1
|
Esmaeili A, Rahimi A, Abbasi A, Hasannejad-Asl B, Bagheri-Mohammadi S, Farjami M, Keshel SH. Processing and post-processing of fish skin as a novel material in tissue engineering. Tissue Cell 2023; 85:102238. [PMID: 37832248 DOI: 10.1016/j.tice.2023.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
As a natural material, fish skin contains significant amounts of collagen I and III, and due to its biocompatible nature, it can be used to regenerate various tissues and organs. To use fish skin, it is necessary to perform the decellularization process to avoid the immunological response of the host body. In the process of decellularization, it is crucial to conserve the extracellular matrix (ECM) three-dimensional (3D) structure. However, it is known that decellularization methods may also damage ECM strands arrangement and structure. Moreover, after decellularization, the post-processing of fish skin improves its mechanical and biological properties and preserves its 3D design and strength. Also, sterilization, which is one of the post-processing steps, is mandatory in pre-clinical and clinical settings. In this review paper, the fish skin decellularization methods performed and the various post-processes used to increase the performance of the skin have been studied. Moreover, multiple applications of acellular fish skin (AFS) and its extracted collagen have been reviewed.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farjami
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NY. Unraveling the Relevance of Tissue-Specific Decellularized Extracellular Matrix Hydrogels for Vocal Fold Regenerative Biomaterials: A Comprehensive Proteomic and In Vitro Study. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200095. [PMID: 37547672 PMCID: PMC10398787 DOI: 10.1002/anbr.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Decellularized extracellular matrix (dECM) is a promising material for tissue engineering applications. Tissue-specific dECM is often seen as a favorable material that recapitulates a native-like microenvironment for cellular remodeling. However, the minute quantity of dECM derivable from small organs like the vocal fold (VF) hampers manufacturing scalability. Small intestinal submucosa (SIS), a commercial product with proven regenerative capacity, may be a viable option for VF applications. This study aims to compare dECM hydrogels derived from SIS or VF tissue with respect to protein content and functionality using mass spectrometry-based proteomics and in vitro studies. Proteomic analysis reveals that VF and SIS dECM share 75% of core matrisome proteins. Although VF dECM proteins have greater overlap with native VF, SIS dECM shows less cross-sample variability. Following decellularization, significant reductions of soluble collagen (61%), elastin (81%), and hyaluronan (44%) are noted in VF dECM. SIS dECM contains comparable elastin and hyaluronan but 67% greater soluble collagen than VF dECM. Cells deposit more neo-collagen on SIS than VF-dECM hydrogels, whereas neo-elastin (~50 μg/scaffold) and neo-hyaluronan (~ 6 μg/scaffold) are comparable between the two hydrogels. Overall, SIS dECM possesses reasonably similar proteomic profile and regenerative capacity to VF dECM. SIS dECM is considered a promising alternative for dECM-derived biomaterials for VF regeneration.
Collapse
Affiliation(s)
- Mika Brown
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| | - Lorne Taylor
- The Proteomics Platform, McGill University Health Center 1001 Decarie Boulevard Montreal Suite E01.5056 Montreal, Quebec, H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- Department of Bioengineering, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
- Faculty of Dentistry, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
| | - Nicole Y.K. Li-Jessen
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- School of Communication Sciences and Disorders, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Department of Otolaryngology - Head and Neck Surgery, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Research Institute of McGill University Health Center, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| |
Collapse
|
3
|
Kheirjou R, Rad JS, Khosroshahi AF, Roshangar L. The useful agent to have an ideal biological scaffold. Cell Tissue Bank 2020; 22:225-239. [PMID: 33222022 DOI: 10.1007/s10561-020-09881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Tissue engineering which is applied in regenerative medicine has three basic components: cells, scaffolds and growth factors. This multidisciplinary field can regulate cell behaviors in different conditions using scaffolds and growth factors. Scaffolds perform this regulation with their structural, mechanical, functional and bioinductive properties and growth factors by attaching to and activating their receptors in cells. There are various types of biological extracellular matrix (ECM) and polymeric scaffolds in tissue engineering. Recently, many researchers have turned to using biological ECM rather than polymeric scaffolds because of its safety and growth factors. Therefore, selection the right scaffold with the best properties tailored to clinical use is an ideal way to regulate cell behaviors in order to repair or improve damaged tissue functions in regenerative medicine. In this review we first divided properties of biological scaffold into intrinsic and extrinsic elements and then explain the components of each element. Finally, the types of scaffold storage methods and their advantages and disadvantages are examined.
