1
|
Du M, Liu K, Lai H, Qian J, Ai L, Zhang J, Yin J, Jiang D. Functional meniscus reconstruction with biological and biomechanical heterogeneities through topological self-induction of stem cells. Bioact Mater 2024; 36:358-375. [PMID: 38496031 PMCID: PMC10944202 DOI: 10.1016/j.bioactmat.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Meniscus injury is one of the most common sports injuries within the knee joint, which is also a crucial pathogenic factor for osteoarthritis (OA). The current meniscus substitution products are far from able to restore meniscal biofunctions due to the inability to reconstruct the gradient heterogeneity of natural meniscus from biological and biomechanical perspectives. Here, inspired by the topology self-induced effect and native meniscus microstructure, we present an innovative tissue-engineered meniscus (TEM) with a unique gradient-sized diamond-pored microstructure (GSDP-TEM) through dual-stage temperature control 3D-printing system based on the mechanical/biocompatibility compatible high Mw poly(ε-caprolactone) (PCL). Biologically, the unique gradient microtopology allows the seeded mesenchymal stem cells with spatially heterogeneous differentiation, triggering gradient transition of the extracellular matrix (ECM) from the inside out. Biomechanically, GSDP-TEM presents excellent circumferential tensile modulus and load transmission ability similar to the natural meniscus. After implantation in rabbit knee, GSDP-TEM induces the regeneration of biomimetic heterogeneous neomeniscus and efficiently alleviates joint degeneration. This study provides an innovative strategy for functional meniscus reconstruction. Topological self-induced cell differentiation and biomechanical property also provides a simple and effective solution for other complex heterogeneous structure reconstructions in the human body and possesses high clinical translational potential.
Collapse
Affiliation(s)
- Mingze Du
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Kangze Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore
| | - Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Zhejiang, 310058, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Zhejiang, 310058, China
| | - Liya Ai
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jiying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Zhejiang, 310058, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Ouedraogo LJ, Trznadel MJ, Kling M, Nasirian V, Borst AG, Shirsavar MA, Makowski A, McNamara MC, Montazami R, Hashemi NN. Hydrodynamic Assembly of Astrocyte Cells in Conductive Hollow Microfibers. Adv Biol (Weinh) 2024; 8:e2300455. [PMID: 37953458 DOI: 10.1002/adbi.202300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries as it enables the creation of physiologically relevant platforms. A triple-flow microfluidic device is developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl2 . This five-channel microdevice actualizes continuous mild fabrication of hollow fibers under an optimized flow rate ratio of 300:200:100 µL min-1 . The polymer solution is 2.5% alginate in 0.1% graphene and a 30% polyethylene glycol solution is used as the sheath and core solutions. The biocompatibility of these conductive microfibers by encapsulating mouse astrocyte cells (C8D1A) within the scaffolds is investigated. The cells can successfully survive both the manufacturing process and prolonged encapsulation for up to 8 days, where there is between 18-53% of live cells on both the alginate microfibers and alginate/graphene microfibers. These unique 3D hollow scaffolds can significantly enhance the available surface area for nutrient transport to the cells. In addition, these conductive hollow scaffolds illustrate unique advantages such as 0.728 cm3 gr-1 porosity and two times more electrical conductivity in comparison to alginate scaffolds. The results confirm the potential of these scaffolds as a microenvironment that supports cell growth.
