1
|
Lee KJ, Jordan JS, Williams ER. Is Native Mass Spectrometry in Ammonium Acetate Really Native? Protein Stability Differences in Biochemically Relevant Salt Solutions. Anal Chem 2024; 96:17586-17593. [PMID: 39453378 DOI: 10.1021/acs.analchem.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonium acetate is widely used in native mass spectrometry to provide adequate ionic strength without adducting to protein ions, but different ions can preferentially stabilize or destabilize the native form of proteins in solution. The stability of bovine serum albumin (BSA) was investigated in 50 mM solutions of a variety of salts using electrospray emitters with submicron tips to desalt protein ions. The charge-state distribution of BSA is narrow (+14 to +18) in ammonium acetate (AmmAc), whereas it is much broader (+13 to +42) in solutions containing sodium acetate (NaAc), ammonium chloride (AmmCl), potassium chloride (KCl), and sodium chloride (NaCl). The average charge state and percent of unfolded protein increase in these respective solutions, indicating greater extents of protein destabilization and conformational changes. In contrast, no high charge states of either bovine carbonic anhydrase II or IgG1 were formed in AmmAc or NaCl despite their similar melting temperatures to BSA, indicating that the presence of unfolded BSA in some of these solutions is not an artifact of the electrospray ionization process. The charge states formed from the nonvolatile salt solutions do not change significantly for up to 7 min of electrospray, but higher charging occurs after 10 min, consistent with solution acidification. Formation of unfolded BSA in NaAc but not in AmmAc indicates that the cation identity, not acidification, is responsible for structural differences in these two solutions. Temperature-dependent measurements show both increased charging and aggregation at lower temperatures in NaCl:Tris than in AmmAc, consistent with lower protein stability in the former solution. These results are consistent with the order of these ions in the Hofmeister series and indicate that data on protein stability in AmmAc may not be representative of solutions containing nonvolatile salts that are directly relevant to biology.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
2
|
Gandhi VD, Hua L, Lawrenz M, Latif M, Rolland AD, Campuzano IDG, Larriba-Andaluz C. Elucidating Protein Structures in the Gas Phase: Traversing Configuration Space with Biasing Methods. J Chem Theory Comput 2024. [PMID: 39439194 DOI: 10.1021/acs.jctc.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Achieving accurate characterization of protein structures in the gas phase continues to be a formidable challenge. To tackle this issue, the present study employs Molecular Dynamics (MD) simulations in tandem with enhanced sampling techniques (methods designed to efficiently explore protein conformations). The objective is to identify suitable structures of proteins by contrasting their calculated Collision Cross-Section (CCS) with those observed experimentally. Significant discrepancies were observed between the initial MD-simulated and experimentally measured CCS values through Ion Mobility-Mass Spectrometry (IMS-MS). To bridge this gap, we employed two distinct enhanced sampling methods, Harmonic Biasing Potential and Adaptive Biasing Force, which help the proteins overcome energy barriers to adopt more compact configurations. These techniques leverage the radius of gyration as a reaction coordinate (guiding parameter), guiding the system toward compressed states that potentially match experimental configurations more closely. The guiding forces are only employed to overcome existing barriers and are removed to allow the protein to naturally arrive at a potential gas phase configuration. The results demonstrated close alignment (within ∼4%) between simulated and experimental CCS values despite using different strengths and/or methods, validating their efficacy. This work lays the groundwork for future studies aimed at optimizing biasing methods and expanding the collective variables used for more accurate gas-phase structural predictions.
Collapse
Affiliation(s)
- Viraj D Gandhi
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Leyan Hua
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Morgan Lawrenz
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Iain D G Campuzano
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
3
|
Wang Q, Wang Q, Qi Z, Moeller W, Wysocki VH, Sun L. Native Proteomics by Capillary Zone Electrophoresis-Mass Spectrometry. Angew Chem Int Ed Engl 2024:e202408370. [PMID: 39196601 DOI: 10.1002/anie.202408370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid-phase separations. Native proteomics should provide the most accurate bird's-eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well-purified protein complexes. However, there are only very few trials of utilizing nMS to measure proteoforms and protein complexes in a complex sample (i.e., a whole cell lysate). Here, we pioneer the native proteomics measurement of large proteoforms or protein complexes up to 400 kDa from a complex proteome via online coupling of native capillary zone electrophoresis (nCZE) to an ultra-high mass range (UHMR) Orbitrap mass spectrometer. The nCZE-MS technique enabled the measurement of a 115-kDa standard protein complex while consuming only about 0.1 ng of protein material. nCZE-MS analysis of an E.coli cell lysate detected 72 proteoforms or protein complexes in a mass range of 30-400 kDa in a single run while consuming only 50-ng protein material. The mass distribution of detected proteoforms or protein complexes agreed well with that from mass photometry measurement. This work represents a technical breakthrough in native proteomics for measuring complex proteomes.
Collapse
Affiliation(s)
- Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan, 48824, United States
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan, 48824, United States
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, 43210, United States
| | - William Moeller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan, 48824, United States
| |
Collapse
|
4
|
Wang Q, Wang Q, Qi Z, Moeller W, Wysocki VH, Sun L. Native Proteomics by Capillary Zone Electrophoresis-Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590970. [PMID: 38712154 PMCID: PMC11071496 DOI: 10.1101/2024.04.24.590970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid-phase separations. Native proteomics should provide the most accurate bird's-eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well-purified protein complexes. However, there are only very few trials of utilizing nMS to measure proteoforms and protein complexes in a complex sample (i.e., a whole cell lysate). Here, we pioneer the native proteomics measurement of large proteoforms or protein complexes up to 400 kDa from a complex proteome via online coupling of native capillary zone electrophoresis (nCZE) to an ultra-high mass range (UHMR) Orbitrap mass spectrometer. The nCZE-MS technique enabled the measurement of a 115-kDa standard protein complex while consuming only about 0.1 ng of protein material. nCZE-MS analysis of an E . coli cell lysate detected 72 proteoforms or protein complexes in a mass range of 30-400 kDa in a single run while consuming only 50-ng protein material. The mass distribution of detected proteoforms or protein complexes agreed well with that from mass photometry measurement. This work represents a technical breakthrough in native proteomics for measuring complex proteomes.