Collapse
Affiliation(s)
- Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran.
| |
Collapse
|
4
|
McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater 2020; 111:1-19. [PMID: 32464269 DOI: 10.1016/j.actbio.2020.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Biomedical engineers are at the forefront of developing novel treatments to improve human health, however, many products fail to translate to clinical implementation. In vivo pre-clinical animal models, although the current best approximation of complex disease conditions, are limited by reproducibility, ethical concerns, and poor accurate prediction of human response. Hence, there is a need to develop physiologically relevant, low cost, scalable, and reproducible in vitro platforms to provide reliable means for testing drugs, biomaterials, and tissue engineered products for successful clinical translation. One emerging approach of developing physiologically relevant in vitro models utilizes decellularized tissues/organs as biomaterial platforms for 2D and 3D models of healthy and diseased tissue. Decellularization is a process that removes cellular content and produces tissue-specific extracellular matrix scaffolds that can more accurately recapitulate an organ/tissue's native microenvironment compared to other natural or synthetic materials. Decellularized tissues hold enormous potential for in vitro modeling of various disease phenotypes and tissue responses to drugs or external conditions such as aging, toxin exposure, or even implantation. In this review, we highlight the need for in vitro models, the advantages and limitations of implementing decellularized tissues, and considerations of the decellularization process. We discuss current research efforts towards applying decellularized tissues as platforms to generate in vitro models of healthy and diseased tissues, and where we foresee the field progressing. A variety of organs/tissues are discussed, including brain, heart, kidney, large intestine, liver, lung, skeletal muscle, skin, and tongue. STATEMENT OF SIGNIFICANCE: Many biomedical products fail to reach clinical translation due to animal model limitations. Development of physiologically relevant in vitro models can provide a more economic, scalable, and reproducible means of testing drugs/therapeutics for successful clinical translation. The use of decellularized tissues as platforms for in vitro models holds promise, as these scaffolds can effectively replicate native tissue complexity, but is not widely explored. This review discusses the need for in vitro models, the promise of decellularized tissues as biomaterial substrates, and the current research applying decellularized tissues towards the creation of in vitro models. Further, this review provides insights into the current limitations and future of such in vitro models.
Collapse
Affiliation(s)
- Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Instituto de Micro y Nanotechnología, IMN-CNM, CSIC (CEI UAM+CSIC), Calle Isaac Newton 8, 28760 Madrid, Tres Cantos, Spain; Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, Calle Nicolás Cabrera, 28049 Madrid, Spain.
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Department of Biomedical Engineering, University of Arkansas, 134 White Hall, Fayetteville, AR 72701, United States.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| |
Collapse
|
5
|
Pryjmaková J, Kaimlová M, Hubáček T, Švorčík V, Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int J Mol Sci 2020; 21:E2521. [PMID: 32260477 PMCID: PMC7178059 DOI: 10.3390/ijms21072521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023] Open
Abstract
This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Markéta Kaimlová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Tomáš Hubáček
- Soil & Water Research Infrastructure, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| |
Collapse
|
6
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|
7
|
Bühler NEM, Schulze-Osthoff K, Königsrainer A, Schenk M. Controlled processing of a full-sized porcine liver to a decellularized matrix in 24 h. J Biosci Bioeng 2015; 119:609-13. [DOI: 10.1016/j.jbiosc.2014.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
|
8
|
Mauney JR, Adam RM. Dynamic reciprocity in cell-scaffold interactions. Adv Drug Deliv Rev 2015; 82-83:77-85. [PMID: 25453262 DOI: 10.1016/j.addr.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/07/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies.
Collapse
|
9
|
Mondalek FG, Fung KM, Yang Q, Wu W, Lu W, Palmer BW, Frimberger DC, Greenwood-Van Meerveld B, Hurst RE, Kropp BP, Lin HK. Temporal expression of hyaluronic acid and hyaluronic acid receptors in a porcine small intestinal submucosa-augmented rat bladder regeneration model. World J Urol 2014; 33:1119-28. [PMID: 25253654 DOI: 10.1007/s00345-014-1403-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Hyaluronic acid (HA), a non-sulfated glycosaminoglycan, is an essential component of the extracellular matrix (ECM). Since HA is involved in many phases of wound healing and may play a key role in tissue repair and regeneration, this study was intended to understand temporal and spatial expression of HA and HA receptors (HARs) during the course of bladder regeneration in rats. MATERIALS AND METHODS Sprague-Dawley rats were subjected to partial cystectomy followed by augmentation with porcine small intestinal submucosal (SIS) prepared from distal sections of the small intestine. SIS-augmented bladders were harvested between postoperative days 2 and 56. RESULTS Bladder regeneration proceeded without complications. All augmented bladders had complete urothelial lining and smooth muscle bundles by day 56 post-augmentation. Temporal and spatial distributions of HA and HARs were studied by immunohistochemistry in regenerating bladders. The strongest HA immunoreactivity was observed in the ECM on postoperative days 28 and 56. Cluster of differentiation 44 (CD44) immunoreactivity was detected in the cytoplasm of urothelial cells on day 56; and LYVE-1 immunoreactivity was exclusively limited to lymphatic vessels on days 28 and 56. CONCLUSIONS We demonstrated that HA was synthesized throughout the course of bladder wound healing and regeneration; and HA deposition coincided with urothelial differentiation. Expression of CD44 and LYVE-1 followed the same temporal pattern as HA deposition. Therapeutic modalities through local delivery of exogenous HA to improve the outcome of SIS-mediated bladder regeneration might need to be coordinated with HAR expression in order to achieve maximal regenerative responses as opposed to fibrosis.