Collapse
Affiliation(s)
- Lionel J Ouedraogo
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mychal J Trznadel
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - McKayla Kling
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alexandra G Borst
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew Makowski
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
3
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
4
|
Zhao Q, Du X, Wang M. Electrospinning and Cell Fibers in Biomedical Applications. Adv Biol (Weinh) 2023; 7:e2300092. [PMID: 37166021 DOI: 10.1002/adbi.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Human body tissues such as muscle, blood vessels, tendon/ligaments, and nerves have fiber-like fascicle morphologies, where ordered organization of cells and extracellular matrix (ECM) within the bundles in specific 3D manners orchestrates cells and ECM to provide tissue functions. Through engineering cell fibers (which are fibers containing living cells) as living building blocks with the help of emerging "bottom-up" biomanufacturing technologies, it is now possible to reconstitute/recreate the fiber-like fascicle morphologies and their spatiotemporally specific cell-cell/cell-ECM interactions in vitro, thereby enabling the modeling, therapy, or repair of these fibrous tissues. In this article, a concise review is provided of the "bottom-up" biomanufacturing technologies and materials usable for fabricating cell fibers, with an emphasis on electrospinning that can effectively and efficiently produce thin cell fibers and with properly designed processes, 3D cell-laden structures that mimic those of native fibrous tissues. The importance and applications of cell fibers as models, therapeutic platforms, or analogs/replacements for tissues for areas such as drug testing, cell therapy, and tissue engineering are highlighted. Challenges, in terms of biomimicry of high-order hierarchical structures and complex dynamic cellular microenvironments of native tissues, as well as opportunities for cell fibers in a myriad of biomedical applications, are discussed.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuemin Du
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
5
|
Carriles J, Nguewa P, González-Gaitano G. Advances in Biomedical Applications of Solution Blow Spinning. Int J Mol Sci 2023; 24:14757. [PMID: 37834204 PMCID: PMC10572924 DOI: 10.3390/ijms241914757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Javier Carriles
- Department of Chemistry, Facultad de Ciencias, University of Navarra, 31080 Pamplona, Spain;
| | - Paul Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| | | |
Collapse
|
6
|
Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. Macromol Biosci 2023; 23:e2200429. [PMID: 36543751 DOI: 10.1002/mabi.202200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Microfibers, a type of long, thin, and flexible material, can be assembled into functional 3D structures by folding, binding, and weaving. As a novel spinning method, combining microfluidic technology and wet spinning, microfluidic spinning technology can precisely control the size, morphology, structure, and composition of the microfibers. Particularly, the process is mild and rapid, which is suitable for preparing microfibers using biocompatible materials and without affecting the viability of cells encapsulated. Furthermore, owing to the controllability of microfluidic spinning, microfibers with well-defined structures (such as hollow structures) will contribute to the exchange of nutrients or guide cell orientation. Thus, this method is often used to fabricate microfibers as cell scaffolds for cell encapsulation or adhesion and can be further applied to biomimetic fibrous tissues. In this review, the focus is on different fiber structures prepared by microfluidic spinning technology, including solid, hollow, and heterogeneous structures, generated from three essential elements: spinning platform, fiber composition, and solidification methods. Furthermore, the application of microfibers is described with different structures in tissue engineering, such as blood vessels, skeletal muscle, bone, nerves, and lung bronchi. Finally, the challenges and future development prospects of microfluidic spinning technology in tissue engineering applications are discussed.
Collapse
Affiliation(s)
- Lingling Tian
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Li Huili Hospital, 57 Xingning Road, Ningbo, Zhejiang, 315100, P. R. China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xu Zhang
- CAS Key Laboratory of SSAC, Department of biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Gu Z, Fan S, Kundu SC, Yao X, Zhang Y. Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells. Regen Biomater 2023; 10:rbad001. [PMID: 36726609 PMCID: PMC9887345 DOI: 10.1093/rb/rbad001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Due to the innate extracellular matrix mimicking features, fibrous materials exhibited great application potential in biomedicine. In developing excellent fibrous biomaterial, it is essential to reveal the corresponding inherent fiber features' effects on cell behaviors. Due to the inevitable 'interference' cell adhesions to the background or between adjacent fibers, it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat. A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein. In this unique material platform, the 'interference' cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background. The 'interference' cell adhesions between adjacent fibers could also be excluded from the sparsely arranged (SA) fiber patterns. The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired 'interference' cell adhesions in a controllable way. On the SA fiber patterns, small diameter fiber (SA-D1, D1 means 1 μm in diameter) may seriously restrict cell proliferation and osteogenesis when compared to the middle (SA-D8) and large (SA-D56) ones and SA-D8 shows the optimal osteogenesis enhancement effect. At the same time, the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged (DA) fiber patterns with small diameter fiber (DA-D1) when compared to the middle (DA-D8) and large (DA-D56) ones. The 'interference' cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters. Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively, thus providing valuable reference and guidance for developing effective fibrous biomaterials.
