1
|
Son Y, Lee MS, Hwang DJ, Lee SH, Lee AS, Hwang SS, Choi DH, Jo CH, Yang HS. Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration. Biomater Sci 2025. [PMID: 39866153 DOI: 10.1039/d4bm00298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP via capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects. The SMP patches (the SMP-flat patch is referred to as SMP-F, and the SMP-patterned patch is referred to as SMP-P) were surface-modified with 3,4-dihydroxy-L-phenylalanine (L-DOPA, referred to as D) for improving cell adhesion. We hypothesized that SMP patches could be applied in minimally invasive surgery and the micropatterned structure would improve tendon regeneration by providing geometrical cues. The SMP patches exhibited excellent shape-memory properties, mechanical performance, and biocompatibility in vitro and in vivo. Especially, SMP-DP demonstrated enhanced cell behaviors in vitro, including cell orientation, elongation, migration, and tenogenic differentiation potential. The in vivo data showed notable biomechanical functionality and histological morphometric findings in various analyses of SMP-DP in the ruptured Achilles tendon model.
Collapse
Affiliation(s)
- Yucheol Son
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dong Jun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk Gu, Seoul 02972, Republic of Korea
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sun Hong Lee
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Albert S Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk Gu, Seoul 02972, Republic of Korea
| | - Seung Sang Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk Gu, Seoul 02972, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
- School of Biomedical Sciences & Biosystems, College of Bio-convergence, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
3
|
Garrudo FFF, Linhardt RJ, Ferreira FC, Morgado J. Designing Electrical Stimulation Platforms for Neural Cell Cultivation Using Poly(aniline): Camphorsulfonic Acid. Polymers (Basel) 2023; 15:2674. [PMID: 37376320 DOI: 10.3390/polym15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical stimulation is a powerful strategy to improve the differentiation of neural stem cells into neurons. Such an approach can be implemented, in association with biomaterials and nanotechnology, for the development of new therapies for neurological diseases, including direct cell transplantation and the development of platforms for drug screening and disease progression evaluation. Poly(aniline):camphorsulfonic acid (PANI:CSA) is one of the most well-studied electroconductive polymers, capable of directing an externally applied electrical field to neural cells in culture. There are several examples in the literature on the development of PANI:CSA-based scaffolds and platforms for electrical stimulation, but no review has examined the fundamentals and physico-chemical determinants of PANI:CSA for the design of platforms for electrical stimulation. This review evaluates the current literature regarding the application of electrical stimulation to neural cells, specifically reviewing: (1) the fundamentals of bioelectricity and electrical stimulation; (2) the use of PANI:CSA-based systems for electrical stimulation of cell cultures; and (3) the development of scaffolds and setups to support the electrical stimulation of cells. Throughout this work, we critically evaluate the revised literature and provide a steppingstone for the clinical application of the electrical stimulation of cells using electroconductive PANI:CSA platforms/scaffolds.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Biology and Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
4
|
Correia C, Reis RL, Pashkuleva I, Alves NM. Adhesive and self-healing materials for central nervous system repair. BIOMATERIALS ADVANCES 2023; 151:213439. [PMID: 37146528 DOI: 10.1016/j.bioadv.2023.213439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The central nervous system (CNS) has a limited ability to regenerate after a traumatic injury or a disease due to the low capacity of the neurons to re-grow and the inhibitory environment formed in situ. Current therapies include the use of drugs and rehabilitation, which do not fully restore the CNS functions and only delay the pathology progression. Tissue engineering offers a simple and versatile solution for this problem through the use of bioconstructs that promote nerve tissue repair by bridging cavity spaces. In this approach, the choice of biomaterial is crucial. Herein, we present recent advances in the design and development of adhesive and self-healing materials that support CNS healing. The adhesive materials have the advantage of promoting recovery without the use of needles or sewing, while the self-healing materials have the capacity to restore the tissue integrity without the need for external intervention. These materials can be used alone or in combination with cells and/or bioactive agents to control the inflammation, formation of free radicals, and proteases activity. We discuss the advantages and drawbacks of different systems. The remaining challenges that can bring these materials to clinical reality are also briefly presented.
