1
|
Latour-Paczka K, Luciński R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties-A Review. Int J Mol Sci 2024; 25:13628. [PMID: 39769390 PMCID: PMC11676134 DOI: 10.3390/ijms252413628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging. This paper discusses the main groups of artificial biopolymers. It emphasizes the potential of using genetically modified plants for its production, describing the primary plant species involved in these processes and the most common genetic modifications. Additionally, the paper explores the potential applications of biobased polymers, highlighting their key advantages and disadvantages in specific context.
Collapse
Affiliation(s)
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Yu H, Chen G, Li L, Wei G, Li Y, Xiong S, Qi X. Spider minor ampullate silk protein nanoparticles: an effective protein delivery system capable of enhancing systemic immune responses. MedComm (Beijing) 2024; 5:e573. [PMID: 38882211 PMCID: PMC11179522 DOI: 10.1002/mco2.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 06/18/2024] Open
Abstract
Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition. In this study, we evaluate the potential of recombinant nanoparticles derived from Araneus ventricosus MiSp as a protein delivery carrier. The MiSp-based nanoparticles were able to serve as an effective delivery system, achieving nearly 100% efficiency in loading the model protein lysozyme, and displayed a sustained release profile at physiological pH. These nanoparticles could significantly improve the delivery efficacy of the model proteins through different administration routes. Furthermore, nanoparticles loaded with model protein antigen lysozyme after subcutaneous or intramuscular administration could enhance antigen-specific immune responses in mouse models, through a mechanism involving antigen-depot effects at the injection site, long-term antigen persistence, and efficient uptake by dendritic cells as well as internalization by lymph nodes. These findings highlight the transnational potential of MiSp-based nanoparticle system for protein drug and vaccine delivery.
Collapse
Affiliation(s)
- Hairui Yu
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Gefei Chen
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - Linchao Li
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Guoqiang Wei
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Yanan Li
- Department of Neurosurgery Changhai Hospital Naval Medical University Shanghai China
| | - Sidong Xiong
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| |
Collapse
|
4
|
Hofmaier M, Heger JE, Lentz S, Schwarz S, Müller-Buschbaum P, Scheibel T, Fery A, Müller M. Influence of the Sequence Motive Repeating Number on Protein Folding in Spider Silk Protein Films. Biomacromolecules 2023; 24:5707-5721. [PMID: 37934893 DOI: 10.1021/acs.biomac.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Like multiblock copolymers, spider silk proteins are built of repetitive sequence motives. One prominent repetitive motif is based on the consensus sequence of spidroin 4 of the spider Araneus diadematus ADF4. The number x of the repeating sequence motives (C) determines the molecular weight of the recombinant ADF4-based, engineered spider silk protein denoted as eADF4(Cx). eADF4(Cx) can be used as a model for intrinsically disordered proteins (IDP) and to elucidate their folding. Herein, the influence of the variation of the sequence motive repeating number x (x = 1, 2, 4, 8, 16) on the protein folding within eADF4(Cx) films was investigated. eADF4(Cx) films were cast from 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solutions onto planar silicon model substrates, revealing mainly helical or random coil structure. Upon treatment with methanol vapor (ptm), the formation of crystalline β-sheets was triggered. Dichroic Fourier-transform infrared (FTIR) spectroscopy, circular dichroism, spectroscopic ellipsometry, atomic force microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), and electrokinetic and contact angle measurements were used to get information concerning the secondary structure and folding kinetics, orientation of β-sheets, the ratio of parallel/antiparallel β-sheets, domain sizes and distributions, surface topography, surface potential, hydrophobicity and the film integrity under water. Significant differences in the final β-sheet content, the share of antiparallel β-sheet structures, film integrity, surface potential, and isoelectric points between eADF4(Cx) with x = 1, 2 and eADF4(Cx) with x = 4, 8, 16 gave new insights in the molecular weight-dependent structure formation and film properties of IDP systems. GISAXS and kinetic measurements confirmed a relation between β-sheet crystal growth rate and final β-sheet crystal size. Further, competing effects of reduced diffusibility hindering accelerated crystal growth and enhanced backfolding promoting accelerated crystal growth with increasing molecular weight were discussed.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Dresden 01069, Germany
| | - Julian E Heger
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching 85748, Germany
| | - Sarah Lentz
- Functional Polymer Interfaces Group, University of Bayreuth, Bayreuth 95447, Germany
| | - Simona Schwarz
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Garching 85748, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Bayreuth 95447, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth 95440, Germany
- Bayreuth Center for Molecular Bioscience (BZMB), University of Bayreuth, Bayreuth 95440, Germany
- Bayreuth Center for Material Science and Engineering (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth 95440, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Dresden 01069, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Dresden 01069, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Dresden 01062, Germany
| |
Collapse
|
5
|
Trossmann VT, Lentz S, Scheibel T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J Funct Biomater 2023; 14:434. [PMID: 37623678 PMCID: PMC10455157 DOI: 10.3390/jfb14080434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Biomaterials are an indispensable part of biomedical research. However, although many materials display suitable application-specific properties, they provide only poor biocompatibility when implanted into a human/animal body leading to inflammation and rejection reactions. Coatings made of spider silk proteins are promising alternatives for various applications since they are biocompatible, non-toxic and anti-inflammatory. Nevertheless, the biological response toward a spider silk coating cannot be generalized. The properties of spider silk coatings are influenced by many factors, including silk source, solvent, the substrate to be coated, pre- and post-treatments and the processing technique. All these factors consequently affect the biological response of the environment and the putative application of the appropriate silk coating. Here, we summarize recently identified factors to be considered before spider silk processing as well as physicochemical characterization methods. Furthermore, we highlight important results of biological evaluations to emphasize the importance of adjustability and adaption to a specific application. Finally, we provide an experimental matrix of parameters to be considered for a specific application and a guided biological response as exemplarily tested with two different fibroblast cell lines.
