1
|
Leiner R, Witayakran S, Verwaayen S, Siegwardt L, Ribeiro CC, Dietz C, Koch M, Kulachenko A, Gallei M. Tailored Interaction between Cellulose Nanowhiskers and Core-Shell Particles Determines the Optical and Mechanical Properties in Hybrid Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64377-64387. [PMID: 39509544 DOI: 10.1021/acsami.4c16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hybrid materials of core-shell particles and cellulose nanowhiskers (CNWs) were synthesized to produce opal films with increasing tensile strength. After the incorporation of CNWs into the processed particle films, differences in the mechanical and optical properties were noticeable, which stemmed from the adhesion forces between the cellulose and the particles' shell material. Two different particle compositions were compared, using polystyrene as cores, and either poly(ethyl acrylate) (PEA) or a copolymer of ethyl acrylate and 3 wt % of 2-hydroxyethyl methacrylate (HEMA) as the shell material. Stronger interactions between the particles containing HEMA and the CNWs were displayed via atomic force microscopy particle manipulation experiments, where higher forces were required to deliberately move P(EA-co-HEMA) particles on a CNW substrate compared to PEA particles. The stronger interaction behaviors increased the disorder of the particles within the opal films toward photonic glasses with angle-independent structural colors. Also, the increase in tensile strength from <1 MPa at a cellulose content of 0 wt % to 6 MPa at the optimal CNW content of 15 wt % was more pronounced compared to the particle-cellulose mixture with only PEA in the particle shell. Thus, the presence of the hydroxy groups in the particles' shell material on the molecular level significantly influenced the optical and mechanical properties on the macroscopic level.
Collapse
Affiliation(s)
- Regina Leiner
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Suteera Witayakran
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Max Planck Institute for Informatics, Saarland Informatics Campus, Building E1 4, 66123 Saarbrücken, Germany
| | - Sascha Verwaayen
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Lukas Siegwardt
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Catarina C Ribeiro
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Peter-Grünberg-Straße 2, Darmstadt 64287, Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Peter-Grünberg-Straße 2, Darmstadt 64287, Germany
| | - Marcus Koch
- INM─Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Institute for Physical Process Technology, Saarland University of Applied Sciences, Göbenstr. 40, 66117 Saarbrücken, Germany
| | - Artem Kulachenko
- KTH Royal Institute of Technology, Teknikringen 8, 10044 Stockholm, Sweden
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Saarland University, Campus C4 2, Saarbrücken 66123, Germany
| |
Collapse
|
2
|
Bi WL, Tang A, Tian Y, Zhu Z, Chen S. Robust and Durable Photonic Crystal with Liquid-Repellent Property for Self-Cleaning Coatings and Structural Colored Textiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35639-35650. [PMID: 38916253 DOI: 10.1021/acsami.4c09497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Photonic crystal coatings with unique structural colors and self-cleaning properties have been providing an efficient way for substrate coloration. However, the enhancement of the robustness and durability of structural colored coatings to meet the requirements in diverse environments remains a challenging task. Here, to realize the application of photonic crystal films under various kinds of conditions, we present a poly(fluoroalkyl acrylate)-based colloidal photonic crystal (fCPC) coating. Fluorinated core-interlayer-shell (FCIS) colloidal particles of polystyrene (PS) core, poly(methyl methacrylate) (PMMA) interlayer, and poly(fluoroalkyl acrylate-ethyl acrylate-butyl acrylate) (P(FA-EA-BA)) shell copolymers have been first prepared by a stepwise emulsion polymerization. fCPCs with self-supporting property, reprocessing ability, friction resistance, as well as excellent wettability and liquid-repellent properties are successfully obtained via the bending-induced ordering technique (BIOT). When applied in antifouling applications, the fCPC film exhibits resistance against various oil and inorganic liquids. Furthermore, the fCPC coatings demonstrate their durability under outdoor conditions by maintaining stable color appearances during rainy and sunny conditions. Additionally, an electronic product adhered with the fCPC coatings is presented, which exhibits a surface that remains clean even after prolonged usage in comparison to the conventional CPC coating. Structural colored textiles with enhanced stability and functionalized liquid-repellent properties are achieved through a one-step process using FCIS particles. Therefore, the developed self-cleaning and comprehensive fCPC coatings capable of withstanding diverse conditions may open up new avenues for the advancement of structural coloration in decoration, vehicle, textile, and building.
Collapse
Affiliation(s)
- Wei-Long Bi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - An Tang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yu Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhijie Zhu
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
3
|
Li M, Peng B, Lyu Q, Chen X, Hu Z, Zhang X, Xiong B, Zhang L, Zhu J. Scalable production of structurally colored composite films by shearing supramolecular composites of polymers and colloids. Nat Commun 2024; 15:1874. [PMID: 38424168 PMCID: PMC10904808 DOI: 10.1038/s41467-024-46237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Structurally colored composite films, composed of orderly arranged colloids in polymeric matrix, are emerging flexible optical materials, but their production is bottlenecked by time-consuming procedures and limited material choices. Here, we present a mild approach to producing large-scale structurally colored composite films by shearing supramolecular composites composed of polymers and colloids with supramolecular interactions. Leveraging dynamic connection and dissociation of supramolecular interactions, shearing force stretches the polymer chains and drags colloids to migrate directionally within the polymeric matrix with reduced viscous resistance. We show that meter-scale structurally colored composite films with iridescence color can be produced within several minutes at room temperature. Significantly, the tunability and diversity of supramolecular interactions allow this shearing approach extendable to various commonly-used polymers. This study overcomes the traditional material limitations of manufacturing structurally colored composite films by shearing method and opens an avenue for mildly producing ordered composites with commonly-available materials via supramolecular strategies.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zhen Hu
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiujuan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bijin Xiong
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Jintao Zhu
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
4
|
Siegwardt L, Glößner V, Boehm A, Schneider M, Gallei M. Poly(4-vinylpyridine) and Poly(methacrylic acid) Particle Architectures for pH-Responsive and Mechanochromic Opal Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10722-10735. [PMID: 38350063 DOI: 10.1021/acsami.3c17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
While stimuli-responsive structural colors are commonly found in nature, mimicking these in artificial materials is challenging. Dynamically switchable and tunable coloration, however, is in high demand in widespread fields of applications, including advanced display and monitoring technologies, smart sensing, and anticounterfeiting. This work reports a scalable protocol for the synthesis of tailor-made core-shell particles and subsequent processing to opal films with iridescent, pH-responsive, and mechanochromic structural color. Novel monodisperse core-shell architectures based on hard polystyrene core particles are synthesized via stepwise emulsion polymerization in a starved-feed mode. The incorporation of 4-vinylpyridine and methacrylic acid as functional comonomers in the soft particle shell facilitates pH-responsive swelling and deswelling. Mechanically stable and well-ordered colloidal crystal films are obtained by the self-assembly of the particles during processing with the powerful melt-shear organization technique. Thereby obtained opal films show Bragg-scattering at the colloidal crystalline structure and exhibit brilliant green-turquoise to blue-violet reflection colors, dependent on the angle of view and illumination. Upon changes in the pH value or mechanical deformation, the reflected wavelength shifts by more than 100 nm, leading to intriguing changes in the visible structural color. Excellent reversibility is achieved by the subsequent application of a convenient UV cross-linking strategy, corroborating the high application potential of these advanced functional materials.