Collapse
Affiliation(s)
- Fadee G Mondalek
- Department of Urology, University of Oklahoma Health Sciences Center, 920 Stanton L. Young Blvd., WP3150, Oklahoma City, OK, 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Organ transplantation in an orthotopic location is the current treatment for end-stage organ failure. However, the need for transplantable organs far exceeds the number of available donor organs. As a result, new options, such as tissue engineering and regenerative medicine, have been explored to achieve functional organ replacement. Although there have been many advances in the laboratory leading to the reconstruction of tissue and organ structures in vitro, these efforts have fallen short of producing organs that contain intact vascular networks capable of nutrient and gas exchange and are suitable for transplantation. Recently, advances in whole organ decellularization techniques have enabled the fabrication of scaffolds for engineering new organs. These scaffolds, consisting of naturally-derived extracellular matrix (ECM), provide biological signals and maintain tissue microarchitecture, including intact vascular systems that could integrate into the recipient's circulatory system. The decellularization techniques have led to the development of scaffolds for multiple organs, including the heart, liver, lung and kidney. While the experimental studies involving the use of decellularized organ scaffolds are encouraging, the translation of whole organ engineering into the clinic is still distant. This paper reviews recently described techniques used to decellularize whole organs such as the heart, lung, liver and kidney and describes possible methods for using these matrices for whole organ engineering.
Collapse
Affiliation(s)
- J E Arenas-Herrera
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
11
|
Lallana E, Tirelli N. Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200502] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Chin L, Calabro A, Rodriguez ER, Tan CD, Walker E, Derwin KA. Characterization of and host response to tyramine substituted-hyaluronan enriched fascia extracellular matrix. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1465-1477. [PMID: 21553156 PMCID: PMC3245546 DOI: 10.1007/s10856-011-4325-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
Naturally-occurring biomaterial scaffolds derived from extracellular matrix (ECM) have been previously investigated for soft tissue repair. We propose to enrich fascia ECM with high molecular weight tyramine substituted-hyaluronan (TS-HA) to modulate inflammation associated with implantation and enhance fibroblast infiltration. As critical determinants of constructive remodeling, the host inflammatory response and macrophage polarization to TS-HA enriched fascia were characterized in a rat abdominal wall model. TS-HA treated fascia with cross-linking had a similar lymphocyte (P = 0.11) and plasma cell (P = 0.13) densities, greater macrophage (P = 0.001) and giant cell (P < 0.0001) densities, and a lower density of fibroblast-like cells (P < 0.0001) than water treated controls. Treated fascia, with or without cross-linking, exhibited a predominantly M2 pro-remodeling macrophage profile similar to water controls (P = 0.82), which is suggestive of constructive tissue remodeling. Our findings demonstrated that HA augmentation can alter the host response to an ECM, but the appropriate concentration and molecular weight needed to minimize chronic inflammation within the scaffold remains to be determined.
Collapse
Affiliation(s)
- LiKang Chin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| | - E. Rene Rodriguez
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carmela D. Tan
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Esteban Walker
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kathleen A. Derwin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
|
14
|
Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 2011; 16:2675-85. [PMID: 20387987 DOI: 10.1089/ten.tea.2009.0798] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bioprinting by the codeposition of cells and biomaterials is constrained by the availability of printable materials. Herein we describe a novel macromonomer, a new two-step photocrosslinking strategy, and the use of a simple rapid prototyping system to print a proof-of-concept tubular construct. First, we synthesized the methacrylated ethanolamide derivative of gelatin (GE-MA). Second, partial photochemical cocrosslinking of GE-MA with methacrylated hyaluronic acid (HA-MA) gave an extrudable gel-like fluid. Third, the new HA-MA:GE-MA hydrogels were biocompatible, supporting cell attachment and proliferation of HepG2 C3A, Int-407, and NIH 3T3 cells in vitro. Moreover, hydrogels injected subcutaneously in nude mice produced no inflammatory response. Fourth, using the Fab@Home printing system, we printed a tubular tissue construct. The partially crosslinked hydrogels were extruded from a syringe into a designed base layer, and irradiated again to create a firmer structure. The computer-driven protocol was iterated to complete a cellularized tubular construct with a cell-free core and a cell-free structural halo. Cells encapsulated within this printed construct were viable in culture, and gradually remodeled the synthetic extracellular matrix environment to a naturally secreted extracellular matrix. This two-step photocrosslinkable biomaterial addresses an unmet need for printable hydrogels useful in tissue engineering.