Collapse
|
5
|
Szabo R, Gyemant G, Nagy C, Andrasi M, Gaspar A. Taylor-Aris Dispersion-Assisted Mass Spectrometry for the Analysis of Native Proteins. Anal Chem 2024; 96:11309-11317. [PMID: 38946421 DOI: 10.1021/acs.analchem.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
As has recently been shown, Taylor-Aris dispersion-assisted mass spectrometry (TADA-MS) can offer direct injection MS determinations in fields where the targets of the analyses are large molecules present in a matrix that would otherwise cause serious interferences. In the present study, we demonstrated the exceptional utility of TADA-MS in native protein analysis: (i) a dramatic improvement in detection sensitivity was found due to its ability to strongly reduce matrix interferences, (ii) more "native-like" conditions can be used during analyses, (iii) the direct injection of non-MS-compatible matrices is allowed into MS, and (iv) a considerable simplification and economization of the workflow is ensured. We investigated the behavior of different types of proteins and protein complexes present under native conditions, demonstrating the unambiguous benefits and simplicity of the method.
Collapse
Affiliation(s)
- Ruben Szabo
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Gyongyi Gyemant
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Melinda Andrasi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
6
|
Harper CC, Jordan JS, Papanu S, Williams ER. Characterization of Mass, Diameter, Density, and Surface Properties of Colloidal Nanoparticles Enabled by Charge Detection Mass Spectrometry. ACS NANO 2024; 18:17806-17814. [PMID: 38913932 DOI: 10.1021/acsnano.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A variety of scattering-based, microscopy-based, and mobility-based methods are frequently used to probe the size distributions of colloidal nanoparticles with transmission electron microscopy (TEM) often considered to be the "gold standard". Charge detection mass spectrometry (CDMS) is an alternative method for nanoparticle characterization that can rapidly measure the mass and charge of individual nanoparticle ions with high accuracy. Two low polydispersity, ∼100 nm diameter nanoparticle size standards with different compositions (polymethyl methacrylate/polystyrene copolymer and 100% polystyrene) were characterized using both TEM and CDMS to explore the merits and complementary aspects of both methods. Mass and diameter distributions are rapidly obtained from CDMS measurements of thousands of individual ions of known spherical shape, requiring less time than TEM sample preparation and image analysis. TEM image-to-image variations resulted in a ∼1-2 nm range in the determined mean diameters whereas the CDMS mass precision of ∼1% in these experiments leads to a diameter uncertainty of just 0.3 nm. For the 100% polystyrene nanoparticles with known density, the CDMS and TEM particle diameter distributions were in excellent agreement. For the copolymer nanoparticles with unknown density, the diameter from TEM measurements combined with the mass from CDMS measurements enabled an accurate measurement of nanoparticle density. Differing extents of charging for the two nanoparticle standards measured by CDMS show that charging is sensitive to nanoparticle surface properties. A mixture of the two samples was separated based on their different extents of charging despite having overlapping mass distributions centered at 341.5 and 331.0 MDa.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Steven Papanu
- Colloidal Metrics Corporation, 2520 Wyandotte Street Suite F, Mountain View, California 94083-2381, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
7
|
Chen W, Yuan K, He Q, Li Q, Luo J, Chu F, Wang H, Feng H, Pan Y. Long term online desalting analysis of MS/LC-MS using thermal assisted recrystallization ionization. Talanta 2024; 274:125981. [PMID: 38583325 DOI: 10.1016/j.talanta.2024.125981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Mass spectrometric analysis of non-volatile salts containing samples remains challenging due to salt-induced ion suppression and contamination. This challenge is even more pronounced for a liquid chromatography-mass spectrometry analysis, where the accumulation of salts in the transmission system poses an ongoing problem. In this study, a novel thermal assisted recrystallization ionization mass spectrometry (TARI-MS) device was developed to achieve efficient on-line desalting and prolonged analysis of saline samples. The core component of this device was a heated plate positioned between the electrospray unit and the MS inlet. The desalting mechanism was demonstrated as the spontaneous separation of target molecules from salts during the "crystallization" process. After optimization, the angle between the nebulizer and the heated plate was 45°; the distance between the front end of the heated plate and the MS inlet was 2 mm; the distance between the front edge of the heated plate and the center of the sample spray projected onto the heating plate was 3 mm; the distance between the emitter of nebulizer and the heated plate was 3 mm. TARI-MS realized direct analysis of eight drugs dissolved in eight commonly used non-volatile salts solutions (up to 0.5 mol/L). The high sensitivity, repeatability, linearity, accuracy, and intra- and inter-day precision of TARI-MS confirm its reliability as a robust tool for the analysis of saline samples. Furthermore, TARI-MS allowed continuous analysis of salty eluates of LC for up to nearly 1 h without maintenance and verified the feasibility of LC-MS analysis through detecting a five-drug mixture and a crude aripiprazole product. Finally, six impurities in the crude aripiprazole product were successfully detected by LC-TARI-MS. The established method holds promise for applications across academic and pharmaceutical domains.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Kailong Yuan
- China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, Zhejiang, 310008, PR China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Qing Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Jing Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Fengjian Chu
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Huiwen Wang
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| |
Collapse
|
8
|
Voeten RLC, Majeed HA, Bos TS, Somsen GW, Haselberg R. Investigating direct current potentials that affect native protein conformation during trapped ion mobility spectrometry-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5021. [PMID: 38605451 DOI: 10.1002/jms.5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.