Collapse
Affiliation(s)
- Vanessa T. Trossmann
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Sarah Lentz
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Faculty of Medicine, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
6
|
Välisalmi T, Roas-Escalona N, Meinander K, Mohammadi P, Linder MB. Highly Hydrophobic Films of Engineered Silk Proteins by a Simple Deposition Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4370-4381. [PMID: 36926896 PMCID: PMC10061925 DOI: 10.1021/acs.langmuir.2c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Molecular engineering of protein structures offers a uniquely versatile route for novel functionalities in materials. Here, we describe a method to form highly hydrophobic thin films using genetically engineered spider silk proteins. We used structurally engineered protein variants containing ADF3 and AQ12 spider silk sequences. Wetting properties were studied using static and dynamic contact angle measurements. Solution conditions and the surrounding humidity during film preparation were key parameters to obtain high hydrophobicity, as shown by contact angles in excess of 120°. Although the surface layer was highly hydrophobic, its structure was disrupted by the added water droplets. Crystal-like structures were found at the spots where water droplets had been placed. To understand the mechanism of film formation, different variants of the proteins, the topography of the films, and secondary structures of the protein components were studied. The high contact angle in the films demonstrates that the conformations that silk proteins take in the protein layer very efficiently expose their hydrophobic segments. This work reveals a highly amphiphilic nature of silk proteins and contributes to an understanding of their assembly mechanisms. It will also help in designing diverse technical uses for recombinant silk.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Nelmary Roas-Escalona
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Kristoffer Meinander
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland, Limited (VTT), FI-02044 Espoo, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| |
Collapse
|
7
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
8
|
Hofmaier M, Malanin M, Bittrich E, Lentz S, Urban B, Scheibel T, Fery A, Müller M. β-Sheet Structure Formation within Binary Blends of Two Spider Silk Related Peptides. Biomacromolecules 2023; 24:825-840. [PMID: 36632028 DOI: 10.1021/acs.biomac.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) play an important role in molecular biology and medicine because their induced folding can lead to so-called conformational diseases, where β-amyloids play an important role. Still, the molecular folding process into the different substructures, such as parallel/antiparallel or extended β-sheet/crossed β-sheet is not fully understood. The recombinant spider silk protein eADF4(Cx) consisting of repeating modules C, which are composed of a crystalline (pep-c) and an amorphous peptide sequence (pep-a), can be used as a model system for IDP since it can assemble into similar structures. In this work, blend films of the pep-c and pep-a sequences were investigated to modulate the β-sheet formation by varying the molar fraction of pep-c and pep-a. Dichroic Fourier-transform infrared spectroscopy (FTIR), circular dichroism, spectroscopic ellipsometry, atomic force microscopy, and IR nanospectroscopy were used to examine the secondary structure, the formation of parallel and antiparallel β-sheets, their orientation, and the microscopic roughness and phase formation within peptide blend films upon methanol post-treatment. New insights into the formation of filament-like structures in these silk blend films were obtained. Filament-like structures could be locally assigned to β-sheet-rich structures. Further, the antiparallel or parallel character and the orientation of the formed β-sheets could be clearly determined. Finally, the ideal ratio of pep-a and pep-c sequences found in the fibroin 4 of the major ampullate silk of spiders could also be rationalized by comparing the blend and spider silk protein systems.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Mikhail Malanin
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Eva Bittrich
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Sarah Lentz
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany
| | - Birgit Urban
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062Dresden, Germany
| |
Collapse
|
9
|
Characteristic Evaluation of Recombinant MiSp/Poly(lactic- co-glycolic) Acid (PLGA) Nanofiber Scaffolds as Potential Scaffolds for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021219. [PMID: 36674734 PMCID: PMC9861889 DOI: 10.3390/ijms24021219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Biomaterial-based nanofibrous scaffolds are the most effective alternative to bone transplantation therapy. Here, two recombinant minor ampullate spidroins (spider silk proteins), R1SR2 and NR1SR2C, were blended with Poly(lactic-co-glycolic) Acid (PLGA), respectively, to generate nanofiber scaffolds by electrospinning. The N-terminal (N), C-terminal (C), repeating (R1 and R2) and spacer (S) modules were all derived from the minor ampullate spidroins (MiSp). The physical properties and structures of the blended scaffolds were measured by scanning electron microscopy (SEM), water contact angle measurement, Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and Tensile mechanical testing. The results showed that blending of MiSp (R1SR2 and NR1SR2C) reduced the diameter of nanofibers, increased the porosity and glass transition temperatures of nanofibrous scaffolds, and effectively improved the hydrophilicity and ultimate strain of scaffolds. It is worth noting that the above changes were more significant in the presence of the N- and C-termini of MiSp. In cell culture assays, human bone mesenchymal stem cells (HBMSCs) grown on NR1SR2C/PLGA (20/80) scaffolds displayed markedly enhanced proliferative and adhesive abilities compared with counterparts grown on pure PLGA scaffolds. Jointly, these findings indicated recombinant MiSp/PLGA, particularly NR1SR2C/PLGA (20/80) blend nanofibrous scaffolds, is promising for bone tissue engineering.
Collapse
|
10
|
Bittencourt DMDC, Oliveira P, Michalczechen-Lacerda VA, Rosinha GMS, Jones JA, Rech EL. Bioengineering of spider silks for the production of biomedical materials. Front Bioeng Biotechnol 2022; 10:958486. [PMID: 36017345 PMCID: PMC9397580 DOI: 10.3389/fbioe.2022.958486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Spider silks are well known for their extraordinary mechanical properties. This characteristic is a result of the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Advances in synthetic biology have enabled the design and production of spidroins with the aim of biomimicking the structure-property-function relationships of spider silks. Although in nature only fibers are formed from spidroins, in vitro, scientists can explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. The versatility of spidroins, along with their biocompatible and biodegradable nature, also placed them as leading-edge biological macromolecules for improved drug delivery and various biomedical applications. Accordingly, in this review, we highlight the relationship between the molecular structure of spider silk and its mechanical properties and aims to provide a critical summary of recent progress in research employing recombinantly produced bioengineered spidroins for the production of innovative bio-derived structural materials.
Collapse
Affiliation(s)
- Daniela Matias de C. Bittencourt
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology—Synthetic Biology, Brasília, DF, Brazil
| | - Paula Oliveira
- Department of Biology, Utah State University, Logan, UT, United States
| | | | - Grácia Maria Soares Rosinha
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology—Synthetic Biology, Brasília, DF, Brazil
| | - Justin A. Jones
- Department of Biology, Utah State University, Logan, UT, United States
| | - Elibio L. Rech
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology—Synthetic Biology, Brasília, DF, Brazil
| |
Collapse
|
11
|
Mikhailova MM, Sydoruk KV, Davydova LI, Yastremsky EV, Chvalun SN, Debabov VG, Bogush VG, Panteleyev AA. Nonwoven spidroin materials as scaffolds for ex vivo cultivation of aortic fragments and dorsal root ganglia. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1685-1703. [PMID: 35499451 DOI: 10.1080/09205063.2022.2073426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recombinant spidroins (RS; the analogues of silk proteins of spider's web) have multiple properties beneficial for bioengineering, including their suitability for electrospinning and thus, for production of materials with oriented fibers. This makes RS-based matrices potentially effective in stimulating regeneration of peripheral nerves. The restoration of injured nerves also depends on prompt regrowth of blood vessels. Therefore, prospective scaffold materials for neuro-regenerative therapy should positively affect both the nerves and the blood vessels. Currently, the experimental models suitable for culturing and quantitative assessment of the vascular and neuronal cells on the same material are lacking. Here, we assessed the suitability of electrospun RS-based matrices for cultivation of the mouse aorta and dorsal root ganglia (DRG) explants. We also quantified the effects of matrix topography upon both types of tissues. The RS-based materials have effectively supported aortic explants survival and sprouting. The cumulative length of endothelial sprouts on rS1/9-coated inserts was significantly higher as compared to type I collagen coatings, suggesting stimulatory effects on angiogenesis in vitro. In contrast to matrices with random fibers, on matrices with parallel fibers the migration of both smooth muscle and endothelial cells was highly oriented. Furthermore, alignment of RS fibers effectively directs the growth of axons and the migration of Schwann cells from DRGs. Thus, the electrospun RS matrices are highly suitable to culture both, the DRGs and aortic explants and to study the effects of matrix topography on cell migration. This model has a high potential for further endeavor into interactions of nerve and vascular cells and tissues.
