1
|
van Strien J, Makurat M, Zeng Y, Olsthoorn R, Schneider GF, Slütter B, MacKay JA, Jiskoot W, Kros A. Noncovalent Conjugation of OVA323 to ELP Micelles Increases Immune Response. Biomacromolecules 2024; 25:1027-1037. [PMID: 38166400 PMCID: PMC10865353 DOI: 10.1021/acs.biomac.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Max Makurat
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ye Zeng
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - René Olsthoorn
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gregory F. Schneider
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bram Slütter
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J. Andrew MacKay
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089-9121, United States
| | - Wim Jiskoot
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
2
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
3
|
Brunning H, Sallach JB, Zanchi V, Price O, Boxall A. Toward a Framework for Environmental Fate and Exposure Assessment of Polymers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:515-540. [PMID: 34913523 DOI: 10.1002/etc.5272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Development of risk-assessment methodologies for polymers is an emerging regulatory priority to prevent negative environmental impacts; however, the diversity and complexity of polymers require adaptation of existing environmental risk-assessment approaches. The present review discusses the challenges and opportunities for the fate and exposure assessment of polymers in the context of regulatory environmental risk assessment of chemicals. The review discusses the applicability and adequacy for polymers of existing fate parameters used for nonpolymeric compounds and proposes additional parameters that could inform the fate of polymers. The significance of these parameters in various stages of an exposure-assessment framework is highlighted, with classification of polymers as solid or dissolved being key for identification of those parameters most relevant to environmental fate. Considerations to address the key limitations and knowledge gaps are then identified and discussed, specifically the complexity of polymer identification, with the need for characterization of the most significant parameters for polymer grouping and prioritization; the complexity of polymer degradation in the environment, with the need to incorporate the fate and hazards of degradation products into risk assessment; the requirement for development and standardization of analytical methods for characterization of polymer fate properties and degradation products; and the need to develop exposure modeling approaches for polymers. Environ Toxicol Chem 2022;41:515-540. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Hattie Brunning
- Department of Environment and Geography, University of York, York, United Kingdom
| | - J Brett Sallach
- Department of Environment and Geography, University of York, York, United Kingdom
| | | | | | - Alistair Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
4
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
5
|
Mortensen N, Toews P, Bates J. Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery. Polymers (Basel) 2022; 14:248. [PMID: 35054655 PMCID: PMC8779755 DOI: 10.3390/polym14020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Drug-diffusion kinetics in 2-hydroxyethyl methacrylate hydrogels were studied as a function of the crosslinking density and porosity. By varying the concentration of the crosslinker, tetraethylene glycol dimethacrylate, we demonstrated how the release of Timolol maleate could be optimized to allow for efficient drug delivery. FTIR and spectrophotometry supplied optical inferences into the functional groups present. By studying the swelling and degradation of hydrogels, supplemented with drug-release kinetics studies, the relationship between these two tenets could be formulated.
Collapse
Affiliation(s)
| | | | - Jeffrey Bates
- Department of Materials Science and Engineering, University of Utah, 122 Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA; (N.M.); (P.T.)
| |
Collapse
|
6
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
7
|
Thota C, Mikolajczak DJ, Roth C, Koksch B. Enhancing Antimicrobial Peptide Potency through Multivalent Presentation on Coiled-Coil Nanofibrils. ACS Med Chem Lett 2021; 12:67-73. [PMID: 33488966 PMCID: PMC7812673 DOI: 10.1021/acsmedchemlett.0c00425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotic-resistant microbes have become a global health threat. New delivery systems that enhance the efficacy of antibiotics and/or overcome the resistances can help combat them. In this context, we present FF03, a fibril-forming α-helical coiled-coil peptide that functions as an efficient scaffold for the multivalent presentation of the weakly cationic antimicrobial peptide (AMP) IN4. The resulting IN4-decorated FF03 coiled-coil fibrils (FF03 + IN4) are nonhemolytic and noncytotoxic and show enhanced antimicrobial activity relative to unconjugated IN4 and standard antibiotics against several bacterial strains. Scanning electron microscopy analysis shows that FF03 + IN4 nanofibers disrupt methicillin-resistant Staphylococcus aureus membranes, indicating a surface-level mode of action. Furthermore, transmission electron microscopy and circular dichroism studies indicate that decoration of the FF03 scaffold with IN4 does not alter the secondary-structure propensity or fibril-forming properties of FF03. Thus, the approach reported herein provides a new peptidic scaffold for the multivalent presentation of AMPs to obtain nonhemolytic and noncytotoxic antimicrobial systems with improved efficacy relative to the unconjugated AMP analogues.