Collapse
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
- TI-COAST, Amsterdam, The Netherlands
| | - Hany A Majeed
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Tijmen S Bos
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| |
Collapse
|
9
|
Szabo R, Nagy C, Gaspar A. Direct Injection Electrospray Ionization Mass Spectrometry (ESI-MS) Analysis of Proteins with High Matrix Content:Utilizing Taylor-Aris Dispersion. Angew Chem Int Ed Engl 2024; 63:e202318225. [PMID: 38294363 DOI: 10.1002/anie.202318225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
This is the first work demonstrating the utility of the Taylor-Aris (TA) dispersion in avoiding serious interference issues commonly occurring in the electrospray ionization-mass spectrometric (ESI-MS) determination of therapeutic protein pharmaceuticals undergoing no pre-separation or sample purification. It was also pointed out that the TA dispersion conditions and its analytical utilization for proteomics can be easily accomplished in a commercial CE-MS instrument. In the proposed Taylor-Aris dispersion-assisted mass spectrometry (TADA-MS) analysis 0.5 μL sample is injected into a 65 cm long 50 μm i.d. capillary and pumped with 1 bar toward the MS. The procedure is efficient for the direct injection analysis of components having low diffusion coefficients (proteins) that are present in complex matrices of small organic and inorganic compounds.
Collapse
Affiliation(s)
- Ruben Szabo
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
10
|
Nam E, Lin Y, Park J, Do H, Han J, Jeong B, Park S, Lee DY, Kim M, Han J, Baik M, Lee Y, Lim MH. APP-C31: An Intracellular Promoter of Both Metal-Free and Metal-Bound Amyloid-β 40 Aggregation and Toxicity in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307182. [PMID: 37949680 PMCID: PMC10811509 DOI: 10.1002/advs.202307182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Intracellular C-terminal cleavage of the amyloid precursor protein (APP) is elevated in the brains of Alzheimer's disease (AD) patients and produces a peptide labeled APP-C31 that is suspected to be involved in the pathology of AD. But details about the role of APP-C31 in the development of the disease are not known. Here, this work reports that APP-C31 directly interacts with the N-terminal and self-recognition regions of amyloid-β40 (Aβ40 ) to form transient adducts, which facilitates the aggregation of both metal-free and metal-bound Aβ40 peptides and aggravates their toxicity. Specifically, APP-C31 increases the perinuclear and intranuclear generation of large Aβ40 deposits and, consequently, damages the nucleus leading to apoptosis. The Aβ40 -induced degeneration of neurites and inflammation are also intensified by APP-C31 in human neurons and murine brains. This study demonstrates a new function of APP-C31 as an intracellular promoter of Aβ40 amyloidogenesis in both metal-free and metal-present environments, and may offer an interesting alternative target for developing treatments for AD that have not been considered thus far.
Collapse
Affiliation(s)
- Eunju Nam
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence AnalysisKorea Basic Science Institute (KBSI)OchangChungbuk28119Republic of Korea
| | - Jiyong Park
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Hyunsu Do
- Graduate School of Medical Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Jiyeon Han
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Bohyeon Jeong
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Subin Park
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of BiochemistryDepartment of Medical ScienceChungnam National University School of MedicineDaejeon35015Republic of Korea
| | - Da Yong Lee
- Rare Disease Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Mingeun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and EngineeringKAISTDaejeon34141Republic of Korea
| | - Mu‐Hyun Baik
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - Young‐Ho Lee
- Research Center for Bioconvergence AnalysisKorea Basic Science Institute (KBSI)OchangChungbuk28119Republic of Korea
- Bio‐Analytical ScienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeon34134Republic of Korea
- Department of Systems BiotechnologyChung‐Ang UniversityGyeonggi17546Republic of Korea
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversityMiyagi980‐8578Japan
| | - Mi Hee Lim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
11
|
Di Marco F, Blümel G, Blöchl C, Wuhrer M, Huber CG. A semi-automated hybrid HPLC-MS approach for in-depth characterization of intact non-covalent heterodimer glycoforms of gonadotropin biopharmaceuticals. Anal Chim Acta 2023; 1274:341574. [PMID: 37455084 DOI: 10.1016/j.aca.2023.341574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Gonadotropins are a class of heavily glycosylated protein hormones, thus extremely challenging to characterize by mass spectrometry. As biopharmaceuticals, gonadotropins are prescribed for the treatment of infertility and are derived from different sources: either from pooled urine of pregnant women or upon production in genetically modified Chinese Hamster Ovary cells. Human chorionic gonadotropin (hCG) is sold as a biopharmaceutical under the name Pregnyl® (urinary hCG, u-hCG) and Ovitrelle® (recombinant hCG, r-hCG), and recombinant human follicle stimulating hormone (r-hFSH) is marketed as Gonal-f®. Recently, we reported the exhaustive characterization of r-hCG at different structural levels. RESULTS We implement size exclusion (SE) HPLC-MS to automatize the acquisition of native mass spectra of r-hCG dimer, but also u-hCG and r-hFSH, comparing the drug products up to intact heterodimer level. A hybrid HPLC-MS approach was employed for the characterization of r-hCG, u-hCG and r-hFSH drug products at different structural levels. Released glycans were analyzed by porous graphitized carbon (PGC)-HPLC-MS/MS, glycopeptides by reversed-phase (RP)-HPLC-MS/MS, subunits by RP-HPLC-MS and finally the intact native heterodimers by semi-automated online buffer exchange SE-HPLC-MS. The data were integrated using bioinformatic tools, to finally unravel the composition of 1481 co-existing dimeric glycoforms for r-hCG, 1167 glycoforms for u-hCG, and 1440 glycoforms for r-hFSH, and to compare critical quality attributes of the different drug products such as their degree of sialylation and O-glycosylation. SIGNIFICANCE AND NOVELTY The strong alliance of bioanalytics and bioinformatics data integration at the different structural levels allowed the identification of more than thousand different glycoforms of r-hCG, u-hCG, and r-hFSH. The results showed that these biopharmaceuticals differ considerably in their glycosylation patterns and highlight the importance of in-depth characterization of biopharmaceuticals for quality control. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Gabriele Blümel
