoids, tocochromanols, and iron from common bean (Phaseolus vulgaris L.) landraces. Food Res Int 2024; 194:114935. [PMID: 39232546 DOI: 10.1016/j.foodres.2024.114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Common beans (Phaseolus vulgaris L.) are among the most important legumes for human nutrition. The aim of the present study was to characterize the composition and in vitro bioaccessibility of tocochromanols, carotenoids, and iron from 14 different landraces and 2 commercial common bean varieties. Phytic acid, dietary fiber, and total (poly)phenolic content were determined as factors that can modify the bioaccessibility of the studied compounds. Two carotenoids were identified, namely lutein (4.6-315 ng/g) and zeaxanthin (12.2-363 ng/g), while two tocochromanols were identified, namely γ-tocopherol (2.62-18.01 µg/g), and δ-tocopherol (0.143-1.44 µg/g). The iron content in the studied samples was in the range of 58.7-144.2 µg/g. The contents of carotenoids, tocochromanols, and iron differed significantly among the studied samples but were within the ranges reported for commercial beans. After simulated gastrointestinal digestion, the average bioaccessibility of carotenoids was 30 %, for tocochromanols 50 %, and 17 % for iron. High variability in the bioaccessible content yielded by the bean varieties was observed. Dietary fiber, phytic acid and total (poly)phenol contents were negatively correlated with the bioaccessibility of carotenoids, while iron bioaccessibility was negatively correlated with the total (poly)phenol content. The principal component analysis indicated that the bioaccessibility of lutein was the main variable involved in class separations. The composition of the food matrix plays an important role in the bioaccessibility of carotenoids, tocochromanols and iron from cooked beans.
Collapse
Affiliation(s)
- Pia Eckhof
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca 3480094, Chile.
| | - Johanita Kruger
- Department of Food Technology, University of Applied Sciences Fulda, Leipzigerstr. 123, 36037 Fulda, Germany.
| | - Nélida Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Campus Lircay, Universidad de Talca, 3480094, Talca, Chile.
| | | | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Hu B, Sui J, Wang Y, Li L, Gong D, Zhu Z, Liao W, Sun G, Xia H. A systematic review of dietary and circulating carotenoids and liver disease. Food Funct 2024; 15:9813-9832. [PMID: 39229651 DOI: 10.1039/d4fo03082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background: due to the high incidence of liver disease and the severity of adverse outcomes, liver disease has become a serious public health problem, bringing a huge disease burden to individuals, families, and society. Most studies have shown significant differences in serum carotenoid content and dietary carotenoid intake between liver disease patients and non-liver disease patients, but some studies have reported contrary results. This paper aimed to systematically review and analyze all published epidemiological studies on carotenoids and liver disease to quantitatively assess the relationship between serum and dietary carotenoid concentrations and liver disease. Methods: by systematically searching PubMed, Web of Science, Scopus, Embase, and Cochrane databases according to pre-combined search terms from inception to July 23, 2024, 30 studies were found to meet the exclusion criteria. Finally, 3 RCT studies, 6 cohort studies, 11 case-control studies, 9 cross-sectional studies, and 1 RCT-combined cross-sectional study were included in the further analysis. Two reviewers independently scored the literature quality and extracted data, and the results were represented by the standard mean difference (SMD) with a 95% confidence interval. Cochran Q statistics and I2 statistics were used to evaluate statistical heterogeneity (defined as significant when P < 0.05 or I2 > 50%). When there was insignificant heterogeneity, a fixed effects model was selected; otherwise a random effects model was used. Publication bias was assessed by the Egger test. Results: pooled meta-analysis showed that serum α-carotene (SMD = -0.58, 95% CI (-0.83, -0.32), P < 0.001), β-carotene (SMD = -0.81, 95% CI (-1.13, -0.49), P < 0.001), and lycopene (SMD = -1.06, 95% CI (-1.74, -0.38), P < 0.001) were negatively correlated with the risk and severity of liver disease. However, no significant difference was observed between serum β-cryptoxanthin (SMD = 0.02, 95% CI (-0.41, 0.45), P = 0.92) and lutein/zeaxanthin (SMD = 0.62, 95% CI (-1.20, 2.45), P = 0.502). Dietary β-carotene intake (SMD = -0.22, 95% CI (-0.31, -0.13), P < 0.001) was negatively associated with the risk of liver disease. The Egger test showed no publication bias (P > 0.05). An intake of more than 6 mg of carotenoids on an energy-restricted diet can effectively alleviate the symptoms of NAFLD. Conclusion: lower serum concentrations of α-carotene, β-carotene, and lycopene were associated with a higher risk of liver disease. Meanwhile, dietary intake of β-carotene could reduce the incidence of liver disease. However, for malignant diseases such as liver cancer, it did not show the significant effects of carotenoid supplementation.
Collapse
Affiliation(s)
- Bihuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Jing Sui
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Ying Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Lihua Li
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China
| | - Daochen Gong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Zixuan Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Pasenkiewicz-Gierula M, Hryc J, Markiewicz M. Dynamic and Energetic Aspects of Carotenoids In-and-Around Model Lipid Membranes Revealed in Molecular Modelling. Int J Mol Sci 2024; 25:8217. [PMID: 39125791 PMCID: PMC11312187 DOI: 10.3390/ijms25158217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.
Collapse
Affiliation(s)
- Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (J.H.); (M.M.)
| | | | | |
Collapse
|
5
|
Zhang G, Li X, Zheng X. Associations of serum carotenoids with asthma and mortality in the US adults. Heliyon 2024; 10:e24992. [PMID: 38318021 PMCID: PMC10840010 DOI: 10.1016/j.heliyon.2024.e24992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Objective This study was to investigate the association between serum carotenoid levels and the prevalence of asthma, as well as the relationship between serum carotenoid levels and the risk of mortality among individuals with asthma. Methods Data on five serum carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, and lycopene) were obtained from the National Health and Nutrition Examination Survey (NHANES) 2001-2006. Mortality data was extracted from the pertinent mortality records within the NHANES database, up to December 31, 2019. Logistic regression analysis was employed to investigate the association between serum carotenoid concentrations and asthma prevalence. Cox proportional hazards models were used to investigate the connection between serum carotenoids and mortality rates in asthma individuals. Results Among the study population, 1569 (12.63 %) individuals were diagnosed with asthma, while 25.01 % of asthma patients died within a median follow-up duration of 15.5 (13.8-17.3) years. After controlling for all other variables, greater serum levels of certain carotenoids, such asα-carotene, β-carotene, β-cryptoxanthin, and lutein/zeaxanthin, were found to be substantially linked with a decreased prevalence of asthma. Furthermore, persons with asthma who had greater levels of serum carotenoids in the fourth quartile had a significantly lower risk of all-cause death compared to those in the first quartile. Specifically, the presence of α-carotene, β-cryptoxanthin, and lutein/zeaxanthin was associated with reductions in all-cause mortality by 45 % (HR = 0.55 [0.36-0.84], Ptrend = 0.002), 38 % (HR = 0.62 [0.42-0.92], Ptrend = 0.004), and 45 % (HR = 0.55 [0.41-0.73], Ptrend<0.001), respectively. The above relationships are mostly linear and remain robust in sensitivity analyses. Conclusions Our findings indicate that higher serum carotenoids are related with a reduced likelihood of mortality in asthmatic individuals.