Collapse
Affiliation(s)
- Cátia Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Hajian M, Erfani-Moghadam V, Arabi MS, Soltani A, Shahbazi M. A comparison between optimized PLGA and CS-Alg-PLGA microspheres for long-lasting release of glatiramer acetate. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Borah R, Das JM, Upadhyay J. Surface Functionalized Polyaniline Nanofibers:Chitosan Nanocomposite for Promoting Neuronal-like Differentiation of Primary Adipose Derived Mesenchymal Stem Cells and Urease Activity. ACS APPLIED BIO MATERIALS 2022; 5:3193-3211. [PMID: 35775198 DOI: 10.1021/acsabm.2c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioscaffolds having electrically conducting polymers (CPs) have become increasingly relevant in tissue engineering (TE) because of their ability to regulate conductivity and promote biological function. With this in mind, the current study shows a conducting polyaniline nanofibers (PNFs) dispersed chitosan (Ch) nanocomposites scaffold with a simple one-step surface functionalization approach using glutaraldehyde for potential neural regeneration applications. According to the findings, 4 wt % PNFs dispersion in Ch matrix is an optimal concentration for achieving desirable biological functions while maintaining required physicochemical properties as evidenced by SEM, XRD, current-voltage (I-V) measurement, mechanical strength test, and in vitro biodegradability test. Surface chemical compositional analysis using XPS and ATR FT-IR confirms the incorporation of aldehyde functionality after functionalization, which is corroborated by surface energy calculations following the Van Oss-Chaudhury-Good method. Surface functionalization induced enhancement in surface hydrophilicity in terms of the polar component of surface energy (γiAB) from 6.35 to 12.54 mN m-1 along with an increase in surface polarity from 13.61 to 22.54%. Functionalized PNF:Ch scaffolds demonstrated improvement in enzyme activity from 67 to 94% and better enzyme kinetics with a reduction of Michaelis constants (Km) from 21.55 to 13.81 mM, indicating favorable protein-biomaterial interactions and establishing them as biologically perceptible materials. Surface functionalization mediated improved cell-biomaterial interactions led to improved viability, adhesion, and spreading of primary adipose derived mesenchymal stem cells (ADMSCs) as well as improved immunocompatibility. Cytoskeletal architecture assessment under differentiating media containing 10 ng/mL of each basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) revealed significant actin remodeling with neurite-like projections on the functionalized scaffolds after 14 days. Immunocytochemistry results showed that more than 85% of cells expressed early neuron specific β III tubulin protein on the functionalized scaffolds, whereas glial fibrillary acidic protein (GFAP) expression was limited to approximately 40% of cells. The findings point to the functionalized nanocomposites' potential as a smart scaffold for electrically stimulated neural regeneration, as they are flexible enough to be designed into microchanneled or conduit-like structures that mimic the microstructures and mechanical properties of peripheral nerves.
Collapse
Affiliation(s)
- Rajiv Borah
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jitu Mani Das
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam 781125, India
| |
Collapse
|
7
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Mimiroglu D, Yanik T, Ercan B. Nanophase surface arrays on poly (lactic-co-glycolic acid) upregulate neural cell functions. J Biomed Mater Res A 2021; 110:64-75. [PMID: 34245100 DOI: 10.1002/jbm.a.37266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
Nerve guidance channels (NGCs) promote cell-extracellular matrix (ECM) interactions occurring within the nanoscale. However, studies focusing on the effects of nanophase topography on neural cell functions are limited, and mostly concentrated on the sub-micron level (>100 nm) surface topography. Therefore, the aim of this study was to fabricate <100 nm sized structures on poly lactic-co-glycolic acid (PLGA) films used in NGC applications to assess the effects of nanophase topography on neural cell functions. For this purpose, nanopit surface arrays were fabricated on PLGA surfaces via replica molding method. The results showed that neural cell proliferation increased up to 65% and c-fos protein expression increased up to 76% on PLGA surfaces having nanophase surface arrays compared to the control samples. It was observed that neural cells spread to a greater extend and formed more neurite extensions on the nanoarrayed surfaces compared to the control samples. These results were correlated with increased hydrophilicity and roughness of the nanophase PLGA surfaces, and point toward the promise of using nanoarrayed surfaces in NGC applications.