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Constantin Blöchl
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria; Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| |
Collapse
|
12
|
Feng Y, Pogan R, Thiede L, Müller-Guhl J, Uetrecht C, Roos WH. Fucose Binding Cancels out Mechanical Differences between Distinct Human Noroviruses. Viruses 2023; 15:1482. [PMID: 37515170 PMCID: PMC10383637 DOI: 10.3390/v15071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The majority of nonbacterial gastroenteritis in humans and livestock is caused by noroviruses. Like most RNA viruses, frequent mutations result in various norovirus variants. The strain-dependent binding profiles of noroviruses to fucose are supposed to facilitate norovirus infection. It remains unclear, however, what the molecular mechanism behind strain-dependent functioning is. In this study, by applying atomic force microscopy (AFM) nanoindentation technology, we studied norovirus-like particles (noroVLPs) of three distinct human norovirus variants. We found differences in viral mechanical properties even between the norovirus variants from the same genogroup. The noroVLPs were then subjected to fucose treatment. Surprisingly, after fucose treatment, the previously found considerable differences in viral mechanical properties among these variants were diminished. We attribute a dynamic switch of the norovirus P domain upon fucose binding to the reduced differences in viral mechanical properties across the tested norovirus variants. These findings shed light on the mechanisms used by norovirus capsids to adapt to environmental changes and, possibly, increase cell infection. Hereby, a new step towards connecting viral mechanical properties to viral prevalence is taken.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747AG Groningen, The Netherlands
| | - Ronja Pogan
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Lars Thiede
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Jürgen Müller-Guhl
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Partner Site Hamburg-Lübeck-Borstel-Riems, Bernhard Nocht Institute for Tropical Medicine and German Center for Infection Research (DZIF), 20359 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY) & Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Faculty V: School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
13
|
Du Z, Nam E, Lin Y, Hong M, Molnár T, Kondo I, Ishimori K, Baik MH, Lee YH, Lim MH. Unveiling the impact of oxidation-driven endogenous protein interactions on the dynamics of amyloid-β aggregation and toxicity. Chem Sci 2023; 14:5340-5349. [PMID: 37234895 PMCID: PMC10208028 DOI: 10.1039/d3sc00881a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Cytochrome c (Cyt c), a multifunctional protein with a crucial role in controlling cell fate, has been implicated in the amyloid pathology associated with Alzheimer's disease (AD); however, the interaction between Cyt c and amyloid-β (Aβ) with the consequent impact on the aggregation and toxicity of Aβ is not known. Here we report that Cyt c can directly bind to Aβ and alter the aggregation and toxicity profiles of Aβ in a manner that is dependent on the presence of a peroxide. When combined with hydrogen peroxide (H2O2), Cyt c redirects Aβ peptides into less toxic, off-pathway amorphous aggregates, whereas without H2O2, it promotes Aβ fibrillization. The mechanisms behind these effects may involve a combination of the complexation between Cyt c and Aβ, the oxidation of Aβ by Cyt c and H2O2, and the modification of Cyt c by H2O2. Our findings demonstrate a new function of Cyt c as a modulator against Aβ amyloidogenesis.
Collapse
Affiliation(s)
- Zhi Du
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| | - Eunju Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University H-1117 Budapest Hungary
| | - Ikufumi Kondo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo 060-0810 Japan
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
- Bio-Analytical Science, University of Science and Technology (UST) Daejeon 34113 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Research Headquarters, Korea Brain Research Institute (KBRI) Daegu 41068 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
15
|
Lee KW, Salome AZ, Westphall MS, Grant T, Coon JJ. Onto Grid Purification and 3D Reconstruction of Protein Complexes Using Matrix-Landing Native Mass Spectrometry. J Proteome Res 2023; 22:851-856. [PMID: 36608276 PMCID: PMC10002473 DOI: 10.1021/acs.jproteome.2c00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Addressing mixtures and heterogeneity in structural biology requires approaches that can differentiate and separate structures based on mass and conformation. Mass spectrometry (MS) provides tools for measuring and isolating gas-phase ions. The development of native MS including electrospray ionization allowed for manipulation and analysis of intact noncovalent biomolecules as ions in the gas phase, leading to detailed measurements of structural heterogeneity. Conversely, transmission electron microscopy (TEM) generates detailed images of biomolecular complexes that show an overall structure. Our matrix-landing approach uses native MS to probe and select biomolecular ions of interest for subsequent TEM imaging, thus unifying information on mass, stoichiometry, heterogeneity, etc., available via native MS with TEM images. Here, we prepare TEM grids of protein complexes purified via quadrupolar isolation and matrix-landing and generate 3D reconstructions of the isolated complexes. Our results show that these complexes maintain their structure through gas-phase isolation.