Collapse
Affiliation(s)
- Lukas Siegwardt
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Victoria Glößner
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Anna Boehm
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken 66123, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Saarbrücken 66123, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Saarbrücken 66123, Germany
| |
Collapse
|
5
|
Hu Y, Yu S, Wei B, Yang D, Ma D, Huang S. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. MATERIALS HORIZONS 2023; 10:3895-3928. [PMID: 37448235 DOI: 10.1039/d3mh00877k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stimulus-responsive photonic crystals (PCs) possessing unconventional nonclosely packed structures have received growing attention due to their unique capability of mimicking the active structural colors of natural organisms (for example, chameleons' mechanochromic properties). However, there is rarely any systematic review regarding the progress of nonclose-packed photonic crystals (NPCs), involving their fabrication, working mechanisms, and applications. Herein, a comprehensive review of the fundamental principles and practical fabrication strategies of one/two/three-dimensional NPCs is summarized from the perspective of designing nonclose-packed structures. Subsequently, responsive NPCs with exciting functions and working mechanisms are sorted and delineated according to their diverse responses to physical (force, temperature, magnetic, and electric fields), chemical (ions, pH, vapors, and solvents), and biological (glucose, organophosphate, creatinine, and bacteria) stimuli. We then systematically introduced and discussed the applications of NPCs in sensors, printing, anticounterfeiting, display, optical devices, etc. Finally, the current challenges and development prospects for NPCs are presented. This review not only concludes the design principle for NPCs but also provides a significant basis for the exploration of next-generation NPCs.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Siyi Yu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
6
|
Rosetta G, Macaire L, Butters M, Finlayson CE. Dial-In Synthesis of 'Polymer Opal' Core-Interlayer-Shell Composite Nanoparticles. Polymers (Basel) 2023; 15:3507. [PMID: 37688133 PMCID: PMC10490236 DOI: 10.3390/polym15173507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The emulsion polymerization process via which core-interlayer-shell polymer nanoparticles are synthesized is engineered to offer a crucial control of the eventual size and monodispersity of the polystyrene (PS) cores. We examine the role of key experimental parameters, optimizing the temperature, reactant purity, and agitation (stirring) rate. The subsequent addition of a poly(methyl-methacrylate) (PMMA) grafting layer and a poly(ethyl-acrylate) (PEA) shell layer produces composite particles, which are shear-orderable into opaline films, known as 'polymer opals'. We thus demonstrate pathways toward a 'dial-in' process, where the time taken to obtain the target core size is mapped to the expected resultant structural color. At reaction temperatures of 60 and 70 °C, viable conditions are found where all syntheses give an excellent level of monodispersity (polydispersity index < 0.02), suitable for interlayer and shell growth. These reports may be readily applied to a wider industrial scale fabrication pipeline for these polymeric photonic materials.
Collapse
Affiliation(s)
- Giselle Rosetta
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK
- Varichem Co., Ltd., Brynmawr, Blaenau Gwent, Wales NP23 4BX, UK
| | - Line Macaire
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK
| | - Mike Butters
- Minton Treharne & Davies, Coryton, Cardiff CF14 7HY, UK;
| | - Chris E. Finlayson
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK
| |
Collapse
|
7
|
Roemling LJ, Bleyer G, Goerlitzer ESA, Onishchukov G, Vogel N. Quantitative Optical and Structural Comparison of 3D and (2+1)D Colloidal Photonic Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5211-5221. [PMID: 36989210 DOI: 10.1021/acs.langmuir.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse colloidal particles. Here, we investigate how these imperfections influence the structural coloration by comparing two techniques to obtain colloidal crystals. 3D colloidal crystals produced by convective assembly are well-ordered and periodically arranged but show microscopic cracks. (2+1)D colloidal crystals fabricated by stacking individual monolayers show a decreased hexagonal order and limited crystal registration between single monolayers in the z-direction. We investigate the optical properties of both systems by comparing identical numbers of layers using correlative microspectroscopy. These measurements show that the less ordered (2+1)D colloidal crystals exhibit higher reflected light intensities. Macroscopic reflection integrating all angles shows that the reflected light intensity levels out with an increasing number of layers, whereas incoherent scattering increases. Although both types of colloidal crystal show similar angle-dependent color shifts in specular reflection, the less-ordered structure of the (2+1)D colloidal crystal scatters light within a larger angular range under diffusive illumination. Our results suggest that structural coloration is surprisingly robust toward local defects and irregularities.