Collapse
Affiliation(s)
- Didem Mimiroglu
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tulin Yanik
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey.,BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
9
|
Micro-grooved nerve guidance conduits combined with microfiber for rat sciatic nerve regeneration. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Yoo H, Choi D, Choi Y. Conjugation of vascular endothelial growth factor to poly lactic-co-glycolic acid nanospheres enhances differentiation of embryonic stem cells to lymphatic endothelial cells. Anim Biosci 2020; 34:533-538. [PMID: 32882780 PMCID: PMC7961292 DOI: 10.5713/ajas.20.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Pluripotent stem cell-derived lymphatic endothelial cells (LECs) show great promise in their therapeutic application in the field of regenerative medicine related to lymphatic vessels. We tested the approach of forced differentiation of mouse embryonal stem cells into LECs using biodegradable poly lactic-co-glycolic acid (PLGA) nanospheres in conjugation with growth factors (vascular endothelial growth factors [VEGF-A and VEGF-C]). METHODS We evaluated the practical use of heparin-conjugated PLGA nanoparticles (molecular weight ~15,000) in conjugation with VEGF-A/C, embryoid body (EB) formation, and LEC differentiation using immunofluorescence staining followed by quantification and quantitative real-time polymerase chain reaction analysis. RESULTS We showed that formation and differentiation of EB with VEGF-A/C-conjugated PLGA nanospheres, compared to direct supplementation of VEGF-A/C to the EB differentiation media, greatly improved yield of LYVE1(+) LECs. Our analyses revealed that the enhanced potential of LEC differentiation using VEGF-A/C-conjugated PLGA nanospheres was mediated by elevation of expression of the genes that are important for lymphatic vessel formation. CONCLUSION Together, we not only established an improved protocol for LEC differentiation using PLGA nanospheres but also provided a platform technology for the mechanistic study of LEC development in mammals.
Collapse
Affiliation(s)
- Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced and Regenerative Science, Konkuk University, Seoul 05029, Korea
| | - Dongyoon Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced and Regenerative Science, Konkuk University, Seoul 05029, Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced and Regenerative Science, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
Liaw K, Zhang Z, Kannan S. Neuronanotechnology for brain regeneration. Adv Drug Deliv Rev 2019; 148:3-18. [PMID: 31668648 DOI: 10.1016/j.addr.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Abstract
Identifying and harnessing regenerative pathways while suppressing the growth-inhibiting processes of the biological response to injury is the central goal of stimulating neurogenesis after central nervous system (CNS) injury. However, due to the complexity of the mature CNS involving a plethora of cellular pathways and extracellular cues, as well as difficulties in accessibility without highly invasive procedures, clinical successes of regenerative medicine for CNS injuries have been extremely limited. Current interventions primarily focus on stabilization and mitigation of further neuronal death rather than direct stimulation of neurogenesis. In the past few decades, nanotechnology has offered substantial innovations to the field of regenerative medicine. Their nanoscale features allow for the fine tuning of biological interactions for enhancing drug delivery and stimulating cellular processes. This review gives an overview of nanotechnology applications in CNS regeneration organized according to cellular and extracellular targets and discuss future directions for the field.
Collapse
|
12
|
Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull 2019; 150:50-60. [DOI: 10.1016/j.brainresbull.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
|
13
|
Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Ko E, Yu SJ, Pagan‐Diaz GJ, Mahmassani Z, Boppart MD, Im SG, Bashir R, Kong H. Matrix Topography Regulates Synaptic Transmission at the Neuromuscular Junction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801521. [PMID: 30937256 PMCID: PMC6425454 DOI: 10.1002/advs.201801521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Indexed: 05/19/2023]
Abstract
Recreation of a muscle that can be controlled by the nervous system would provide a major breakthrough for treatments of injury and diseases. However, the underlying basis of how neuron-muscle interfaces are formed is still not understood sufficiently. Here, it is hypothesized that substrate topography regulates neural innervation and synaptic transmission by mediating the cross-talk between neurons and muscles. This hypothesis is examined by differentiating neural stem cells on the myotubes, formed on the substrate with controlled groove width. The substrate with the groove width of 1600 nm, a similar size to the myofibril diameter, serves to produce larger and aligned myotubes than the flat substrate. The myotubes formed on the grooved substrate display increases in the acetylcholine receptor expression. Reciprocally, motor neuron progenitor cells differentiated from neural stem cells innervate the larger and aligned myotubes more actively than randomly oriented myotubes. As a consequence, mature and aligned myotubes respond to glutamate (i.e., an excitatory neurotransmitter) and curare (i.e., a neuromuscular antagonist) more rapidly and homogeneously than randomly oriented myotubes. The results of this study will be broadly useful for improving the quality of engineered muscle used in a series of applications including drug screening, regeneration therapies, and biological machinery assembly.