Collapse
Affiliation(s)
- Kenneth W. Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Austin Z. Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | | | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53706
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53706
| |
Collapse
|
16
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
18
|
Sharif D, Foroushani SH, Attanayake K, Dewasurendra VK, DeBastiani A, DeVor A, Johnson MB, Li P, Valentine SJ. Capillary Vibrating Sharp-Edge Spray Ionization Augments Field-Free Ionization Techniques to Promote Conformer Preservation in the Gas-Phase for Intractable Biomolecular Ions. J Phys Chem B 2022; 126:8970-8984. [PMID: 36318704 PMCID: PMC10278089 DOI: 10.1021/acs.jpcb.2c04960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Field-free capillary vibrating sharp-edge spray ionization (cVSSI) is evaluated for its ability to conduct native mass spectrometry (MS) experiments. The charge state distributions for nine globular proteins are compared using field-free cVSSI, field-enabled cVSSI, and electrospray ionization (ESI). In general, for both positive and negative ion mode, the average charge state (qavg) increases for field-free cVSSI with increasing molecular weight similar to ESI. A clear difference is that the qavg is significantly lower for field-free conditions in both analyses. Two proteins, leptin and thioredoxin, exhibit bimodal charge state distributions (CSDs) upon the application of voltage in positive ion mode; only a monomodal distribution is observed for field-free conditions. In negative ion mode, thioredoxin exhibits a multimodal CSD upon the addition of voltage to cVSSI. Extensive molecular dynamics (MD) simulations of myoglobin and leptin in nanodroplets suggest that the multimodal CSD for leptin may originate from increased conformational "breathing" (decreased packing) and association with the droplet surface. These properties along with increased droplet charge appear to play critical roles in shifting ionization processes for some proteins. Further exploration and development of field-free cVSSI as a new ionization source for native MS especially as applied to more flexible biomolecular species is warranted.
Collapse
Affiliation(s)
- Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Samira Hajian Foroushani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Vikum K Dewasurendra
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Matthew B Johnson
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
19
|
Miller ZM, Harper CC, Lee H, Bischoff AJ, Francis MB, Schaffer DV, Williams ER. Apodization Specific Fitting for Improved Resolution, Charge Measurement, and Data Analysis Speed in Charge Detection Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2129-2137. [PMID: 36173188 PMCID: PMC10389282 DOI: 10.1021/jasms.2c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Short-time Fourier transforms with short segment lengths are typically used to analyze single ion charge detection mass spectrometry (CDMS) data either to overcome effects of frequency shifts that may occur during the trapping period or to more precisely determine the time at which an ion changes mass or charge, or enters an unstable orbit. The short segment lengths can lead to scalloping loss unless a large number of zero-fills are used, making computational time a significant factor in real-time analysis of data. Apodization specific fitting leads to a 9-fold reduction in computation time compared to zero-filling to a similar extent of accuracy. This makes possible real-time data analysis using a standard desktop computer. Rectangular apodization leads to higher resolution than the more commonly used Gaussian or Hann apodization and makes it possible to separate ions with similar frequencies, a significant advantage for experiments in which the masses of many individual ions are measured simultaneously. Equally important is a >20% increase in S/N obtained with rectangular apodization compared to Gaussian or Hann, which directly translates to a corresponding improvement in accuracy of both charge measurements and ion energy measurements that rely on the amplitudes of the fundamental and harmonic frequencies. Combined with computing the fast Fourier transform in a lower-level language, this fitting procedure eliminates computational barriers and should enable real-time processing of CDMS data on a laptop computer.
Collapse
Affiliation(s)
- Zachary M. Miller
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
| | - Conner C. Harper
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
| | - Hyuncheol Lee
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-1460, United States
| | - Amanda J. Bischoff
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Matthew B. Francis
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - David V. Schaffer
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
| | - Evan R. Williams
- College of Chemistry, University of California, Berkeley, California, 94720-1460, United States
| |
Collapse
|
20
|
Specific electrolyte effects on hemoglobin in denaturing medium investigated through electro spray ionization mass spectrometry. J Inorg Biochem 2022; 234:111872. [DOI: 10.1016/j.jinorgbio.2022.111872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
|
21
|
Bhanot JS, Fabijanczuk KC, Abdillahi AM, Chao HC, Pizzala NJ, Londry FA, Dziekonski ET, Hager JW, McLuckey SA. Adaptation and Operation of a Quadrupole/Time-of-Flight Tandem Mass Spectrometer for High Mass Ion/Ion Reaction Studies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 478:116874. [PMID: 37032994 PMCID: PMC10081487 DOI: 10.1016/j.ijms.2022.116874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A commercial quadrupole/time-of-flight tandem mass spectrometer has been modified and evaluated for its performance in conducting ion/ion reaction studies involving high mass (>100 kDa) ions. Modifications include enabling the application of dipolar AC waveforms to opposing rods in three quadrupole arrays in the ion path. This modification allows for resonance excitation of ions to effect ion activation, selective ion isolation, and ion parking. The other set of opposing rods in each array is enabled for the application of dipolar DC voltages for the purpose of broad-band (non-selective) ion heating. The plates between each quadrupole array are enabled for the application of either DC or AC (or both) voltages. The use of AC voltages allows for the simultaneous storage of ions of opposite polarity, thereby enabling mutual storage ion/ion reactions. Ions derived from nano-electrospray ionization of GroEL and β-galactosidase under native conditions were used to evaluate limits of instrument performance, in terms of m/z range, ion isolation, and ion storage. After adjustment of the pulser frequency, ions as high in m/z as 400,000 were detected. Significant losses in efficiency were noted above m/z 250,000 that is likely due to roll-over in the ion detector efficiency and possibly also due to limitations in ion transfer efficiency from the collision quadrupole to the pulser region of the mass analyzer. No measurable decrease in the apparent mass resolving power was noted upon charge state reduction of the model ions. Resonance ejection techniques that employ the dipolar AC capabilities of the quadrupoles allow for ion isolation at m/z values much greater than the RF/DC limitation of Q1 of m/z = 2100. For example, at the highest low-mass cutoff achievable in the collision quadrupole (m/z = 500), it is possible to isolate ions of m/z as high as 62,000. This is limited by the lowest dipolar AC frequency (5 kHz) that can be applied. A simple model is included to provide for an estimate of the ion cloud radius based on ion m/z, ion z, and ion trap operating conditions. The model predicts that singly charged ions of 1 MDa and thermal energy can be contained in the ion trap at the maximum low-mass cutoff, although such an ion would not be detected efficiently. Doubly charged GroEL ions were observed experimentally. Collectively, the performance characteristics at high m/z, the functionality provided by the standard instrument capabilities, the modifications described above, and highly flexible instrument control software provide for a highly versatile platform for the study of high mass ion/ion reactions.