Collapse
Affiliation(s)
| | - Konstantin V Sydoruk
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | - Lubov I Davydova
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | - Evgeniy V Yastremsky
- National Research Centre «Kurchatov Institute», Moscow, Russia.,Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, Moscow, Russia
| | | | - Vladimir G Debabov
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | - Vladimir G Bogush
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | | |
Collapse
|
12
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Chen J, Tsuchiya K, Masunaga H, Malay AD, Numata K. A silk composite fiber reinforced by telechelic-type polyalanine and its strengthening mechanism. Polym Chem 2022. [DOI: 10.1039/d2py00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A telechelic-type polyalanine was doped in silkworm silk fibroins to prepare reinforced composite fibers, which exhibited 42% and 51% higher mechanical properties than silk-only fibers in terms of tensile strength and toughness, respectively.
Collapse
Affiliation(s)
- Jianming Chen
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Bakhshandeh B, Nateghi SS, Gazani MM, Dehghani Z, Mohammadzadeh F. A review on advances in the applications of spider silk in biomedical issues. Int J Biol Macromol 2021; 192:258-271. [PMID: 34627845 DOI: 10.1016/j.ijbiomac.2021.09.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
Spider silk, as one of the hardest natural and biocompatible substances with extraordinary strength and flexibility, have become an ideal option in various areas of science and have made their path onto the biomedical industry. Despite its growing popularity, the difficulties in the extraction of silks from spiders and farming them have made it unaffordable and almost impossible for industrial scale. Biotechnology helped production of spider silks recombinantly in different hosts and obtaining diverse morphologies out of them based on different processing and assembly procedures. Herein, the characteristics of these morphologies and their advantages and disadvantages are summarized. A detailed view about applications of recombinant silks in skin regeneration and cartilage, tendon, bone, teeth, cardiovascular, and neural tissues engineering are brought out, where there is a need for strong scaffolds to support cell growth. Likewise, spider silk proteins have applications as conduit constructs, medical sutures, and 3D printer bioinks. Other characteristics of spider silks, such as low immunogenicity, hydrophobicity, homogeneity, and adjustability, have attracted much attention in drug and gene delivery. Finally, the challenges and obstacles ahead for industrializing the production of spider silk proteins in sufficient quantities in biomedicine, along with solutions to overcome these barriers, are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Seyedeh Saba Nateghi
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Maddah Gazani
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
15
|
Functionalization of Silicone Surface with Drugs and Polymers for Regulation of Capsular Contracture. Polymers (Basel) 2021; 13:polym13162731. [PMID: 34451270 PMCID: PMC8400777 DOI: 10.3390/polym13162731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Breast reconstruction is achieved using silicone implants, which are currently associated with major complications. Several strategies have been considered to overcome the existing limitations as well as to improve their performance. Recently, surface modification has proved to be an effective clinical approach to prevent bacterial adhesion, reduce capsular thickness, prevent foreign body reactions, and reduce other implant-associated problems. This review article summarizes the ongoing strategies for the surface modification of silicone implants in breast reconstruction applications. The article mostly discusses two broad categories of surface modification: drug-mediated and polymer-based. Different kinds of drugs have been applied with silicone that are associated with breast reconstruction. Initially, this article discusses studies related to drugs immobilized on silicone implants, focusing on drug-loading methods and their effects on capsule contracture. Moreover, the pharmacological action of drugs on fibroblast cells is considered in this section. Next, the polymeric modification of the silicone surface is introduced, and we discuss its role in reducing capsule thickness at the cellular and biological levels. The polymeric modification techniques, their chemistry, and their physical properties are described in detail. Notably, polymer activities on macrophages and inflammation are also briefly discussed. Each of the reviewed articles is summarized, highlighting their discussion of capsular thickness, foreign body reactions, and bacterial attachment. The aim of this review is to provide the main points of some research articles regarding the surface modification of silicon, which can lead to a decrease in capsular thickness and provides better patient compliance.
Collapse
|
16
|
Schiefer JL, Andreae J, Bagheri M, Fuchs PC, Lefering R, Heitzmann W, Schulz A. A clinical comparison of pure knitted silk and a complex synthetic skin substitute for the treatment of partial thickness burns. Int Wound J 2021; 19:178-187. [PMID: 33973387 PMCID: PMC8684860 DOI: 10.1111/iwj.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
Currently, many dressings are commercially available for the treatment of burn wounds. Some of these wound dressings remain on the wound, prevent painful dressing changes, and reduce tissue scarring. Nevertheless, still a wound dressing that is cost-effective, produces good wound healing properties, and has a high patient satisfaction is needed. Standard care of superficial burn wounds differs between burn centres. This study aimed to determine a dressing with easy appliance, accurate pain control, favourable outcome, and cost-effectiveness. Therefore, we compared the widely used but expensive Suprathel with the rather new but much cheaper Dressilk in the clinical setting. In a prospective clinical study, the healing of partial thickness burn wounds after simultaneous treatment with Suprathel and Dressilk was examined in 20 patients intra-individually. During wound healing, pain, infection, exudation, and bleeding were evaluated. A subjective scar evaluation was performed using the Patient and Observer Scar Scale. Both dressings were easy to apply, remained on the wound in place, and were gradually cut back as reepithelisation proceeded and showed similar times to wound closure. Dressing changes were not necessary, and neither infections nor bleeding was detected. Overall exudation and pain were highest in the beginning but declined during the wound-healing phase without significant differences. In the follow-up scar evaluation after 12 months, patients reported overall high satisfaction. Overall, the modern dressings Suprathel and Dressilk (solely made out of pure silk) led to safe wound healing without infection and rapidly reduced pain. There was no need for dressing changes, and they had similar clinical outcomes in scar evaluation. Therefore, both dressings seem to be ideal for the treatment of superficial burns. Because acquisition costs remain one of the main factors in the treatment of burns, Dressilk, which is ~20 times cheaper than Suprathel, remains a good option for the treatment of partial thickness burns.