Collapse
Affiliation(s)
- Guidong Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, 515041, PR China
| | - Xiaocong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, 515041, PR China
| | - Xiaohe Zheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, 515041, PR China
| |
Collapse
|
6
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
7
|
da Silva GG, Braga LEDO, de Oliveira ECS, de Carvalho JE, Lazarini JG, Rosalen PL, Dionísio AP, Ruiz ALTG. Evaluation of a Standardized Extract Obtained from Cashew Apple ( Anacardium occidentale L.) Bagasse in DSS-Induced Mouse Colitis. Foods 2023; 12:3318. [PMID: 37685250 PMCID: PMC10486448 DOI: 10.3390/foods12173318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammatory bowel diseases (IBD) include Crohn's disease and ulcerative colitis. Several studies relate eating habits to different aspects of IBD, such as progression and worsening of the clinical condition. Therefore, many natural products (NPs) such as polyphenols and carotenoids have been identified as promising agents in supporting IBD. An interesting source for obtaining bioactive NPs is the by-products of the food industry. The present study evaluated the potential beneficial effect of a standardized extract (CAE) obtained from cashew apple bagasse in the dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice. This was the first time that CAE had been evaluated in this experimental model. Chemical evaluation of CAE identified carotenoids (96.28 ± 0.15 mg/100 g), phenolic compounds (37.49 ± 0.64 mg/100 g), and a mixture of anacardic acids (C15:3 = 94.2 ± 0.6 mg/100 g; C15:2 = 108.4 ± 0.1 mg/100 g; C15:1 = 214.8 ± 0.2 mg/100 g). Administration of CAE (500 mg/kg, 4 days, p.o.) after DSS challenge was more effective in delaying disease progression compared with prior treatment (500 mg/kg, 30 days, p.o.), according to the disease activity index. However, no treatment strategy with CAE was able to prevent or inhibit disease progression, since all parameters evaluated (macroscopic, biochemical, and histopathological) in CAE-treated animals were similar to those observed in DSS-challenged animals. Despite the high dose (500 mg/kg), the standardized extract (CAE) did not result in an effective concentration of carotenoids. Furthermore, as some anacardic acids have been reported as histone acetyltransferases inhibitors, there could be a possible antagonistic relationship between carotenoids and anacardic acids. Complementary research will be necessary to test the hypothesis of antagonism. Thus, an optimized extract, with an even higher concentration of carotenoids, obtained from cashew apple bagasse, can be developed as a possible adjuvant food supplement for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Gisele Goulart da Silva
- Piracicaba Dental School, Graduate Program in Dentistry, University of Campinas, UNICAMP, Piracicaba 13414-903, SP, Brazil; (G.G.d.S.); (L.E.d.O.B.); (P.L.R.)
| | - Lucia Elaine de Oliveira Braga
- Piracicaba Dental School, Graduate Program in Dentistry, University of Campinas, UNICAMP, Piracicaba 13414-903, SP, Brazil; (G.G.d.S.); (L.E.d.O.B.); (P.L.R.)
| | - Ellen Cristina Souza de Oliveira
- Institute of Biology, Cellular and Structural Biology Graduate Program, University of Campinas, UNICAMP, Campinas 13083-865, SP, Brazil;
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, Campinas 13083-871, SP, Brazil;
| | - Josy Goldoni Lazarini
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, UNICAMP, Piracicaba 13414-903, SP, Brazil;
- Faculty of Medicine, Universidade Anhembi Morumbi, Piracicaba 13425-380, SP, Brazil
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, Graduate Program in Dentistry, University of Campinas, UNICAMP, Piracicaba 13414-903, SP, Brazil; (G.G.d.S.); (L.E.d.O.B.); (P.L.R.)
- Biological Sciences Graduate Program, Federal University of Alfenas, UNIFAL-MG, Alfenas 37130-001, MG, Brazil
| | | | - Ana Lucia Tasca Gois Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, Campinas 13083-871, SP, Brazil;
| |
Collapse
|
8
|
Dantas AM, Fernandes FG, Magnani M, da Silva Campelo Borges G. Gastrointestinal digestion assays for evaluating the bioaccessibility of phenolic compounds in fruits and their derivates: an overview. Food Res Int 2023; 170:112920. [PMID: 37316040 DOI: 10.1016/j.foodres.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
Fruits and their derivatives are sources of phenolic compounds, which contribute to the maintenance of health benefits. In order to exert such properties, these compounds must be exposed to gastrointestinal conditions during digestion. In vitro methods of gastrointestinal digestion have been developed to simulate and evaluate the changes that compounds undergo after being exposed to various conditions. We present, in this review, the major in vitro methods for evaluating the effects of gastrointestinal digestion of phenolic compounds in fruits and their derivatives. We discuss the concept of bioaccessibility, bioactivity, and bioavailability, as well as the conceptual differences and calculations among studies. Finally, the main changes caused by in vitro gastrointestinal digestion in phenolic compounds are also discussed. The significant variation of parameters and concepts observed hinders a better evaluation of the real effects on the antioxidant activity of phenolic compounds, thus, the use of standardized methods in research would contribute for a better understanding of these changes.
Collapse
Affiliation(s)
- Aline Macedo Dantas
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Graciele da Silva Campelo Borges
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil; Center of Chemistry, Pharmaceutical and Foods Sciences, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Kalungwana N, Marshall L, Mackie A, Boesch C. An ex vivo intestinal absorption model is more effective than an in vitro cell model to characterise absorption of dietary carotenoids following simulated gastrointestinal digestion. Food Res Int 2023; 166:112558. [PMID: 36914337 DOI: 10.1016/j.foodres.2023.112558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
To get the most accurate food digestion-related data, and how this affects nutrient absorption, it is critical to carefully simulate human digestion systems using model settings. In this study, the uptake and transepithelial transportation of dietary carotenoids was compared using two different models that have previously been used to assess nutrient availability. The permeability of differentiated Caco-2 cells and murine intestinal tissue were tested using all-trans-β-carotene and lutein prepared in artificial mixed micelles and micellar fraction from orange-fleshed sweet potato (OFSP) gastrointestinal digestion. Transepithelial transport and absorption efficiency were then determined using liquid chromatography tandem-mass spectrometry (LCMS-MS). Results showed that the mean uptake for all-trans-β-carotene in the mouse mucosal tissue was 60.2 ± 3.2% compared to 36.7 ± 2.6% in the Caco-2 cells with the mixed micelles as the test sample. Similarly, the mean uptake was higher in OFSP with 49.4 ± 4.1% following mouse tissue uptake compared to 28.9 ± 4.3% using Caco-2 cells for the same concentration. In relation to the uptake efficiency, the mean percentage uptake for all-trans-β-carotene from artificial mixed micelles was 1.8-fold greater in mouse tissue compared to Caco-2 cells (35.4 ± 1.8% against 19.9 ± 2.6%). Carotenoid uptake reached saturation at 5 µM when assessed with the mouse intestinal cells. These results demonstrate the practicality of employing physiologically relevant models simulating human intestinal absorption processes that compares well with published human in vivo data. When used in combination with the Infogest digestion model, the Ussing chamber model, using murine intestinal tissue, may thus be an efficient predictor of carotenoid bioavailability in simulating human postprandial absorption ex vivo.