Collapse
Affiliation(s)
- Chaitanya
Kumar Thota
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Dorian J. Mikolajczak
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christian Roth
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14195 Berlin, Germany
| | - Beate Koksch
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
8
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Thadani NN, Yang J, Moyo B, Lee CM, Chen MY, Bao G, Suh J. Site-Specific Post-translational Surface Modification of Adeno-Associated Virus Vectors Using Leucine Zippers. ACS Synth Biol 2020; 9:461-467. [PMID: 32068391 PMCID: PMC7323921 DOI: 10.1021/acssynbio.9b00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adeno-associated virus (AAV) is widely favored as a gene therapy vector, tested in over 200 clinical trials internationally. To improve targeted delivery a variety of genetic capsid modifications, such as insertion of targeting proteins/peptides into the capsid shell, have been explored with some success but larger insertions often have unpredictable deleterious impacts on capsid formation and gene delivery. Here, we demonstrate a modular platform for the integration of exogenous peptides and proteins onto the AAV capsid post-translationally while preserving vector functionality. We decorated the AAV capsid with leucine-zipper coiled-coil binding motifs that exhibit specific noncovalent heterodimerization. AAV capsids successfully display hexahistidine tagged-peptides using this approach, as demonstrated through nickel column affinity. This protein display platform may facilitate the incorporation of biological moieties on the AAV surface, expanding possibilities for vector enhancement and engineering.
Collapse
Affiliation(s)
- Nicole N Thadani
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Joanna Yang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Buhle Moyo
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Maria Y Chen
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
10
|
Pechar M, Pola R, Janoušková O, Sieglová I, Král V, Fábry M, Tomalová B, Kovář M. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Michal Pechar
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Irena Sieglová
- Institute of Molecular Genetics; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics; Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Barbora Tomalová
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague 4 Czech Republic
| | - Marek Kovář
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague 4 Czech Republic
| |
Collapse
|
11
|
Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol Biosci 2017; 18. [PMID: 28805040 DOI: 10.1002/mabi.201700209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity.
Collapse
Affiliation(s)
- Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
12
|
Abstract
The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.
Collapse
Affiliation(s)
- David A.D. Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John M. Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Leiro V, Moreno P, Sarmento B, Durão J, Gales L, Pêgo A, Barrias C. Design and preparation of biomimetic and bioinspired materials. BIOINSPIRED MATERIALS FOR MEDICAL APPLICATIONS 2017:1-44. [DOI: 10.1016/b978-0-08-100741-9.00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Chu TW, Kopeček J. Drug-Free Macromolecular Therapeutics--A New Paradigm in Polymeric Nanomedicines. Biomater Sci 2016; 3:908-22. [PMID: 26191406 DOI: 10.1039/c4bm00442f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review highlights a unique research area in polymer-based nanomedicine designs. Drug-free macromolecular therapeutics induce apoptosis of malignant cells by the crosslinking of surface non-internalizing receptors. The receptor crosslinking is mediated by the biorecognition of high-fidelity natural binding motifs (such as antiparallel coiled-coil peptides or complementary oligonucleotides) that are grafted to the side chains of polymers or attached to targeting moieties against cell receptors. This approach features the absence of low-molecular-weight cytotoxic compounds. Here, we summarize the rationales, different designs, and advantages of drug-free macromolecular therapeutics. Recent developments of novel therapeutic systems for B-cell lymphomas are discussed, as well as relevant approaches for other diseases. We conclude by pointing out various potential future directions in this exciting new field.