Collapse
Affiliation(s)
- Eunkyung Ko
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering and KI for the Nano CenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Gelson J. Pagan‐Diaz
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Ziad Mahmassani
- Department of Kinesiology and Community HealthBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Marni D. Boppart
- Department of Kinesiology and Community HealthBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KI for the Nano CenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Rashid Bashir
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic Biology and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hyunjoon Kong
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic Biology and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| |
Collapse
|
15
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Madl CM, LeSavage BL, Dewi RE, Lampe KJ, Heilshorn SC. Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801716. [PMID: 30828535 PMCID: PMC6382308 DOI: 10.1002/advs.201801716] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Indexed: 05/14/2023]
Abstract
Neural progenitor cells (NPCs) are a promising cell source to repair damaged nervous tissue. However, expansion of therapeutically relevant numbers of NPCs and their efficient differentiation into desired mature cell types remains a challenge. Material-based strategies, including culture within 3D hydrogels, have the potential to overcome these current limitations. An ideal material would enable both NPC expansion and subsequent differentiation within a single platform. It has recently been demonstrated that cell-mediated remodeling of 3D hydrogels is necessary to maintain the stem cell phenotype of NPCs during expansion, but the role of matrix remodeling on NPC differentiation and maturation remains unknown. By culturing NPCs within engineered protein hydrogels susceptible to degradation by NPC-secreted proteases, it is identified that a critical amount of remodeling is necessary to enable NPC differentiation, even in highly degradable gels. Chemical induction of differentiation after sufficient remodeling time results in differentiation into astrocytes and neurotransmitter-responsive neurons. Matrix remodeling modulates expression of the transcriptional co-activator Yes-associated protein, which drives expression of NPC stemness factors and maintains NPC differentiation capacity, in a cadherin-dependent manner. Thus, cell-remodelable hydrogels are an attractive platform to enable expansion of NPCs followed by differentiation of the cells into mature phenotypes for therapeutic use.
Collapse
Affiliation(s)
| | | | - Ruby E. Dewi
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Kyle J. Lampe
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
17
|
Yang SS, Cha J, Cho SW, Kim P. Time-Dependent Retention of Nanotopographical Cues in Differentiated Neural Stem Cells. ACS Biomater Sci Eng 2019; 5:3802-3807. [DOI: 10.1021/acsbiomaterials.8b01057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Seungwon S. Yang
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Junghwa Cha
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
18
|
Kim SM, Lee MS, Jeon J, Lee DH, Yang K, Cho S, Han I, Yang HS. Biodegradable Nerve Guidance Conduit with Microporous and Micropatterned Poly(lactic‐
co
‐glycolic acid)‐Accelerated Sciatic Nerve Regeneration. Macromol Biosci 2018; 18:e1800290. [DOI: 10.1002/mabi.201800290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Seong Min Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Dong Hyun Lee
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
| | - Kisuk Yang
- Department of BiotechnologyYonsei University Seoul 120–749 Republic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei University Seoul 120–749 Republic of Korea
| | - Inbo Han
- Department of NeurosurgeryCHA Bundang Medical CenterCHA University Seongnam 13496 Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook University Cheonan 330–714 Republic of Korea
- Department of Pharmaceutical EngineeringDankook University Cheonan 330–714 Republic of Korea
| |
Collapse
|
19
|
Zhang Y, Wang Z, Wang Y, Li L, Wu Z, Ito Y, Yang X, Zhang P. A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. J Pharm Sci 2018; 108:551-562. [PMID: 30321547 DOI: 10.1016/j.xphs.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The highly damaging state of spinal cord injuries has provided much inspiration for the design of surface modification of the implants that can promote nerve regeneration and functional reconstruction. DOPA-IGF-1, a new recombinant protein designed in our previous study, exhibited strong binding affinity to titanium and significantly enhanced the growth of NIH3T3 cells on the surface of titanium with the same biological activity as IGF-1. In this article, surface modification of poly(lactide-co-glycolide) (PLGA) films with recombinant DOPA-IGF-1 was performed to promote the paracrine activity of human umbilical cord mesenchymal stem cells (hUCMSCs) by secreting neurotrophic factors. DOPA-IGF-1 exhibited the strongest binding ability to PLGA films than commercial IGF-1 and nonhydroxylated YKYKY-IGF-1. In vitro cultures of hUCMSCs on the modified PLGA films showed that DOPA-IGF-1@PLGA substrates significantly improved the proliferation, adhesion, and neurotrophic factors secretion of hUCMSCs, especially for nerve growth factor, as confirmed by qRT-PCR and western blot analysis. Subsequently, the acquired neurotrophic factors secreted by the hUCMSCs cultured on the DOPA-IGF-1@PLGA films obviously enhanced neurite outgrowth of PC12 cells. Taken together, PLGA substrates with DOPA-IGF-1 immobilization is a promising platform for neural tissue engineering via neurotrophic factors secretion from MSCs and should be further tested in vivo.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxu Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