Collapse
Affiliation(s)
- Ng'Andwe Kalungwana
- Food Colloids and Bioprocessing, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Lisa Marshall
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Alan Mackie
- Food Colloids and Bioprocessing, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Christine Boesch
- Nutritional Sciences and Epidemiology, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Manabe Y, Takagi-Hayashi S, Mohri S, Sugawara T. Intestinal Absorption and Anti-Inflammatory Effects of Siphonein, a Siphonaxanthin Fatty Acid Ester from Green Algae. J Nutr Sci Vitaminol (Tokyo) 2023; 69:62-70. [PMID: 36858542 DOI: 10.3177/jnsv.69.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Siphonein is a C19 acylated siphonaxanthin found in some edible green algae (e.g., Codium fragile and Caulerpa lentillifera). Although the content of siphonein in these green algae is similar to or higher than that of siphonaxanthin, studies of health-related biological activity of siphonein are much less than those of siphonaxanthin. Given the difference in the position of the acyl chain, one cannot infer intestinal absorption of siphonein from other general carotenoid fatty acid esters. In this study, we first investigated the intestinal absorption of siphonein using mouse and cell culture models. A small amount of siphonein was detected in the plasma of treated mice, and its concentration was higher than that of siphonaxanthin (i.e., the hydrolyzed product of ingested siphonein) from 1 to 6 h after administration. Pharmacological inhibition tests with differentiated Caco-2 cells showed that Nieman-Pick C1-like 1-mediated facilitated diffusion was involved in the cellular uptake of siphonein. These results indicate that, unlike general carotenoid fatty acid esters, siphonein can be absorbed without hydrolysis. We also evaluated the anti-inflammatory effect of siphonein in differentiated Caco-2 cells. Siphonein pretreatment modulated lipopolysaccharide-induced cellular lipidome alterations and suppressed mRNA expression of proinflammatory chemokines, CXCL8 protein release, and activation of NF-κB. This study provides new insights into the absorption processes of carotenoids and shows the anti-inflammatory effect of siphonein for the first time.
Collapse
Affiliation(s)
- Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | | | - Shinsuke Mohri
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
12
|
Hu K, Chen D, Chen M, Xiang A, Xie B, Suna Z. Effect of high pressure processing on gastrointestinal fate of carotenoids in mango juice: Insights obtained from macroscopic to microscopic scales. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
13
|
Banerjee A, Hayward JJ, Trant JF. "Breaking bud": the effect of direct chemical modifications of phytocannabinoids on their bioavailability, physiological effects, and therapeutic potential. Org Biomol Chem 2023; 21:3715-3732. [PMID: 36825573 DOI: 10.1039/d3ob00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two "major cannabinoids". However, their incorporation into clinical and nutraceutical preparations is challenging, owing to their limited bioavailability, low water solubility, and variable pharmacokinetic profiles. Understanding the organic chemistry of the major cannabinoids provides us with potential avenues to overcome these issues through derivatization. The resulting labile pro-drugs offer ready cannabinoid release in vivo, have augmented bioavailability, or demonstrate interesting pharmacological properties in their own right. This review identifies and discusses a subset of these advanced derivatization strategies for the major cannabinoids, where the starting material is the pure phytocannabinoid itself, and the final product either a cannabinoid pro-drug, or a novel pharmacoactive material.
Collapse
Affiliation(s)
- Abhinandan Banerjee
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| | - John J Hayward
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
14
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022; 8:e11505. [DOI: 10.1016/j.heliyon.2022.e11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
|
15
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Stinco CM, Benítez-González AM, Hernanz D, Vicario IM. Assessment of in vitro bioaccessibility of carotenoids and phenolic compounds in a model milk-mandarine beverage. Food Funct 2022; 13:10535-10545. [PMID: 36156618 DOI: 10.1039/d2fo01808j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mandarine juice is one of the richest sources of β-cryptoxanthin and flavonoids, which have been positively associated with bone mineral density. Carotenoids are lipophilic isoprenoid compounds with a complex absorption process that can be affected by different factors. In this study, we have evaluated the effect of the food matrix on the in vitro bioaccessibility of carotenoids and phenolic compounds in a model milk-mandarine beverage (MMB). MMBs were formulated with mandarine juice and different dairy products to achieve three fat levels (0.2%, 1.7% and 3.2%) and three calcium levels (120, 310 and 500 mg Ca2+ per 100 ml). The bioaccessibility was evaluated using a harmonised in vitro digestion method. The results showed that the content of milk fat increased the bioaccessibility in vitro of phenolic compounds (p < 0.05), while a moderate fat level (1.7%) resulted in the highest bioaccessibility for bioactive carotenoids. On the other hand, calcium fortification at the highest level (500 mg Ca2+ per 100 mL) decreased the bioaccessibility of bioactive carotenoids from 76% to 43% (66% for the major β-cryptoxanthin) compared to the lower calcium fortification level (120 mg Ca2+ per 100 mL). The bioaccessibility of hesperidin, the main flavanone in mandarine juice, was significantly (p < 0.05) reduced in the MMB with the highest calcium level. The bioaccessibility of carotenoids and phenolic compounds is affected by fat and calcium levels. When formulating functional beverages, the impact of the formulation should be carefully considered to optimize the bioaccessibility of the bioactive compounds.