Collapse
Affiliation(s)
- Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georgy Onishchukov
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Shevchenko NN, Shabsel’s BM, Iurasova DI, Skurkis YO. Synthesis and Properties of Polymer Photonic Crystals Based on Core–Shell Particles. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Rosetta G, Gunn M, Tomes JJ, Butters M, Pieschel J, Hartmann F, Gallei M, Finlayson CE. Transparent Polymer Opal Thin Films with Intense UV Structural Color. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123774. [PMID: 35744899 PMCID: PMC9230526 DOI: 10.3390/molecules27123774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of 'scattering cones', which showed strong reflectivity in the 275-315 nm range. The viewing range of the scattering was fully quantified for a number of planes and angles, and we additionally discuss the unique spectral anisotropy observed in these structures. Such films could serve as low-cost UV reflection coatings with applications in photovoltaics due to the fact of their non-photobleaching and robust mechanical behavior in addition to their favorable optical properties.
Collapse
Affiliation(s)
- Giselle Rosetta
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
- Varichem Co., Ltd., Brynmawr NP23 4BX, UK
| | - Matthew Gunn
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
| | - John J. Tomes
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
| | - Mike Butters
- Minton Treharne and Davies, Cardiff CF14 7HY, UK;
| | - Jens Pieschel
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (J.P.); (F.H.); (M.G.)
| | - Frank Hartmann
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (J.P.); (F.H.); (M.G.)
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany; (J.P.); (F.H.); (M.G.)
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Chris E. Finlayson
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK; (G.R.); (M.G.); (J.J.T.)
- Correspondence:
| |
Collapse
|
10
|
Isozaki Y, Higashiharaguchi S, Kaenko N, Yamazaki S, Taniguchi T, Takashi K, Ueda Y, Motokawa R. Polymer Photonic Crystals Prepared by Triblock Copolymerization-Induced in situ Microphase Separation. CHEM LETT 2022. [DOI: 10.1246/cl.220089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuka Isozaki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Seiya Higashiharaguchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Naoya Kaenko
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shun Yamazaki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuo Taniguchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Karatsu Takashi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| |
Collapse
|
11
|
Bitsch M, Boehm AK, Grandjean A, Jung G, Gallei M. Embedding Photoacids into Polymer Opal Structures: Synergistic Effects on Optical and Stimuli-Responsive Features. Molecules 2021; 26:7350. [PMID: 34885932 PMCID: PMC8659009 DOI: 10.3390/molecules26237350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Opal films with their vivid structural colors represent a field of tremendous interest and obtained materials offer the possibility for many applications, such as optical sensors or anti-counterfeiting materials. A convenient method for the generation of opal structures relies on the tailored design of core-interlayer-shell (CIS) particles. Within the present study, elastomeric opal films were combined with stimuli-responsive photoacids to further influence the optical properties of structurally colored materials. Starting from cross-linked polystyrene (PS) core particles featuring a hydroxy-rich and polar soft shell, opal films were prepared by application of the melt-shear organization technique. The photoacid tris(2,2,2-trifluoroethyl) 8-hydroxypyrene-1,3,6-trisulfonate (TFEHTS) could be conveniently incorporated during freeze-drying the particle dispersion and prior to the melt-shear organization. Furthermore, the polar opal matrix featuring hydroxylic moieties enabled excited-state proton transfer (ESPT), which is proved by spectroscopic evaluation. Finally, the influence of the photoacid on the optical properties of the 3-dimensional colloidal crystals were investigated within different experimental conditions. The angle dependence of the emission spectra unambiguously shows the selective suppression of the photoacid's fluorescence in its deprotonated state.
Collapse
Affiliation(s)
- Martin Bitsch
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany; (M.B.); (A.K.B.)
| | - Anna Katharina Boehm
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany; (M.B.); (A.K.B.)
| | - Alexander Grandjean
- Biophysical Chemistry, Saarland University, Campus B2 2, 66123 Saarbrücken, Germany;
| | - Gregor Jung
- Biophysical Chemistry, Saarland University, Campus B2 2, 66123 Saarbrücken, Germany;
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany; (M.B.); (A.K.B.)
- Saarene-Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
12
|
Finlayson CE, Rosetta G, Baumberg JJ. An Experimental and Theoretical Determination of Oscillatory Shear-Induced Crystallization Processes in Viscoelastic Photonic Crystal Media. MATERIALS 2021; 14:ma14185298. [PMID: 34576523 PMCID: PMC8464957 DOI: 10.3390/ma14185298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022]
Abstract
A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic crystal media, using an optical shear cell. The hard-sphere/“sticky”-shell design of these polymeric composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency, and temperature. A complementary generic spatio-temporal model is developed of crystallization due to shear-dependent interlayer viscosity, giving propagating crystalline fronts with increasing applied strain, and a gradual transition from interparticle disorder to order. The introduction of a competing shear-induced flow degradation process, dependent on the global shear rate, gives solutions with both amplitude and frequency dependence. The extracted crystallization timescales show parametric trends which are in good qualitative agreement with experimental observations.
Collapse
Affiliation(s)
- Chris E. Finlayson
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK;
- Correspondence: (C.E.F.); (J.J.B.)
| | - Giselle Rosetta
- Department of Physics, Prifysgol Aberystwyth University, Aberystwyth SY23 3BZ, UK;
| | - Jeremy J. Baumberg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Correspondence: (C.E.F.); (J.J.B.)
| |
Collapse
|
13
|
LaNasa JA, Neuman A, Riggleman RA, Hickey RJ. Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42104-42113. [PMID: 34432429 DOI: 10.1021/acsami.1c14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling nanoparticle organization in polymer matrices has been and is still a long-standing issue and directly impacts the performance of the materials. In the majority of instances, simply mixing nanoparticles and polymers leads to macroscale aggregation, resulting in deleterious effects. An alternative method to physically blending independent components such as nanoparticle and polymers is to conduct polymerizations in one-phase monomer/nanoparticle mixtures. Here, we report on the mechanism of nanoparticle aggregation in hybrid materials in which gold nanoparticles are initially homogeneously dispersed in a monomer mixture and then undergo a two-step aggregation process during polymerization and material processing. Specifically, oleylamine-functionalized gold nanoparticles (AuNP) are first synthesized in a methyl methacrylate (MMA) solution and then subsequently polymerized by using a free radical polymerization initiated with azobis(isobutyronitrile) (AIBN) to create hybrid AuNP and poly(methyl methacrylate) (PMMA) materials. The resulting products are easily pressed to obtain bulk films with nanoparticle organization defined as either well-dispersed or aggregated. Polymerizations are performed at various temperatures (T) and MMA volume fractions (ΦMMA) to systematically influence the final nanoparticle dispersion state. During the polymerization of MMA and subsequent material processing, the initially homogeneous AuNP/MMA mixture undergoes macrophase separation between PMMA and oleylamine during the polymerization, yet the AuNP are dispersed in the oleylamine phase. The nanoparticles then aggregate within the oleylamine phase when the materials are processed via vacuum drying and pressing. Nanoparticle organization is tracked throughout the polymerization and processing steps by using a combination of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The resulting dispersion state of AuNPs in PMMA bulk films is ultimately dictated by the thermodynamics of mixing between the PMMA and oleylamine phases, but the mechanism of nanoparticle aggregation occurs in two steps that correspond to the polymerization and processing of the materials. Flory-Huggins mixing theory is used to support the PMMA and oleylamine phase separation. The reported results highlight how the integration of nonequilibrium processing and mean-field approximations reveal nanoparticle aggregation in hybrid materials synthesized by using reaction-induced phase transitions.