Collapse
Affiliation(s)
- Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Wu Y, Collier JH. α-Helical coiled-coil peptide materials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27597649 DOI: 10.1002/wnan.1424] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
Abstract
Self-assembling coiled coils, which occur commonly in native proteins, have received significant interest for the design of new biomaterials-based medical therapies. Considerable effort over recent years has led to a detailed understanding of the self-assembly process of coiled coils, and a diverse collection of strategies have been developed for designing functional materials using this motif. The ability to engineer the interface between coiled coils allows one to achieve variously connected components, leading to precisely defined structures such as nanofibers, nanotubes, nanoparticles, networks, gels, and combinations of these. Currently these materials are being developed for a range of biotechnological and medical applications, including drug delivery systems for controlled release, targeted nanomaterials, 'drug-free' therapeutics, vaccine delivery systems, and others. WIREs Nanomed Nanobiotechnol 2017, 9:e1424. doi: 10.1002/wnan.1424 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Kwon YC, Kim S, Lee YS, Lee JC, Cho MJ, Lee WK, Kang HL, Song JY, Baik SC, Ro HS. Novel nuclear targeting coiled-coil protein of Helicobacter pylori showing Ca2+-independent, Mg2+-dependent DNase I activity. J Microbiol 2016; 54:387-95. [DOI: 10.1007/s12275-016-5631-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/02/2023]
|
17
|
Abstract
This overview intends to demonstrate the close relationship between the design of smart biomaterials and water-soluble polymer-drug conjugates. First, the discovery and systematic studies of hydrogels based on crosslinked poly(meth)acrylic acid esters and substituted amides is described. Then, the lessons learned for the design of water-soluble polymers as drug carriers are highlighted. The current state-of-the-art in water-soluble, mainly poly[N-(2-hydroxypropyl)methacylamide (HPMA), polymer-drug conjugates is shown including the design of backbone degradable HPMA copolymer carriers. In the second part, the modern design of hybrid hydrogels focuses on the self-assembly of hybrid copolymers composed from the synthetic part (backbone) and biorecognizable grafts (coiled-coil forming peptides or morpholino oligonucleotides) is shown. The research of self-assembling hydrogels inspired the invention and design of drug-free macromolecular therapeutics - a new paradigm in drug delivery where crosslinking of non-internalizating CD20 receptors results in apoptosis in vitro and in vivo. The latter is mediated by biorecognition of complementary motifs; no low molecular weight drug is needed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
18
|
Zhang R, Yang J, Chu TW, Hartley JM, Kopeček J. Multimodality imaging of coiled-coil mediated self-assembly in a "drug-free" therapeutic system. Adv Healthc Mater 2015; 4:1054-65. [PMID: 25612325 DOI: 10.1002/adhm.201400679] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Indexed: 01/23/2023]
Abstract
Two complementary coiled-coil peptides CCE/CCK are used to develop a "drug free" therapeutic system, which can specifically kill cancer cells without a drug. CCE is attached to the Fab' fragment of anti-CD20 1F5 antibody (Fab'-CCE), and CCK is conjugated in multiple grafts to poly[N-(2-hydroxypropyl)methacrylamide] (P-(CCK)x ). Two conjugates are consecutively administered: First, Fab'-CCE coats peptide CCE at CD20 antigen of lymphoma cell surface; second, CCE/CCK biorecognition between Fab'-CCE and P-(CCK)x leads to coiled-coil formation, CD20 crosslinking, membrane reorganization, and ultimately cell apoptosis. To prove that two conjugates can assemble at cell surface, multiple fluorescence imaging studies are performed, including 2-channel FMT, 3D confocal microscopy, and 4-color FACS. Confocal microscopy shows colocalization of two fluorescently labeled conjugates on non-Hodgkin's lymphoma (NHL) Raji cell surface, indicating "two-step" targeting specificity. The fluorescent images also reveal that these two conjugates can disrupt normal membrane lipid distribution and form lipid raft clusters, leading to cancer cell apoptosis. This "two-step" biorecognition capacity is further demonstrated in a NHL xenograft model, using fluorescent images at whole-body, tissue and cell levels. It is also found that delaying injection of P-(CCK)x can significantly enhance targeting efficacy. This high-specificity therapeutics provide a safe option to treat NHL and other B cell malignancies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
| | - Jonathan M. Hartley
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD; University of Utah; Salt Lake City UT 84112 USA
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
19
|
Tucker BS, Sumerlin BS. Poly(N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01279d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Borchmann DE, Carberry TP, Weck M. "Bio"-macromolecules: polymer-protein conjugates as emerging scaffolds for therapeutics. Macromol Rapid Commun 2013; 35:27-43. [PMID: 24323623 DOI: 10.1002/marc.201300792] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/01/2013] [Indexed: 12/26/2022]
Abstract
Polymer-protein conjugates are biohybrid macromolecules derived from covalently connecting synthetic polymers with polypeptides. The resulting materials combine the properties of both worlds: chemists can engineer polymers to stabilize proteins, to add functionality, or to enhance activity; whereas biochemists can exploit the specificity and complexity that Nature has bestowed upon its macromolecules. This has led to a wealth of applications, particularly within the realm of biomedicine. Polymer-protein conjugation has expanded to include scaffolds for drug delivery, tissue engineering, and microbial inhibitors. This feature article reflects upon recent developments in the field and discusses the applications of these hybrids from a biomaterials standpoint.