Collapse
Affiliation(s)
- Zhanghong Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
8
|
Zhang Y, Chen H, Li J. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Int J Biol Macromol 2022; 221:91-107. [DOI: 10.1016/j.ijbiomac.2022.08.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
|
9
|
Upregulation of biochemical and biophysical properties of cell-laden microfiber, silk-hyaluronic acid composite. Int J Biol Macromol 2022; 211:700-710. [PMID: 35588975 DOI: 10.1016/j.ijbiomac.2022.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023]
Abstract
Cell-laden filament-like hydrogels are advantageous for many applications including drug screening, tissue engineering, and regenerative medicine. However, most of the designed filament vehicles hold weak mechanical properties, which hinder their applications in specific tissue engineering. We present a binary hybrid silk and hyaluronic acid hydrogel microfiber generated through a microfluidic system to encapsulate cells with superior mechanical properties and biocompatibility. Cell-laden hydrogel microfibers were continuously produced through coaxial double orifice microfluidic device and horseradish peroxidase mediated crosslinking, which conjugated introduce phenolic moieties in the backbone of silk fibroin and HA derivatives (Silk-Ph and HA-Ph, respectively). The iterative hybrid Silk-Ph + HA-Ph fibers were fabricated in tunable size distribution between 195 and 680 μm through control of outer flow velocity. Tensile strength and maximum stain of prepared Silk-Ph + HA-Ph sample upregulated more than three times higher than the single HA-Ph sample, which demonstrated significant impacts of synthesized silk derivative in hydrogel fiber composition. The proteolytic degradation of microfibers manipulated by hyaluronidase and collagenase treatment. Encapsulation process and crosslinking did not insert any harmful effect on cell viability (> 90%) and the cells maintained their growth ability after encapsulation process. Cellular filament-like tissue fabricated from proliferation of cells in Silk-Ph + HA-Ph microfiber.
Collapse
|
10
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
11
|
Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater Sci Eng 2022; 8:379-405. [PMID: 35084836 PMCID: PMC8848287 DOI: 10.1021/acsbiomaterials.1c01145] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The functional capabilities of skeletal muscle are strongly correlated with its well-arranged microstructure, consisting of parallelly aligned myotubes. In case of extensive muscle loss, the endogenous regenerative capacity is hindered by scar tissue formation, which compromises the native muscle structure, ultimately leading to severe functional impairment. To address such an issue, skeletal muscle tissue engineering (SMTE) attempts to fabricate in vitro bioartificial muscle tissue constructs to assist and accelerate the regeneration process. Due to its dynamic nature, SMTE strategies must employ suitable biomaterials (combined with muscle progenitors) and proper 3D architectures. In light of this, 3D fiber-based strategies are gaining increasing interest for the generation of hydrogel microfibers as advanced skeletal muscle constructs. Indeed, hydrogels possess exceptional biomimetic properties, while the fiber-shaped morphology allows for the creation of geometrical cues to guarantee proper myoblast alignment. In this review, we summarize commonly used hydrogels in SMTE and their main properties, and we discuss the first efforts to engineer hydrogels to guide myoblast anisotropic orientation. Then, we focus on presenting the main hydrogel fiber-based techniques for SMTE, including molding, electrospinning, 3D bioprinting, extrusion, and microfluidic spinning. Furthermore, we describe the effect of external stimulation (i.e., mechanical and electrical) on such constructs and the application of hydrogel fiber-based methods on recapitulating complex skeletal muscle tissue interfaces. Finally, we discuss the future developments in the application of hydrogel microfibers for SMTE.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
| | - Wojciech Świȩszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
12
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Wu S, Liu J, Cai J, Zhao J, Duan B, Chen S. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication 2021; 13. [PMID: 34450602 DOI: 10.1088/1758-5090/ac2209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Fiber constructed yarns are the elementary building blocks for the generation of implantable biotextiles, and there are always needs for designing and developing new types of yarns to improve the properties of biotextile implants. In the present study, we aim to develop novel nanofiber yarns (NYs) by combining nanostructure that more closely mimic the extracellular matrix fibrils of native tissues with biodegradability, strong mechanical properties and great textile processibility. A novel electrospinning system which integrates yarn formation with hot drawing process was developed to fabricate poly(L-lactic acid) (PLLA) NYs. Compared to the PLLA NYs without hot drawing, the thermally drawn PLLA NYs presented superbly-orientated fibrous structure and notably enhanced crystallinity. Importantly, they possessed admirable mechanical performances, which matched and even exceeded the commercial PLLA microfiber yarns (MYs). The thermally drawn PLLA NYs were also demonstrated to notably promote the adhesion, alignment, proliferation, and tenogenic differentiation of human adipose derived mesenchymal stem cells (hADMSCs) compared to the PLLA NYs without hot drawing. The thermally drawn PLLA NYs were further processed into various nanofibrous tissue scaffolds with defined structures and adjustable mechanical and biological properties using textile braiding and weaving technologies, demonstrating the feasibility and versatility of thermally drawn PLLA NYs for textile-forming utilization. The hADMSCs cultured on PLLA NY-based textiles presented enhanced attachment and proliferation capacities than those cultured on PLLA MY-based textiles. This work presents a facile technique to manufacture high performance PLLA NYs, which opens up opportunities to generate advanced nanostructured biotextiles for surgical implant applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
