1
|
Kimura M, Rinaldi M, Kothari S, Giannella M, Anjan S, Natori Y, Phoompoung P, Gault E, Hand J, D'Asaro M, Neofytos D, Mueller NJ, Kremer AE, Rojko T, Ribnikar M, Silveira FP, Kohl J, Cano A, Torre-Cisneros J, San-Juan R, Aguado JM, Mansoor AER, George IA, Mularoni A, Russelli G, Luong ML, AlJishi YA, AlJishi MN, Hamandi B, Selzner N, Husain S. Invasive aspergillosis in liver transplant recipients in the current era. Am J Transplant 2024; 24:2092-2107. [PMID: 38801991 DOI: 10.1016/j.ajt.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Invasive aspergillosis (IA) is a rare but fatal disease among liver transplant recipients (LiTRs). We performed a multicenter 1:2 case-control study comparing LiTRs diagnosed with proven/probable IA and controls with no invasive fungal infection. We included 62 IA cases and 124 matched controls. Disseminated infection occurred only in 8 cases (13%). Twelve-week all-cause mortality of IA was 37%. In multivariate analyses, systemic antibiotic usage (adjusted odds ratio [aOR], 4.74; P = .03) and history of pneumonia (aOR, 48.7; P = .01) were identified as independent risk factors associated with the occurrence of IA. Moreover, reoperation (aOR, 5.99; P = .01), systemic antibiotic usage (aOR, 5.03; P = .04), and antimold prophylaxis (aOR, 11.9; P = .02) were identified as independent risk factors associated with the occurrence of early IA. Among IA cases, Aspergillus colonization (adjusted hazard ratio [aHR], 86.9; P < .001), intensive care unit stay (aHR, 3.67; P = .02), disseminated IA (aHR, 8.98; P < .001), and dialysis (aHR, 2.93; P = .001) were identified as independent risk factors associated with 12-week all-cause mortality, while recent receipt of tacrolimus (aHR, 0.11; P = .001) was protective. Mortality among LiTRs with IA remains high in the current era. The identified risk factors and protective factors may be useful for establishing robust targeted antimold prophylactic and appropriate treatment strategies against IA.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Matteo Rinaldi
- Infectious Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sagar Kothari
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Maddalena Giannella
- Infectious Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Shweta Anjan
- Miami Transplant Institute, Jackson Health System, Miami, Florida, USA; Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yoichiro Natori
- Miami Transplant Institute, Jackson Health System, Miami, Florida, USA; Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Pakpoom Phoompoung
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada; Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Emily Gault
- Ochsner Clinical School, University of Queensland School of Medicine, Louisiana, USA
| | - Jonathan Hand
- Ochsner Health, Ochsner Clinical School, University of Queensland School of Medicine, Louisiana, USA
| | - Matilde D'Asaro
- Transplant Infectious Diseases Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Dionysios Neofytos
- Transplant Infectious Diseases Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas J Mueller
- Swiss Transplant Cohort Study; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia and Faculty of Medicine, University of Ljubljana, Slovenia
| | - Marija Ribnikar
- Department of Gastroenterology, University Medical Centre Ljubljana, Slovenia
| | - Fernanda P Silveira
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Joshua Kohl
- Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| | - Angela Cano
- Centro de Investigación Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Córdoba, Spain
| | - Julian Torre-Cisneros
- Centro de Investigación Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Córdoba, Spain
| | - Rafael San-Juan
- CIBER-INFEC; Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Jose Maria Aguado
- CIBER-INFEC; Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Armaghan-E-Rehman Mansoor
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Ige Abraham George
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Alessandra Mularoni
- Department of Infectious Diseases, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (Scientific Hospitalization and Treatment Institute - Mediterranean Institute for Transplants and Highly Specialized Therapies), Palermo, Italy
| | - Giovanna Russelli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (Scientific Hospitalization and Treatment Institute - Mediterranean Institute for Transplants and Highly Specialized Therapies), Palermo, Italy
| | - Me-Linh Luong
- Department of Medicine, Division of Infectious Diseases, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Yamama A AlJishi
- Section of Infectious diseases, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Maram N AlJishi
- Department of Medicine, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Bassem Hamandi
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Nazia Selzner
- Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Kim DS, Yoon YI, Kim BK, Choudhury A, Kulkarni A, Park JY, Kim J, Sinn DH, Joo DJ, Choi Y, Lee JH, Choi HJ, Yoon KT, Yim SY, Park CS, Kim DG, Lee HW, Choi WM, Chon YE, Kang WH, Rhu J, Lee JG, Cho Y, Sung PS, Lee HA, Kim JH, Bae SH, Yang JM, Suh KS, Al Mahtab M, Tan SS, Abbas Z, Shresta A, Alam S, Arora A, Kumar A, Rathi P, Bhavani R, Panackel C, Lee KC, Li J, Yu ML, George J, Tanwandee T, Hsieh SY, Yong CC, Rela M, Lin HC, Omata M, Sarin SK. Asian Pacific Association for the Study of the Liver clinical practice guidelines on liver transplantation. Hepatol Int 2024; 18:299-383. [PMID: 38416312 DOI: 10.1007/s12072-023-10629-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024]
Abstract
Liver transplantation is a highly complex and challenging field of clinical practice. Although it was originally developed in western countries, it has been further advanced in Asian countries through the use of living donor liver transplantation. This method of transplantation is the only available option in many countries in the Asia-Pacific region due to the lack of deceased organ donation. As a result of this clinical situation, there is a growing need for guidelines that are specific to the Asia-Pacific region. These guidelines provide comprehensive recommendations for evidence-based management throughout the entire process of liver transplantation, covering both deceased and living donor liver transplantation. In addition, the development of these guidelines has been a collaborative effort between medical professionals from various countries in the region. This has allowed for the inclusion of diverse perspectives and experiences, leading to a more comprehensive and effective set of guidelines.
Collapse
Affiliation(s)
- Dong-Sik Kim
- Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongman Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Tae Yoon
- Department of Internal Medicine, Pusan National University College of Medicine, Yangsan, Republic of Korea
| | - Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheon-Soo Park
- Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Deok-Gie Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Won-Mook Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Eun Chon
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Woo-Hyoung Kang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Ilsan, Republic of Korea
| | - Pil Soo Sung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Han Ah Lee
- Department of Internal Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Mo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Soek Siam Tan
- Department of Medicine, Hospital Selayang, Batu Caves, Selangor, Malaysia
| | - Zaigham Abbas
- Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ananta Shresta
- Department of Hepatology, Alka Hospital, Lalitpur, Nepal
| | - Shahinul Alam
- Crescent Gastroliver and General Hospital, Dhaka, Bangladesh
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital New Delhi, New Delhi, India
| | - Ashish Kumar
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital New Delhi, New Delhi, India
| | - Pravin Rathi
- TN Medical College and BYL Nair Hospital, Mumbai, India
| | - Ruveena Bhavani
- University of Malaya Medical Centre, Petaling Jaya, Selangor, Malaysia
| | | | - Kuei Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jun Li
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Ming-Lung Yu
- Department of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | - H C Lin
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Bunkyo City, Japan
| | | |
Collapse
|
3
|
Carugati M, Arif S, Yarrington ME, King LY, Harris M, Evans K, Barbas AS, Sudan DL, Perfect JR, Miller RA, Alexander BD. Limitations of antifungal prophylaxis in preventing invasive Candida surgical site infections after liver transplant surgery. Antimicrob Agents Chemother 2024; 68:e0127923. [PMID: 38299818 PMCID: PMC10916370 DOI: 10.1128/aac.01279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Invasive primary Candida surgical site infections (IP-SSIs) are a common complication of liver transplantation, and targeted antifungal prophylaxis is an efficient strategy to limit their occurrence. We performed a retrospective single-center cohort study among adult single liver transplant recipients at Duke University Hospital in the period between 1 January 2015 and 31 December 2020. The study aimed to determine the rate of Candida IP-SSI according to the peri-transplant antifungal prophylaxis received. Of 470 adult single liver transplant recipients, 53 (11.3%) received micafungin prophylaxis, 100 (21.3%) received fluconazole prophylaxis, and 317 (67.4%) did not receive systemic antifungal prophylaxis in the peri-transplant period. Ten Candida IP-SSIs occurred among 5 of 53 (9.4%) micafungin recipients, 1 of 100 (1.0%) fluconazole recipients, and 4 of 317 (1.3%) recipients who did not receive antifungal prophylaxis. Our study highlights the limitations of antifungal prophylaxis in preventing invasive Candida IP-SSI after liver transplant surgery. We hypothesize that pathogen, host, and pharmacokinetic-related factors contributed to the occurrence of Candida IP-SSI despite antifungal prophylaxis. Our study reinforces the need for a risk-based, multi-pronged approach to fungal prevention, including targeted antifungal administration in patients with risks for invasive candidiasis and close monitoring, especially among patients with surgically complex procedures, with timely control of surgical leaks.