Collapse
Affiliation(s)
- Dorothee E Borchmann
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Sq. E., New York, New York, 10003, USA
| | | | | |
Collapse
|
21
|
Zope HR, Versluis F, Ordas A, Voskuhl J, Spaink HP, Kros A. In Vitro and In Vivo Supramolecular Modification of Biomembranes Using a Lipidated Coiled-Coil Motif. Angew Chem Int Ed Engl 2013; 52:14247-51. [DOI: 10.1002/anie.201306033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Indexed: 01/22/2023]
|
22
|
Zope HR, Versluis F, Ordas A, Voskuhl J, Spaink HP, Kros A. Supramolekulare In-vitro- und In-vivo-Funktionalisierung von Biomembranen durch ein lipidiertes Coiled-Coil-Bindungsmotiv. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Guo W, Zheng M, Zhong Y, Meng F, Deng C, Zhong Z. Poly(ethylene oxide)-graft-methotrexate Macromolecular Drugs Conjugating via Aminopteridine Ring Exhibit Potent Anticancer Activity. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Pola R, Laga R, Ulbrich K, Sieglová I, Král V, Fábry M, Kabešová M, Kovář M, Pechar M. Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Biomacromolecules 2013; 14:881-9. [DOI: 10.1021/bm3019592] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Robert Pola
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovského nám. 2, 162 06, Prague 6, Czech
Republic
| | - Richard Laga
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovského nám. 2, 162 06, Prague 6, Czech
Republic
| | - Karel Ulbrich
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovského nám. 2, 162 06, Prague 6, Czech
Republic
| | - Irena Sieglová
- Institute of Molecular
Genetics, Academy of Sciences of the Czech Republic, v.v.i.,
Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Vlastimil Král
- Institute of Molecular
Genetics, Academy of Sciences of the Czech Republic, v.v.i.,
Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular
Genetics, Academy of Sciences of the Czech Republic, v.v.i.,
Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martina Kabešová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.,
Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Marek Kovář
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.,
Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovského nám. 2, 162 06, Prague 6, Czech
Republic
| |
Collapse
|
25
|
Modeling of highly efficient drug delivery system induced by self-assembly of nanocarriers: A density functional study. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4752-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Abstract
Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
27
|
Kopeček J, Yang J. “Intelligente” Biomaterialien durch Selbstorganisation von Hybridhydrogelen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Pechar M, Pola R. The coiled coil motif in polymer drug delivery systems. Biotechnol Adv 2012; 31:90-6. [PMID: 22266376 DOI: 10.1016/j.biotechadv.2012.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/15/2011] [Accepted: 01/04/2012] [Indexed: 01/23/2023]
Abstract
The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented.
Collapse
Affiliation(s)
- Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic.
| | | |
Collapse
|
29
|
Pechar M, Pola R, Laga R, Ulbrich K, Bednárová L, Maloň P, Sieglová I, Král V, Fábry M, Vaněk O. Coiled Coil Peptides as Universal Linkers for the Attachment of Recombinant Proteins to Polymer Therapeutics. Biomacromolecules 2011; 12:3645-55. [DOI: 10.1021/bm200897b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Michal Pechar
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 06, Prague 6, Czech Republic
| | - Robert Pola
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 06, Prague 6, Czech Republic
| | - Richard Laga
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 06, Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 06, Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Petr Maloň
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Irena Sieglová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, 166 10 Prague 6, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, 166 10 Prague 6, Czech Republic
| | | |
Collapse
|