Collapse
Affiliation(s)
- Carla M Stinco
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Ana M Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Dolores Hernanz
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Isabel M Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| |
Collapse
|
17
|
Bioaccessibility and uptake by Caco-2 cells of carotenoids from cereal-based products enriched with butternut squash (Cucurbita moschata L.). Food Chem 2022; 385:132595. [DOI: 10.1016/j.foodchem.2022.132595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
|
18
|
The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion. Foods 2022; 11:foods11152226. [PMID: 35892810 PMCID: PMC9332202 DOI: 10.3390/foods11152226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The current trend in dietary supplements and functional foods is the use of lipophilic bioactive compounds. The sea buckthorn (Hippóphae rhamnoídes) contains some such compounds: polyunsaturated fatty acids, tocopherols, and carotenoids. Lipophilic components are best distributed using oil-in-water emulsions, which ensures their high bioavailability. A significant property of emulsions is colloidal and oxidative stability, so the choice of emulsifiers that have both surface-active properties and antioxidant activity is an important area of research for making new types of food emulsions. The purpose of this study is the development and refinement of an emulsified biologically active food additive containing sea buckthorn products (pulp, juice, and oil) and stabilized with soy phospholipids. We studied the fruits of Chuyskaya, Orange, and Prevoskhodnaya sea buckthorn varieties growing in the Altai Territory. As we analyzed their composition, we chose the Chuyskaya variety for making the emulsion. The fruits contain 5.30 ± 0.1% of lipids including 16.8 ± 0.5 mg/100 g of carotenoids and 10.5 ± 0.5 mg/100 g of tocopherols. To choose the emulsifier we studied the fractional and fatty acid composition of the soy and sunflower phospholipids with different hydrophilic-lipophilic balances (HLB). We made the emulsions containing sea buckthorn oil and pulp of its different layers, soybean oil, and phospholipids by dispersion using an HG-15D homogenizer. The study of the colloidal stability showed that the most stable (99.5%) are the emulsions containing a mixture of hydrolyzed soybean phospholipids (HLB = 7) and fractionated soybean phospholipids (HLB = 3). The best ratio is 40:60. We examined the oxidative stability of the emulsions by provoking accelerated oxidation. The emulsions containing 1.5% of a soy phospholipids mixture showed the best oxidative stability. The resulting direct oil-in-water fine emulsion contains polyunsaturated fatty acids (PUFAs), tocopherols, β-carotene, and essential phospholipids. For this reason, the emulsion can be used to make biologically active food supplements (also encapsulated) and as part of special nutrients.
Collapse
|
19
|
Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chem X 2022; 14:100334. [PMID: 35712535 PMCID: PMC9194584 DOI: 10.1016/j.fochx.2022.100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/16/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022] Open
Abstract
Processing alters the amount, matrix interaction, and structure of antioxidants. It is not easy to dissociate processing effects from food matrix effects. It is still difficult to make general statements on the effects of processing on bioavailability. Facilitated release by heat, pressure, etc. contributes to increased bioaccessibility.
It has long been recognized that the antioxidants present in fresh plant materials may be very different to those we ingest via our foods. This is often due to the use of food processing strategies involving thermal/non-thermal treatments. Current research mostly focuses on determining what is present in vegetative starting materials; how this is altered during processing; how this influences activity in the gut and following uptake into bloodstream; and which in vivo physiological effects this may have on human body. Having a better understanding of these different steps and their importance in a health-and-nutrition-context will place us in a better position to breed for improved crop varieties and to advise the food industry on how to optimize processing strategies to enhance biochemical composition of processed foods. This review provides an overview of what is currently known about the influence which food processing treatments can have on antioxidants and gives some pointers as to their potential relevance.
Collapse
|
20
|
Ueno HM, Sato T, Higurashi S, Tazaki H, Toba Y. Xanthophylls in Human Milk and Maternal Diet: A Cross-sectional Analysis of Data from the Japanese Human Milk Study Cohort. Curr Dev Nutr 2022; 6:nzac093. [PMID: 35702383 PMCID: PMC9188468 DOI: 10.1093/cdn/nzac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background Maternal diet and sociodemographic factors influence xanthophyll concentration and composition in human milk. However, the importance of dietary patterns regarding the intake of fruits, vegetables, and xanthophylls remains unclear. Objective The aim was to determine the composition of xanthophylls in the human milk of Japanese mothers and explore associations of xanthophylls with dietary and sociodemographic factors. Methods This cross-sectional study was conducted in the early phase of the Japanese Human Milk Study. Xanthophyll content was measured using liquid chromatography at 30-36 d postpartum. Maternal intake of foods, nutrients, and dietary supplements was estimated using a food-frequency questionnaire. Linear regression models were established using xanthophylls, maternal diet, and sociodemographic factors. Results Xanthophyll concentrations were measured in human milk from 118 mothers. The xanthophyll concentration varied among individuals. The median (IQR) concentrations of lutein, zeaxanthin, and β-cryptoxanthin were 65.6 ng/mL (51.6-103.4 ng/mL), 18.6 ng/mL (12.9-25.8 ng/mL), and 15.6 ng/mL (9.0-26.0 ng/mL), respectively. In multivariate models, the lutein concentration was associated independently with dietary green vegetables, exclusive breastfeeding, and education (r 2 = 0.153 for the model; β ± SE: 0.468 ± 0.198, 25.048 ± 10.222, and 13.460 ± 6.774; standardized β = 0.210, 0.217, and 0.175; P = 0.019, 0.016, and 0.049 for dietary green vegetables, exclusive breastfeeding, and education, respectively). For zeaxanthin, exclusive breastfeeding was the most appropriate predictor (r 2 = 0.085; β ± SE: 7.811 ± 3.300; standardized β = 0.218; P = 0.020). The highest predictive power for human milk β-cryptoxanthin was obtained with dietary β-cryptoxanthin (r 2 = 0.258; β ± SE: 0.089 ± 0.015; standardized β = 0.468; P < 0.001), attributed to maternal citrus intake. Conclusions β-Cryptoxanthin in human milk was the xanthophyll most influenced by the maternal diet in Japanese women. The β-cryptoxanthin concentration in human milk was reflected by the maternal β-cryptoxanthin intake, mainly attributed to Japanese citrus consumption. This trial was registered in the Japanese Clinical Trials Registry (https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017649) as UMIN000015494.
Collapse
Affiliation(s)
- Hiroshi M Ueno
- Research and Development Department, Bean Stalk Snow Co., Ltd, Kawagoe, Japan
| | - Touko Sato
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Satoshi Higurashi
- Research and Development Department, Bean Stalk Snow Co., Ltd, Kawagoe, Japan
| | - Hiroyuki Tazaki
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yasuhiro Toba
- Research and Development Department, Bean Stalk Snow Co., Ltd, Kawagoe, Japan
| |
Collapse
|
21
|
Wattanakul J, Syamila M, Darwish R, Gedi MA, Sutcharit P, Chi C, Akepach P, Sahaka M, Gontero B, Carrière F, Gray DA. Bioaccessibility of essential lipophilic nutrients in a chloroplast-rich fraction (CRF) from agricultural green waste during simulated human gastrointestinal tract digestion. Food Funct 2022; 13:5365-5380. [PMID: 35470837 DOI: 10.1039/d2fo00604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in vitro gastrointestinal human digestion model, with and without additional rapeseed oil, was used to measure the bioaccessibility of the major lipophilic nutrients enriched in chloroplasts: β-carotene; lutein; α-tocopherol; and α-linolenic acid. Chloroplast-rich fraction (CRF) material for this work was prepared from post-harvest pea vine field residue (pea vine haulm, or PVH), an abundant source of freely available, underutilised green biomass. PVH was either steam sterilised (100 °C for 4 min) and then juiced (heat-treated PVH, or HPVH), or was juiced fresh and the juice heated (90 °C for 3 min) (heat-treated juice, or HJ); the CRF from all biomass treatments was recovered from the juice by centrifugation. The impact of postharvest heat treatment of the biomass (HPVH), or of heat treatment of the juice (HJ) derived from the biomass, on the retention and bioaccessibility of the target nutrients was determined. The results showed that both heat treatments increased the apparent retention of β-carotene, lutein, α-tocopherol, and α-linolenic acid in the CRF material during digestion. The presence of edible oil during digestion did not dramatically affect the retention of these nutrients, but it did increase the bioaccessibility of β-carotene, lutein, and α-tocopherol from CRF material derived from heated biomass or juice. The presence of oil also increased the bioaccessibility of β-carotene, but not of lutein, α-tocopherol, or α-linolenic acid, from fresh CRF material.