Collapse
Affiliation(s)
- Jay S. Bhanot
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Nicolas J. Pizzala
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
22
|
Bui D, Li Z, Kitov PI, Han L, Kitova EN, Fortier M, Fuselier C, Granger Joly de Boissel P, Chatenet D, Doucet N, Tompkins SM, St-Pierre Y, Mahal LK, Klassen JS. Quantifying Biomolecular Interactions Using Slow Mixing Mode (SLOMO) Nanoflow ESI-MS. ACS CENTRAL SCIENCE 2022; 8:963-974. [PMID: 35912341 PMCID: PMC9335916 DOI: 10.1021/acscentsci.2c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein-protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K d) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K d to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide-antibiotic, protease-protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ling Han
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marlène Fortier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Camille Fuselier
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Philippine Granger Joly de Boissel
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Nicolas Doucet
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Stephen M. Tompkins
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30605, United States
- Emory-UGA
Centers of Excellence for Influenza Research and Surveillance (CEIRS), Emory University School of Medicine, Athens, Georgia 30322, United States
| | - Yves St-Pierre
- Centre
Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université
du Québec, Laval, Québec H7V 1B7, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- . Telephone: (780) 492-3501. Fax: (780) 492-8231
| |
Collapse
|
23
|
Lusci G, Pivetta T, Carucci C, Parsons DF, Salis A, Monduzzi M. BSA fragmentation specifically induced by added electrolytes: An electrospray ionization mass spectrometry investigation. Colloids Surf B Biointerfaces 2022; 218:112726. [PMID: 35914467 DOI: 10.1016/j.colsurfb.2022.112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Biointerfaces are significantly affected by electrolytes according to the Hofmeister series. This work reports a systematic investigation on the effect of different metal chlorides, sodium and potassium bromides, iodides and thiocyanates, on the ESI/MS spectra of bovine serum albumin (BSA) in aqueous solution at pH = 2.7. The concentration of each salt was varied to maximize the quality of the ESI/MS spectrum, in terms of peak intensity and bell-shaped profile. The ESI/MS spectra of BSA in the absence and in the presence of salts showed a main protein pattern characterized by the expected mass of 66.5 kDa, except the case of BSA/RbCl (mass 65.3 kDa). In all systems we observed an additional pattern, characterized by at least three peaks with low intensity, whose deconvolution led to suggest the formation of a BSA fragment with a mass of 19.2 kDa. Only NaCl increased the intensity of the peaks of the main BSA pattern, while minimizing that of the fragment. NaCl addition seems to play a crucial role in stabilizing the BSA ionized interface against hydrolysis of peptide bonds, through different synergistic mechanisms. To quantify the observed specific electrolyte effects, two "Hofmeister" parameters (Hs and Ps) are proposed. They are obtained using the ratio of (BSA-Salt)/BSA peak intensities for both the BSA main pattern and for its fragment. SYNOPSIS: NaCl stabilizes BSA ion and almost prevents fragmentation due to denaturing pH.
Collapse
Affiliation(s)
- Gloria Lusci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Pivetta
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Cristina Carucci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Drew Francis Parsons
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Andrea Salis
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Maura Monduzzi
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
24
|
Walker TE, Laganowsky A, Russell DH. Surface Activity of Amines Provides Evidence for the Combined ESI Mechanism of Charge Reduction for Protein Complexes. Anal Chem 2022; 94:10824-10831. [PMID: 35862200 PMCID: PMC9357154 DOI: 10.1021/acs.analchem.2c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge reduction reactions are important for native mass spectrometry (nMS) because lower charge states help retain native-like conformations and preserve noncovalent interactions of protein complexes. While mechanisms of charge reduction reactions are not well understood, they are generally achieved through the addition of small molecules, such as polyamines, to traditional nMS buffers. Here, we present new evidence that surface-active, charge reducing reagents carry away excess charge from the droplet after being emitted due to Coulombic repulsion, thereby reducing the overall charge of the droplet. Furthermore, these processes are directly linked to two mechanisms for electrospray ionization, specifically the charge residue and ion evaporation models (CRM and IEM). Selected protein complexes were analyzed in solutions containing ammonium acetate and selected trialkylamines or diaminoalkanes of increasing alkyl chain lengths. Results show that amines with higher surface activity have increased propensities for promoting charge reduction of the protein ions. The electrospray ionization (ESI) emitter potential was also found to be a major contributing parameter to the prevalence of charge reduction; higher emitter potentials consistently coincided with lower average charge states among all protein complexes analyzed. These results offer experimental evidence for the mechanism of charge reduction in ESI and also provide insight into the final stages of the ESI and their impact on biological ions.