Collapse
Affiliation(s)
- Jennifer Lynn Schiefer
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Janine Andreae
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Mahsa Bagheri
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Paul Christian Fuchs
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Rolf Lefering
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne, Germany
| | - Wolfram Heitzmann
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| | - Alexandra Schulz
- Clinic of Plastic, Reconstructive, Hand and Burn Surgery, Hospital Cologne Merheim, University of Witten-Herdecke, Cologne, Germany
| |
Collapse
|
17
|
Kucharczyk K, Kaczmarek K, Jozefczak A, Slachcinski M, Mackiewicz A, Dams-Kozlowska H. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111654. [PMID: 33545822 DOI: 10.1016/j.msec.2020.111654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are one of the most extensively studied materials for theranostic applications. IONPs can be used for magnetic resonance imaging (MRI), delivery of therapeutics, and hyperthermia treatment. Silk is a biocompatible material and can be used for biomedical applications. Previously, we produced spheres made of H2.1MS1 bioengineered silk that specifically carried a drug to the Her2-overexpressing cancer cells. To confer biocompatibility and targeting properties to IONPs, we blended these particles with bioengineered spider silks. Three bioengineered silks (MS1Fe1, MS1Fe2, and MS1Fe1Fe2) functionalized with the adhesion peptides F1 and F2, were constructed and investigated to form the composite spheres with IONPs carrying a positive or negative charge. Due to its highest IONP content, MS1Fe1 silk was used to produce spheres from the H2.1MS1:MS1Fe silk blend to obtain a carrier with cell-targeting properties. Composite H2.1MS1:MS1Fe1/IONP spheres made of silks blended at different ratios were obtained. Although the increased content of MS1Fe1 silk in particles resulted in an increased affinity of the spheres to IONPs, it decreased the binding of the composite particles to cancer cells. The H2.1MS1:MS1Fe1 particles prepared at a ratio of 8:2 and loaded with IONPs exhibited the ability to bind to the targeted cancer cells similar to the control spheres without IONPs. Moreover, when exposed to the alternating magnetic field, these particles generated 2.5 times higher heat. They caused an almost three times higher percentage of apoptosis in cancer cells than the control particles. The blending of silks enabled the generation of cancer-targeting spheres with a high affinity for iron oxide nanoparticles, which can be used for anti-cancer hyperthermia therapy.
Collapse
Affiliation(s)
- Kamil Kucharczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kaczmarek
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Arkadiusz Jozefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Slachcinski
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| |
Collapse
|
18
|
Hershewe JM, Wiseman WD, Kath JE, Buck CC, Gupta MK, Dennis PB, Naik RR, Jewett MC. Characterizing and Controlling Nanoscale Self-Assembly of Suckerin-12. ACS Synth Biol 2020; 9:3388-3399. [PMID: 33201684 DOI: 10.1021/acssynbio.0c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural proteins such as "suckerins" present promising avenues for fabricating functional materials. Suckerins are a family of naturally occurring block copolymer-type proteins that comprise the sucker ring teeth of cephalopods and are known to self-assemble into supramolecular networks of nanoconfined β-sheets. Here, we report the characterization and controllable, nanoscale self-assembly of suckerin-12 (S12). We characterize the impacts of salt, pH, and protein concentration on S12 solubility, secondary structure, and self-assembly. In doing so, we identify conditions for fabricating ∼100 nm nanoassemblies (NAs) with narrow size distributions. Finally, by installing a noncanonical amino acid (ncAA) into S12, we demonstrate the assembly of NAs that are covalently conjugated with a hydrophobic fluorophore and the ability to change self-assembly and β-sheet content by PEGylation. This work presents new insights into the biochemistry of suckerin-12 and demonstrates how ncAAs can be used to expedite and fine-tune the design of protein materials.
Collapse
Affiliation(s)
- Jasmine M. Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
| | - William D. Wiseman
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Master of Biotechnology Program, Technological Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208−3120, United States
| | - James E. Kath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
| | - Chelsea C. Buck
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Chemical and Materials Engineering Department, University of Dayton, 300 College Park Avenue, Dayton, Ohio 45469, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208−3120, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208−3120, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, Illinois 60611−3068, United States
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, Illinois 60611−2875, United States
| |
Collapse
|
19
|
Abstract
After decades of research and development, recombinant protein polymers have begun to find applications outside the pharmaceutical and biomedical fields. Several recombinant derivatives of natural structural proteins are now being sold in personal care products, providing novel functionality while also being animal-free, not derived from petroleum, biocompatible, and biodegradable. Consumers are now demanding these material characteristics in their personal care products, and a backlog of well-characterized recombinant protein polymers could become the future of personal care ingredients.
Collapse
Affiliation(s)
- David N Breslauer
- Bolt Threads, 5858 Horton Street, Suite 400, Emeryville, California 94608, United States
| |
Collapse
|
20
|
Parker RN, Trent A, Roth Stefaniak KL, Van Dyke ME, Grove TZ. A comparative study of materials assembled from recombinant K31 and K81 and extracted human hair keratins. ACTA ACUST UNITED AC 2020; 15:065006. [PMID: 32485704 DOI: 10.1088/1748-605x/ab98e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration. However, studies of structure-function relationships in keratin biomaterials have been hindered by the lack of homogeneous preparations of materials extracted and isolated from natural sources such as wool and hair fibers. Here we present a side-by-side comparison of natural and recombinant human hair keratin proteins K31 and K81. When combined, the recombinant proteins (i.e. rhK31 and rhK81) assemble into characteristic intermediate filament-like fibers. Coatings made from natural and recombinant dimers were compared side-by-side and investigated for coating characteristics and cell adhesion. In comparison to control substrates, the recombinant keratin materials show a higher propensity for inducing involucrin and hence, maturation in terms of potential skin cell differentiation.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24060. Authors contributed equally to this work
| | | | | | | | | |
Collapse
|
21
|
Gu Y, Yu L, Mou J, Wu D, Zhou P, Xu M. Mechanical properties and application analysis of spider silk bionic material. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractSpider silk is a kind of natural biomaterial with superior performance. Its mechanical properties and biocompatibility are incomparable with those of other natural and artificial materials. This article first summarizes the structure and the characteristics of natural spider silk. It shows the great research value of spider silk and spider silk bionic materials. Then, the development status of spider silk bionic materials is reviewed from the perspectives of material mechanical properties and application. The part of the material characteristics mainly describes the biocomposites based on spider silk proteins and spider silk fibers, nanomaterials and man-made fiber materials based on spider silk and spider-web structures. The principles and characteristics of new materials and their potential applications in the future are described. In addition, from the perspective of practical applications, the latest application of spider silk biomimetic materials in the fields of medicine, textiles, and sensors is reviewed, and the inspiration, feasibility, and performance of finished products are briefly introduced and analyzed. Finally, the research directions and future development trends of spider silk biomimetic materials are prospected.
Collapse
Affiliation(s)
- Yunqing Gu
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Lingzhi Yu
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jiegang Mou
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Denghao Wu
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Peijian Zhou
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Maosen Xu
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
22
|
Chakraborty R, Fan JS, Lai CC, Raghuvamsi PV, Chee PX, Anand GS, Yang D. Structural Basis of Oligomerization of N-Terminal Domain of Spider Aciniform Silk Protein. Int J Mol Sci 2020; 21:ijms21124466. [PMID: 32586030 PMCID: PMC7352312 DOI: 10.3390/ijms21124466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen–deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.