14
|
McNamara MC, Aykar SS, Montazami R, Hashemi NN. Targeted Microfluidic Manufacturing to Mimic Biological Microenvironments: Cell-Encapsulated Hollow Fibers. ACS Macro Lett 2021; 10:732-736. [PMID: 35549107 DOI: 10.1021/acsmacrolett.1c00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At present, the blood-brain barrier (BBB) poses a challenge for treating a wide range of central nervous system disorders; reliable BBB models are still needed to understand and manipulate the transfer of molecules into the brain, thereby improving the efficiency of treatments. In this study, hollow, cell-laden microfibers are fabricated and investigated as a starting point for generating BBB models. The genetic effects of the manufacturing process are analyzed to understand the implications of encapsulating cells in this manner. These fibers are created using different manufacturing parameters to understand the effects on wall thickness and overall diameter. Then, dopaminergic rat cells are encapsulated into hollow fibers, which maintained at least 60% live cells throughout the three-day observation period. Lastly, genetic changes tyrosine hydroxylase (TH) and tubulin beta 3 class III (TUBB-3) are investigated to elucidate the effects on cell health and behavior; while the TH levels in encapsulated cells were similar to control cells, showing similar levels of TH synthesis, TUBB-3 was downregulated, indicating lower amounts of cellular neurogenesis.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Puertas-Bartolomé M, Mora-Boza A, García-Fernández L. Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers (Basel) 2021; 13:1209. [PMID: 33918049 PMCID: PMC8069319 DOI: 10.3390/polym13081209] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural polymers have been widely used for biomedical applications in recent decades. They offer the advantages of resembling the extracellular matrix of native tissues and retaining biochemical cues and properties necessary to enhance their biocompatibility, so they usually improve the cellular attachment and behavior and avoid immunological reactions. Moreover, they offer a rapid degradability through natural enzymatic or chemical processes. However, natural polymers present poor mechanical strength, which frequently makes the manipulation processes difficult. Recent advances in biofabrication, 3D printing, microfluidics, and cell-electrospinning allow the manufacturing of complex natural polymer matrixes with biophysical and structural properties similar to those of the extracellular matrix. In addition, these techniques offer the possibility of incorporating different cell lines into the fabrication process, a revolutionary strategy broadly explored in recent years to produce cell-laden scaffolds that can better mimic the properties of functional tissues. In this review, the use of 3D printing, microfluidics, and electrospinning approaches has been extensively investigated for the biofabrication of naturally derived polymer scaffolds with encapsulated cells intended for biomedical applications (e.g., cell therapies, bone and dental grafts, cardiovascular or musculoskeletal tissue regeneration, and wound healing).
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - Ana Mora-Boza
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 2310 IBB Building, Atlanta, GA 30332-0363, USA
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Luis García-Fernández
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
16
|
Patel A, Sant V, Velankar S, Dutta M, Balasubramanian V, Sane P, Agrawal V, Wilson J, Rohan LC, Sant S. Self-assembly of multiscale anisotropic hydrogels through interfacial polyionic complexation. J Biomed Mater Res A 2020; 108:2504-2518. [PMID: 32418322 PMCID: PMC11540064 DOI: 10.1002/jbm.a.37001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022]
Abstract
Polysaccharides are explored for various tissue engineering applications due to their inherent cytocompatibility and ability to form bulk hydrogels. However, bulk hydrogels offer poor control over their microarchitecture and multiscale hierarchy, parameters important to recreate extracellular matrix-mimetic microenvironment. Here, we developed a versatile platform technology to self-assemble oppositely charged polysaccharides into multiscale fibrous hydrogels with controlled anisotropic microarchitecture. We employed polyionic complexation through microfluidic flow of positively charged polysaccharide, chitosan, along with one of the three negatively charged polysaccharides: alginate, gellan gum, and kappa carrageenan. These hydrogels were composed of microscale fibers, which in turn were made of submicron fibrils confirming multiscale hierarchy. Fibrous hydrogels showed strong tensile mechanical properties, which were further modulated by encapsulation of shape-specific antioxidant cerium oxide nanoparticles (CNPs). Specifically, hydrogels with chitosan and gellan gum showed more than eight times higher tensile strength compared to the other two pairs. Incorporation of sphere-shaped cerium oxide nanoparticles in chitosan and gellan gum further reinforced fibrous hydrogels and increased their tensile strength by 40%. Altogether, our automated hydrogel fabrication platform allows fabrication of bioinspired biomaterials with scope for one-step encapsulation of small molecules and nanoparticles without chemical modification or use of chemical crosslinkers.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sachin Velankar
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Mechanical Engineering & Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Mayuri Dutta
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vibishan Balasubramanian