Collapse
Affiliation(s)
- M. Carugati
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - S. Arif
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - M. E. Yarrington
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - L. Y. King
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - M. Harris
- Department of Pharmacy, Duke University, Durham, North Carolina, USA
| | - K. Evans
- Department of Pharmacy, Duke University, Durham, North Carolina, USA
| | - A. S. Barbas
- Department of Surgery, Division of Abdominal Transplant Surgery, Duke University, Durham, North Carolina, USA
| | - D. L. Sudan
- Department of Surgery, Division of Abdominal Transplant Surgery, Duke University, Durham, North Carolina, USA
| | - J. R. Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - R. A. Miller
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - B. D. Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Vena A, Bassetti M, Mezzogori L, Marchesi F, Hoenigl M, Giacobbe DR, Corcione S, Bartoletti M, Stemler J, Pagano L, Cornely OA, Salmanton-García J. Laboratory and clinical management capacity for invasive fungal infections: the Italian landscape. Infection 2024; 52:197-208. [PMID: 37656348 PMCID: PMC10811091 DOI: 10.1007/s15010-023-02084-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND We assessed the laboratory diagnosis and treatment of invasive fungal disease (IFD) in Italy to detect limitations and potential for improvement. METHODS The survey was available online at www.clinicalsurveys.net/uc/IFI management capacity/, and collected variables such as (a) institution profile, (b) perceptions of IFD in the respective institution, (c) microscopy, (d) culture and fungal identification, (e) serology, (f) antigen detection, (g) molecular tests, (h) susceptibility testing and (i) therapeutic drug monitoring (TDM). RESULTS The laboratory capacity study received responses from 49 Italian centres, with an equitable geographical distribution of locations. The majority of respondents (n = 36, 73%) assessed the occurrence of IFD as moderate-high, with Aspergillus spp. being the pathogen of highest concern, followed by Candida spp. and Mucorales. Although 46 (94%) of the institutions had access to microscopy, less than half of them performed direct microscopy on clinical specimens always when IFD was suspected. Cultures were available in all assessed laboratories, while molecular testing and serology were available in 41 (83%), each. Antigen detection tests and antifungal drugs were also generally accessible (> 90%) among the participating institutions. Nevertheless, access to TDM was limited (n = 31, 63%), with a significant association established between therapeutic drug monitoring availability and higher gross domestic product per capita. CONCLUSIONS Apart from TDM, Italy is adequately prepared for the diagnosis and treatment of IFD, with no significant disparities depending on gross domestic product. Future efforts may need to focus on enhancing the availability and application of direct microscopic methods, as well as TDM, to promote optimal treatment and better patient outcomes.
Collapse
Affiliation(s)
- Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Laura Mezzogori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Infectious Diseases Unit, IRCCS for Oncology and Neuroscience, San Martino Policlinico Hospital, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
- Tufts University School of Medicine, Boston, MA, USA
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jannik Stemler
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Livio Pagano
- Hematology Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Hematology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Oliver A Cornely
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, University Hospital Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, University Hospital Cologne, Cologne, Germany.
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Herderstraße 52-54, 50931, Cologne, Germany.
- Partner Site Bonn-Cologne, German Centre for Infection Research (DZIF), Cologne, Germany.
| |
Collapse
|
5
|
Ma J, Wang Y, Ma S, Li J. The Investigation and Prediction of Voriconazole-Associated Hepatotoxicity under Therapeutic Drug Monitoring . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082975 DOI: 10.1109/embc40787.2023.10340343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Voriconazole is commonly used as the first-line agent to treat invasive fungal infections (IFIs), but the induction of hepatotoxicity limits its use. To improve the treatment outcomes and minimize toxicity, doctors often administer Therapeutic Drug Monitoring (TDM) to patients receiving voriconazole treatment. Here, we conducted a real-world clinical investigation of voriconazole-treated patients and found significant differences between the TDM (n=318) and non-TDM cohort (n=6,379), and such incidence of hepatotoxicity showed 10.6% in the non-TDM cohort, compared with 21.5% in the TDM cohort. Based on our previous investigation, we presented and compared several machine learning models (including AdaBoost, decision tree, GBDT, logistic regression, neural networks, and random forest) for the early warning of voriconazole-associated hepatoxicity. Through the five-fold cross validation, the logistic model outperformed other models with a mean AUC of 0.7933±0.0934. Our findings offer important insights into the safe and effective application of voriconazole.
Collapse
|
6
|
Breitkopf R, Treml B, Bukumiric Z, Innerhofer N, Fodor M, Rajsic S. Invasive Fungal Infections: The Early Killer after Liver Transplantation. J Fungi (Basel) 2023; 9:655. [PMID: 37367592 DOI: 10.3390/jof9060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Liver transplantation is a standard of care and a life-saving procedure for end-stage liver diseases and certain malignancies. The evidence on predictors and risk factors for poor outcomes is lacking. Therefore, we aimed to identify potential risk factors for mortality and to report on overall 90-day mortality after orthotopic liver transplantation (OLT), especially focusing on the role of fungal infections. METHODS We retrospectively reviewed medical charts of all patients undergoing OLT at a tertiary university center in Europe. RESULTS From 299 patients, 214 adult patients who received a first-time OLT were included. The OLT indication was mainly due to tumors (42%, 89/214) and cirrhosis (32%, 68/214), including acute liver failure in 4.7% (10/214) of patients. In total, 8% (17/214) of patients died within the first three months, with a median time to death of 15 (1-80) days. Despite a targeted antimycotic prophylaxis using echinocandins, invasive fungal infections occurred in 12% (26/214) of the patients. In the multivariate analysis, patients with invasive fungal infections had an almost five times higher chance of death (HR 4.6, 95% CI 1.1-18.8; p = 0.032). CONCLUSIONS Short-term mortality after OLT is mainly determined by infectious and procedural complications. Fungal breakthrough infections are becoming a growing concern. Procedural, host, and fungal factors can contribute to a failure of prophylaxis. Finally, invasive fungal infections may be a potentially modifiable risk factor, but the ideal perioperative antimycotic prophylaxis has yet to be determined.