Collapse
|
23
|
Weiss ACG, Herold HM, Lentz S, Faria M, Besford QA, Ang CS, Caruso F, Scheibel T. Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24635-24643. [PMID: 32369330 DOI: 10.1021/acsami.0c06344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, spider silk-based materials have attracted attention because of their biocompatibility, processability, and biodegradability. For their potential use in biomaterial applications, i.e., as drug delivery systems and implant coatings for tissue regeneration, it is vital to understand the interactions between the silk biomaterial surface and the biological environment. Like most polymeric carrier systems, spider silk material surfaces can adsorb proteins when in contact with blood, resulting in the formation of a biomolecular corona. Here, we assessed the effect of surface net charge of materials made of recombinant spider silk on the biomolecular corona composition. In-depth proteomic analysis of the biomolecular corona revealed that positively charged spider silk materials surfaces interacted predominantly with fibrinogen-based proteins. This fibrinogen enrichment correlated with blood clotting observed for both positively charged spider silk films and particles. In contrast, negative surface charges prevented blood clotting. Genetic engineering allows the fine-tuning of surface properties of the spider silk particles providing a whole set of recombinant spider silk proteins with different charges or peptide tags to be used for, for example, drug delivery or cell docking, and several of these were analyzed concerning the composition of their biomolecular corona. Taken together this study demonstrates how the surface net charge of recombinant spider silk surfaces affects the composition of the biomolecular corona, which in turn affects macroscopic effects such as fibrin formation and blood clotting.
Collapse
Affiliation(s)
- Alessia C G Weiss
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Heike M Herold
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof. Rüdiger-Bormann-Strasse 1, Bayreuth 95447, Germany
| | - Sarah Lentz
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof. Rüdiger-Bormann-Strasse 1, Bayreuth 95447, Germany
| | - Matthew Faria
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria 3052, Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, and the Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- Leibniz-Institute für Polymerforschung, Hohe Straβe 6, Dresden 01069 , Germany
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof. Rüdiger-Bormann-Strasse 1, Bayreuth 95447, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Bayreuth 95440, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Bayreuth 95440, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
- Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
24
|
Liao X, Dulle M, de Souza E Silva JM, Wehrspohn RB, Agarwal S, Förster S, Hou H, Smith P, Greiner A. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 2020; 366:1376-1379. [PMID: 31831668 DOI: 10.1126/science.aay9033] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/13/2019] [Indexed: 11/02/2022]
Abstract
In materials science, there is an intrinsic conflict between high strength and high toughness, which can be resolved for different materials only through the use of innovative design principles. Advanced materials must be highly resistant to both deformation and fracture. We overcome this conflict in man-made polymer fibers and show multifibrillar polyacrylonitrile yarn with a toughness of 137 ± 21 joules per gram in combination with a tensile strength of 1236 ± 40 megapascals. The nearly perfect uniaxial orientation of the fibrils, annealing under tension in the presence of linking molecules, is essential for the yarn's notable mechanical properties. This underlying principle can be used to create similar strong and tough fibers from other commodity polymers in the future and can be used in a variety of applications in areas such as biomedicine, satellite technology, textiles, aircrafts, and automobiles.
Collapse
Affiliation(s)
- Xiaojian Liao
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Martin Dulle
- JCNS-1/ICS-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - Ralf B Wehrspohn
- Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Saale), Germany.,Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Straße 1, 06120 Halle (Saale), Germany
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stephan Förster
- JCNS-1/ICS-1, Forschungszentrum Jülich, 52425 Jülich, Germany.,Physical Chemistry, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Haoqing Hou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Paul Smith
- ETH Zürich, HCP F41.2, 8093 Zürich, Switzerland
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
25
|
Poddar H, Breitling R, Takano E. Towards engineering and production of artificial spider silk using tools of synthetic biology. ENGINEERING BIOLOGY 2020; 4:1-6. [PMID: 36970229 PMCID: PMC9996717 DOI: 10.1049/enb.2019.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Spider silk is one of the strongest biomaterials available in nature. Its mechanical properties make it a good candidate for applications in various fields ranging from protective armour to bandages for wound dressing to coatings for medical implants. Spider silk is formed by an intricate arrangement of spidroins, which are extremely large proteins containing long stretches of repeating segments rich in alanine and glycine. A large amount of research has been directed towards harnessing the spectacular potential of spider silks and using them for different applications. The interdisciplinary approach of synthetic biology is an ideal tool to study these spider silk proteins and work towards the engineering and production of synthetic spider silk. This review aims to highlight the recent progress that has been made in the study of spider silk proteins using different branches of synthetic biology. Here, the authors discuss the different computational approaches, directed evolution techniques and various expression platforms that have been tested for the successful production of spider silk. Future challenges facing the field and possible solutions offered by synthetic biology are also discussed.
Collapse
Affiliation(s)
- Hashwardhan Poddar
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEMThe University of ManchesterManchesterM1 7DNUK
| | - Rainer Breitling
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEMThe University of ManchesterManchesterM1 7DNUK
| | - Eriko Takano
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEMThe University of ManchesterManchesterM1 7DNUK
| |
Collapse
|
26
|
Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehreen Elahi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Rabia Mushtaq
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Department of Zoology, Government College University, Lahore, Pakistan
- Sericulture Wing, Forest Department, Lahore, Pakistan
| |
Collapse
|
27
|
Salehi S, Koeck K, Scheibel T. Spider Silk for Tissue Engineering Applications. Molecules 2020; 25:E737. [PMID: 32046280 PMCID: PMC7037138 DOI: 10.3390/molecules25030737] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its properties, such as biodegradability, low density, excellent biocompatibility and unique mechanics, spider silk has been used as a natural biomaterial for a myriad of applications. First clinical applications of spider silk as suture material go back to the 18th century. Nowadays, since natural production using spiders is limited due to problems with farming spiders, recombinant production of spider silk proteins seems to be the best way to produce material in sufficient quantities. The availability of recombinantly produced spider silk proteins, as well as their good processability has opened the path towards modern biomedical applications. Here, we highlight the research on spider silk-based materials in the field of tissue engineering and summarize various two-dimensional (2D) and three-dimensional (3D) scaffolds made of spider silk. Finally, different applications of spider silk-based materials are reviewed in the field of tissue engineering in vitro and in vivo.
Collapse
Affiliation(s)
- Sahar Salehi
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
| | - Kim Koeck
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
| | - Thomas Scheibel
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
- The Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- The Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- The Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
28
|
Zhang J, Sun J, Li B, Yang C, Shen J, Wang N, Gu R, Wang D, Chen D, Hu H, Fan C, Zhang H, Liu K. Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907598. [PMID: 32003943 DOI: 10.1002/smll.201907598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Lightweight and mechanically strong protein fibers are promising for many technical applications. Despite the widespread investigation of biological fibers based on spider silk and silkworm proteins, it remains a challenge to develop low-cost proteins and convenient spinning technology for the fabrication of robust biological fibers. Since there are plenty of widely available proteins in nature, it is meaningful to investigate the preparation of fibers by the proteins and explore their biomedical applications. Here, a facile microfluidic strategy is developed for the scalable construction of biological fibers via a series of easily accessible spherical and linear proteins including chicken egg, quail egg, goose egg, bovine serum albumin, milk, and collagen. It is found that the crosslinking effect in microfluidic chips and double-drawn treatment after spinning are crucial for the formation of fibers. Thus, high tensile strength and toughness are realized in the fibers, which are comparable or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Moreover, the suturing applications in rat and minipig models are realized by employing the mechanically strong fibers. Therefore, this work opens a new direction for the production of biological fibers from natural sources.