20
|
Baek J, Cho SY, Kang H, Ahn H, Jung WB, Cho Y, Lee E, Cho SW, Jung HT, Im SG. Distinct Mechanosensing of Human Neural Stem Cells on Extremely Limited Anisotropic Cellular Contact. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33891-33900. [PMID: 30207452 DOI: 10.1021/acsami.8b10171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human neural stem cells (hNSCs) can alter their fate choice in response to the biophysical cues provided during development. In particular, it has been reported that the differentiation of neural stem cells (NSCs) is enhanced by anisotropic contact, which facilitates focal adhesion (FA) formation and cytoskeletal organization. However, a biomolecular mechanism governing how the cells process the biophysical cues from these anisotropic geometries to their fate commitment is still poorly understood due to the limited availability of geometrical diversities (contact width above 50 nm) applicable to cell studies. Here, we firstly demonstrate that the biomolecular mechanism for enhanced neurogenesis on an anisotropic nanostructure is critically dependent on the resolution of a contact feature. We observed a totally different cellular response to anisotropic geometries by first utilizing a high-resolution nanogroove (HRN) structure with an extremely narrow contact width (15 nm). The width scale is sufficiently low to suppress the integrin clustering and enable us to elucidate how the contact area influences the neurogenesis of hNSCs at an aligned state. Both the HRN and control nanogroove (CN) pattern with a contact width of 1 μm induced the spontaneous topographic alignment of hNSCs. However, intriguingly, the focal adhesion (FA) formation and cytoskeletal reorganization were substantially limited on the HRN, although the cells on the CN showed enhanced FA formation compared with flat surfaces. In particular, the hNSCs on the HRN surface exhibited a strikingly lower fraction of nuclear yes-associated protein (YAP) than on the CN surface, which was turned out to be regulated by Rho GTPase in the same way as the cells sense the mechanical properties of the environment. Considering the previously reported role of YAP on neurogenesis, our finding newly substantiates that YAP and Rho GTPase also can be transducers of hNSCs to process topographical alternation to fate decision. Furthermore, this study with the unprecedented high-resolution nanostructure suggests a novel geometry sensing model where the functional crosstalk between YAP signaling and Rho GTPase integrally regulate the fate commitment of the hNSCs.
Collapse
Affiliation(s)
- Jieung Baek
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Soo-Yeon Cho
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Hohyung Kang
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Hyunah Ahn
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Seung-Woo Cho
- Department of Biotechnology , Yonsei University , Seoul 120-749 , Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , 291 Daehak-ro , Daejeon 34141 , Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Korea
- KAIST Institute for NanoCentury , 291 Daehak-ro , Daejeon 34141 , Korea
| |
Collapse
|
21
|
Liu XY, Zhou CB, Fang C. Nanomaterial-involved neural stem cell research: Disease treatment, cell labeling, and growth regulation. Biomed Pharmacother 2018; 107:583-597. [PMID: 30114642 DOI: 10.1016/j.biopha.2018.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have been widely investigated for their potential in the treatment of various diseases and transplantation therapy. However, NSC growth regulation, labeling, and its application to disease diagnosis and treatment are outstanding challenges. Recently, nanomaterials have shown promise for various applications including genetic modification, imaging, and controlled drug release. Here we summarize the recent progress in the use of nanomaterials in combination with NSCs for disease treatment and diagnosis, cell labeling, and NSC growth regulation. The toxicity of nanomaterials to NSCs is also discussed.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Cheng-Bin Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
22
|
Armentano I, Puglia D, Luzi F, Arciola CR, Morena F, Martino S, Torre L. Nanocomposites Based on Biodegradable Polymers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E795. [PMID: 29762482 PMCID: PMC5978172 DOI: 10.3390/ma11050795] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.
Collapse
Affiliation(s)
- Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University, 01100 Viterbo, Italy.