Collapse
Affiliation(s)
| | - Anastasia Neuman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
14
|
Liu S, Li Q, Li Y, Zhang J, Pan X, Zhu J, Zhu X. Controllable Radical Polymerization of Selenide Functionalized Vinyl Monomers and Its Application in Redox Responsive Photonic Crystals. Macromol Rapid Commun 2021; 42:e2000764. [PMID: 33544949 DOI: 10.1002/marc.202000764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Selenium-containing monomer (p-phenylseleno) styrene (p-PhSeSt) is polymerized by reversible addition-fragmentation chain transfer polymerization. Polymer, (P(p-PhSeSt)), with controlled molecular weight and narrow molecular weight is obtained. The selenide moiety in obtained P(p-PhSeSt) can be selectively oxidized to selenoxide or selenone groups by H2 O2 or NaClO, respectively. These oxidized groups can be further reduced to selenide by Na2 S2 O4 . The structure changing of polymers during such redox cycle is characterized by nuclear magnetic resonance, X-ray photoelectron spectroscopy, and size exclusion chromatography. Properties, such as thermal performance, glass transition temperature, water contact angles, and refractive indices, of the resulting polymers are systematically investigated before and after oxidation. In addition, SiO2 inverse opal photonic crystal (IOPC) is fabricated by sacrificial polymer colloidal template method. Owing to changes of the RIs of P(p-PhSeSt) after selective oxidation, the predictable change of PC bandgap as a redox-responsive PC sensor is successfully realized, which provides new perspectives for modulating photonic crystals.
Collapse
Affiliation(s)
- Shaoxiang Liu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Qilong Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingying Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiandong Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiulin Zhu
- Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and RIRI Science, Soochow University, Suzhou, 215123, P. R. China.,Global Institute of Software Technology, Suzhou, 215163, P. R. China
| |
Collapse
|
15
|
Fabrication of industrial-level polymer photonic crystal films at ambient temperature Based on uniform core/shell colloidal particles. J Colloid Interface Sci 2021; 584:145-153. [DOI: 10.1016/j.jcis.2020.09.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
|
16
|
Zhang J, Zhang J, Ou Y, Qin Y, Wen H, Dong W, Wang R, Chen S, Yu Z. Photonic Plasticines with Uniform Structural Colors, High Processability, and Self-Healing Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007426. [PMID: 33480481 DOI: 10.1002/smll.202007426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Despite the vast variety of colloidal superstructures available in soft matter photonics, it remains challenging to balance the trade-off between their optical microstructures and material processability. By synergizing colloidal photonics and dynamic chemistry, a type of photonic "plasticine" with characteristics of uniform structural colors, high processability, and self-healing is demonstrated. Specifically, a boronate ester bond-based macromonomer is first prepared through complexation between the diols of polyvinyl alcohol and the boronic acid group of 3-(acrylamido) phenylboronic acid in the presence of concentrated silica colloids. Upon photopolymerization, the dynamic photonic plasticine is formed in situ as the result of the crosslinking of the boronate ester bonded networks. The randomly packed colloids inside the plasticine compose the amorphous photonic crystals, giving rise to angle-independent structural colors that would not compromise during subsequent processing steps; the reversible nature of the boronate ester bonds endows the plasticine with self-adaptable and self-healing properties. Further, the plasticine is also compatible with common shaping methods, that is, cutting, molding, and carving, and thus can be facilely processed into 3D structural colored objects, holding great potentials in fields such as bio-encoding, optical filters, anti-counterfeiting, etc.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Jingjing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yangteng Ou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cambridge University-Nanjing Centre of Technology and Innovation, 126 Dingshan Street, Nanjing, 210046, P. R. China
| | - Yipeng Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Huilin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Cambridge University-Nanjing Centre of Technology and Innovation, 126 Dingshan Street, Nanjing, 210046, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
17
|
Winter T, Boehm A, Presser V, Gallei M. Dye-Loaded Mechanochromic and pH-Responsive Elastomeric Opal Films. Macromol Rapid Commun 2020; 42:e2000557. [PMID: 33251645 DOI: 10.1002/marc.202000557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Indexed: 01/30/2023]
Abstract
In this work, the preparation and fabrication of elastomeric opal films revealing reversible mechanochromic and pH-responsive features are reported. The core-interlayer-shell (CIS) particles are synthesized via stepwise emulsion polymerization leading to hard core (polystyrene), crosslinked interlayer (poly(methyl methacrylate-co-allyl methacrylate), and soft poly(ethyl acrylate-co-butyl acrylate-co-(2-hydroxyethyl) methacrylate) shell particles featuring a size of 294.9 ± 14.8 nm. This particle architecture enables the application of the melt-shear organization technique leading to elastomeric opal films with orange, respectively, green brilliant reflection colors dependent on the angle of view. Moreover, the hydroxyl moieties as part of the particle shell are advantageously used for subsequent thermally induced crosslinking reactions enabling the preparation of reversibly tunable mechanochromic structural colors based on Bragg's law of diffraction. Additionally, the CIS particles can be loaded upon extrusion or chemically by a postfunctionalization strategy with organic dyes implying pH-responsive features. This convenient protocol for preparing multi-responsive, reversibly stretch-tunable opal films is expected to enable a new material family for anti-counterfeiting applications based on external triggers.