Collapse
Affiliation(s)
- Robert Breitkopf
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Benedikt Treml
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Zoran Bukumiric
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nicole Innerhofer
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Margot Fodor
- Department of Visceral, Transplantation and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sasa Rajsic
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
8
|
Lin X, Liu X, Wu X, Xie X, Liu G, Wu J, Peng W, Wang R, Chen J, Huang H. Wide-spectrum antibiotic prophylaxis guarantees optimal outcomes in drowned donor kidney transplantation. Expert Rev Anti Infect Ther 2023; 21:203-211. [PMID: 36573685 DOI: 10.1080/14787210.2023.2163237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Drowned victims possibly obtain various pathogens from drowning sites. Using drowned renal donors to expand the donor pool still lacks consensus due to the potential risk of disease transmission. RESEARCH DESIGN AND METHODS This retrospective study enrolled 38 drowned donor renal recipients in a large clinical center from August 2012 to February 2021. A 1:2 matched cohort was generated with donor demographics, including age, gender, BMI, and ICU durations. Donor microbiological results, recipient perioperative infections, and early post-transplant and first-year clinical outcomes were analyzed. RESULTS Compared to the control group, drowned donors had significantly increased positive fungal cultures (36.84% vs.13.15%, p = 0.039). Recipients in the drowned group had significantly higher rates of gram-negative bacteria (GNB) and multidrug-resistant GNB infections (23.68% vs.5.26%, 18.42% vs. 3.95%, both p < 0.05). Other colonization and infections were also numerically more frequent in the drowned group. Drowned donor recipients receiving inadequate antibiotic prophylaxis had more perioperative bloodstream infections, higher DGF incidences, and more first-year respiratory tract infections and recipient loss than those receiving adequate prophylaxis (all p < 0.05). Clinical outcomes were similar between the adequate group and the control group. CONCLUSIONS Drowned donors could be suitable options under wide-spectrum and adequate antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Xiaoli Lin
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xinyu Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xiaoying Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xishao Xie
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Guangjun Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Wenhan Peng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Hongfeng Huang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| |
Collapse
|
9
|
Campos-Varela I, Blumberg EA, Giorgio P, Kotton CN, Saliba F, Wey EQ, Spiro M, Raptis DA, Villamil F. What is the optimal antimicrobial prophylaxis to prevent postoperative infectious complications after liver transplantation? A systematic review of the literature and expert panel recommendations. Clin Transplant 2022; 36:e14631. [PMID: 35257411 DOI: 10.1111/ctr.14631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Antimicrobial prophylaxis is well-accepted in the liver transplant (LT) setting. Nevertheless, optimal regimens to prevent bacterial, viral, and fungal infections are not defined. OBJECTIVES To identify the optimal antimicrobial prophylaxis to prevent post-LT bacterial, fungal, and cytomegalovirus (CMV) infections, to improve short-term outcomes, and to provide international expert panel recommendations. DATA SOURCES Ovid MEDLINE, Embase, Scopus, Google Scholar, and Cochrane Central. METHODS Systematic review following PRISMA guidelines and recommendations using the GRADE approach derived from an international expert panel. PROSPERO ID CRD42021244976. RESULTS Of 1853 studies screened, 34 were included for this review. Bacterial, CMV, and fungal antimicrobial prophylaxis were evaluated separately. Pneumocystis jiroveccii pneumonia (PJP) antimicrobial prophylaxis was analyzed separately from other fungal infections. Overall, eight randomized controlled trials, 21 comparative studies, and five observational noncomparative studies were included. CONCLUSIONS Antimicrobial prophylaxis is recommended to prevent bacterial, CMV, and fungal infection to improve outcomes after LT. Universal antibiotic prophylaxis is recommended to prevent postoperative bacterial infections. The choice of antibiotics should be individualized and length of therapy should not exceed 24 hours (Quality of Evidence; Low | Grade of Recommendation; Strong). Both universal prophylaxis and preemptive therapy are strongly recommended for CMV prevention following LT. The choice of one or the other strategy will depend on individual program resources and experiences, as well as donor and recipient serostatus. (Quality of Evidence; Low | Grade of Recommendation; Strong). Antifungal prophylaxis is strongly recommended for LT recipients at high risk of developing invasive fungal infections. The drug of choice remains controversial. (Quality of Evidence; High | Grade of Recommendation; Strong). PJP prophylaxis is strongly recommended. Length of prophylaxis remains controversial. (Quality of Evidence; Very Low | Grade of Recommendation; Strong).
Collapse
Affiliation(s)
- Isabel Campos-Varela
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Emily A Blumberg
- Perelman School of Medicine at the University of Pennsylvania, Philadephia, Pennsylvania, USA
| | - Patricia Giorgio
- Department of Infectious Disease, Hospital Británico, Buenos Aires City, Argentina
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fauzi Saliba
- APHP, Hopital Paul Brousse, Université Paris Saclay, INSERM unit No. 1193, Villejuif, France
| | - Emmanuel Q Wey
- ILDH, Division of Medicine, University College London Medical School, London, UK.,Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, London, UK.,Department of Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Michael Spiro
- Department of Anesthesia and Intensive Care Medicine, Royal Free Hospital, London, UK.,Division of Surgery & Interventional Science, University College London, London, UK
| | - Dimitri Aristotle Raptis
- Division of Surgery & Interventional Science, University College London, London, UK.,Clinical Service of HPB Surgery and Liver Transplantation, Royal Free Hospital, London, UK
| | - Federico Villamil
- Liver Transplantation Unit, British Hospital, Buenos Aires City, Argentina.,Hepatology and Liver Transplantation Unit, Hospital El Cruce, Florencio Varela, Buenos Aires Province, Argentina
| | | |
Collapse
|
10
|
So M, Tsai H, Swaminathan N, Bartash R. Bring it on: Top five antimicrobial stewardship challenges in transplant infectious diseases and practical strategies to address them. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2022; 2:e72. [PMID: 36483373 PMCID: PMC9726551 DOI: 10.1017/ash.2022.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial therapies are essential tools for transplant recipients who are at high risk for infectious complications. However, judicious use of antimicrobials is critical to preventing the development of antimicrobial resistance. Treatment of multidrug-resistant organisms is challenging and potentially leads to therapies with higher toxicities, intravenous access, and intensive drug monitoring for interactions. Antimicrobial stewardship programs are crucial in the prevention of antimicrobial resistance, though balancing these strategies with the need for early and frequent antibiotic therapy in these immunocompromised patients can be challenging. In this review, we summarize 5 frequently encountered transplant infectious disease stewardship challenges, and we suggest strategies to improve practices for each clinical syndrome. These 5 challenging areas are: asymptomatic bacteriuria in kidney transplant recipients, febrile neutropenia in hematopoietic stem cell transplantation, antifungal prophylaxis in liver and lung transplantation, treatment of left-ventricular assist device infections, and Clostridioides difficile infection in solid-organ and hematopoietic stem-cell transplant recipients. Common themes contributing to these challenges include limited data specific to transplant patients, shortcomings in diagnostic testing, and uncertainties in pharmacotherapy.
Collapse
Affiliation(s)
- Miranda So
- Sinai Health-University Health Network Antimicrobial Stewardship Program, University Health Network, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Helen Tsai
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Neeraja Swaminathan
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Rachel Bartash
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
11
|
Khalid M, Neupane R, Anjum H, Surani S. Fungal infections following liver transplantation. World J Hepatol 2021; 13:1653-1662. [PMID: 34904035 PMCID: PMC8637669 DOI: 10.4254/wjh.v13.i11.1653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
With increasing morbidity and mortality from chronic liver disease and acute liver failure, the need for liver transplantation is on the rise. Most of these patients are extremely vulnerable to infections as they are immune-compromised and have other chronic co-morbid conditions. Despite the recent advances in practice and improvement in diagnostic surveillance and treatment modalities, a major portion of these patients continue to be affected by post-transplant infections. Of these, fungal infections are particularly notorious given their vague and insidious onset and are very challenging to diagnose. This mini-review aims to discuss the incidence of fungal infections following liver transplantation, the different fungi involved, the risk factors, which predispose these patients to such infections, associated diagnostic challenges, and the role of prophylaxis. The population at risk is increasingly old and frail, suffering from various other co-morbid conditions, and needs special attention. To improve care and to decrease the burden of such infections, we need to identify the at-risk population with more robust clinical and diagnostic parameters. A more robust global consensus and stringent guidelines are needed to fight against resistant microbes and maintain the longevity of current antimicrobial therapies.
Collapse
Affiliation(s)
- Madiha Khalid
- Department of Medicine, Orlando Health Medical Center, Orlando, FL 32806, United States
| | - Ritesh Neupane
- Department of Medicine, Penn State Health Milton S Hershey Medical Center, Hershey, PA 17033, United States
| | - Humayun Anjum
- Department of Medicine, University of North Texas, Denton, TX 76203, United States
| | - Salim Surani
- Department of Pulmonary Critical Care and Sleep Medicine, Texas A&M Health Science Center, Corpus Christi, TX 78405, United States.