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Francesca Luzi
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Luigi Torre
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| |
Collapse
|
23
|
Hu Y, Yao X, Liu Q, Wang Y, Liu R, Cui S, Ding J. Left-Right Symmetry or Asymmetry of Cells on Stripe-Like Micropatterned Material Surfaces. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yiwen Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| | - Yi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science; Fudan University; Shanghai 200438 China
| |
Collapse
|
24
|
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yanjing Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Rongrong Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
25
|
Progress in topographically defined scaffolds for drug delivery system. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-017-0379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Simitzi C, Karali K, Ranella A, Stratakis E. Controlling the Outgrowth and Functions of Neural Stem Cells: The Effect of Surface Topography. Chemphyschem 2018; 19:1143-1163. [DOI: 10.1002/cphc.201701175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/19/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Chara Simitzi
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Kanelina Karali
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| |
Collapse
|
27
|
Park S, Kim D, Park S, Kim S, Lee D, Kim W, Kim J. Nanopatterned Scaffolds for Neural Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:421-443. [PMID: 30357636 DOI: 10.1007/978-981-13-0950-2_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biologically inspired approaches employing nanoengineering techniques have been influential in the progress of neural tissue repair and regeneration. Neural tissues are exposed to complex nanoscale environments such as nanofibrils. In this chapter, we summarize representative nanotechniques, such as electrospinning, lithography, and 3D bioprinting, and their use in the design and fabrication of nanopatterned scaffolds for neural tissue engineering and regenerative medicine. Nanotopographical cues in combination with other cues (e.g., chemical cues) are crucial to neural tissue repair and regeneration using cells, including various types of stem cells. Production of biologically inspired nanopatterned scaffolds may encourage the next revolution for studies aiming to advance neural tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Daun Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Sungmin Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Sujin Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Dohyeon Lee
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Woochan Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
28
|
Yang K, Yu SJ, Lee JS, Lee HR, Chang GE, Seo J, Lee T, Cheong E, Im SG, Cho SW. Electroconductive nanoscale topography for enhanced neuronal differentiation and electrophysiological maturation of human neural stem cells. NANOSCALE 2017; 9:18737-18752. [PMID: 29168523 DOI: 10.1039/c7nr05446g] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biophysical cues, such as topography, and electrical cues can provide external stimulation for the promotion of stem cell neurogenesis. Here, we demonstrate an electroconductive surface nanotopography for enhancing neuronal differentiation and the functional maturation of human neural stem cells (hNSCs). The electroconductive nanopatterned substrates were prepared by depositing a thin layer of titanium (Ti) with nanograting topographies (150 to 300 nm groove/ridge, the thickness of the groove - 150 μm) onto polymer surfaces. The Ti-coated nanopatterned substrate (TNS) induced cellular alignment along the groove pattern via contact guidance and promoted focal adhesion and cytoskeletal reorganization, which ultimately led to enhanced neuronal differentiation and maturation of hNSCs as indicated by significantly elevated neurite extension and the upregulated expression of the neuronal markers Tuj1 and NeuN compared with the Ti-coated flat substrate (TFS) and the nanopatterned substrate (NS) without Ti coating. Mechanosensitive cellular events, such as β1-integrin binding/clustering and myosin-actin interaction, and the Rho-associated protein kinase (ROCK) and mitogen-activated protein kinase/extracellular signal regulated kinase (MEK-ERK) pathways, were found to be associated with enhanced focal adhesion and neuronal differentiation of hNSCs by the TNS. Among the neuronal subtypes, differentiation into dopaminergic and glutamatergic neurons was promoted on the TNS. Importantly, the TNS increased the induction rate of neuron-like cells exhibiting electrophysiological properties from hNSCs. Finally, the application of pulsed electrical stimulation to the TNS further enhanced neuronal differentiation of hNSCs due probably to calcium channel activation, indicating a combined effect of topographical and electrical cues on stem cell neurogenesis, which postulates the novelty of our current study. The present work suggests that an electroconductive nanopatterned substrate can serve as an effective culture platform for deriving highly mature, functional neuronal lineage cells from stem cells.
Collapse
Affiliation(s)
- Kisuk Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159:217-231. [DOI: 10.1016/j.colsurfb.2017.07.038] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
|
30
|
Yang K, Oh JY, Lee JS, Jin Y, Chang GE, Chae SS, Cheong E, Baik HK, Cho SW. Photoactive Poly(3-hexylthiophene) Nanoweb for Optoelectrical Stimulation to Enhance Neurogenesis of Human Stem Cells. Theranostics 2017; 7:4591-4604. [PMID: 29158847 PMCID: PMC5695151 DOI: 10.7150/thno.20169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Optoelectrical manipulation has recently gained attention for cellular engineering; however, few material platforms can be used to efficiently regulate stem cell behaviors via optoelectrical stimulation. In this study, we developed nanoweb substrates composed of photoactive polymer poly(3-hexylthiophene) (P3HT) to enhance the neurogenesis of human fetal neural stem cells (hfNSCs) through photo-induced electrical stimulation. METHODS The photoactive nanoweb substrates were fabricated by self-assembled one-dimensional (1D) P3HT nanostructures (nanofibrils and nanorods). The hfNSCs cultured on the P3HT nanoweb substrates were optically stimulated with a green light (539 nm) and then differentiation of hfNSCs on the substrates with light stimulation was examined. The utility of the nanoweb substrates for optogenetic application was tested with photo-responsive hfNSCs engineered by polymer nanoparticle-mediated transfection of an engineered chimeric opsin variant (C1V1)-encoding gene. RESULTS The nanoweb substrates provided not only topographical stimulation for activating focal adhesion signaling of hfNSCs, but also generated optoelectrical stimulation via photochemical and charge-transfer reactions upon exposure to 539 nm wavelength light, leading to significantly enhanced neuronal differentiation of hfNSCs. The optoelectrically stimulated hfNSCs exhibited mature neuronal phenotypes with highly extended neurite formation and functional neuron-like electrophysiological features of sodium currents and action potentials. Optoelectrical stimulation with 539 nm light simultaneously activated both C1V1-modified hfNSCs and nanoweb substrates, which upregulated the expression and activation of voltage-gated ion channels in hfNSCs and further increased the effect of photoactive substrates on neuronal differentiation of hfNSCs. CONCLUSION The photoactive nanoweb substrates developed in this study may serve as platforms for producing stem cell therapeutics with enhanced neurogenesis and neuromodulation via optoelectrical control of stem cells.