Collapse
Affiliation(s)
- Tamara Winter
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany
| | - Anna Boehm
- Chair in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken, 66123, Germany
| | - Volker Presser
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany.,INM - Leibniz-Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken, 66123, Germany
| |
Collapse
|
18
|
Clough JM, Weder C, Schrettl S. Mechanochromism in Structurally Colored Polymeric Materials. Macromol Rapid Commun 2020; 42:e2000528. [PMID: 33210385 DOI: 10.1002/marc.202000528] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Mechanochromic effects in structurally colored materials are the result of deformation-induced changes to their ordered nanostructures. Polymeric materials which respond in this way to deformation offer an attractive combination of characteristics, including continuous strain sensing, high strain resolution, and a wide strain-sensing range. Such materials are potentially useful for a wide range of applications, which extend from pressure-sensing bandages to anti-counterfeiting devices. Focusing on the materials design aspects, recent developments in this field are summarized. The article starts with an overview of different approaches to achieve mechanochromic effects in structurally colored materials, before the physical principles governing the interaction of light with each of these materials types are summarized. Diverse methodologies to prepare these polymers are then discussed in detail, and where applicable, naturally occurring materials that inspired the design of artificial systems are discussed. The capabilities and limitations of structurally colored materials in reporting and visualizing mechanical deformation are examined from a general standpoint and also in more specific technological contexts. To conclude, current trends in the field are highlighted and possible future opportunities are identified.
Collapse
Affiliation(s)
- Jess M Clough
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
19
|
Yu J, Lee CH, Kan CW, Jin S. Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1133. [PMID: 32521724 PMCID: PMC7353355 DOI: 10.3390/nano10061133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Structural-coloured poly(styrene-methyl methacrylate-acrylic acid) (Poly(St-MMA-AA)) deposited carbon fabrics (Poly(St-MMA-AA)/PCFs) with fascinating colours (salmon, chartreuse, springgreen, skyblue, mediumpurple) changing with the (Poly(St-MMA-AA) nanoparticle sizes can be facilely fabricated by the thermal-assisted gravity sedimentation method that facilitates the self-assembly of Poly(St-MMA-AA) colloidal nanoparticles to generate photonic crystals. The particle sizes of Poly(St-MMA-AA) copolymer with core/shell structure varying from 308.3 nm to 213.1 nm were controlled by adjusting the amount of emulsifier during emulsion polymerisation. The presence of the intrinsic chemical information of Poly(St-MMA-AA) copolymer has been ascertained by Raman and Fourier Transform Infrared (FT-IR) Spectroscopy analysis. Colour variation of the as-prepared structural-coloured carbon fabrics (Poly(St-MMA-AA)/PCFs) before and after dipping treatment were captured while using an optical microscope. The structural colours of Poly(St-MMA-AA)/PCFs were assessed by calculating the diffraction bandgap according to Bragg's and Snell's laws. The Poly(St-MMA-AA) photonic crystal films altered the electrical properties of carbon fabrics with the resistivity growing by five orders of magnitude. The differential electrical resistivity between Poly(St-MMA-AA)/PCFs and wet Poly(St-MMA-AA)/PCFs combined with the corresponding tunable colours can be potentially applied in several promising areas, such as smart displays, especially signal warning displays for traffic safety.
Collapse
Affiliation(s)
| | | | - Chi-Wai Kan
- Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China; (J.Y.); (C.H.L.); (S.J.)
| | | |
Collapse
|
20
|
Huang C, Zhang H, Yang S, Wei J. Controllable Structural Colored Screen for Real-Time Display via Near-Infrared Light. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20867-20873. [PMID: 32290649 DOI: 10.1021/acsami.0c03213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patterned colloidal crystals with stimuli-responsive materials provide sensitive and versatile means for investigating the varying ambiance of heat, light, electricity, magnetism, and stress. However, it remains a challenge to integrate stimuli-responsive materials with colloidal crystals by a simple and efficient method, thus restricting them from being used in general applications. Inspired from chameleons, we present a facile yet high-quality approach for the fabrication of the assembly of colloidal nanoparticles based on the hydrophilic-modified thermosensitive films. Various kinds of integral thermosensitive structural colored (TSSC) films are simply prepared in a high-quality screen on a large scale, with low cost, angle independence, and excellent flexibility. Simply turning on the near-infrared (NIR) laser brings heat to the irradiated region to increase the temperature. Integration of the multi-colored photonic bandgap (PBG) of the thermal-sensitive colloidal crystal and flexible anti-counterfeit labels into the NIR light exciting screens can change the intensity of PBG obviously. This advanced technology not only provides an efficient strategy for the preparation of colloidal crystal but also demonstrates a highly thermosensitive structural colored screen that has great prospect for information storage, anticounterfeiting, and real-time display materials.
Collapse
Affiliation(s)
- Chao Huang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hanbing Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuangye Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing 100029, China
| |
Collapse
|
21
|
Kikuchi S, Shoji R, Yoshida S, Kanehashi S, Ma GH, Ogino K. Fabrication of inverse core–shell and Janus-structured microspheres of blends of poly(4-butyltriphenylamine) and poly(methyl methacrylate). Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Pei Y, Molley TG, Kilian KA. Enzyme Responsive Inverse Opal Hydrogels. Macromol Rapid Commun 2020; 41:e1900555. [PMID: 32003532 DOI: 10.1002/marc.201900555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Indexed: 12/13/2022]
Abstract
Structured color in nature is controlled by nano- and micro-structured interfaces giving rise to a photonic bandgap. This study presents a biomimetic optical material based on polymeric inverse opals that respond to enzyme activity. Polymer colloids provide a template in which acryloyl-functionalized poly(ethylene glycol) is integrated; dissolution of the colloids leads to a hydrogel inverse opal that can be lithographically patterned using transfer printing. Incorporating enzyme substrates within the voids provides a material that responds to the presence of proteases through a shift in the optical properties.