Collapse
Affiliation(s)
- Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Phetsanthad A, Li G, Jeon CK, Ruotolo BT, Li L. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:944-951. [PMID: 35508074 PMCID: PMC9167759 DOI: 10.1021/jasms.2c00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Structural analysis by native ion mobility-mass spectrometry provides a direct means to characterize protein interactions, stability, and other biophysical properties of disease-associated biomolecules. Such information is often extracted from collision-induced unfolding (CIU) experiments, performed by ramping a voltage used to accelerate ions entering a trap cell prior to an ion mobility separator. Traditionally, to simplify data analysis and achieve confident ion identification, precursor ion selection with a quadrupole is performed prior to collisional activation. Only one charge state can be selected at one time, leading to an imbalance between the total time required to survey CIU data across all protein charge states and the resulting structural analysis efficiency. Furthermore, the arbitrary selection of a single charge state can inherently bias CIU analyses. We herein aim to compare two conformation sampling methods for protein gas-phase unfolding: (1) traditional quadrupole selection-based CIU and (2) nontargeted, charge selection-free and shotgun workflow, all ion unfolding (AIU). Additionally, we provide a new data interpretation method that integrates across all charge states to project collisional cross section (CCS) data acquired over a range of activation voltages to produce a single unfolding fingerprint, regardless of charge state distributions. We find that AIU in combination with CCS accumulation across all charges offers an opportunity to maximize protein conformational information with minimal time cost, where additional benefits include (1) an improved signal-to-noise ratios for unfolding fingerprints and (2) a higher tolerance to charge state shifts induced by either operating parameters or other factors that affect protein ionization efficiency.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Gongyu Li
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Corresponding authors: Prof. Dr. Gongyu Li, ; Prof. Dr. Lingjun Li,
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Corresponding authors: Prof. Dr. Gongyu Li, ; Prof. Dr. Lingjun Li,
| |
Collapse
|
26
|
Lim GM, Kim BG, Jeong HJ. Trap column-based intact mass spectrometry for rapid and accurate evaluation of protein molecular weight. RSC Adv 2022; 12:15643-15651. [PMID: 35685704 PMCID: PMC9126647 DOI: 10.1039/d2ra00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
The determination of the molecular weight (MW) of a protein using high-resolution mass spectrometry (MS) is a crucial tool used to confirm whether the protein was correctly expressed and adequately purified. However, a non-volatile buffer is normally used for protein purification and storage. Therefore, a pre-treatment step using ultrafiltration (UF) is required to exchange the buffer with a volatile buffer prior to the introduction of the protein sample into the MS equipment. This pre-treatment step is time-consuming. In this study, a trap column-based pre-treatment method applied in a nano-LC system was developed for rapid and convenient analysis of the MW of proteins. First, the trap column system was compared with the conventional UF treatment system and non-treatment system using bovine serum albumin. Subsequently, the trap column system was applied to analyze the MW of commercially available and lab-synthesized recombinant proteins. The intensity of the base peak and signal-to-noise ratio of the trap column-based pre-treated protein were higher than those of the UF-treated protein. Moreover, the entire automated procedure of the trap column-based system was conducted within 20 min, which confirms its use in versatile and accurate protein identification.
Collapse
Affiliation(s)
- Gyu-Min Lim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University Seoul 08826 South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University Seoul 08826 South Korea
- Bio-MAX/N-Bio, Seoul National University Seoul 08826 South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University Sejong 30016 South Korea
| |
Collapse
|
27
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
28
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
29
|
Gavriilidou AFM, Sokratous K, Yen HY, De Colibus L. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Front Mol Biosci 2022; 9:837901. [PMID: 35495635 PMCID: PMC9047894 DOI: 10.3389/fmolb.2022.837901] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The design of new therapeutic molecules can be significantly informed by studying protein-ligand interactions using biophysical approaches directly after purification of the protein-ligand complex. Well-established techniques utilized in drug discovery include isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and structure-based drug discovery which mainly rely on protein crystallography and, more recently, cryo-electron microscopy. Protein-ligand complexes are dynamic, heterogeneous, and challenging systems that are best studied with several complementary techniques. Native mass spectrometry (MS) is a versatile method used to study proteins and their non-covalently driven assemblies in a native-like folded state, providing information on binding thermodynamics and stoichiometry as well as insights on ternary and quaternary protein structure. Here, we discuss the basic principles of native mass spectrometry, the field's recent progress, how native MS is integrated into a drug discovery pipeline, and its future developments in drug discovery.
Collapse
|
30
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
31
|
Brennan A, Layfield R, Long J, Williams HEL, Oldham NJ, Scott D, Searle MS. An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins. J Biol Chem 2022; 298:101514. [PMID: 34929165 PMCID: PMC8762078 DOI: 10.1016/j.jbc.2021.101514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotrophic lateral sclerosis (ALS). Overlapping but specific roles of hATG8 proteins belonging to the LC3 and GABARAP subfamilies are incompletely understood, and binding selectivity is typically overlooked. We previously showed that an ALS-associated variant of the SQSTM1/p62 (p62) autophagy receptor bearing an L341V mutation within its ATG8-interacting motif (AIM) impairs recognition of LC3B in vitro, yielding an autophagy-deficient phenotype. Improvements in understanding of hATG8 recognition by AIMs now distinguish LC3-interaction and GABARAP-interaction motifs and predict the effects of L341V substitution may extend beyond loss of function to biasing AIM binding preference. Through biophysical analyses, we confirm impaired binding of the L341V-AIM mutant to LC3A, LC3B, GABARAP, and GABARAPL1. In contrast, p62 AIM interactions with LC3C and GABARAPL2 are unaffected by this mutation. Isothermal titration calorimetry and NMR investigations provided insights into the entropy-driven GABARAPL2/p62 interaction and how the L341V mutation may be tolerated. Competition binding demonstrated reduced association of the L341V-AIM with one hATG8 manifests as a relative increase in association with alternate hATG8s, indicating effective reprogramming of hATG8 selectivity. These data highlight how a single AIM peptide might compete for binding with different hATG8s and suggest that the L341V-AIM mutation may be neomorphic, representative of a disease mechanism that likely extends into other human disorders.
Collapse
Affiliation(s)
- Andrew Brennan
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Robert Layfield
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK.
| | - Jed Long
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Neil J Oldham
- School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Daniel Scott
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK.