Collapse
Affiliation(s)
- Aleksander Skardal
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
15
|
Roth CC, Mondalek FG, Kibar Y, Ashley RA, Bell CH, Califano JA, Madihally SV, Frimberger D, Lin HK, Kropp BP. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int 2010; 108:148-55. [PMID: 20942834 DOI: 10.1111/j.1464-410x.2010.09757.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE • To determine if hyaluronic acid (HA) can be incorporated into porcine small intestinal submucosa (SIS) through poly (lactide-co-glycolide-acid) (PLGA) nanoparticles to improve the consistency of the naturally derived biomaterial and promote bladder tissue regeneration. METHODS • Beagle dogs were subjected to 40% partial cystectomy followed by bladder augmentation with commercial SIS or HA-PLGA-modified SIS. • Urodynamic testing was performed before and after augmentation to assess bladder volume. • A scoring system was created to evaluate gross and histological presentations of regenerative bladders. RESULTS • All dogs showed full-thickness bladder regeneration. • Histological assessment showed improved smooth muscle regeneration in the HA-PLGA-modified SIS group. • For both groups of dogs, urodynamics and graft measurements showed an approximate 40% reduction in bladder capacity and graft size from pre-augmentation to post-regeneration measurements. • Application of the scoring system and statistical analysis failed to show a significant difference between the groups. CONCLUSIONS • SIS can be modified through the addition of HA-PLGA nanoparticles. The modified grafts showed evidence of improved smooth muscle regeneration on histological assessment, although this difference was not evident on a novel grading scale. • The volume loss and graft shrinkage experienced are consistent with previous models of SIS bladder regeneration at the 10-week time point. • Additional research into the delivery of HA and the long-term benefits of HA on bladder regeneration is needed to determine the full benefit of HA-PLGA-modified SIS. In addition, a more objective biochemical characterization will be needed to evaluate the quality of regeneration.
Collapse
Affiliation(s)
- Christopher C Roth
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 2010; 31:6173-81. [PMID: 20546891 DOI: 10.1016/j.biomaterials.2010.04.045] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/21/2010] [Indexed: 02/07/2023]
Abstract
Bioprinting enables deposition of cells and biomaterials into spatial orientations and complexities that mirror physiologically relevant geometries. To facilitate the development of bioartificial vessel-like grafts, two four-armed polyethylene glycol (PEG) derivatives with different PEG chain lengths, TetraPEG8 and TetraPEG13, were synthesized from tetrahedral pentaerythritol derivatives. The TetraPEGs are unique multi-armed PEGs with a compact and symmetrical core. The TetraPEGs were converted to tetra-acrylate derivatives (TetraPAcs) which were used in turn to co-crosslink thiolated hyaluronic acid and gelatin derivatives into extrudable hydrogels for printing tissue constructs. First, the hydrogels produced by TetraPAc crosslinking showed significantly higher shear storage moduli when compared to PEG diacrylate (PEGDA)-crosslinked synthetic extracellular matrices (sECMs) of similar composition. These stiffer hydrogels have rheological properties more suited to bioprinting high-density cell suspensions. Second, TetraPAc-crosslinked sECMs were equivalent or superior to PEGDA-crosslinked gels in supporting cell growth and proliferation. Third, the TetraPac sECMs were employed in a proof-of-concept experiment by encapsulation of NIH 3T3 cells in sausage-like hydrogel macrofilaments. These macrofilaments were then printed into tubular tissue constructs by layer-by-layer deposition using the Fab@Home printing system. LIVE/DEAD viability/cytotoxicity-stained cross-sectional images showed the bioprinted cell structures to be viable in culture for up to 4 weeks with little evidence of cell death. Thus, biofabrication of cell suspensions in TetraPAc sECMs demonstrates the feasibility of building bioartificial blood vessel-like constructs for research and potentially clinical uses.
Collapse
Affiliation(s)
- Aleksander Skardal
- Department of Bioengineering, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
17
|
|
18
|
Abstract
This manuscript presents hydrogels (HGs) from a tissue engineering perspective being especially written for those who are approaching this field by offering a concise but inclusive review of hydrogel synthesis, properties, characterization methods, and applications.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy.
| |
Collapse
|
19
|
Lunney JK. Advances in swine biomedical model genomics. Int J Biol Sci 2007; 3:179-84. [PMID: 17384736 PMCID: PMC1802015 DOI: 10.7150/ijbs.3.179] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/10/2007] [Indexed: 12/18/2022] Open
Abstract
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies.
Collapse
Affiliation(s)
- Joan K Lunney
- APDL, BARC, ARS, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|