Collapse
Affiliation(s)
- Yi Pei
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
23
|
Schmidt BVKJ. Trends in Polymers 2017/2018: Polymer Synthesis. Polymers (Basel) 2019; 12:E39. [PMID: 31881763 PMCID: PMC7023566 DOI: 10.3390/polym12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022] Open
Abstract
Polymer synthesis is a substantial area in polymer science and marks the starting point for all sorts of polymer materials that have a plethora of applications in everyday life but also in academic research [...].
Collapse
|
24
|
Compression-Responsive Photonic Crystals Based on Fluorine-Containing Polymers. Polymers (Basel) 2019; 11:polym11122114. [PMID: 31888273 PMCID: PMC6960798 DOI: 10.3390/polym11122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
Fluoropolymers represent a unique class of functional polymers due to their various interesting and important properties such as thermal stability, resistance toward chemicals, repellent behaviors, and their low refractive indices in comparison to other polymeric materials. Based on the latter optical property, fluoropolymers are particularly of interest for the preparation of photonic crystals for optical sensing application. Within the present study, photonic crystals were prepared based on core-interlayer-shell particles focusing on fluoropolymers. For particle assembly, the melt-shear organization technique was applied. The high order and refractive index contrast of the individual components of the colloidal crystal structure lead to remarkable reflection colors according to Bragg’s law of diffraction. Due to the special architecture of the particles, consisting of a soft core, a comparably hard interlayer, and again a soft shell, the resulting opal films were capable of changing their shape and domain sizes upon applied pressure, which was accompanied with a (reversible) change of the observed reflection colors as well. By the incorporation of adjustable amounts of UV cross-linking agents into the opal film and subsequent treatment with different UV irradiation times, stable and pressure-sensitive opal films were obtained. It is shown that the present strategy led to (i) pressure-sensitive opal films featuring reversibly switchable reflection colors and (ii) that opal films can be prepared, for which the written pattern—resulting from the compressed particles—could be fixed upon subsequent irradiation with UV light. The herein described novel fluoropolymer-containing photonic crystals, with their pressure-tunable reflection color, are promising candidates in the field of sensing devices and as potential candidates for anti-counterfeiting materials.
Collapse
|
25
|
Schlander AMB, Gallei M. Temperature-Induced Coloration and Interface Shell Cross-Linking for the Preparation of Polymer-Based Opal Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44764-44773. [PMID: 31674752 DOI: 10.1021/acsami.9b17606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation of colloidal crystals and their use as photonic materials are of high interest for various technologies in the field of sensing applications, as templates, absorber materials, catalysts, and membranes. In this study, core-shell particles consisting of a cross-linked poly(methyl methacrylate) core featuring a (polyacrylonitrile-co-styrene) shell are synthesized by starved-feed emulsion polymerization. The resulting particles are investigated with respect to size and monodispersity, as well as the core-to-shell ratio, by means of dynamic light scattering and transmission electron microscopy. Optimized particle sizes are 218 nm for the cores and 276 nm for the core-shell particles. For the formation of highly ordered and free-standing opal films, the particles are processed by the melt-shear organization technique. The resulting films show angle-dependent reflection colors, while reflected colors can be tailored by the design of the core-shell particles. As a focus of this work, polyacrylonitrile as part of the copolymer particle shell is advantageously used both for particle opal film stabilization and for tailoring the reflection colors of the opal films. It is shown that the cyclization reactions at the interface of the particles and within the matrix material significantly influence the optical properties of the opal films upon thermal treatment at 240 °C and for different heat holding times. For instance, the change of color can be simply set from red to blue upon defined thermal treatment conditions. Via this convenient protocol, brilliant reflection colors can thus be obtained based on the insights into the structure-property relationships of the underlying particle architectures and interface reactions. The scalable opal films will pave the way to functional colored materials as interesting candidates for a manifold of sensing applications and temperature-responsive polymeric materials.
Collapse
Affiliation(s)
- Annika M-B Schlander
- Ernst-Berl Institute of Technical and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Markus Gallei
- Chair in Polymer Chemistry , Universität des Saarlandes , Campus Saarbrücken , 66123 Saarbrücken , Germany
| |
Collapse
|
26
|
Wu P, Shen X, Schäfer CG, Pan J, Guo J, Wang C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. NANOSCALE 2019; 11:20015-20023. [PMID: 31608344 DOI: 10.1039/c9nr05361a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Shape memory photonic crystals (SMPCs) combining the main characteristics of shape memory materials and photonic crystals have drawn increasing research interest. In sharp contrast to traditional responsive photonic crystals, the temporary shape of SMPCs can be "frozen" and photonic configurations can be modulated by temperature. However, the large-scale fabrication of SMPCs still remains a big challenge, making the practical application difficult. Herein novel scalable SMPC films with both mechanochromic and thermochromic properties are reported. Unlike traditional template-based methods resulting in only a small size, SMPC films are fabricated by a facile hot-pressing method and post-photocuring technology to give large-area freestanding polymer films. The films are mechanically robust and flexible, featuring an excellent structural color which can be changed upon stretching, similar to the color change process of chameleons in response to the environment. The blue-shift of the reflection peak up to 120 nm can be observed when the film is stretched. The films can be reversibly stretched and recovered in 25 cycles without obvious changes in reflection spectra. The temporary shape accompanied by tremendous color changes in the corresponding SMPC films after mechanical stress induced hot programming could be simply fixed by cooling the structure below the glass transition temperature of the polymer matrix. Incorporated programmed optical properties could afterwards be erased by temperature, and initial optical properties could be fully restored. Based on the fully reversible programmable shape as well as optical properties, the investigated SMPC films are expected to be promising candidates for various potential applications, such as smart monitoring, sensors, anti-counterfeiting, and displays.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Christian G Schäfer
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Jian Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
27
|
Combining Soft Polysilazanes with Melt-Shear Organization of Core-Shell Particles: On the Road to Polymer-Templated Porous Ceramics. Molecules 2019; 24:molecules24193553. [PMID: 31575046 PMCID: PMC6803923 DOI: 10.3390/molecules24193553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022] Open
Abstract
The preparation of ordered macroporous SiCN ceramics has attracted significant interest and is an attractive area for various applications, e.g., in the fields of catalysis, gas adsorption, or membranes. Non-oxidic ceramics, such as SiCN, own a great stability based on the covalent bonds between the containing elements, which leads to interesting properties concerning resistance and stability at high temperature. Their peculiar properties have become more and more important for a manifold of applications, like catalysis or separation processes, at high temperatures. Within this work, a feasible approach for the preparation of ordered porous materials by taking advantage of polymer-derived ceramics is presented. To gain access to free-standing films consisting of porous ceramic materials, the combination of monodisperse organic polymer-based colloids with diameters of 130 nm and 180 nm featuring a processable preceramic polymer is essential. For this purpose, the tailored design of hybrid organic/inorganic particles featuring anchoring sites for a preceramic polymer in the soft shell material is developed. Moreover, polymer-based core particles are used as sacrificial template for the generation of pores, while the preceramic shell polymer can be converted to the ceramic matrix after thermal treatment. Two different routes for the polymer particles, which can be obtained by emulsion polymerization, are followed for covalently linking the preceramic polysilazane Durazane1800 (Merck, Germany): (i) Free radical polymerization and (ii) atom transfer radical polymerization (ATRP) conditions. These hybrid hard core/soft shell particles can be processed via the so-called melt-shear organization for the one-step preparation of free-standing particle films. A major advantage of this technique is the absence of any solvent or dispersion medium, enabling the core particles to merge into ordered particle stacks based on the soft preceramic shell. Subsequent ceramization of the colloidal crystal films leads to core particle degradation and transformation into porous ceramics with ceramic yields of 18–54%.