Collapse
|
31
|
Kim HJ, Kwon TY. Efficacy of polydopamine-coated titanium in order to improve bond strengths for dental resin cement. ACTA ACUST UNITED AC 2017. [DOI: 10.14815/kjdm.2017.44.2.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
32
|
|
33
|
Salehi S, Ostrovidov S, Ebrahimi M, Sadeghian RB, Liang X, Nakajima K, Bae H, Fujie T, Khademhosseini A. Development of Flexible Cell-Loaded Ultrathin Ribbons for Minimally Invasive Delivery of Skeletal Muscle Cells. ACS Biomater Sci Eng 2017; 3:579-589. [PMID: 33429625 DOI: 10.1021/acsbiomaterials.6b00696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell transplantation therapy provides a potential solution for treating skeletal muscle disorders, but cell survival after transplantation is poor. This limitation could be addressed by grafting donor cells onto biomaterials to protect them against harsh environments and processing, consequently improving cell viability in situ. Thus, we present here the fabrication of poly(lactic-co-glycolic acid) (PLGA) ultrathin ribbons with "canal-like" structures using a microfabrication technique to generate ribbons of aligned murine skeletal myoblasts (C2C12). We found that the ribbons functionalized with a solution of 3,4-dihydroxy-l-phenylalanine (DOPA) and then coated with poly-l-lysine (PLL) and fibronectin (FN) improve cell attachment and support the growth of C2C12. The viability of cells on the ribbons is evaluated following the syringe-handling steps of injection with different needle sizes. C2C12 cells readily adhere to the ribbon surface, proliferate over time, align (over 74%), maintain high viability (over 80%), and differentiate to myotubes longer than 400 μm. DNA content quantification carried out before and after injection and myogenesis evaluation confirm that cell-loaded ribbons can safely retain cells with high functionality after injection and are suitable for minimally invasive cell transplantation.
Collapse
Affiliation(s)
- Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Majid Ebrahimi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Xiaobin Liang
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Ken Nakajima
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hojae Bae
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Toshinori Fujie
- Waseda Institute for Advanced Study, Waseda University, Shinjuku, Tokyo 162-8480, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States.,Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
34
|
Kim HN, Jang KJ, Shin JY, Kang D, Kim SM, Koh I, Hong Y, Jang S, Kim MS, Kim BS, Jeong HE, Jeon NL, Kim P, Suh KY. Artificial Slanted Nanocilia Array as a Mechanotransducer for Controlling Cell Polarity. ACS NANO 2017; 11:730-741. [PMID: 28051852 DOI: 10.1021/acsnano.6b07134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a method to induce cell directional behavior using slanted nanocilia arrays. NIH-3T3 fibroblasts demonstrated bidirectional polarization in a rectangular arrangement on vertical nanocilia arrays and exhibited a transition from a bidirectional to a unidirectional polarization pattern when the angle of the nanocilia was decreased from 90° to 30°. The slanted nanocilia guided and facilitated spreading by allowing the cells to contact the sidewalls of the nanocilia, and the directional migration of the cells opposed the direction of the slant due to the anisotropic bending stiffness of the slanted nanocilia. Although the cells recognized the underlying anisotropic geometry when the nanocilia were coated with fibronectin, collagen type I, and Matrigel, the cells lost their directionality when the nanocilia were coated with poly-d-lysine and poly-l-lysine. Furthermore, although the cells recognized geometrical anisotropy on fibronectin coatings, pharmacological perturbation of PI3K-Rac signaling hindered the directional elongation of the cells on both the slanted and vertical nanocilia. Furthermore, myosin light chain II was required for the cells to obtain polarized morphologies. These results indicated that the slanted nanocilia array provided anisotropic contact guidance cues to the interacting cells. The polarization of cells was controlled through two steps: the recognition of underlying geometrical anisotropy and the subsequent directional spreading according to the guidance cues.