| |
Collapse
|
12
|
Invasive Candidiasis in Liver Transplant Recipients: A Review. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Gatti M, Rinaldi M, Ferraro G, Toschi A, Caroccia N, Arbizzani F, Raschi E, Poluzzi E, Pea F, Viale P, Giannella M. Breakthrough invasive fungal infections in liver transplant recipients exposed to prophylaxis with echinocandins vs other antifungal agents: A systematic review and meta-analysis. Mycoses 2021; 64:1317-1327. [PMID: 34387004 PMCID: PMC9292189 DOI: 10.1111/myc.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although echinocandins are recommended as first-line prophylaxis for high-risk orthotopic liver transplant (OLT) recipients, occurrence of breakthrough-invasive fungal infections (IFIs) remains a serious concern. We aim to assess the risk of breakthrough IFIs among OLT recipients exposed to prophylaxis with echinocandins compared to other antifungals. MATERIALS AND METHODS Two authors independently searched PubMed-MEDLINE, Embase, study registries and reference lists from inception to March 2021, to retrieve randomised controlled trials (RCTs) or observational studies comparing efficacy and safety of echinocandins vs other antifungals for prophylaxis in OLT recipients. Data were independently extracted from two authors, and the quality of included studies was independently assessed according to ROB 2.0 tool for RCTs and ROBINS-I tool for observational studies. The primary outcome was occurrence of breakthrough IFI at the end of prophylaxis (EOP). RESULTS 698 articles were screened, and ten studies (3 RCTs and 7 observational) were included. No difference between echinocandins and other antifungals in terms of breakthrough IFIs at the EOP emerged both from RCTs (odds ratio [OR] 0.85, 95% CI 0.24-2.99) and observational studies (OR 1.43, 95% CI 0.28-7.40). No difference emerged also for secondary outcomes. In the subgroup comparison between echinocandins and polyenes, a trend for higher risk of breakthrough IFI at the EOP (OR 4.82, 95% CI 0.97-24.03) was noted. CONCLUSIONS Echinocandins do not seem to be associated with increased risk of breakthrough IFIs in OLT recipients. However, the large diversity in the comparator group hinders a definitive interpretation. Further studies exploring the relationship between echinocandin use and breakthrough IFIs according to specific comparators are warranted.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Rinaldi
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Ferraro
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alice Toschi
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Natascia Caroccia
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federica Arbizzani
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.,Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.,Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Gioia F, Filigheddu E, Corbella L, Fernández-Ruiz M, López-Medrano F, Pérez-Ayala A, Aguado JM, Fariñas MC, Arnaiz F, Calvo J, Cifrian JM, Gonzalez-Rico C, Vidal E, Torre-Cisneros J, Ras MM, Pérez S, Sabe N, López-Soria LM, Rodríguez-Alvarez RJ, Montejo JM, Valerio M, Machado M, Muñoz P, Linares L, Bodro M, Moreno A, Fernández-Cruz A, Cantón R, Moreno S, Martin-Davila P, Fortún J. Invasive aspergillosis in solid organ transplantation: Diagnostic challenges and differences in outcome in a Spanish national cohort (Diaspersot study). Mycoses 2021; 64:1334-1345. [PMID: 33934405 DOI: 10.1111/myc.13298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The diagnosis of invasive aspergillosis (IA) can be problematic in solid organ transplantation (SOT). The prognosis greatly varies according to the type of transplant, and the impact of prophylaxis is not well defined. PATIENTS AND METHODS The Diaspersot cohort analyses the impact of IA in SOT in Spain during the last 10 years. Proven and probable/putative IA was included. RESULTS We analysed 126 cases of IA. The incidences of IA were as follows: 6.5%, 2.9%, 1.8% and 0.6% for lung, heart, liver and kidney transplantation, respectively. EORTC/MSG criteria confirmed only 49.7% of episodes. Tree-in-bud sign or ground-glass infiltrates were present in 56.3% of patients, while serum galactomannan (optical density index >0.5) was positive in 50.6%. A total of 41.3% received combined antifungal therapy. Overall mortality at 3 months was significantly lower (p < 0.001) in lung transplant recipients (14.8%) than in all other transplants [globally: 48.6%; kidney 52.0%, liver 58.3%, heart 31.2%, and combined 42.9%]. Fifty-four percent of episodes occurred despite the receipt of antifungal prophylaxis, and in 10%, IA occurred during prophylaxis (breakthrough infection), with both nebulised amphotericin (in lung transplant recipients) and candins (in the rest). CONCLUSIONS Invasive aspergillosis diagnostic criteria, applied to SOT patients, may differ from those established for haematological patients. IA in lung transplants has a higher incidence, but is associated with a better prognosis than other transplants. Combination therapy is frequently used for IA in SOT. Prophylactic measures require optimisation of its use within this population.
Collapse
Affiliation(s)
- Francesca Gioia
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain
| | - Eta Filigheddu
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain
| | - Laura Corbella
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco López-Medrano
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Pérez-Ayala
- Microbiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Jose María Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Carmen Fariñas
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Francisco Arnaiz
- Infectious Diseases Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Jorge Calvo
- Microbiology Department, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Jose Maria Cifrian
- Pneumology Department, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Claudia Gonzalez-Rico
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Elisa Vidal
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía-IMIBIC-Universidad de Cordoba, Cordoba, Spain
| | - Julian Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía-IMIBIC-Universidad de Cordoba, Cordoba, Spain
| | - Maria Mar Ras
- Infectious Disease Department, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | - Sandra Pérez
- Infectious Disease Department, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | - Nuria Sabe
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Disease Department, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | | | | | - José Miguel Montejo
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Disease Unit, Hospital Universitario Cruces, Barakaldo, Spain
| | - Maricela Valerio
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Machado
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Linares
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Spain
| | - Marta Bodro
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Spain
| | - Asuncion Moreno
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Spain
| | - Ana Fernández-Cruz
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Rafael Cantón
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Santiago Moreno
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain
| | - Pilar Martin-Davila
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Fortún
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Chakravarti A, Butler-Laporte G, Carrier FM, Bilodeau M, Huard G, Corsilli D, Savard P, Luong ML. Targeted caspofungin prophylaxis for invasive aspergillosis in high-risk liver transplant recipients, a single-center experience. Transpl Infect Dis 2021; 23:e13568. [PMID: 33450126 DOI: 10.1111/tid.13568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/04/2020] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Invasive aspergillosis (IA) is a rare but highly lethal complication after orthotopic liver transplantation (OLT). Targeted antifungal prophylaxis has been proposed as a strategy to prevent IA among orthotopic liver transplant recipient (OLTr), but limited data are available to support its efficacy. METHOD We conducted a single-center, retrospective, before and after cohort study, comparing IA incidences among OLTr who did not receive antifungal prophylaxis after transplantation (cohort 1) to OLTr who received targeted antifungal prophylaxis after liver transplantation (cohort 2). Patients in cohort 2 received caspofungin prophylaxis if they presented one of the following risk factors: retransplantation, acute liver failure, dialysis, or Aspergillus colonization prior to transplantation. The primary outcome was IA at 90 days after transplantation. RESULTS A total of 391 OLTr were included in the study; 181 patients in the cohort 1 (no prophylaxis) and 210 patients in the cohort 2 (targeted prophylaxis). Among patients in cohort 2, 19% (40/ 210) were considered at high risk for IA and 85% (34/40) of those received caspofungin prophylaxis. The incidence of IA at 90 days was 3.3% (6/ 181) and 0.5% (1/ 210), in cohort 1 and 2, respectively (OR 0.14; 95%CI 0.01-0.83; P = .03). Ninety-day mortality was similar among the two cohorts (3.9% (7/181) and 2.4% (5/210) in cohort 1 and 2, respectively (OR 0.61; 95% 0.18-1.93; P = .40)). The 90-day mortality among the OLTs with IA was 71% (5/7). CONCLUSION Targeted caspofungin prophylaxis was associated with lower rate of IA.
Collapse
Affiliation(s)
- Arpita Chakravarti
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| | - Guillaume Butler-Laporte
- Division of Infectious Disease, Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Francois Martin Carrier
- Department of Anesthesiology, University of Montreal Hospital Center, Montreal, QC, Canada.,Division of Critical Care, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| | - Marc Bilodeau
- Division of Hepatology, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| | - Genevieve Huard
- Division of Hepatology, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| | - Daniel Corsilli
- Division of Critical Care, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada.,Division of Hepatology, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| | - Patrice Savard
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| | - Me-Linh Luong
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, QC, Canada
| |
Collapse
|
16
|
Ferrarese A, Cattelan A, Cillo U, Gringeri E, Russo FP, Germani G, Gambato M, Burra P, Senzolo M. Invasive fungal infection before and after liver transplantation. World J Gastroenterol 2020; 26:7485-7496. [PMID: 33384549 PMCID: PMC7754548 DOI: 10.3748/wjg.v26.i47.7485] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Invasive infections are a major complication before liver transplantation (LT) and in the early phase after surgery. There has been an increasing prevalence of invasive fungal disease (IFD), especially among the sickest patients with decompensated cirrhosis and acute-on-chronic liver failure, who suffer from a profound state of immune dysfunction and receive intensive care management. In such patients, who are listed for LT, development of an IFD often worsens hepatic and extra-hepatic organ dysfunction, requiring a careful evaluation before surgery. In the post-transplant setting, the burden of IFD has been reduced after the clinical advent of antifungal prophylaxis, even if several major issues still remain, such as duration, target population and drug type(s). Nevertheless, the development of IFD in the early phase after surgery significantly impairs graft and patient survival. This review outlines presentation, prophylactic and therapeutic strategies, and outcomes of IFD in LT candidates and recipients, providing specific considerations for clinical practice.