Collapse
|
28
|
Shillingford C, Grebe V, McMullen A, Brujic J, Weck M. Assembly and Dynamic Analysis of Square Colloidal Crystals via Templated Capillary Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12205-12214. [PMID: 31497962 DOI: 10.1021/acs.langmuir.9b02124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capillary assembly has the ability to engineer centimeter-sized regions of discrete colloidal superstructures and microarrays. However, its use as a tool for directing crystallization of colloids into surface-bound nonclose-packed arrays is limited. Furthermore, the use of quantitative particle tracking tools to investigate evaporative assembly dynamics is rarely employed. In this contribution, we use templated capillary assembly to fabricate square-packed lattices of spherical, organosilica colloids using designed patterned boundaries. Particle tracking algorithms reveal that the assembly of square-packed regions is controlled by the interplay between confinement-driven nuclei formation and osmotic pressure-driven restructuring. We find that the incorporation of a square template increases the yield of particles bearing four nearest neighbors (Zn = 4) from 4 to 39%, obtained using a heavier and more viscous solvent. Maximal square-packed domains occur at specific initial particle concentrations (1.75-2.25 wt % or φ = 0.013-0.017), indicating that rearrangements are a function of osmotic force. We use particle tracking methods to dynamically monitor conversions between square and hexagonal packing, revealing a cyclical transition between 4 and 6 coordinated particles throughout meniscus recession. Our method is highly scalable and inexpensive and can be adapted for use with different particle sizes and compositions, as well as for targeted open-packed geometries. Our findings will inform the large area, defect-free assembly of nonclose-packed lattices of unexplored varieties that are necessary for the continued expansion of colloid-based materials with vast applications in optical electronics.
Collapse
|
29
|
Begley MR, Gianola DS, Ray TR. Bridging functional nanocomposites to robust macroscale devices. Science 2019; 364:364/6447/eaav4299. [DOI: 10.1126/science.aav4299] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At the intersection of the outwardly disparate fields of nanoparticle science and three-dimensional printing lies the promise of revolutionary new “nanocomposite” materials. Emergent phenomena deriving from the nanoscale constituents pave the way for a new class of transformative materials with encoded functionality amplified by new couplings between electrical, optical, transport, and mechanical properties. We provide an overview of key scientific advances that empower the development of such materials: nanoparticle synthesis and assembly, multiscale assembly and patterning, and mechanical characterization to assess stability. The focus is on recent illustrations of approaches that bridge these fields, facilitate the design of ordered nanocomposites, and offer clear pathways to device integration. We conclude by highlighting the remaining scientific challenges, including the critical need for assembly-compatible particle–fluid systems that ultimately yield mechanically robust materials. The role of domain boundaries and/or defects emerges as an important open question to address, with recent advances in fabrication setting the stage for future work in this area.
Collapse
Affiliation(s)
- Matthew R. Begley
- Materials Department, University of California, Santa Barbara, CA, USA
| | - Daniel S. Gianola
- Materials Department, University of California, Santa Barbara, CA, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| |
Collapse
|
30
|
Yu S, Cao X, Niu W, Wu S, Ma W, Zhang S. Large-Area and Water Rewriteable Photonic Crystal Films Obtained by the Thermal Assisted Air-Liquid Interface Self Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22777-22785. [PMID: 31194499 DOI: 10.1021/acsami.9b06470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Compared with traditional paper, water rewritable photonic crystal (PC) paper is an environmentally friendly and low resource-consuming material for information storage. Although, recently reported PC papers have high-quality structure color showing promising prospect, the paper size, that is within several centimeters, still limits turning it from potential to reality. Here, we present a new water rewritable PC film as large as the A4 size (210 × 300 mm2) with a high-quality structure color. The material is prepared by thermal assisted self-assembly on the air-liquid interface. To fix such a large-area self-assembled PC film, we partially deform and coalesce the self-assembled nanoparticles, which have low glass transition temperature. This process causes the film to be transparent and structural colorless but still keeps the inner 3D-ordered structure. Then, utilizing the hydrophilic nature of the assembled block, the film can be switched to a structural color state by touching water. Diverse brilliant structural colors appear with different assembled particle (poly(butyl methacrylate- co-methylmethacrylate- co-butyl acrylate- co-diacetone acrylamide) named as PBMBD) sizes. The transparency-structural color transition can be performed multiple times reversibly in all or specific regions of the film. It provides a new solution for future applications of rewriteable PC paper.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Xu Cao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| |
Collapse
|
31
|
Fluoropolymer-Containing Opals and Inverse Opals by Melt-Shear Organization. Molecules 2019; 24:molecules24020333. [PMID: 30658515 PMCID: PMC6359200 DOI: 10.3390/molecules24020333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The preparation of highly ordered colloidal architectures has attracted significant attention and is a rapidly growing field for various applications, e.g., sensors, absorbers, and membranes. A promising technique for the preparation of elastomeric inverse opal films relies on tailored core/shell particle architectures and application of the so-called melt-shear organization technique. Within the present work, a convenient route for the preparation of core/shell particles featuring highly fluorinated shell materials as building blocks is described. As particle core materials, both organic or inorganic (SiO2) particles can be used as a template, followed by a semi-continuous stepwise emulsion polymerization for the synthesis of the soft fluoropolymer shell material. The use of functional monomers as shell-material offers the possibility to create opal and inverse opal films with striking optical properties according to Bragg’s law of diffraction. Due to the presence of fluorinated moieties, the chemical resistance of the final opals and inverse opals is increased. The herein developed fluorine-containing particle-based films feature a low surface energy for the matrix material leading to good hydrophobic properties. Moreover, the low refractive index of the fluoropolymer shell compared to the core (or voids) led to excellent optical properties based on structural colors. The herein described fluoropolymer opals and inverse opals are expected to pave the way toward novel functional materials for application in fields of coatings and optical sensors.