Collapse
Affiliation(s)
- Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST) , Seoul 136-791, Republic of Korea
| | - Kyung-Jin Jang
- Emulate Inc. , Boston, Massachusetts 02210, United States
| | - Jung-Youn Shin
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University , Suwon 443-749, Republic of Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University , Incheon 406-772, Republic of Korea
| | - Ilkyoo Koh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Yoonmi Hong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Segeun Jang
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Min Sung Kim
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Republic of Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Kahp-Yang Suh
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-742, Republic of Korea
| |
Collapse
|
35
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
36
|
Teixeira FG, Vasconcelos NL, Gomes ED, Marques F, Sousa JC, Sousa N, Silva NA, Assunção-Silva R, Lima R, Salgado AJ. Bioengineered cell culture systems of central nervous system injury and disease. Drug Discov Today 2016; 21:1456-1463. [DOI: 10.1016/j.drudis.2016.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023]
|
37
|
Yang K, Lee J, Lee JS, Kim D, Chang GE, Seo J, Cheong E, Lee T, Cho SW. Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17763-17774. [PMID: 27320202 DOI: 10.1021/acsami.6b01804] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Graphene has shown great potential for biomedical engineering applications due to its electrical conductivity, mechanical strength, flexibility, and biocompatibility. Topographical cues of culture substrates or tissue-engineering scaffolds regulate the behaviors and fate of stem cells. In this study, we developed a graphene oxide (GO)-based patterned substrate (GPS) with hierarchical structures capable of generating synergistic topographical stimulation to enhance integrin clustering, focal adhesion, and neuronal differentiation in human neural stem cells (hNSCs). The hierarchical structures of the GPS were composed of microgrooves (groove size: 5, 10, and 20 μm), ridges (height: 100-200 nm), and nanoroughness surfaces (height: ∼10 nm). hNSCs grown on the GPS exhibited highly elongated, aligned neurite extension along the ridge of the GPS and focal adhesion development that was enhanced compared to that of cells grown on GO-free flat substrates and GO substrates without the hierarchical structures. In particular, GPS with a groove width of 5 μm was found to be the most effective in activating focal adhesion signaling, such as the phosphorylation of focal adhesion kinase and paxillin, thereby improving neuronal lineage commitment. More importantly, electrophysiologically functional neuron-like cells exhibiting sodium channel currents and action potentials could be derived from hNSCs differentiated on the GPS even in the absence of any of the chemical agents typically required for neurogenesis. Our study demonstrates that GPS could be an effective culture platform for the generation of functional neuron-like cells from hNSCs, providing potent therapeutics for treating neurodegenerative diseases and neuronal disorders.
Collapse
Affiliation(s)
- Kisuk Yang
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Jaehong Lee
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Dayeong Kim
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Gyeong-Eon Chang
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University , Seoul 120-749, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University , Seoul 120-749, Republic of Korea
| |
Collapse
|
38
|
Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. TECHNOLOGY 2016; 4:1-8. [PMID: 27785459 PMCID: PMC5077250 DOI: 10.1142/s2339547816400070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.
Collapse
Affiliation(s)
- Ryan Thompson
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA
| | - Christina Chan
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA; Department of Chemical Engineering and Materials Science, East Lansing, Michigan 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
39
|
|
40
|
English A, Azeem A, Spanoudes K, Jones E, Tripathi B, Basu N, McNamara K, Tofail SAM, Rooney N, Riley G, O'Riordan A, Cross G, Hutmacher D, Biggs M, Pandit A, Zeugolis DI. Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomater 2015; 27:3-12. [PMID: 26318365 DOI: 10.1016/j.actbio.2015.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 01/22/2023]
Abstract
Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. STATEMENT OF SIGNIFICANCE Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
Collapse
Affiliation(s)
- Andrew English
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Ayesha Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Kyriakos Spanoudes
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Eleanor Jones
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Bhawana Tripathi
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Nandita Basu
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Karrina McNamara
- Materials and Surface Science Institute (MSSI), Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Syed A M Tofail
- Materials and Surface Science Institute (MSSI), Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | | | - Graham Riley
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Graham Cross
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Dietmar Hutmacher
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Australia
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland.
| |
Collapse
|