Collapse
Affiliation(s)
- Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nan Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin Uuniversity, 130021, Changchun, China
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
29
|
Kumari S, Bargel H, Scheibel T. Recombinant Spider Silk-Silica Hybrid Scaffolds with Drug-Releasing Properties for Tissue Engineering Applications. Macromol Rapid Commun 2019; 41:e1900426. [PMID: 31697434 DOI: 10.1002/marc.201900426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Fabricating biomaterials with antimicrobial activity to prevent the growth of detrimental microorganisms is of great scientific and practical interest. Here, composite materials comprising recombinant spider silk proteins and mesoporous silica nanoparticles (MSN) loaded with selected antibiotics and antimycotics are fabricated into films and hydrogels. The derived composite materials exhibit excellent antimicrobial properties with sustained release of antibiotics over the course of 15 days. Furthermore, antibiotics/antimycotics inclusion does not impair the cytocompatibility of the composite materials, all of which promote fibroblast cell adhesion and proliferation. Finally, processing of spider silk-MSN composite hydrogels using 3D printing is shown to enable the fabrication of patient-specific antimicrobial implants to prevent infection in the near future.
Collapse
Affiliation(s)
- Sushma Kumari
- Department of Biomaterials, Faculty of Engineering Science, Prof.-Rüdiger-Bormann-Str. 1, University of Bayreuth, 95447, Bayreuth, Germany
| | - Hendrik Bargel
- Department of Biomaterials, Faculty of Engineering Science, Prof.-Rüdiger-Bormann-Str. 1, University of Bayreuth, 95447, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Prof.-Rüdiger-Bormann-Str. 1, University of Bayreuth, 95447, Bayreuth, Germany.,Bayreuth Center for Material Science and Engineering (BayMAT), Bavarian Polymer Institute (BPI), Bayreuth Center for Colloids and Interfaces (BZKG), Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
30
|
Kamoun EA, Abu-Elreesh GM, El-Fakharany EM, Abd-El-Haleem D. A Novel Bacterial Polymeric Silk-Like Protein from a Petroleum Origin Bacillus sp. strain NE: Isolation and Characterization. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2019; 27:1629-1641. [DOI: 10.1007/s10924-019-01459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
31
|
Kiseleva A, Kiselev G, Kessler V, Seisenbaeva G, Gets D, Rumyantseva V, Lyalina T, Fakhardo A, Krivoshapkin P, Krivoshapkina E. Optically Active Hybrid Materials Based on Natural Spider Silk. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22962-22972. [PMID: 31252494 DOI: 10.1021/acsami.9b05131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spider silk is a natural material possessing unique properties such as biocompatibility, regenerative and antimicrobial activity, and biodegradability. It is broadly considered an attractive matrix for tissue regeneration applications. Optical monitoring and potential control over tissue regrowth are attractive tools for monitoring of this process. In this work, we show upconversion modification of natural spider silk fibers with inorganic nanoparticles. To achieve upconversion, metal oxide nanoparticles were doped with low concentrations of rare-earth elements, producing potentially biocompatible luminescent nanomaterials. The suggested approach to spider silk modification is efficient and easy to perform, opening up sensing and imaging possibilities of biomaterials in a noninvasive and real-time manner in bio-integration approaches.
Collapse
Affiliation(s)
| | - Grigorii Kiselev
- ITMO University , Lomonosova Street 9 , Saint Petersburg 191002 , Russia
| | - Vadim Kessler
- Department of Molecular Sciences, Biocenter , SLU , P.O. Box 7015, SE-75007 Uppsala , Sweden
| | - Gulaim Seisenbaeva
- Department of Molecular Sciences, Biocenter , SLU , P.O. Box 7015, SE-75007 Uppsala , Sweden
| | - Dmitry Gets
- ITMO University , Lomonosova Street 9 , Saint Petersburg 191002 , Russia
| | | | - Tatiana Lyalina
- ITMO University , Lomonosova Street 9 , Saint Petersburg 191002 , Russia
| | - Anna Fakhardo
- ITMO University , Lomonosova Street 9 , Saint Petersburg 191002 , Russia
| | - Pavel Krivoshapkin
- ITMO University , Lomonosova Street 9 , Saint Petersburg 191002 , Russia
| | | |
Collapse
|
32
|
Audette GF, Yaseen A, Bragagnolo N, Bawa R. Protein Nanotubes: From Bionanotech towards Medical Applications. Biomedicines 2019; 7:biomedicines7020046. [PMID: 31234611 PMCID: PMC6630890 DOI: 10.3390/biomedicines7020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. This review aims to highlight some of the current research employing protein nanotubes (PNTs) for the development of molecular imaging biosensors, conducting wires for microelectronics, fuel cells, and drug delivery systems. The translational potential of PNTs is highlighted.
Collapse
Affiliation(s)
- Gerald F Audette
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Ayat Yaseen
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Nicholas Bragagnolo
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Raj Bawa
- Patent Law Department, Bawa Biotech LLC, Ashburn, VA 20147, USA.
- Guanine Inc., Rensselaer, NY 12144-3463, USA.
- Pharmaceutical Research Institute of Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| |
Collapse
|
33
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
34
|
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet 2019; 10:368. [PMID: 31114606 PMCID: PMC6503039 DOI: 10.3389/fgene.2019.00368] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of new pharmaceutical drugs is one of the preeminent tasks-scientifically, economically, and socially-in biomedical research. Advances in informatics and computational biology have increased productivity at many stages of the drug discovery pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small molecules as the primary source of novel hypotheses. Natural products (such as plant metabolites, animal toxins, and immunological components) comprise a vast and diverse source of bioactive compounds, some of which are supported by thousands of years of traditional medicine, and are largely disjoint from the set of small molecules used commonly for discovery. However, natural products possess unique characteristics that distinguish them from traditional small molecule drug candidates, requiring new methods and approaches for assessing their therapeutic potential. In this review, we investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics, and knowledge engineering for data-driven drug discovery from natural products. We focus on methods that aim to bridge the gap between traditional small-molecule drug candidates and different classes of natural products. We also explore the current informatics knowledge gaps and other barriers that need to be overcome to fully leverage these compounds for drug discovery. Finally, we conclude with a "road map" of research priorities that seeks to realize this goal.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| |
Collapse
|
35
|
Pena-Francesch A, Demirel MC. Squid-Inspired Tandem Repeat Proteins: Functional Fibers and Films. Front Chem 2019; 7:69. [PMID: 30847338 PMCID: PMC6393770 DOI: 10.3389/fchem.2019.00069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Production of repetitive polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions have been an interest for the last couple of decades. Their molecular structure provides a rich architecture that can micro-phase-separate to form periodic nanostructures (e.g., lamellar and cylindrical repeating phases) with enhanced physicochemical properties via directed or natural evolution that often exceed those of conventional synthetic polymers. Here, we review programmable design, structure, and properties of functional fibers and films from squid-inspired tandem repeat proteins, with applications in soft photonics and advanced textiles among others.