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Piyusha Sane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishi Agrawal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jamir Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Women’s Research Institute, Pittsburgh, Pennsylvania
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Duan X, Yu J, Zhu Y, Zheng Z, Liao Q, Xiao Y, Li Y, He Z, Zhao Y, Wang H, Qu L. Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS NANO 2020; 14:14929-14938. [PMID: 33073577 DOI: 10.1021/acsnano.0c04382] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efforts to impart responsiveness to environmental stimuli in artificial hydrogel fibers are crucial to intelligent, shape-memory electronics and weavable soft robots. However, owing to the vulnerable mechanical property, poor processability, and the dearth of scalable assembly protocols, such functional hydrogel fibers are still far from practical usage. Herein, we demonstrate an approach toward the continuous fabrication of an electro-responsive hydrogel fiber by using the self-lubricated spinning (SLS) strategy. The polyelectrolyte inside the hydrogel fiber endows it with a fast electro-response property. After solvent exchange with triethylene glycol (TEG), the maximum tensile strength of the hydrogel fiber increases from 114 kPa to 5.6 MPa, far superior to those hydrogel fiber-based actuators reported previously. Consequently, the flexible and mechanical stable hydrogel fiber is knitted into various complex geometries on demand such as a crochet flower, triple knot, thread tube, pentagram, and hollow cage. Additionally, the electrochemical-responsive ionic hydrogel fiber is capable of acting as soft robots underwater to mimic biological motions, such as Mobula-like flapping, jellyfish-mimicking grabbing, sea worm-mimicking multi-degree of freedom movements, and human finger-like smart gesturing. This work not only demonstrates an example for the large-scale production of previous infeasible hydrogel fibers, but also provides a solution for the rational design and fabrication of hydrogel woven intelligent devices.
Collapse
Affiliation(s)
- Xiangyu Duan
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jingyi Yu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yaxun Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhiqiang Zheng
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qihua Liao
- Department of Chemistry and Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yukun Xiao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zipan He
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Huaping Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Liangti Qu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Department of Chemistry and Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
18
|
Liu T, Weng W, Zhang Y, Sun X, Yang H. Applications of Gelatin Methacryloyl (GelMA) Hydrogels in Microfluidic Technique-Assisted Tissue Engineering. Molecules 2020; 25:E5305. [PMID: 33202954 PMCID: PMC7698322 DOI: 10.3390/molecules25225305] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, the microfluidic technique has been widely used in the field of tissue engineering. Possessing the advantages of large-scale integration and flexible manipulation, microfluidic devices may serve as the production line of building blocks and the microenvironment simulator in tissue engineering. Additionally, in microfluidic technique-assisted tissue engineering, various biomaterials are desired to fabricate the tissue mimicking or repairing structures (i.e., particles, fibers, and scaffolds). Among the materials, gelatin methacrylate (GelMA)-based hydrogels have shown great potential due to their biocompatibility and mechanical tenability. In this work, applications of GelMA hydrogels in microfluidic technique-assisted tissue engineering are reviewed mainly from two viewpoints: Serving as raw materials for microfluidic fabrication of building blocks in tissue engineering and the simulation units in microfluidic chip-based microenvironment-mimicking devices. In addition, challenges and outlooks of the exploration of GelMA hydrogels in tissue engineering applications are proposed.
Collapse
Affiliation(s)
- Taotao Liu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (T.L.); (W.W.); (Y.Z.)
| | - Wenxian Weng
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (T.L.); (W.W.); (Y.Z.)
| | - Yuzhuo Zhang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (T.L.); (W.W.); (Y.Z.)
| | - Xiaoting Sun
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- Department of Biophysics, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
19
|
Moros M, Di Maria F, Dardano P, Tommasini G, Castillo-Michel H, Kovtun A, Zangoli M, Blasio M, De Stefano L, Tino A, Barbarella G, Tortiglione C. In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers. iScience 2020; 23:101022. [PMID: 32283525 PMCID: PMC7155203 DOI: 10.1016/j.isci.2020.101022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling. The oligothiophene DTTO promotes the synthesis of microfibers in Hydra vulgaris DTTO co-assembles with proteins giving rise to fluorescent and conductive microfibers The biofiber synthesis is an active process, based on protein synthesis In situ produced hybrid microfibers have great potential in biolectronics and biomedicine
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Francesca Di Maria
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy; Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, c/o Campus Ecotekne - Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Principia Dardano
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Giuseppina Tommasini
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | | | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Martina Blasio
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Luca De Stefano
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Barbarella
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy.
