1
|
Wang L, Lin H, Zhu Y, Ge X, Li M, Liu J, Chen F, Zhang M, Cheng JX. Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging. Nat Commun 2024; 15:5374. [PMID: 38918400 PMCID: PMC11199576 DOI: 10.1038/s41467-024-49691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Photothermal microscopy is a highly sensitive pump-probe method for mapping nanostructures and molecules through the detection of local thermal gradients. While visible photothermal microscopy and mid-infrared photothermal microscopy techniques have been developed, they possess inherent limitations. These techniques either lack chemical specificity or encounter significant light attenuation caused by water absorption. Here, we present an overtone photothermal (OPT) microscopy technique that offers high chemical specificity, detection sensitivity, and spatial resolution by employing a visible probe for local heat detection in the C-H overtone region. We demonstrate its capability for high-fidelity chemical imaging of polymer nanostructures, depth-resolved intracellular chemical mapping of cancer cells, and imaging of multicellular C. elegans organisms and highly scattering brain tissues. By bridging the gap between visible and mid-infrared photothermal microscopy, OPT establishes a new modality for high-resolution and high-sensitivity chemical imaging. This advancement complements large-scale shortwave infrared imaging approaches, facilitating multiscale structural and chemical investigations of materials and biological metabolism.
Collapse
Affiliation(s)
- Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Haonan Lin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Jianing Liu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Fukai Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Thielen E, Oria M, Watanabe-Chailland M, Lampe K, Romick-Rosendale L, Peiro JL. Non-Targeted Metabolic Profiling of Cerebellum in Spina Bifida Fetal Rats. Metabolites 2023; 13:metabo13050670. [PMID: 37233711 DOI: 10.3390/metabo13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Spina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been extensively studied. The objective of this study is to examine the metabolic effects of this disease on the cerebellum in utero through the utilization of a retinoid acid-induced Spina bifida rat model. Analysis of this model at mid-late (day 15) and term (day 20) of gestation in comparison to both non-exposed and retinoic acid-exposed non-myelomeningocele controls, the observed metabolic changes suggest that mechanisms of oxidative stress and energy depletion are at play in this neuro tissue. These notable mechanisms are likely to result in further damage to neural tissue as the fetus grows and the compressed cerebellum develops and herniates more due to myelomeningocele.
Collapse
Affiliation(s)
- Evan Thielen
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Marc Oria
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Lindsey Romick-Rosendale
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Wang MF, Sohn AL, Samal J, Erning K, Segura T, Muddiman DC. Lipidomic Analysis of Mouse Brain to Evaluate the Efficacy and Preservation of Different Tissue Preparatory Techniques by IR-MALDESI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:869-877. [PMID: 36988291 DOI: 10.1021/jasms.2c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous preparatory methods have been developed to preserve the cellular and structural integrity of various biological tissues for different -omics studies. Herein, two preparatory methods for mass spectrometry imaging (MSI) were evaluated, fresh-frozen and sucrose-embedded, paraformaldehyde (PFA) fixed, in terms of ion abundance, putative lipid identifications, and preservation of analyte spatial distributions. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)-MSI was utilized to compare the preparatory methods of interest with and without the use of the conventional ice matrix. There were 2.5-fold and 1.6-fold more lipid species putatively identified in positive- and negative-ion modes, respectively, for sucrose-embedded, PFA-fixed tissues without an ice matrix relative to the current IR-MALDESI-MSI gold-standard, fresh-frozen tissue preparation with an exogenous ice matrix. Furthermore, sucrose-embedded tissues demonstrated improved spatial distribution of ions resulting from the cryo-protective property of sucrose and paraformaldehyde fixation. Evidence from these investigations supports sucrose-embedding without ice matrix as an alternative preparatory technique for IR-MALDESI-MSI.
Collapse
Affiliation(s)
- Mary F Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandria L Sohn
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juhi Samal
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Kevin Erning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Kovac V, Shapiro EG, Rudser KD, Mueller BA, Eisengart JB, Delaney KA, Ahmed A, King KE, Yund BD, Cowan MJ, Raiman J, Mamak EG, Harmatz PR, Shankar SP, Ali N, Cagle SR, Wozniak JR, Lim KO, Orchard PJ, Whitley CB, Nestrasil I. Quantitative brain MRI morphology in severe and attenuated forms of mucopolysaccharidosis type I. Mol Genet Metab 2022; 135:122-132. [PMID: 35012890 PMCID: PMC8898074 DOI: 10.1016/j.ymgme.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess our hypothesis that brain macrostructure is different in individuals with mucopolysaccharidosis type I (MPS I) and healthy controls (HC), we conducted a comprehensive multicenter study using a uniform quantitative magnetic resonance imaging (qMRI) protocol, with analyses that account for the effects of disease phenotype, age, and cognition. METHODS Brain MRIs in 23 individuals with attenuated (MPS IA) and 38 with severe MPS I (MPS IH), aged 4-25 years, enrolled under the study protocol NCT01870375, were compared to 98 healthy controls. RESULTS Cortical and subcortical gray matter, white matter, corpus callosum, ventricular and choroid plexus volumes in MPS I significantly differed from HC. Thicker cortex, lower white matter and corpus callosum volumes were already present at the youngest MPS I participants aged 4-5 years. Age-related differences were observed in both MPS I groups, but most markedly in MPS IH, particularly in cortical gray matter metrics. IQ scores were inversely associated with ventricular volume in both MPS I groups and were positively associated with cortical thickness only in MPS IA. CONCLUSIONS Quantitatively-derived MRI measures distinguished MPS I participants from HC as well as severe from attenuated forms. Age-related neurodevelopmental trajectories in both MPS I forms differed from HC. The extent to which brain structure is altered by disease, potentially spared by treatment, and how it relates to neurocognitive dysfunction needs further exploration.
Collapse
Affiliation(s)
- Victor Kovac
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Elsa G Shapiro
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Kyle D Rudser
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Julie B Eisengart
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Kathleen A Delaney
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Alia Ahmed
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Kelly E King
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Brianna D Yund
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Morton J Cowan
- UCSF Benioff Children's Hospital, University of California, San Francisco, CA, USA.
| | - Julian Raiman
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Eva G Mamak
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Paul R Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.
| | - Suma P Shankar
- Department of Ophthalmology and Human Genetics, Emory University, Atlanta, GA, USA.
| | - Nadia Ali
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| | | | - Jeffrey R Wozniak
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Paul J Orchard
- Division of Pediatric Blood & Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Center for Magnetic Resonance Research (CMRR), Department of Radiology, Minneapolis, MN, USA.
| |
Collapse
|