Collapse
Affiliation(s)
- Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK. .,Department of Food Science and Technology, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Mansor Syamila
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK. .,Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 78100 Nilai, Negeri Sembilan, Malaysia
| | - Randa Darwish
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Poramat Sutcharit
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Chao Chi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Patchaniya Akepach
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK. .,Department of Food Innovation and Nutrition, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, 84100, Thailand
| | - Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, 31 Chemin Joseph Aiguier, 13402 Marseille, Cedex 09, France.
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, 31 Chemin Joseph Aiguier, 13402 Marseille, Cedex 09, France.
| | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, 31 Chemin Joseph Aiguier, 13402 Marseille, Cedex 09, France.
| | - David A Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
22
|
Lozano-Castellón J, Rinaldi de Alvarenga JF, Vallverdú-Queralt A, Lamuela-Raventós RM. Cooking with extra-virgin olive oil: A mixture of food components to prevent oxidation and degradation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Zhuang C, Yuan J, Du Y, Zeng J, Sun Y, Wu Y, Gao XH, Chen HD. Effects of Oral Carotenoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Studies in the Recent 20 Years. Front Nutr 2022; 9:754707. [PMID: 35571897 PMCID: PMC9094493 DOI: 10.3389/fnut.2022.754707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Carotenoids protect organs, tissues, and cells from the damaging action of singlet oxygen, oxygen radicals, and lipid peroxides. This systematic review was sought to evaluate the influence of oral carotenoids on antioxidant/oxidative markers, blood carotenoids levels, and lipid/lipoprotein parameters in human subjects. A comprehensive review of relevant literature was conducted in PubMed, Web of Sciences, and the Cochrane library, from 2000 to December 2020. Randomized controlled trials, case-controlled trials, or controlled trials were identified. A total of eighteen trials were included, with the target populations being healthy subjects in 16 studies, athletes in 1 study, and pregnant women in 1 study. The meta-analysis results showed that carotenoids complex supplementation significantly increased the levels of antioxidative parameters ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) [standardized mean difference (SMD) = 0.468; 95% CI: 0.159-0.776, p = 0.003; SMD = 0.568; 95% CI: 0.190-0.947, p = 0.003] and decreased the blood triglyceride (TG) level (SMD = -0.410, 95% CI: -0.698 to -0.122, p = 0.005). Oral carotenoids supplement significantly increased the blood levels of β-carotene (SMD = 0.490, 95% CI: 0.123-0.858, p = 0.009), α-tocopherol (SMD = 0.752, 95%CI: 0.020-1.485, p = 0.044), and the intaking durations were 8 weeks. The levels of antioxidative enzymes and other lipid/lipoprotein parameters were not different between subjects receiving carotenoids and controls (p > 0.05). In conclusion, our systematic review showed that the carotenoids complex is beneficial for alleviating potential oxidative stress via interacting with free radicals or decreasing blood TG levels. The intaking duration of carotenoids should be 8 weeks to reach enough concentration for function.
Collapse
Affiliation(s)
- Chengfei Zhuang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jinping Yuan
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Zeng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
What Is the Current Direction of the Research on Carotenoids and Human Health? An Overview of Registered Clinical Trials. Nutrients 2022; 14:nu14061191. [PMID: 35334849 PMCID: PMC8955529 DOI: 10.3390/nu14061191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Carotenoids have been the object of numerous observational, pre-clinical and interventional studies focused on elucidating their potential impacts on human health. However, the large heterogeneity among the trials, in terms of study duration and characteristics of participants, makes any conclusion difficult to draw. The present study aimed to explore the current carotenoid research trends by analyzing the characteristics of the registered clinical trials. A total of 193 registered trials on ClinicalTrials.gov and ISRCTN were included in the revision. Eighty-three studies were performed with foods, one-hundred-five with food supplements, and five with both. Among the foods tested, tomatoes and tomato-based foods, and eggs were the most studied. Lutein, lycopene, and astaxanthin were the most carotenoids investigated. Regarding the goals, 52 trials were focused on studying carotenoids’ bioavailability, and 140 studies investigated the effects of carotenoids on human health. The main topics included eye and cardiovascular health. Recently, the research has focused also on two new topics: cognitive function and carotenoid–gut microbiota interactions. However, the current research on carotenoids is still mostly focused on the bioavailability and metabolism of carotenoids from foods and food supplements. Within this context, the impacts/contributions of food technologies and the development of new carotenoid formulations are discussed. In addition, the research is still corroborating the previous findings on vision and cardiovascular health. Much attention has also been devoted to new research areas, such as the carotenoid–microbiota interactions, which could contribute to explaining the metabolism and the health effects of carotenoids; and the relation between carotenoids and cognitive function. However, for these topics the research is still only beginning, and further studies are need.
Collapse
|
25
|
Amorim ADGN, Vasconcelos AG, Souza J, Oliveira A, Gullón B, de Souza de Almeida Leite JR, Pintado M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants (Basel) 2022; 11:antiox11020360. [PMID: 35204241 PMCID: PMC8868408 DOI: 10.3390/antiox11020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this review was to collect relevant chemical data about lycopene and its isomers, which can be extracted using different non-polar or polar aprotic solvents by SC-CO2 or biosynthesis as a friendly technique. Lycopene and other carotenoids can be identified and quantified by UV–Vis and HPLC using a C18 or C30 column, while their characterization is possible by UV–Vis, Fluorescence, FTIR, MS, NMR, and DSC assays. Among these techniques, the last four can compare lycopene isomers and identify cis or all-trans-lycopene. FTIR, MS, and NMR techniques are more suitable for the verification of the purity of lycopene extracts due to the signal complexity generated for each isomer, which enables identification by subtle differences. Additionally, some biological activities of lycopene isolated from red vegetables have already been confirmed, such as anti-inflammatory, antioxidant, and cytotoxic activity against cancer cells, probably by activating several pathways. The encapsulation of lycopene in nanoparticles demonstrated an improvement in oral delivery, and ex vivo assessments determined that these nanoparticles had better permeation and low cytotoxicity against human cells with enhanced permeation. These data suggest that lycopene has the potential to be applied in the food and pharmaceutical industries, as well as in cosmetic products.