| |
Collapse
|
20
|
Patel BB, McNamara MC, Pesquera-Colom LS, Kozik EM, Okuzonu J, Hashemi NN, Sakaguchi DS. Recovery of Encapsulated Adult Neural Progenitor Cells from Microfluidic-Spun Hydrogel Fibers Enhances Proliferation and Neuronal Differentiation. ACS OMEGA 2020; 5:7910-7918. [PMID: 32309700 PMCID: PMC7160838 DOI: 10.1021/acsomega.9b04214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Because of the limitations imposed by traditional two-dimensional (2D) cultures, biomaterials have become a major focus in neural and tissue engineering to study cell behavior in vitro. 2D systems fail to account for interactions between cells and the surrounding environment; these cell-matrix interactions are important to guide cell differentiation and influence cell behavior such as adhesion and migration. Biomaterials provide a unique approach to help mimic the native microenvironment in vivo. In this study, a novel microfluidic technique is used to encapsulate adult rat hippocampal stem/progenitor cells (AHPCs) within alginate-based fibrous hydrogels. To our knowledge, this is the first study to encapsulate AHPCs within a fibrous hydrogel. Alginate-based hydrogels were cultured for 4 days in vitro and recovered to investigate the effects of a 3D environment on the stem cell fate. Post recovery, cells were cultured for an additional 24 or 72 h in vitro before fixing cells to determine if proliferation and neuronal differentiation were impacted after encapsulation. The results indicate that the 3D environment created within a hydrogel is one factor promoting AHPC proliferation and neuronal differentiation (19.1 and 13.5%, respectively); however, this effect is acute. By 72 h post recovery, cells had similar levels of proliferation and neuronal differentiation (10.3 and 8.3%, respectively) compared to the control conditions. Fibrous hydrogels may better mimic the natural micro-environment present in vivo and be used to encapsulate AHPCs, enhancing cell proliferation and selective differentiation. Understanding cell behavior within 3D scaffolds may lead to the development of directed therapies for central nervous system repair and rescue.
Collapse
Affiliation(s)
- Bhavika B Patel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Laura S Pesquera-Colom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Biology Program, Iowa State University, Ames, Iowa 50010, United States
| | - Emily M Kozik
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Biology Program, Iowa State University, Ames, Iowa 50010, United States
| | - Jasmin Okuzonu
- Department of Biological and Chemical Engineering, Iowa State University, Ames, Iowa 50010, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Donald S Sakaguchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, United States
- Biology Program, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
21
|
Yao K, Li W, Li K, Wu Q, Gu Y, Zhao L, Zhang Y, Gao X. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning. Macromol Biosci 2020; 20:e1900395. [PMID: 32141708 DOI: 10.1002/mabi.201900395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Indexed: 01/12/2023]
Abstract
Microfluidic spinning, as a combination of wet spinning and microfluidic technology, has been used to develop microfibers with special structures to facilitate cell 3D culture/co-culture and microtissue formation in vitro. In this study, a simple microchip-based microfluidic spinning strategy is presented for the fabrication of multicomponent heterogeneous calcium alginate microfibers. The use of two kinds of microchip enables the one-step preparation of multicomponent heterogeneous microfibers with various arrangement patterns, including the preparation of one-, two-, and three-component microfibers by a two-layer microchip and preparation of four component microfibers with different arrangement by a membrane-sandwiched three-layer microchip. The obtained microfibers could be used to encapsulate various kinds of cells, such as the human non-small cell lung cancer cell NCI-H1650, the human fetal lung fibroblast HFL1, the normal pulmonary bronchial epithelial cell 16HBE, and human umbilical vein endothelial cells. By adding chitosan to the medium to keep the fibers stable, 3D long-term in vitro cell co-culture has been carried out up to 21 days. This method is very simple and easy to operate, continuously produces spatially well-defined heterogeneous microfibers, has important applications for composite functional biomaterials, and shows great potential in organs-on-a-chip and biomimetic systems.