Collapse
Affiliation(s)
- Alberto Ferrarese
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Annamaria Cattelan
- Tropical and Infectious Disease Unit, Padua University Hospital, Padua 35128, Italy
| | - Umberto Cillo
- Padua University Hospital, Hepatobiliary Surgery and Liver Transplant Center, Padua 35128, Italy
| | - Enrico Gringeri
- Padua University Hospital, Hepatobiliary Surgery and Liver Transplant Center, Padua 35128, Italy
| | | | - Giacomo Germani
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Martina Gambato
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Senzolo
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| |
Collapse
|
17
|
Decker SO, Incamps A, Wilk H, Uhle F, Bruckner T, Heininger A, Zimmermann S, Mehrabi A, Mieth M, Weiss KH, Weigand MA, Brenner T. Soluble intercellular adhesion molecule (ICAM)-1 detects invasive fungal infections in patients following liver transplantation. Biomarkers 2020; 25:548-555. [PMID: 32803993 DOI: 10.1080/1354750x.2020.1810318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Despite antifungal prophylaxis, liver transplanted patients are endangered by invasive fungal infections (IFI). Routinely used microbiological procedures are hallmarked by significant weaknesses, which may lead to a delay in antifungal treatment. METHODS Culture-based fungal findings, routinely used biomarkers of infection/inflammation (e.g., procalcitonin or C-reactive protein), as well as corresponding plasma concentrations of soluble Intercellular Adhesion Molecule (ICAM)-1 were analysed in 93 patients during a period of 28 days following liver transplantation (LTX). RESULTS Plasmatic sICAM-1 was significantly elevated in patients affected by an IFI within the first 28 days in comparison to fungally colonised or unobtrusive LTX patients. sICAM-1 might therefore be helpful for the identification of IFI patients after LTX (e.g., Receiver Operating Characteristic (ROC)-Area Under the Curve (AUC): 0.714 at 14d after LTX). The diagnostic performance of sICAM-1 was further improved by its combined use with different other IFI biomarkers (e.g., midregional proadrenomedullin). CONCLUSION The diagnostic deficiencies of routinely used microbiological procedures for IFI detection in patients after LTX may be reduced by plasmatic sICAM-1 measurements. Clinical Trial Notation. German Clinical Trials Register: DRKS00005480.
Collapse
Affiliation(s)
- Sebastian O Decker
- Department of Anesthesiology, Heidelberg University Hospital, , Heidelberg, Germany
| | - Anne Incamps
- Thermo Fisher Scientific Cezanne SAS, Clinical Diagnostic Division, Nimes, France
| | - Henryk Wilk
- Department of Anesthesiology, Heidelberg University Hospital, , Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, , Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Alexandra Heininger
- Hospital Hygiene Staff Unit, University Medical Center Mannheim, Mannheim, Germany.,Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany.,Salem Medical Centre, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, , Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, , Heidelberg, Germany.,Department of Anesthesiology and Intensive Care Medicine, Essen University Hospital, Essen, Germany
| |
Collapse
|
18
|
Saucedo-Crespo H, Sakpal SV, Auvenshine C, Santella RN, Nazir J, Prouse B, Mehta T, Steers J. Early Cardiopulmonary Cryptococcus neoformans Infection After Liver Transplant: A Case Report. Transplant Proc 2020; 52:2790-2794. [PMID: 32641222 DOI: 10.1016/j.transproceed.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 10/23/2022]
Abstract
Cryptococcal infection (CI) is an uncommon fungal disease that poses a particular fatal risk to liver transplant (LT) recipients because of the potential rapid development and dissemination of the disease. Depending on the pathophysiology, CI may manifest with a wide range of clinical presentations that may delay early diagnosis and timely treatment. Additionally, most anticryptococcal therapies may threaten LT recipients owing to the associated hepatotoxicity of these medications. We report a case of a 25-year-old woman who received an LT for cryptogenic cirrhosis and developed rapidly progressive CI with pulmonary, myocardial, and cerebral involvement within a month of transplantation. She presented with severe pulmonary hypertension refractory to medical management and subsequently died despite our efforts. Herein, we review the etiology of cryptococcosis, the natural history of cryptococcal disease, and standard treatments for CI, and we highlight peculiarities of Cryptococcus neoformans infection in solid organ transplant recipients.
Collapse
Affiliation(s)
- Hector Saucedo-Crespo
- Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota; Department of Surgery, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota.
| | - Sujit Vijay Sakpal
- Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota; Department of Surgery, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Christopher Auvenshine
- Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota; Department of Surgery, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Robert N Santella
- Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Jawad Nazir
- Department of Infectious Diseases, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota
| | - Bruce Prouse
- Department of Pathology, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota
| | - Tej Mehta
- Department of Interventional Radiology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Jeffery Steers
- Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota; Department of Surgery, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
19
|
Lum L, Lee A, Vu M, Strasser S, Davis R. Epidemiology and risk factors for invasive fungal disease in liver transplant recipients in a tertiary transplant center. Transpl Infect Dis 2020; 22:e13361. [PMID: 32510755 DOI: 10.1111/tid.13361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Invasive fungal disease (IFD) in liver transplant recipients causes significant morbidity and mortality. We aim to describe institutional epidemiology and risk factors for IFD in the liver transplant population. METHODS We conducted a retrospective cohort study of all adult liver transplant recipients in our institution from 2005 to October 2015 to describe the epidemiology of patients with proven and probable IFD according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. To determine risk factors for IFD, a case-control study was also conducted. Cases were defined as liver transplant recipients with proven or probable IFD, and controls were defined as liver transplant recipients without IFD. Each case was matched to two controls by age (±10 years of age), gender, and time of transplant (within one year of the case). RESULTS 28/554 (5.1%) patients developed IFD. Candidiasis (n = 11; 39.3%), Aspergillosis (n = 10; 35.7%), and Cryptococcosis (n = 3; 10.7%) were the most common fungal infections in the proven and probable IFD groups. Mold infections occurred in 13 (46.4%) cases. Reoperation, roux-en-y anastomosis, and massive intraoperative transfusion of ≥40 units of cellular blood products were major risk factors for IFD in the multivariate analysis. CONCLUSION Candida and Aspergillus are the most common causes of IFD in liver transplantation in our center. There is significant overlap in risk factors for such infections post-transplantation. In our cohort, critically ill patients with complicated perioperative course seem to predispose them to mold infections post-transplantation, but larger studies are required to better delineate risk factors for mold infection as well as determine the efficacy and optimal duration of mold prophylaxis in liver transplantation. With increasing echinocandin use for antifungal prophylaxis, it is also important to monitor for emerging antifungal resistance.
Collapse
Affiliation(s)
- Lionel Lum
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Andie Lee
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Monica Vu
- University of New South Wales, Sydney, NSW, Australia
| | - Simone Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Rebecca Davis
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
20
|
A Multicenter, Randomized, Open-Label Study to Compare Micafungin with Fluconazole in the Prophylaxis of Invasive Fungal Infections in Living-Donor Liver Transplant Recipients. J Gastrointest Surg 2020; 24:832-840. [PMID: 31066013 DOI: 10.1007/s11605-019-04241-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/21/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although invasive fungal infections (IFIs) contribute to substantial morbidity and mortality in liver transplant recipients, only a few randomized studies analyzed the results of antifungal prophylaxis with echinocandins. The aim of this open-label, non-inferiority study was to evaluate the efficacy and safety of micafungin in the prophylaxis of IFIs in living-donor liver transplantation recipients (LDLTRs), with fluconazole as the comparator. METHODS LDLTRs (N = 172) from five centers were randomized 1:1 to receive intravenous micafungin 100 mg/day or fluconazole 100~200 mg/day (intravenous or oral). A non-inferiority of micafungin was tested against fluconazole. RESULTS The per-protocol set included 144 patients without major clinical trial protocol violations: 69 from the micafungin group and 75 from the fluconazole group. Mean age of the study patients was 54.2 years and mean model for end-stage liver disease (MELD) score amounted to 16.5. Clinical success rates in the micafungin and fluconazole groups were 95.65% and 96.10%, respectively (difference: - 0.45%; 90% confidence interval [CI]: - 6.93%, 5.59%), which demonstrated micafungin's non-inferiority (the lower bound for the 90% CI exceeded - 10%). The study groups did not differ significantly in terms of the secondary efficacy endpoints: absence of IFIs at the end of the prophylaxis and the end of the study, time to proven IFI, fungal-free survival, and adverse reactions. A total of 17 drug-related adverse events were observed in both groups; none of them was serious and all resolved. CONCLUSION Micafungin can be used as an alternative to fluconazole in the prevention of IFIs in LDLTRs. CLINICAL TRIALS REGISTRATION NCT01974375.