Collapse
Affiliation(s)
- Adriany das Graças Nascimento Amorim
- Rede Nordeste de Biotecnologia, RENORBIO, Campus Ministro Petrônio Portela, Universidade Federal do Piauí, UFPI, Teresina 64049-550, PI, Brazil
- Correspondence: ; Tel.: +55-86-999-652-666
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
- Centro Universitário do Distrito Federal, UDF, Brasília 70390-045, DF, Brazil
- People&Science, Brasília 70340-908, DF, Brazil
| | - Jessica Souza
- Laboratório de Cultura de Célula do Delta, LCC Delta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaiba 64202-020, PI, Brazil;
| | - Ana Oliveira
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| | - Beatriz Gullón
- Departamento de Ingeniería Química, Facultad de Ciencias, Campus Ourense, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
| | - Manuela Pintado
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| |
Collapse
|
26
|
Tan Y, McClements DJ. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021; 26:molecules26226895. [PMID: 34833987 PMCID: PMC8625429 DOI: 10.3390/molecules26226895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The supplementation of plant-based foods and beverages with bioactive agents may be an important strategy for increasing human healthiness. Numerous kinds of colloidal delivery systems have been developed to encapsulate bioactives with the goal of improving their water dispersibility, chemical stability, and bioavailability. In this review, we focus on colloidal delivery systems assembled entirely from plant-based ingredients, such as lipids, proteins, polysaccharides, phospholipids, and surfactants isolated from botanical sources. In particular, the utilization of these ingredients to create plant-based nanoemulsions, nanoliposomes, nanoparticles, and microgels is covered. The utilization of these delivery systems to encapsulate, protect, and release various kinds of bioactives is highlighted, including oil-soluble vitamins (like vitamin D), ω-3 oils, carotenoids (vitamin A precursors), curcuminoids, and polyphenols. The functionality of these delivery systems can be tailored to specific applications by careful selection of ingredients and processing operations, as this enables the composition, size, shape, internal structure, surface chemistry, and electrical characteristics of the colloidal particles to be controlled. The plant-based delivery systems discussed in this article may be useful for introducing active ingredients into the next generation of plant-based foods, meat, seafood, milk, and egg analogs. Nevertheless, there is still a need to systematically compare the functional performance of different delivery systems for specific applications to establish the most appropriate one. In addition, there is a need to test their efficacy at delivering bioavailable forms of bioactives using in vivo studies.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
27
|
Hu C, Salter Venzon D, Lange K, Maathuis A, Bellmann S, Gellenbeck K. Evaluation of the bioaccessibility of a carotenoid beadlet blend using an in vitro system mimicking the upper gastrointestinal tract. Food Sci Nutr 2021; 9:3289-3296. [PMID: 34136193 PMCID: PMC8194940 DOI: 10.1002/fsn3.2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The release characteristics of a unique blend of carotenoid beadlets designed to increase bioavailability were tested using the dynamic gastrointestinal model TIM-1. Individual carotenoid bioaccessibility peaks were observed over approximately 3-4 hr in the order of lutein and zeaxanthin first, followed by lycopene, and then finally α- and β-carotene; when tested as a beadlet blend or when the beadlets were compressed into tablets. Bioaccessibility measurements of 7%-20% were similar to those previously reported in literature and comparable between the two formulations, beadlet blend and tablet formulations. Total recovery of carotenoids from all compartments ranged from 70% to 90% for all carotenoids, except lycopene where almost 50% was unrecoverable after digestion in the TIM system.
Collapse
Affiliation(s)
- Chun Hu
- Nutrilite Health InstituteBuena ParkCAUSA
| | | | | | | | | | | |
Collapse
|
28
|
Seraglio SKT, Schulz M, Gonzaga LV, Fett R, Costa ACO. Current status of the gastrointestinal digestion effects on honey: A comprehensive review. Food Chem 2021; 357:129807. [PMID: 33915465 DOI: 10.1016/j.foodchem.2021.129807] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 12/30/2022]
Abstract
In the past five years, more than 8000 scientific reports have been published on honey composition and its potential bioactivity as a source of pro-health components. However, the potential effectiveness of nutrients and other compounds in the human body is greatly influenced by the individual digestion conditions. Consequently, changes in the structure of honey components and their interactions with other constituents are expected and they may affect the bioaccessibility, the bioavailability, and further physiological functions of honey nutrients and bioactives. In this context, in addition to present key physiological characteristics for each step of the human digestion and their simulation aspects, this review also summarizes and discusses available data regarding the effect of the digestion (in vitro and in vivo) on honey compounds. Additionally, we consider the influence of the digestion on biological activities described for the compounds in the honey.
Collapse
Affiliation(s)
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
29
|
Vitucci D, Amoresano A, Nunziato M, Muoio S, Alfieri A, Oriani G, Scalfi L, Frusciante L, Rigano MM, Pucci P, Fontana L, Buono P, Salvatore F. Nutritional Controlled Preparation and Administration of Different Tomato Purées Indicate Increase of β-Carotene and Lycopene Isoforms, and of Antioxidant Potential in Human Blood Bioavailability: A Pilot Study. Nutrients 2021; 13:nu13041336. [PMID: 33920623 PMCID: PMC8073136 DOI: 10.3390/nu13041336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
The isoforms of lycopene, carotenoids, and their derivatives including precursors of vitamin A are compounds relevant for preventing chronic degenerative diseases such as cardiovascular diseases and cancer. Tomatoes are a major source of these compounds. However, cooking and successive metabolic processes determine the bioavailability of tomatoes in human nutrition. To evaluate the effect of acute/chronic cooking procedures on the bioavailability of lycopene and carotene isoforms in human plasma, we measured the blood levels of these compounds and of the serum antioxidant potential in volunteers after a meal containing two different types of tomato sauce (rustic or strained). Using a randomized cross-over administration design, healthy volunteers were studied, and the above indicated compounds were determined by HPLC. The results indicate an increased bioavailability of the estimated compounds and of the serum antioxidant potential with both types of tomato purée and the subsequently derived sauces (the increase was greater with strained purée). This study sheds light on the content of nutrient precursors of vitamin A and other antioxidant compounds derived from tomatoes cooked with different strategies. Lastly, our study indicates that strained purée should be preferred over rustic purée.
Collapse
Affiliation(s)
- Daniela Vitucci
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, via Cinthia, 80126 Naples, Italy;
| | - Marcella Nunziato
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Sergio Pansini 5, 80131 Naples, Italy
| | - Simona Muoio
- Department of Public Health, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Andreina Alfieri
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, Via Medina, 40, 80133 Naples, Italy
| | - Giovannangelo Oriani
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
| | - Luca Scalfi
- Institute of Internal Medicine and Metabolic Diseases, Medical School, University of Naples, Federico II, 80131 Naples, Italy;
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Università 100, Portici, 80055 Naples, Italy; (L.F.); (M.M.R.)