Collapse
Affiliation(s)
- Kun Yao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Qirui Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yarong Gu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China.,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
22
|
Cutarelli A, Ghio S, Zasso J, Speccher A, Scarduelli G, Roccuzzo M, Crivellari M, Maria Pugno N, Casarosa S, Boscardin M, Conti L. Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors. Cells 2019; 9:E88. [PMID: 31905823 PMCID: PMC7017050 DOI: 10.3390/cells9010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Silicon is a promising material for tissue engineering since it allows to produce micropatterned scaffolding structures resembling biological tissues. Using specific fabrication methods, it is possible to build aligned 3D network-like structures. In the present study, we exploited vertically-aligned silicon micropillar arrays as culture systems for human iPSC-derived cortical progenitors. In particular, our aim was to mimic the radially-oriented cortical radial glia fibres that during embryonic development play key roles in controlling the expansion, radial migration and differentiation of cortical progenitors, which are, in turn, pivotal to the establishment of the correct multilayered cerebral cortex structure. Here we show that silicon vertical micropillar arrays efficiently promote expansion and stemness preservation of human cortical progenitors when compared to standard monolayer growth conditions. Furthermore, the vertically-oriented micropillars allow the radial migration distinctive of cortical progenitors in vivo. These results indicate that vertical silicon micropillar arrays can offer an optimal system for human cortical progenitors' growth and migration. Furthermore, similar structures present an attractive platform for cortical tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cutarelli
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Simone Ghio
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Jacopo Zasso
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Alessandra Speccher
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Giorgina Scarduelli
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michela Roccuzzo
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michele Crivellari
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Nicola Maria Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy;
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Ket-Lab, Edoardo Amaldi Foundation, via del Politecnico snc, I-00133 Roma, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| |
Collapse
|
23
|
Morel A, Oberle SC, Ulrich S, Yazgan G, Spano F, Ferguson SJ, Fortunato G, Rossi RM. Revealing non-crystalline polymer superstructures within electrospun fibers through solvent-induced phase rearrangements. NANOSCALE 2019; 11:16788-16800. [PMID: 31465059 DOI: 10.1039/c9nr04432a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design of nanofibers for biomedical applications requires a deep understanding of the fiber formation process and the resulting internal structure. In this regard, non-crystalline, mesomorphic structures play a central role in the processing of many polymers as precursors in the formation of crystalline superstructures (e.g. shish-kebab) and influence strongly the physical properties of polymers with a low degree of crystallinity. Yet, our ability to probe these relevant features is often greatly limited by their low contrast differences with the amorphous phase. We present an approach to reveal the organization of the mesomorphic superstructures within such polymeric materials, on the example of electrospun poly(l-lactide) nanofibers. Based on solvent-induced crystallization, this method employs fine-tuned solvent/non-solvent systems to enhance the contrast of these structural features by selectively triggering and controlling reorganization of the phases. Hereby, the mesomorphic regions are transformed into an α-crystalline phase, while the nanoscale spatial arrangement of the underlying superstructures is preserved. Combined with X-ray analytical techniques and electron microscopy, our approach provides detailed insights into the nanofiber's inner architecture, allowing for its direct visualization. Thereby, the influence of electrospinning parameters on the fiber formation process is explained as well as the impact of the resulting non-crystalline superstructures on single fiber mechanical properties. The method can be applied to comparable polymers for the development of materials with controlled, tailored properties.
Collapse
Affiliation(s)
- Alexandre Morel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St Gallen, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shear at Fluid-Fluid Interfaces Affects the Surface Topologies of Alginate Microfibers. CLEAN TECHNOLOGIES 2019. [DOI: 10.3390/cleantechnol1010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogel microfibers have great potential for applications such as tissue engineering or three-dimensional cell culturing. Their favorable attributes can lead to tissue models that can help to reduce or eliminate animal testing, thereby providing an eco-friendly alternative to this unsustainable process. In addition to their highly tunable mechanical properties, this study shows that varying the viscosity and flow rates of the prepolymer core solution and gellator sheath solution within a microfluidic device can affect the surface topology of the resulting microfibers. Higher viscosity core solutions are more resistant to deformation from shear force within the microfluidic device, thereby yielding smoother fibers. Similarly, maintaining a smaller velocity gradient between the fluids within the microfluidic device minimizes shear force and smooths fiber surfaces. This simple modification provides insight into manufacturing microfibers with highly tunable properties.
Collapse
|
25
|
Sharifi F, Patel BB, McNamara MC, Meis PJ, Roghair MN, Lu M, Montazami R, Sakaguchi DS, Hashemi NN. Photo-Cross-Linked Poly(ethylene glycol) Diacrylate Hydrogels: Spherical Microparticles to Bow Tie-Shaped Microfibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18797-18807. [PMID: 31042026 DOI: 10.1021/acsami.9b05555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bow tie-shaped fibers and spherical microparticles with controlled dimensions and shapes were fabricated with poly(ethylene glycol) diacrylate hydrogel utilizing hydrodynamic shear principles and a photopolymerization strategy under a microfluidic regime. Decreasing the flow rate ratio between the core and sheath fluids from 25 (50:2) to 1.25 (100:80) resulted in increasing the particles size and reducing the production rate by 357 and 86%, respectively. The width of the fibers increased by a factor of 1.4 when the flow rate ratio was reduced from 2.5 to 1 due to the decrease of the shear force at the fluid/fluid interface. The stress at break and Young's modulus of the fibers were enhanced by 32 and 63%, respectively, when the sheath-to-core flow rate ratio decreased from 100:40 to 100:80. The fiber fabrication was simulated using the finite element method, and the numerical and experimental results were in agreement. Adult hippocampal stem/progenitor cells and bone-marrow-derived multipotent mesenchymal stromal cells were seeded onto the fibrous scaffolds in vitro, and cellular adhesion, proliferation, and differentiation were investigated. Microgrooves on the fibers' surface were shown to positively affect cell adhesion when compared to flat fibers and planar controls.