Collapse
Affiliation(s)
- Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Melik C. Demirel
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
36
|
Nilebäck L, Arola S, Kvick M, Paananen A, Linder MB, Hedhammar M. Interfacial Behavior of Recombinant Spider Silk Protein Parts Reveals Cues on the Silk Assembly Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11795-11805. [PMID: 30183309 DOI: 10.1021/acs.langmuir.8b02381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanism of silk assembly, and thus the cues for the extraordinary properties of silk, can be explored by studying the simplest protein parts needed for the formation of silk-like materials. The recombinant spider silk protein 4RepCT, consisting of four repeats of polyalanine and glycine-rich segments (4Rep) and a globular C-terminal domain (CT), has previously been shown to assemble into silk-like fibers at the liquid-air interface. Herein, we study the interfacial behavior of the two parts of 4RepCT, revealing new details on how each protein part is crucial for the silk assembly. Interfacial rheology and quartz crystal microbalance with dissipation show that 4Rep interacts readily at the interfaces. However, organized nanofibrillar structures are formed only when 4Rep is fused to CT. A strong interplay between the parts to direct the assembly is demonstrated. The presence of either a liquid-air or a liquid-solid interface had a surprisingly similar influence on the assembly.
Collapse
Affiliation(s)
- Linnea Nilebäck
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , SE-106 91 Stockholm , Sweden
| | - Suvi Arola
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16100, Fi-00076 Aalto , Finland
| | - Mathias Kvick
- Spiber Technologies AB, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Arja Paananen
- VTT Technical Research Centre of Finland Ltd , Tietotie 2 , Fi-02150 Espoo , Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , P.O. Box 16100, Fi-00076 Aalto , Finland
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , SE-106 91 Stockholm , Sweden
| |
Collapse
|
37
|
Chen J, Hu J, Zuo P, Shi J, Yang M. Facile preparation of recombinant spider eggcase silk spheres via an HFIP-on-Oil approach. Int J Biol Macromol 2018; 116:1146-1152. [DOI: 10.1016/j.ijbiomac.2018.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
|
38
|
Chen J, Hu J, Sasaki S, Naka K. Modular Assembly of a Conserved Repetitive Sequence in the Spider Eggcase Silk: From Gene to Fiber. ACS Biomater Sci Eng 2018; 4:2748-2757. [DOI: 10.1021/acsbiomaterials.8b00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianming Chen
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| | - Jinlian Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| |
Collapse
|
39
|
Martín-Moldes Z, Ebrahimi D, Plowright R, Dinjaski N, Perry CC, Buehler MJ, Kaplan DL. Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1702570. [PMID: 30140193 PMCID: PMC6101667 DOI: 10.1002/adfm.201702570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biomineralization at the organic-inorganic interface is critical to many biology material functions in vitro and in vivo. Recombinant silk-silica fusion peptides are organic-inorganic hybrid material systems that can be effectively used to study and control biologically-mediated mineralization due to the genetic basis of sequence control. However, to date, the mechanisms by which these functionalized silk-silica proteins trigger the differentiation of human mesenchymal stem cells (hMSCs) to osteoblasts remain unknown. To address this challenge, we analyzed silk-silica surfaces for silica-hMSC receptor binding and activation, and the intracellular pathways involved in the induction of osteogenesis on these bioengineered biomaterials. The induction of gene expression of αVβ3 integrin, all three Mitogen-activated Protein Kinsases (MAPKs) as well as c-Jun, Runt-related Transcription Factor 2 (Runx2) and osteoblast marker genes was demonstrated upon growth of the hMSCs on the silk-silica materials. This induction of key markers of osteogenesis correlated with the content of silica on the materials. Moreover, computational simulations were performed for silk/silica-integrin binding which showed activation of αVβ3 integrin in contact with silica. This integrated computational and experimental approach provides insight into interactions that regulate osteogenesis towards more efficient biomaterial designs.
Collapse
Affiliation(s)
- Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Davoud Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robyn Plowright
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
40
|
Zhou Z, Zhang S, Cao Y, Marelli B, Xia X, Tao TH. Engineering the Future of Silk Materials through Advanced Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706983. [PMID: 29956397 DOI: 10.1002/adma.201706983] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Indexed: 05/05/2023]
Abstract
Silk is a natural fiber renowned for its outstanding mechanical properties that have enabled the manufacturing of ultralight and ultrastrong textiles. Recent advances in silk processing and manufacturing have underpinned a re-interpretation of silk from textiles to technological materials. Here, it is argued that silk materials-optimized by selective pressure to work in the environment at the biotic-abiotic interface-can be harnessed by human micro- and nanomanufacturing technology to impart new functionalities and opportunities. A critical overview of recent progress in silk technology is presented with emphasis on high-tech applications enabled by recent innovations in multilevel modifications, multiscale manufacturing, and multimodal characterization of silk materials. These advances have enabled successful demonstrations of silk materials across several disciplines, including tissue engineering, drug delivery, implantable medical devices, and biodissolvable/degradable devices.
Collapse
Affiliation(s)
- Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoqing Zhang
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
41
|
Zheng K, Ling S. De Novo Design of Recombinant Spider Silk Proteins for Material Applications. Biotechnol J 2018; 14:e1700753. [PMID: 29781251 DOI: 10.1002/biot.201700753] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/22/2018] [Indexed: 01/08/2023]
Abstract
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies are developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, the authors first introduce the structure-property-function relationship of spider silks. Then, the recent progress in the genetic synthesis of RSSPs is discussed and their related multiscale self-assembly behaviors is summarized. Finally, the authors outline works utilizing multiscale modeling to assist RSSP material design.
Collapse
Affiliation(s)
- Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
42
|
Kumari S, Bargel H, Anby MU, Lafargue D, Scheibel T. Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals. ACS Biomater Sci Eng 2018; 4:1750-1759. [PMID: 33445332 DOI: 10.1021/acsbiomaterials.8b00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Therapeutic biologics (i.e., proteins) have been widely recognized for the treatment, prevention, and cure of a variety of human diseases and syndromes. However, design of novel protein-delivery systems to achieve a nontoxic, constant, and efficient delivery with minimal doses of therapeutic biologics is still challenging. Here, recombinant spider silk-based materials are employed as a delivery system for the administration of therapeutic biologicals. Hydrogels made of the recombinant spider silk protein eADF4(C16) were used to encapsulate the model biologicals BSA, HRP, and LYS by direct loading or through diffusion, and their release was studied. Release of model biologicals from eADF4(C16) hydrogels is in part dependent on the electrostatic interaction between the biological and the recombinant spider silk protein variant used. In addition, tailoring the pore sizes of eADF4(C16) hydrogels strongly influenced the release kinetics. In a second approach, a particles-in-hydrogel system was used, showing a prolonged release in comparison with that of plain hydrogels (from days to week). The particle-enforced spider silk hydrogels are injectable and can be 3D printed. These initial studies indicate the potential of recombinant spider silk proteins to design novel injectable hydrogels that are suitable for delivering therapeutic biologics.