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Università 100, Portici, 80055 Naples, Italy; (L.F.); (M.M.R.)
| | - Piero Pucci
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Chemical Sciences, University of Naples “Federico II”, via Cinthia, 80126 Naples, Italy;
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Science Rd, Camperdown, Sydney, NSW 2050, Australia;
- Department of Endocrinology, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown, Sydney, NSW 2050, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Viale Europa, 11, 25123 Brescia, Italy
| | - Pasqualina Buono
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, Via Medina, 40, 80133 Naples, Italy
- Correspondence: (P.B.); (F.S.); Tel.: +81-547-4808 (P.B.); +81-373-7826 (F.S.)
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.B.); (F.S.); Tel.: +81-547-4808 (P.B.); +81-373-7826 (F.S.)
| |
Collapse
|
30
|
Tudor C, Gherasim EC, Dulf FV, Pintea A. In vitro bioaccessibility of macular xanthophylls from commercial microalgal powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Sci Nutr 2021; 9:1896-1906. [PMID: 33841808 PMCID: PMC8020956 DOI: 10.1002/fsn3.2150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The bioaccessibility of the major carotenoids present in two commercial microalgal supplements in powder form was investigated through a standardized in vitro digestion method. The dried biomass of Arthrospira platensis contained β-carotene (36.8 mg/100 g) and zeaxanthin (20.8 mg/100 g) as the main carotenoids as well as a high content of saturated fatty acids (61% of total fatty acids), whereas that of Chlorella pyrenoidosa was rich in lutein (37.8 mg/100 g) and had a high level of unsaturated fatty acids (65% of total fatty acids). In the case of the latter, lutein bioaccessibility was not statistically enhanced after the replacement of porcine bile extract with bovine bile extract in the in vitro digestion protocol and after the addition of coconut oil (17.8% as against to 19.2% and 19.2% vs. 18.5%, respectively). In contrast, the use of bovine bile extract along with co-digestion with coconut oil significantly enhanced the bioaccessibility of zeaxanthin from A. platensis, reaching the highest bioaccessibility of 42.8%.
Collapse
Affiliation(s)
- Cristina Tudor
- University of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | | | | | - Adela Pintea
- University of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
31
|
Petry FC, Mercadante AZ. Addition of either gastric lipase or cholesterol esterase to improve both β-cryptoxanthin ester hydrolysis and micellarization during in vitro digestion of fruit pulps. Food Res Int 2020; 137:109691. [PMID: 33233265 DOI: 10.1016/j.foodres.2020.109691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Using the INFOGEST in vitro digestion protocol adapted to carotenoids, the impact of additional rabbit gastric lipase (RGL) on the hydrolysis extent of β-cryptoxanthin esters was evaluated for the first time, and compared with the addition of porcine cholesterol esterase (CEL). Both the modifications increased the hydrolysis of (all-E)-β-cryptoxanthin esters from mandarin and peach pulps, although the outcomes were different. Addition of RGL consistently increased the average hydrolysis extent from 55.2% to 59.5% in mandarin pulp and from 22.7% to 48.8% in peach pulp (p < 0.05). The addition of CEL produced lower hydrolysis extents, i.e., 58.5% in mandarin (not statistically significant) and 28.4% in peach (p < 0.05), compared to those obtained with RGL. The hydrolysis extent positively correlated with the carotenoid ester concentration in both matrices. Bioaccessibility values were higher in mandarin pulp (range 32-34%) compared to those in peach pulp (range 16-21%), and were associated with the hydrolysis extent of the carotenoid esters during digestion. Addition of RGL and CEL produced no significant (p < 0.05) effect on the overall carotenoid bioaccessibility values of mandarin, while positively affected those in peach. Altogether these results corroborate that the hydrolysis extent of xanthophyll esters limits bioaccessibility. Additionally, hydrophobicity of the carotenoid inversely correlates with micellarization, as free (all-E)-xanthophylls micellarized in a higher extent compared to (all-E)-β-carotene and xanthophyll esters. The new information of our results is that the addition of rabbit gastric lipase substantially contributes to the hydrolysis of β-cryptoxanthin esters from fruit pulps, and consequently, to increase carotenoid bioaccessibility, being even more effective than CEL.
Collapse
Affiliation(s)
- Fabiane C Petry
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Adriana Z Mercadante
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
32
|
Esquivel P, Viñas M, Steingass CB, Gruschwitz M, Guevara E, Carle R, Schweiggert RM, Jiménez VM. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Carotenoid metabolism in mitochondrial function. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Mitochondria are highly dynamic organelles that are found in most eukaryotic organisms. It is broadly accepted that mitochondria originally evolved from prokaryotic bacteria, e.g. proteobacteria. The mitochondrion has its independent genome that encodes 37 genes, including 13 genes for oxidative phosphorylation. Accumulative evidence demonstrates that mitochondria are not only the powerhouse of the cells by supplying adenosine triphosphate, but also exert roles as signalling organelles in the cell fate and function. Numerous factors can affect mitochondria structurally and functionally. Carotenoids are a large group of fat-soluble pigments commonly found in our diets. Recently, much attention has been paid in carotenoids as dietary bioactives in mitochondrial structure and function in human health and disease, though the mechanistic research is limited. Here, we update the recent progress in mitochondrial functioning as signalling organelles in human health and disease, summarize the potential roles of carotenoids in regulation of mitochondrial redox homeostasis, biogenesis, and mitophagy, and discuss the possible approaches for future research in carotenoid regulation of mitochondrial function.
Collapse
|
34
|
Rodríguez-Rodríguez E, Beltrán-de-Miguel B, Samaniego-Aguilar KX, Sánchez-Prieto M, Estévez-Santiago R, Olmedilla-Alonso B. Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults. Antioxidants (Basel) 2020; 9:E484. [PMID: 32503206 PMCID: PMC7346146 DOI: 10.3390/antiox9060484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Carotenoids are bioactive compounds with widely accepted health benefits. Their quantification in human faeces can be a useful non-invasive approach to assess their bioavailability. Identification and quantification of major dietary carotenoids in human faeces was the aim of the present study. Faeces and dietary intake were obtained from 101 healthy adults (45-65 years). Carotenoid concentrations were determined by HPLC in faeces and by 3-day food records in dietary intake. Carotenoids quantified in faeces (µg/g dry weight, median) were: β-carotene (39.5), lycopene (20), lutein (17.5), phytoene (11.4), zeaxanthin (6.3), β-cryptoxanthin (4.5), phytofluene (2.9). α-carotene (5.3) and violaxanthin were found 75.5% and 7.1% of the faeces. The carotenoids found in the highest concentrations corresponded to the ones consumed in the greatest amounts (µg/d): lycopene (13,146), phytoene (2697), β-carotene (1812), lutein+zeaxanthin (1148). Carotenoid concentration in faeces and in dietary intake showed correlation for the total non-provitamin A carotenoids (r = 0.302; p = 0.003), phytoene (r = 0.339; p = 0.001), phytofluene (r = 0.279; p = 0.005), lycopene (0.223; p = 0.027), lutein+zeaxanthin (r = 0.291; p = 0.04) and β-cryptoxanthin (r = 0.323; p = 0.001). A high proportion of dietary carotenoids, especially those with provitamin A activity and some of their isomers, reach the large intestine, suggesting a low bioavailability of their intact forms.