Collapse
|
26
|
McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. Microfluidic Manufacturing of Alginate Fibers with Encapsulated Astrocyte Cells. ACS APPLIED BIO MATERIALS 2019; 2:1603-1613. [DOI: 10.1021/acsabm.9b00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Zhang K, Liimatainen H. Hierarchical Assembly of Nanocellulose-Based Filaments by Interfacial Complexation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801937. [PMID: 30151995 DOI: 10.1002/smll.201801937] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Indexed: 05/28/2023]
Abstract
In the present study, interfacial complexation spinning of oppositely charged cellulose-materials is applied to fabricate hierarchical and continuous nanocellulose based filaments under aqueous conditions by using cationic cellulose nanocrystals with different anionic celluloses including soluble sodium carboxymethyl cellulose and insoluble 2,2,6,6-tetramethylpiperidinyl-1-oxy radical-oxidized cellulose nanofibers and dicarboxylated cellulose nanocrystals (DC-CNC). The morphologies of the wet and dry nanocellulose based filaments are further investigated by optical and electron microscopy. All fabricated continuous nanocellulose based filaments display a hierarchical structure similar to the natural cellulose fibers in plant cells. As far as it is known, this is not only the first report about the fabrication of nanocellulose based filaments by interfacial complexation of cationic CNCs with anionic celluloses but also the first demonstration of fabricating continuous fibers directly from oppositely charged nanoparticles by interfacial nanoparticle complexation (INC). This INC approach may provide a new route to design continuous filaments from many other oppositely charged nanoparticles with tailored characteristics.
Collapse
Affiliation(s)
- Kaitao Zhang
- Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Henrikki Liimatainen
- Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| |
Collapse
|
28
|
Sun T, Li X, Shi Q, Wang H, Huang Q, Fukuda T. Microfluidic Spun Alginate Hydrogel Microfibers and Their Application in Tissue Engineering. Gels 2018; 4:gels4020038. [PMID: 30674814 PMCID: PMC6209268 DOI: 10.3390/gels4020038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/22/2023] Open
Abstract
Tissue engineering is focusing on processing tissue micro-structures for a variety of applications in cell biology and the “bottom-up” construction of artificial tissue. Over the last decade, microfluidic devices have provided novel tools for producing alginate hydrogel microfibers with various morphologies, structures, and compositions for cell cultivation. Moreover, microfluidic spun alginate microfibers are long, thin, and flexible, and these features facilitate higher-order assemblies for fabricating macroscopic cellular structures. In this paper, we present an overview of the microfluidic spinning principle of alginate hydrogel microfibers and their application as micro-scaffolds or scaffolding elements for 3D assembly in tissue engineering.
Collapse
Affiliation(s)
- Tao Sun
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China.
| | - Xingfu Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China.
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China.
| | - Huaping Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China.
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China.
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 10081, China.
| |
Collapse
|
29
|
Palumbo FS, Fiorica C, Pitarresi G, Zingales M, Bologna E, Giammona G. Multifibrillar bundles of a self-assembling hyaluronic acid derivative obtained through a microfluidic technique for aortic smooth muscle cell orientation and differentiation. Biomater Sci 2018; 6:2518-2526. [DOI: 10.1039/c8bm00647d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A hyaluronic acid derivative able to physically crosslink in a saline aqueous medium was employed for the production of fibers with a mean diameter of 50 μm using a microfluidic technique.
Collapse
Affiliation(s)
- Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)
- Università degli Studi di Palermo
- 90123 Palermo
- Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)
- Università degli Studi di Palermo
- 90123 Palermo
- Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)
- Università degli Studi di Palermo
- 90123 Palermo
- Italy
| | | | - Emanuela Bologna
- Dipartimento di Ingegneria Civile
- Ambientale
- Aerospaziale
- dei Materiali
- Palermo
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)
- Università degli Studi di Palermo
- 90123 Palermo
- Italy
- Institute of Biophysics at Palermo
| |
Collapse
|