Collapse
Affiliation(s)
- Sushma Kumari
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Hendrik Bargel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Mette U Anby
- Technologie Servier, 25/27 rue Eugène Vignat, 45000 Orleans, France.,H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - David Lafargue
- Technologie Servier, 25/27 rue Eugène Vignat, 45000 Orleans, France
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
43
|
Mickoleit F, Borkner CB, Toro-Nahuelpan M, Herold HM, Maier DS, Plitzko JM, Scheibel T, Schüler D. In Vivo Coating of Bacterial Magnetic Nanoparticles by Magnetosome Expression of Spider Silk-Inspired Peptides. Biomacromolecules 2018; 19:962-972. [PMID: 29357230 DOI: 10.1021/acs.biomac.7b01749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnetosomes are natural magnetic nanoparticles with exceptional properties that are synthesized in magnetotactic bacteria by a highly regulated biomineralization process. Their usability in many applications could be further improved by encapsulation in biocompatible polymers. In this study, we explored the production of spider silk-inspired peptides on magnetosomes of the alphaproteobacterium Magnetospirillum gryphiswaldense. Genetic fusion of different silk sequence-like variants to abundant magnetosome membrane proteins enhanced magnetite biomineralization and caused the formation of a proteinaceous capsule, which increased the colloidal stability of isolated particles. Furthermore, we show that spider silk peptides fused to a magnetosome membrane protein can be used as seeds for silk fibril growth on the magnetosome surface. In summary, we demonstrate that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.
Collapse
Affiliation(s)
| | | | - Mauricio Toro-Nahuelpan
- Department of Molecular Structural Biology , Max Planck Institute of Biochemistry , D-82152 Martinsried , Germany
| | | | | | - Jürgen M Plitzko
- Department of Molecular Structural Biology , Max Planck Institute of Biochemistry , D-82152 Martinsried , Germany
| | | | | |
Collapse
|
44
|
Virador GM, de Marcos L, Virador VM. Skin Wound Healing: Refractory Wounds and Novel Solutions. Methods Mol Biol 2018; 1879:221-241. [PMID: 29797010 DOI: 10.1007/7651_2018_161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This overview of the current state of skin wound healing includes in vitro and in vivo approaches along with some recent clinical trials. From an introduction to wound healing, to tissue engineering as applied to the skin, we cover the basis for the current wound care techniques as well as novel and promising approaches. Special emphasis is given to refractory wounds which include wounds in diabetic patients. Natural compounds have been ever present in wound healing, and so we devote a section to highlighting current attempts to understand their mechanisms and to use them in novel ways.
Collapse
Affiliation(s)
- Gabriel M Virador
- Biology Department, Montgomery College, Rockville, MD, USA.,University of Navarra, Pamplona, Navarra, Spain
| | | | - Victoria M Virador
- Biology Department, Montgomery College, Rockville, MD, USA. .,Virador and Associates, Bethesda, MD, USA.
| |
Collapse
|
45
|
Abstract
Abstract
Silks are well known natural fibers used for textile applications and have got for the first time available upon sericulture of silkworms (Bombyx mori) several thousand years ago in China. In contrast to silkworm silk, spider silks offer better mechanical properties such as higher tensile strength and much better toughness, but natural spider silk is less accessible due to the cannibalistic behavior of spiders prohibiting large scale farming, and therefore has not been employed in textile industry yet. In this study, a biotechnologically produced spider silk protein was introduced as a new material for textile applications in form of foam coating material. The spider silk foam coating was developed to increase the abrasion behavior of natural and polymeric furniture textiles. Modern textiles are high-tech materials and optimized concerning yarn design and fabric weave to fit a wide range of applications. Often hydrofluorocarbons based coatings are used to enhance textile performances. Upon coating with sustainable spider silk, yarn fraying was significantly reduced lowering the tendency to form knots and loops. Further, the textile abrasion resistance, analyzed by pilling tests, was improved significantly (17–200%) for all tested types of fabrics, in particular long term strain pilling was minimized.
Collapse
|
46
|
Smith CR. Tissue adhesive innovations derived from the natural world. J Thorac Cardiovasc Surg 2017; 155:278-279. [PMID: 29129425 DOI: 10.1016/j.jtcvs.2017.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Craig R Smith
- Department of Surgery, College of Physicians & Surgeons of Columbia University, Columbia University Medical Center of New York Presbyterian Hospital, New York, NY.
| |
Collapse
|
47
|
Nilebäck L, Chouhan D, Jansson R, Widhe M, Mandal BB, Hedhammar M. Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31634-31644. [PMID: 28846369 DOI: 10.1021/acsami.7b10874] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.
Collapse
Affiliation(s)
- Linnea Nilebäck
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Ronnie Jansson
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| | - Mona Widhe
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - My Hedhammar
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| |
Collapse
|
48
|
Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment. Acta Biomater 2017; 59:221-233. [PMID: 28694238 DOI: 10.1016/j.actbio.2017.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. STATEMENT OF SIGNIFICANCE We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics. Although, the siRNA constructs have already given very promising results in the cancer therapy, the in vivo application of RNA-based oligonucleotide therapeutics still is limited due to their sensitivity to serum nucleases and some toxicity. We propose a carrier for RNA-based therapeutics that is made of bioengineered spider silk. We showed that functionalized bioengineered spider silk spheres not only protected RNA-based therapeutics from degradation by serum nucleases, but what is more important the embedding of siRNA into silk spheres delayed and extended target gene silencing compared with naked oligonucleotides. Moreover, we showed that plain silk spheres did not have unspecific effect on target gene levels proving not only to be non-cytotoxic but also very neutral vehicles in terms of TLR9/STAT3 activation in macrophages. We demonstrated advantages of novel delivery technology in safety and efficacy comparing with delivery of naked CpG-STAT3siRNA therapeutics.
Collapse
|
49
|
Agostini E, Winter G, Engert J. Scale-up of water-based spider silk film casting using a film applicator. Int J Pharm 2017; 532:13-20. [PMID: 28844898 DOI: 10.1016/j.ijpharm.2017.08.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
Abstract
Spider silk proteins for applications in drug delivery have attracted an increased interest during the past years. Some possible future medical applications for this biocompatible and biodegradable material are scaffolds for tissue engineering, implantable drug delivery systems and coatings for implants. Recently, we reported on the preparation of water-based spider silk films for drug delivery applications. In the current study, we describe the development of a manufacturing technique for casting larger spider silk films from aqueous solution employing a film applicator. Films were characterized in terms of morphology, water solubility, protein secondary structure, thermal stability, and mechanical properties. Different post-treatments were evaluated (phosphate ions, ethanol, steam sterilization and water vapor) to increase the content of β-sheets thereby achieving water insolubility of the films. Finally, the mechanical properties of the spider silk films were improved by incorporating 2-pyrrolidone as plasticizer.
Collapse
Affiliation(s)
- Elisa Agostini
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Butenandtstr. 5, D-81377, Munich, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Butenandtstr. 5, D-81377, Munich, Germany
| | - Julia Engert
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Butenandtstr. 5, D-81377, Munich, Germany.
| |
Collapse
|
50
|
Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci Rep 2017; 7:8393. [PMID: 28827773 PMCID: PMC5566633 DOI: 10.1038/s41598-017-07388-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Collapse
|