Collapse
|
32
|
POSS-Containing Polymethacrylates on Cellulose-Based Substrates: Immobilization and Ceramic Formation. COATINGS 2018. [DOI: 10.3390/coatings8120446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of cellulose-based materials and functional polymers is a promising approach for the preparation of porous, biotemplated ceramic materials. Within this study, cellulose substrates were functionalized with a surface-attached initiator followed by polymerization of (3methacryloxypropyl)heptaisobutyl-T8-silsesquioxane (MAPOSS) by means of surface-initiated atom transfer radical polymerization (ATRP). Successful functionalization was proven by infrared (IR) spectroscopy as well as by contact angle (CA) measurements. Thermal analysis of the polymer-modified cellulose substrates in different atmospheres (nitrogen and air) up to 600 °C led to porous carbon materials featuring the pristine fibre-like structure of the cellulose material as shown by scanning electron microscopy (SEM). Interestingly, spherical, silicon-containing domains were present at the surface of the cellulose-templated carbon fibres after further ceramisation at 1600 °C, as investigated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements.
Collapse
|
33
|
Yoshinaga N, Nakajima N, Sohn WY, Katayama K. Facile and Quick Preparation of Colloid Crystals with Micron-sized Particles by Intentionally Induced Convex Flow. CHEM LETT 2018. [DOI: 10.1246/cl.180461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoya Yoshinaga
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Naoto Nakajima
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Woon Yong Sohn
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
34
|
Winter T, Su X, Hatton TA, Gallei M. Ferrocene-Containing Inverse Opals by Melt-Shear Organization of Core/Shell Particles. Macromol Rapid Commun 2018; 39:e1800428. [DOI: 10.1002/marc.201800428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Tamara Winter
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Xiao Su
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - T. Alan Hatton
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
35
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
36
|
Appold M, Grune E, Frey H, Gallei M. One-Step Anionic Copolymerization Enables Formation of Linear Ultrahigh-Molecular-Weight Block Copolymer Films Featuring Vivid Structural Colors in the Bulk State. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18202-18212. [PMID: 29737829 DOI: 10.1021/acsami.8b02848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrahigh-molecular-weight (UHMW) tapered block copolymers (BCPs) consisting of polyisoprene- block-poly(4-methylstyrene) featuring overall molar masses in the range of 1101-2033 kg mol-1 ( Mw) are synthesized via a convenient one-step anionic copolymerization protocol. The obtained UHMW BCPs are investigated by differential scanning calorimetry, size exclusion chromatography, and 1H NMR spectroscopy. Microphase separation for the UHMW BCPs in the bulk state is investigated by transmission electron microscopy (TEM) measurements and scanning electron microscopy (SEM), revealing well-ordered lamellar and spherical domains with large domain sizes in the range of 100-200 nm. Excellent order and periodicity are observed for lamellar morphologies over large film areas of 90 × 120 μm. Because of this high order of the underlying domains and the different refractive indices of the block segments, vivid structural colors can be observed in the bulk state. Structural colors of BCP films are investigated by angle-dependent UV/vis measurements, revealing intensive reflection colors according to Bragg's law of diffraction. The optical characteristics are directly correlated to TEM and SEM results. Moreover, colored BCP films featuring spherical domains for one block segment with domain sizes of 97-122 nm revealed blue structural colors stemming from disordered particle scattering.
Collapse
Affiliation(s)
- Michael Appold
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Eduard Grune
- Institute of Organic Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
- Graduate School of Excellence Materials Science in Mainz (MAINZ) , Staudingerweg 9 , 55128 Mainz , Germany
| | - Holger Frey
- Institute of Organic Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| |
Collapse
|
37
|
Vowinkel S, Paul S, Gutmann T, Gallei M. Free-Standing and Self-Crosslinkable Hybrid Films by Core-Shell Particle Design and Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E390. [PMID: 29140279 PMCID: PMC5707607 DOI: 10.3390/nano7110390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
Abstract
The utilization and preparation of functional hybrid films for optical sensing applications and membranes is of utmost importance. In this work, we report the convenient and scalable preparation of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle processing via the melt-shear organization technique. In more detail, the core particles consist of polystyrene (PS) or poly(methyl methacrylate) (PMMA), while the comparably soft particle shell consists of poly(ethyl acrylate) (PEA) and different alkoxysilane-based poly(methacrylate)s. For hybrid film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR) spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore, solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning calorimetry (DSC) measurements allow for insights into the cross-linking capabilities prior to and after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently, free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by application of the melt-shear organization technique, as shown by microscopy (TEM, SEM).
Collapse
Affiliation(s)
- Steffen Vowinkel
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Stephen Paul
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany.
| | - Torsten Gutmann
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany.
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| |
Collapse
|