Collapse
|
21
|
Cornely OA, Hoenigl M, Lass-Flörl C, Chen SCA, Kontoyiannis DP, Morrissey CO, Thompson GR. Defining breakthrough invasive fungal infection-Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology. Mycoses 2019; 62:716-729. [PMID: 31254420 PMCID: PMC6692208 DOI: 10.1111/myc.12960] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Breakthrough invasive fungal infections (IFIs) have emerged as a significant problem in patients receiving systemic antifungals; however, consensus criteria for defining breakthrough IFI are missing. This position paper establishes broadly applicable definitions of breakthrough IFI for clinical research. Representatives of the Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM) reviewed the relevant English literature for definitions applied and published through 2018. A draft proposal for definitions was developed and circulated to all members of the two organisations for comment and suggestions. The authors addressed comments received and circulated the updated document for approval. Breakthrough IFI was defined as any IFI occurring during exposure to an antifungal drug, including fungi outside the spectrum of activity of an antifungal. The time of breakthrough IFI was defined as the first attributable clinical sign or symptom, mycological finding or radiological feature. The period defining breakthrough IFI depends on pharmacokinetic properties and extends at least until one dosing interval after drug discontinuation. Persistent IFI describes IFI that is unchanged/stable since treatment initiation with ongoing need for antifungal therapy. It is distinct from refractory IFI, defined as progression of disease and therefore similar to non-response to treatment. Relapsed IFI occurs after treatment and is caused by the same pathogen at the same site, although dissemination can occur. These proposed definitions are intended to support the design of future clinical trials and epidemiological research in clinical mycology, with the ultimate goal of increasing the comparability of clinical trial results.
Collapse
Affiliation(s)
- Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, ECMM Center of Excellence for Medical Mycology, German Centre for Infection Research, Partner Site Bonn-Cologne (DZIF), University of Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Martin Hoenigl
- Division of Infectious Diseases, University of California San Diego, San Diego, CA, USA
- Division of Pulmonology and Section of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Microbiology, ECMM Excellence Center for Medical Mycology, Medical University Innsbruck, Innsbruck, Austria
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Centre for Infectious Diseases and Microbiology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - C Orla Morrissey
- Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - George R Thompson
- Departments of Medical Microbiology and Immunology and Internal Medicine Division of Infectious Diseases, UC-Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
22
|
Jorgenson MR, Descourouez JL, Marka NA, Leverson GE, Smith JA, Andes DR, Fernandez LA, Foley DP. A targeted fungal prophylaxis protocol with static dosed fluconazole significantly reduces invasive fungal infection after liver transplantation. Transpl Infect Dis 2019; 21:e13156. [PMID: 31390109 DOI: 10.1111/tid.13156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Invasive fungal infection (IFI) after liver transplant (LTx) is associated with extensive morbidity and mortality. Targeted prophylaxis reduces risk, but qualifying criteria, drug of choice and regimen are unclear and compliance is inconsistent. OBJECTIVE Assess the impact of a risk factor-based fungal prophylaxis protocol (FPP) after LTx on fungal infection rates, fungal epidemiology, and transplant outcomes. METHODS Observational cohort study of adult LTx recipients between July 1, 2009, and June 30, 2017. Patients in the FPP group were given a set dose of 400 mg fluconazole without renal adjustment on POD 1-14 via pharmacist delegation protocol. RESULTS One hundred and eighty-nine patients met inclusion criteria; 50 in the FPP and 139 in the pre-implementation comparator group. Of those who would be considered high-risk, 22.3% received antifungal prophylaxis prior to FPP implementation vs 92% after implementation (P < .0001). There were significantly fewer fungal infections in the FPP group at 1 year (12.5% vs 26.6%, P = .03). IFI in the pre-implementation control group was due to Candida species in 95% of cases; 30% were species with reduced fluconazole susceptibility. IFI in the FPP group was due to Candida species in all cases, and no isolates had reduced fluconazole susceptibility. Aspergillus did not account for any IFI between the groups. One-year patient and graft survival were similar between groups. In a multivariable model accounting for patient and donor age, donor type, MELD, and cold ischemic time, FPP was protective against fungal infection (HR 0.3, P = .015). FPP did not significantly impact graft survival (HR 0.4, P = .14), but trended toward improved patient survival. (HR 0.18, P = .06). CONCLUSION Implementation of a targeted FPP utilizing static dosing of fluconazole 400 mg × 14 days to those that meet high-risk criteria significantly reduces invasive fungal infection after liver transplant. Use of this protocol did not adversely affect fungal epidemiology and may have a positive impact on allograft and patient survival. Future large prospective studies are needed to better evaluate survival impact.
Collapse
Affiliation(s)
- Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Nicholas A Marka
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Glen E Leverson
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jeannina A Smith
- Division of Infectious Disease, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - David R Andes
- Division of Infectious Disease, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Luis A Fernandez
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - David P Foley
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
23
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
24
|
Decker SO, Krüger A, Wilk H, Grumaz S, Vainshtein Y, Schmitt FCF, Uhle F, Bruckner T, Zimmermann S, Mehrabi A, Mieth M, Weiss KH, Weigand MA, Hofer S, Sohn K, Brenner T. New approaches for the detection of invasive fungal diseases in patients following liver transplantation-results of an observational clinical pilot study. Langenbecks Arch Surg 2019; 404:309-325. [PMID: 30834971 DOI: 10.1007/s00423-019-01769-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Despite antifungal prophylaxis following liver transplantation (LTX), patients are at risk for the development of subsequent opportunistic infections, such as an invasive fungal disease (IFD). However, culture-based diagnostic procedures are associated with relevant weaknesses. METHODS Culture and next-generation sequencing (NGS)-based fungal findings as well as corresponding plasma levels of ß-D-glucan (BDG), galactomannan (GM), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin (IL)-2, -4, -6, -10, -17A and mid-regional proadrenomedullin (MR-proADM) were evaluated in 93 patients at 6 consecutive time points within 28 days following LTX. RESULTS A NGS-based diagnostic approach was shown to be suitable for the early identification of fungal pathogens in patients following LTX. Moreover, MR-proADM and IL-17A in plasma proved suitable for the identification of patients with an IFD. CONCLUSION Plasma measurements of MR-proADM and IL-17A as well as a NGS-based diagnostic approach were shown to be attractive methodologies to attenuate the weaknesses of routinely used culture-based diagnostic procedures for the determination of an IFD in patients following LTX. However, an additional confirmation within a larger multicenter trial needs to be recommended. TRIAL REGISTRATION German Clinical Trials Register: DRKS00005480 .
Collapse
Affiliation(s)
- Sebastian O Decker
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Albert Krüger
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Henryk Wilk
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Silke Grumaz
- Fraunhofer IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | | | - Felix C F Schmitt
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130, 69120, Heidelberg, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neunheimer Feld 410, 69120, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Stefan Hofer
- Department of Anesthesiology, Westpfalzklinikum, Hellmut-Hartert-Straße 1, 67655, Kaiserslautern, Germany
| | - Kai Sohn
- Fraunhofer IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Giannella M, Husain S, Saliba F, Viale P. Use of echinocandin prophylaxis in solid organ transplantation. J Antimicrob Chemother 2019; 73:i51-i59. [PMID: 29304212 DOI: 10.1093/jac/dkx449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) are a major threat to patients undergoing solid organ transplantation (SOT). Owing to improvements in surgical techniques, immunosuppression therapy and antifungal prophylaxis, the incidence of IFIs has been decreasing in recent years. However, IFI-associated morbidity and mortality remain significant. Invasive candidiasis (IC) and aspergillosis (IA) are the main IFIs after SOT. Risk factors for IC and IA continue to evolve, and thus strategies for their prevention should be constantly updated and targeted to both individual patient risk factors and local epidemiology. In this review, we discuss the current epidemiology and risk factors for IFIs in SOT recipients in the context of actual approaches to antifungal prophylaxis, including experience with the use of echinocandins, after SOT.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, Sant'Orsola Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Pierluigi Viale
- Infectious Diseases Unit, Sant'Orsola Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Abstract
Liver transplantation has become an important treatment modality for patients with end-stage liver disease/cirrhosis, acute liver failure, and hepatocellular carcinoma. Although surgical techniques and immunosuppressive regimens for liver transplantation have improved significantly over the past 20 years, infectious complications continue to contribute to the morbidity and mortality in this patient population. The use of standardized screening protocols for both donors and recipients, coupled with targeted prophylaxis against specific pathogens, has helped to mitigate the risk of infection in liver transplant recipients. Patients with chronic liver disease and cirrhosis have immunological deficits that place them at increased risk for infection while awaiting liver transplantation. The patient undergoing liver transplantation is prone to develop healthcare-acquired infections due to multidrug-resistant organisms that could potentially affect patient outcomes after transplantation. The complex nature of liver transplant surgery that involves multiple vascular and hepatobiliary anastomoses further increases the risk of infection after liver transplantation. During the early post-transplantation period, healthcare-acquired bacterial and fungal infections are the most common types of infection encountered in liver transplant recipients. The period of maximal immunosuppression that occurs at 1–6 months after transplantation can be complicated by opportunistic infections due to both primary infection and reactivation of latent infection. Severe community-acquired infections can complicate the course of liver transplantation beyond 12 months after transplant surgery. This chapter provides an overview of liver transplantation including indications, donor-recipient selection criteria, surgical procedures, and immunosuppressive therapies. A focus on infections in patients with chronic liver disease/cirrhosis and an overview of the specific infectious complications in liver transplant recipients are presented.