Collapse
Affiliation(s)
- Elena Rodríguez-Rodríguez
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.R.-R.); (B.B.-d.-M.)
| | - Beatriz Beltrán-de-Miguel
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.R.-R.); (B.B.-d.-M.)
| | - Kerly X. Samaniego-Aguilar
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| | - Milagros Sánchez-Prieto
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| | - Rocío Estévez-Santiago
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Begoña Olmedilla-Alonso
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| |
Collapse
|
35
|
Skliarov PM, Fedorenko SY, Naumenko SV, Onischenko OV, Holda KО. Retinol deficiency in animals: Etiopathogenesis and consequences. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infertility is widespread for all species of animals and causes significant economic losses to livestock due to the loss and shortage of offspring, their reduced viability and, consequently, increased morbidity and mortality. Alimentary-deficiency factors are among the commonest causes of infertility, from which A-vitamin deficiency should be singled out. The precursor of vitamin A in the body is carotene, which is an unstable compound which is easily destroyed even under the influence of moderate factors of influence, in connection with which its deficiency is global, especially at the end of the winter – stall period of keeping animals. Accordingly it is the leading etiological factor of retinol deficiency infertility. As a result, the body has two negatives that act in parallel: carotene / vitamin A deficiency adversely affects the organs, the constituent and major functional unit of which is the secretory epithelial cell, and the free radical oxides formed in high concentration are extremely effective in destroying the cells, weakening antioxidant protection. Vitamin A has a significant effect on the reproductive function of animals both directly and indirectly. It is necessary to ensure the structure and functioning of the epithelial tissues of the organs of regulation and performance of sexual function, and therefore the physiological development of the fetus and the course of pregnancy, parturition and postpartum period, ovo- and spermiogenesis, the manifestation of sexual reflexes. Instead, its deficiency underlies the etiology and pathogenesis of retinol deficiency infertility of animals, causing changes in individual indices of homeostasis and prooxidate-antioxidant system, morphostructure of the reproductive and endocrine organs, hormonal status, sperm quality and reproductive function. The consequence is the emergence and development of gynecological, andrological, mammological and perinatal (ante-, intra-, post- and neo-) pathologies. At the same time, the addition of carotene or retinol to the diets of animals or their oral administration in cases of deficiency of vitamin A prevents impaired reproductive function. The study of the features of the etiopathogenesis of retinol deficiency infertility of animals allows programs of complex diagnostics, therapy and prevention to be developed which provide determination of carotene and vitamin A content and replenishment of the organism in cases of their deficiency.
Collapse
|
36
|
McClements DJ. Enhancing Efficacy, Performance, and Reliability of Cannabis Edibles: Insights from Lipid Bioavailability Studies. Annu Rev Food Sci Technol 2020; 11:45-70. [DOI: 10.1146/annurev-food-032519-051834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The legal sale of cannabis-enriched foods and beverages for medical or recreational purposes is increasing in many states and countries, especially in North America and Europe. These food-based cannabis delivery systems vary considerably in their compositions and structures, ranging from low-viscosity watery beverages to solid fatty chocolates. The rate and extent of release of the bioactive components in cannabis within the human gastrointestinal tract (GIT) affect their health and psychoactive effects. Studies with other types of hydrophobic bioactives, such as nutraceuticals and vitamins, have shown that food composition and structure have a major impact on their bioaccessibility, transformation, and absorption within the GIT, thereby influencing their bioavailability and bioactivity. This review outlines how insights on the bioavailability of other lipophilic bioactives can be used to facilitate the design of more efficacious and consistent cannabis-enriched products intended for oral consumption. In particular, the importance of food-matrix composition (such as fat type and level) and structural organization (such as fat domain dimensions) are discussed.
Collapse
|
37
|
Tan Y, Li R, Zhou H, Liu J, Muriel Mundo J, Zhang R, McClements DJ. Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food Funct 2020; 11:174-186. [DOI: 10.1039/c9fo01669d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioaccessibility of hydrophobic bioactives may be greatly reduced in the presence of calcium.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- 8 Nanchang
- PR China
| | - Hualu Zhou
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | - Jinning Liu
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | | - Ruojie Zhang
- Department of Food Science
- University of Massachusetts Amherst
- Amherst
- USA
| | | |
Collapse
|
38
|
Yu J, Gleize B, Zhang L, Caris-Veyrat C, Renard CMGC. A D-optimal mixture design of tomato-based sauce formulations: effects of onion and EVOO on lycopene isomerization and bioaccessibility. Food Funct 2019; 10:3589-3602. [PMID: 31161169 DOI: 10.1039/c9fo00208a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A D-optimal mixture design was used to study the effects of onion and extra virgin olive oil (EVOO) on lycopene Z-isomerization, lycopene diffusion into oil (expressed as a partition factor between tomato-based puree and oil) and in vitro bioaccessibility of lycopene isomers after thermal treatment of tomato-based puree consisting of tomato (75-100%), onion (0-20%) and EVOO (0-5%). A decrease of tomato puree could improve lycopene Z-isomerization, lycopene diffusion and lycopene bioaccessibility. The component interactions had an important influence on the Z-isomerization of lycopene, besides the linear mixtures of components. However, only linear mixtures of components appeared to have significant effects on the diffusion and bioaccessibility of lycopene, in which EVOO had the highest positive effect followed by onion. The bioaccessibility of lycopene isomers in every tomato-based sauce formulation decreased in the order: 13-Z-lycopene > 9-Z-lycopene > 5-Z-lycopene > all-E-lycopene. The bioaccessibility of total-Z-lycopene was at least 10 times higher than that of all-E-lycopene. Proportions of total-Z-lycopene were correlated positively with the partition factor and bioaccessibility of total-lycopene, with an r over 0.730 (p = 0.0031). Therefore, increased Z-lycopene proportions probably contributed to enhanced lycopene diffusion and bioaccessibility. The positive effects of components, especially onion, on total-lycopene diffusion and bioaccessibility were probably because the components increased the Z-isomerization of lycopene during heating of tomato-based puree.
Collapse
Affiliation(s)
- Jiahao Yu
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | | | | | | | | |
Collapse
|