Collapse
|
27
|
Al Jishi Y, Rotstein C, Kumar D, Humar A, Singer LG, Keshavjee S, Husain S. Echinocandin use in lung transplant recipients. Clin Transplant 2018; 32:e13437. [PMID: 30375050 DOI: 10.1111/ctr.13437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Invasive fungal infections (IFI) are associated with significant morbidity and mortality in lung transplant recipients (LTRs). However, data outlining use of echinocandins in prophylaxis and therapy of LTRs are limited. METHOD A single-center retrospective cohort study on all LTRs from January-2010 to December-2016. Participants were screened for antifungal use to assess rate, tolerability, and clinical outcome of echinocandin use in LTRs, during the first 6 weeks of posttransplant. RESULTS A total of 777 lung transplants were reviewed in 763 LTRs. Antifungals were administered to 268 (35%) of LTRs. Reasons included preemptive antifungal therapy (55% [149/268]), targeted antifungal prophylaxis (34% [92/268]), and definitive IFI therapy (10% [27/268]). Azoles were first-line agents in 80% (215/268) of LTRs, caspofungin in 11% (30/268), micafungin in 6.7% (18/268), amphotericin B in 1.5% (4/268), and anidulafungin in 0.4% (1/268]). LTRs were started on echinocandins due to abnormal liver enzymes in 91% (46/49). Overall, 23% (50/215) of LTR's were switched off azoles. Of these, 54% (27/50) were switched to echinocandins. Switch from azoles to echinocandin was undertaken due to abnormal liver enzymes in 63% (17/27). No patients receiving first-line echinocandins were switched to other therapies due to adverse events. CONCLUSIONS Our data suggest that echinocandins are utilized in approximately 18.3% of lung transplant recipients. They are the preferred second-line agents due to a lower adverse-effect profile compared to the azoles.
Collapse
Affiliation(s)
- Yamama Al Jishi
- Department of Medicine, Division of Infectious Diseases and Toronto Lung Transplant Program, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Coleman Rotstein
- Division of Infectious Diseases, Department of Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada.,Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Division of Infectious Diseases, Department of Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada.,Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Atul Humar
- Division of Infectious Diseases, Department of Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada.,Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shahid Husain
- Division of Infectious Diseases, Department of Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada.,Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Cojutti PG, Lugano M, Righi E, Della Rocca G, Bassetti M, Hope W, Pea F. Population pharmacokinetics of fluconazole in liver transplantation: implications for target attainment for infections with Candida albicans and non-albicans spp. Eur J Clin Pharmacol 2018; 74:1449-1459. [PMID: 30032414 DOI: 10.1007/s00228-018-2526-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The study aims to assess the population pharmacokinetics of fluconazole and the adequacy of current dosages and breakpoints against Candida albicans and non-albicans spp. in liver transplant (LT) patients. PATIENTS AND METHODS Patients initiated i.v. fluconazole within 1 month from liver transplantation (LTx) for prevention or treatment of Candida spp. infections. Multiple assessments of trough and peak plasma concentrations of fluconazole were undertaken in each patient by means of therapeutic drug monitoring. Monte Carlo simulations were performed to define the probability of target attainment (PTA) with a loading dose (LD) of 400, 600, and 800 mg at day 1, 7, 14, and 28 from LTx, followed by a maintenance dose (MD) of 100, 200, and 300 mg daily of the pharmacokinetic/pharmacodynamic target of AUC24h/MIC ratio ≥ 55.2. RESULTS Nineteen patients were recruited. A two-compartment model with first-order intravenous input and first-order elimination was developed. Patient's age and time elapsed from LTx were the covariates included in the final model. At an MIC of 2 mg/L, a LD of 600 mg was required for optimal PTAs between days 1 and 20 from LTx, while 400 mg was sufficient from days 21 on. A MD of 200 mg was required for patients aged 40-49 years old, while a dose of 100 mg was sufficient for patients aged ≥ 50 years. CONCLUSIONS Fluconazole dosages of 100-200 mg daily may ensure optimal PTA against C. albicans, C. parapsilosis, and C. tropicalis. Higher dosages are required against C. glabrata. Estimated creatinine clearance is not a reliable predictor of fluconazole clearance in LT patients.
Collapse
Affiliation(s)
- Pier Giorgio Cojutti
- Department of Medicine, University of Udine, Udine, Italy. .,Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, P. le S. Maria della Misericordia 3, 33100, Udine, Italy.
| | - Manuela Lugano
- Department of Anesthesia and Intensive Care Medicine, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy
| | - Elda Righi
- Infectious Diseases Clinic, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy
| | - Giorgio Della Rocca
- Department of Anesthesia and Intensive Care Medicine, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy
| | - Matteo Bassetti
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, P. le S. Maria della Misericordia 3, 33100, Udine, Italy.,Infectious Diseases Clinic, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Federico Pea
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, P. le S. Maria della Misericordia 3, 33100, Udine, Italy
| |
Collapse
|
29
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 926] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
30
|
Lavezzo B, Patrono D, Tandoi F, Martini S, Fop F, Ballerini V, Stratta C, Skurzak S, Lupo F, Strignano P, Donadio PP, Salizzoni M, Romagnoli R, De Rosa FG. A simplified regimen of targeted antifungal prophylaxis in liver transplant recipients: A single-center experience. Transpl Infect Dis 2018; 20:e12859. [PMID: 29427394 DOI: 10.1111/tid.12859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/17/2017] [Accepted: 11/12/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Invasive fungal infection (IFI) is a severe complication of liver transplantation burdened by high mortality. Guidelines recommend targeted rather than universal antifungal prophylaxis based on tiers of risk. METHODS We aimed to evaluate IFI incidence, risk factors, and outcome after implementation of a simplified two-tiered targeted prophylaxis regimen based on a single broad-spectrum antifungal drug (amphotericin B). Patients presenting 1 or more risk factors according to literature were administered prophylaxis. Prospectively collected data on all adult patients transplanted in Turin from January 2011 to December 2015 were reviewed. RESULTS Patients re-transplanted before postoperative day 7 were considered once, yielding a study cohort of 581 cases. Prophylaxis was administered to 299 (51.4%) patients; adherence to protocol was 94.1%. Sixteen patients developed 18 IFIs for an overall rate of 2.8%. All IFI cases were in targeted prophylaxis group; none of the non-prophylaxis group developed IFI. Most cases (81.3%) presented within 30 days after transplantation during prophylaxis; predominant pathogens were molds (94.4%). Only 1 case of candidemia was observed. One-year mortality in IFI patients was 33.3% vs 6.4% in patients without IFI (P = .001); IFI attributable mortality was 6.3%. At multivariate analysis, significant risk factors for IFI were renal replacement therapy (OR = 8.1) and re-operation (OR = 5.2). CONCLUSIONS The implementation of a simplified targeted prophylaxis regimen appeared to be safe and applicable and was associated with low IFI incidence and mortality. Association of IFI with re-operation and renal replacement therapy calls for further studies to identify optimal prophylaxis in this subset of patients.
Collapse
Affiliation(s)
- B Lavezzo
- Anesthesia and Intensive Care Unit 2, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - D Patrono
- Liver Transplant Center, General Surgery 2U, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - F Tandoi
- Liver Transplant Center, General Surgery 2U, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - S Martini
- Gastrohepatology Unit, AOU Città della Salute e della Scienza, Torino, Italy
| | - F Fop
- Nephrology, Dialysis and Transplantation Unit, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - V Ballerini
- Anesthesia and Intensive Care Unit 2, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - C Stratta
- Anesthesia and Intensive Care Unit 2, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - S Skurzak
- Anesthesia and Intensive Care Unit 2, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - F Lupo
- Liver Transplant Center, General Surgery 2U, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - P Strignano
- Liver Transplant Center, General Surgery 2U, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - P P Donadio
- Anesthesia and Intensive Care Unit 2, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - M Salizzoni
- Liver Transplant Center, General Surgery 2U, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - R Romagnoli
- Liver Transplant Center, General Surgery 2U, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - F G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Torino, A.O.U. Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
31
|
Slack A, Hogan BJ, Wendon J. Acute Hepatic Failure. LIVER ANESTHESIOLOGY AND CRITICAL CARE MEDICINE 2018. [PMCID: PMC7121978 DOI: 10.1007/978-3-319-64298-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
|
33
|
Suzuki Y, Kenjo A, Togano T, Yamamoto N, Ohto H, Kume H. Infectious diseases in solid organ transplant recipients: Analysis of autopsied cases in Japan. J Infect Chemother 2017. [PMID: 28647177 DOI: 10.1016/j.jiac.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND With the improvements in immunosuppressive agents and graft survival, infections such as mycoses have become major complications after solid organ transplantation (SOT). METHODS Our group has continuously updated an epidemiological database of visceral mycoses (VM) among autopsy cases in Japan since 1989. Data on infectious agents and clinical information were complied using similar procedures. RESULTS Among the all autopsied cases studied, 356 undergone SOT. Of these, 214 (60.1%) suffered from one or more types of infections, including 51 (14.3%) with VM. Thus, the incidence of VM was higher in SOT recipients than in non-transplanted cases (P < 0.0001). Aspergillus spp. (Asp) was the most predominant agent and Candida spp. was second. Specifically, among SOT recipients, Asp was the most predominant in liver and lung transplant recipients. Among the 217 autopsied liver transplants cases, the incidence of VM was highest in those with fulminant hepatitis (FH, P = 0.01). The incidence of cytomegalovirus infection tended to be higher in cases with mycosis (P = 0.06). Multivariate logistic regression analysis identified FH (odds ratio, 3.61, 95% confidence interval 1.34-9.75; P = 0.03) as an independent risk factor for mycosis in liver transplant recipients. CONCLUSION This epidemiological analysis of autopsied cases provides a strong incentive to intensify efforts to diagnose and treat post-SOT infectious diseases.
Collapse
Affiliation(s)
- Yuhko Suzuki
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima, Japan.
| | - Akira Kenjo
- Department of Regenerative Surgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine, Shinjyuku, Tokyo, Japan
| | - Natsuo Yamamoto
- Department of Infection Control, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Hikaru Kume
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
34
|
Levesque E, Rizk F, Noorah Z, Aït-Ammar N, Cordonnier-Jourdin C, El Anbassi S, Bonnal C, Azoulay D, Merle JC, Botterel F. Detection of (1,3)-β-d-Glucan for the Diagnosis of Invasive Fungal Infection in Liver Transplant Recipients. Int J Mol Sci 2017; 18:ijms18040862. [PMID: 28422065 PMCID: PMC5412443 DOI: 10.3390/ijms18040862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/24/2022] Open
Abstract
Invasive fungal infections (IFI) are complications after liver transplantation involving high morbidity and mortality. (1,3)-β-d-glucan (BG) is a biomarker for IFI, but its utility remains uncertain. This study was designed to evaluate the impact of BG following their diagnosis. Between January 2013 and May 2016, 271 liver transplants were performed in our institution. Serum samples were tested for BG (Fungitell®, Associates Cape Code Inc., Falmouth, MA, USA) at least weekly between liver transplantation and the discharge of patients. Nineteen patients (7%) were diagnosed with IFI, including 13 cases of invasive candidiasis (IC), eight cases of invasive pulmonary aspergillosis, and one case of septic arthritis due to Scedosporium apiospernum. Using a single BG sample for the primary analysis of IFI, 95% (21/22) of the subjects had positive BG (>80 pg/mL) at the time of IFI diagnosis. The area under the ROC curves to predict IFI was 0.78 (95% CI: 0.73–0.83). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of BG for IFI were 75% (95% CI: 65–83), 65% (62–68), 17% (13–21), and 96% (94–97), respectively. Based on their high NPV, the BG test appears to constitute a good biomarker to rule out a diagnosis of IFI.
Collapse
Affiliation(s)
- Eric Levesque
- Department of Anaesthesia and Surgical Intensive Care-Liver ICU, AP-HP Henri Mondor Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94100 Créteil, France.
- INSERM, Unit U955, 94100 Creteil, France.
| | - Fadi Rizk
- Department of Anaesthesia and Surgical Intensive Care-Liver ICU, AP-HP Henri Mondor Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94100 Créteil, France.
| | - Zaid Noorah
- Department of Anaesthesia and Surgical Intensive Care-Liver ICU, AP-HP Henri Mondor Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94100 Créteil, France.
| | - Nawel Aït-Ammar
- Mycology Unit-Microbiology department, DHU "Virus, Immunité, Cancer" VIC, AP-HP Henri Mondor Hospital, 94100 Creteil, France.
- EA Dynamyc Université Paris-Est Créteil (UPEC), Ecole National Vétérinaire d'Alfort (ENVA), Faculté de Médecine de Créteil, 8 rue du Général Sarrail, 94010 Créteil, France.
| | | | - Sarra El Anbassi
- Mycology Unit-Microbiology department, DHU "Virus, Immunité, Cancer" VIC, AP-HP Henri Mondor Hospital, 94100 Creteil, France.
| | - Christine Bonnal
- Mycology Unit-Microbiology department, DHU "Virus, Immunité, Cancer" VIC, AP-HP Henri Mondor Hospital, 94100 Creteil, France.
| | - Daniel Azoulay
- Digestive Surgery and Liver Transplant Unit, AP-HP Henri Mondor Hospital, 94100 Créteil, France.
| | - Jean-Claude Merle
- Department of Anaesthesia and Surgical Intensive Care-Liver ICU, AP-HP Henri Mondor Hospital, 51 Avenue du Marechal de Lattre de Tassigny, 94100 Créteil, France.
| | - Françoise Botterel
- Mycology Unit-Microbiology department, DHU "Virus, Immunité, Cancer" VIC, AP-HP Henri Mondor Hospital, 94100 Creteil, France.
- EA Dynamyc Université Paris-Est Créteil (UPEC), Ecole National Vétérinaire d'Alfort (ENVA), Faculté de Médecine de Créteil, 8 rue du Général Sarrail, 94010 Créteil, France.
| |
Collapse
|
35
|
Samanta P, Singh N. Complications of invasive mycoses in organ transplant recipients. Expert Rev Anti Infect Ther 2016; 14:1195-1202. [PMID: 27690694 DOI: 10.1080/14787210.2016.1242412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Opportunistic mycoses remain a significant complication in organ recipients. Areas covered: This review is an evidence-based presentation of current state-of-knowledge and our perspective on recent developments in the field Expert commentary: Invasive fungal infections are associated with reduced allograft and patient survival, increase in healthcare resource utilization, and newly appreciated but largely unrecognized immunologic sequelae, such as immune reconstitution syndrome. Given adverse outcomes associated with established infections, prophylaxis is a widely used strategy for the prevention of these infections. Currently available biomarkers that detect circulating fungal cell wall constituents i.e., galactomannan and 1, 3-β-D-glucan have not proven to be beneficial as screening tools for employing targeted prophylaxis or as diagnostic assays in this patient population. However, subsets of patients at risk for opportunistic fungal infections can be identified based on clinically identifiable characteristics or events. Preventive strategies targeted towards these patients are a rational approach for optimizing outcomes.
Collapse
Affiliation(s)
- Palash Samanta
- a Division of Infectious Diseases , University of Pittsburgh , Pittsburgh , PA , USA
| | - Nina Singh
- b Division of Infectious Diseases , University of Pittsburgh and VA Pittsburgh Medical Center , Pittsburgh , PA , USA
| |
Collapse
|
36
|
Koval C. Echinocandins for antifungal prophylaxis in liver transplant recipients: Advance in the field or variation on a theme? Liver Transpl 2016; 22:396-8. [PMID: 26899901 DOI: 10.1002/lt.24419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Christine Koval
- Department of Infectious Diseases, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|