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
32
|
Pitts-McCoy AM, Abdillahi AM, Lee KW, McLuckey SA. Multiply Charged Cation Attachment to Facilitate Mass Measurement in Negative-Mode Native Mass Spectrometry. Anal Chem 2022; 94:2220-2226. [PMID: 35029382 PMCID: PMC9670251 DOI: 10.1021/acs.analchem.1c04875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Native mass spectrometry (MS) is usually conducted in the positive-ion mode; however, in some cases, it is advantageous to use the negative-ion polarity. Challenges associated with native MS using ensemble measurements (i.e., the measurement of many ions at a time as opposed to the measurement of the charge and the mass-to-charge ratio of individual ions) include narrow charge state distributions with the potential for an overlap in neighboring charge states. These issues can either compromise or preclude confident charge state (and hence mass) determination. Charge state determination in challenging instances can be enabled via the attachment of multiply charged ions of opposite polarity. Multiply charged ion attachment facilitates the resolution of charge states and generates mass-to-charge (m/z) information across a broad m/z range. In this work, we demonstrated the attachment of multiply charged cations to anionic complexes generated under native MS conditions. To illustrate the flexibility available in selecting the mass and charge of the reagents, the 15+ and 20+ charge states of horse skeletal muscle apomyoglobin and the 20+ and 30+ charge states of bovine carbonic anhydrase were demonstrated to attach to model complex anions derived from either β-galactosidase or GroEL. The exclusive attachment of reagent ions is observed with no evidence for proton transfer, which is the key for the unambiguous interpretation of the post-ion/ion reaction product ion spectrum. To illustrate the application to mixtures of complex ions, the 10+ charge state of bovine ubiquitin was attached to mixtures of anions generated from the 30S and 50S particles of the Escherichia coli ribosome. Six and five major components were revealed, respectively. In the case of the 50S anion population, it was shown that the attachment of two 30+ cations of carbonic anhydrase revealed the same information as the attachment of six 10+ cations of ubiquitin. In neither case was the intact 50S particle observed. Rather, particles with different combinations of missing components were observed. This work demonstrated the utility of multiply charged cation attachment to facilitate charge state assignments in native MS ensemble measurements of heterogeneous mixtures.
Collapse
Affiliation(s)
- Anthony M. Pitts-McCoy
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Abdirahman M. Abdillahi
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Kenneth W. Lee
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Scott A. McLuckey
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| |
Collapse
|
33
|
Ma G, Zhao X, Guo M, Liu Y, Shi K, Guo C, Pan Y. 6-Glycosylaminoquinoline-assisted LDI MS for detection and imaging of small molecules with enhanced detection selectivity and sensitivity. Anal Chim Acta 2022; 1201:339620. [DOI: 10.1016/j.aca.2022.339620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
34
|
Chen X, Wei Z, Huang KH, Uehling M, Wleklinski M, Krska S, Makarov AA, Nowak T, Cooks RG. Pd Reaction Intermediates in Suzuki-Miyaura Cross-Coupling Characterized by Mass Spectrometry. Chempluschem 2022; 87:e202100545. [PMID: 35112808 DOI: 10.1002/cplu.202100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/22/2022] [Indexed: 01/05/2023]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is widely utilized in the construction of carbon-carbon bonds. In this study, nanoelectrospray ionization mass spectrometry (nanoESI-MS) is applied to simultaneously monitor precatalysts, catalytic intermediates, reagents, and products of the SM cross-coupling reaction of 3-Br-5-Ph-pyridine and phenylboronic acid. A set of Pd cluster ions related to the monoligated Pd (0) active catalyst is detected, and its deconvoluted isotopic distribution reveals contributions from two neutral molecules. One is assigned to the generally accepted Pd(0) active catalyst, seen in MS as the protonated molecule, while the other is tentatively assigned to an oxidized catalyst which was found to increase as the reaction proceeds. Oxidative stress testing of a synthetic model catalyst 1,5-cyclooctadiene Pd XPhos (COD-Pd-XPhos) performed using FeCl3 supported this assignment. The formation and conversion of the oxidative addition intermediate during the catalytic cycle was monitored to provide information on the progress of the transmetalation step.
Collapse
Affiliation(s)
- Xingshuo Chen
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenwei Wei
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Kai-Hung Huang
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | - R Graham Cooks
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Bleher K, Comba P, Gross JH, Josephy T. ESI and tandem MS for mechanistic studies with high-valent transition metal species. Dalton Trans 2022; 51:8625-8639. [DOI: 10.1039/d2dt00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of high-valent metal species has been in the focus of research for over 20 years. Mass spectrometry (MS) represents a technique routinely used for their characterization, in particular...
Collapse
|
36
|
Surface-Induced Dissociation for Protein Complex Characterization. Methods Mol Biol 2022; 2500:211-237. [PMID: 35657596 DOI: 10.1007/978-1-0716-2325-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.
Collapse
|
37
|
|
38
|
Blevins MS, Walker JN, Schaub JM, Finkelstein IJ, Brodbelt JS. Characterization of the T4 gp32-ssDNA complex by native, cross-linking, and ultraviolet photodissociation mass spectrometry. Chem Sci 2021; 12:13764-13776. [PMID: 34760161 PMCID: PMC8549804 DOI: 10.1039/d1sc02861h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Protein-DNA interactions play crucial roles in DNA replication across all living organisms. Here, we apply a suite of mass spectrometry (MS) tools to characterize a protein-ssDNA complex, T4 gp32·ssDNA, with results that both support previous studies and simultaneously uncover novel insight into this non-covalent biological complex. Native mass spectrometry of the protein reveals the co-occurrence of Zn-bound monomers and homodimers, while addition of differing lengths of ssDNA generates a variety of protein:ssDNA complex stoichiometries (1 : 1, 2 : 1, 3 : 1), indicating sequential association of gp32 monomers with ssDNA. Ultraviolet photodissociation (UVPD) mass spectrometry allows characterization of the binding site of the ssDNA within the protein monomer via analysis of holo ions, i.e. ssDNA-containing protein fragments, enabling interrogation of disordered regions of the protein which are inaccessible via traditional crystallographic techniques. Finally, two complementary cross-linking (XL) approaches, bottom-up analysis of the crosslinked complexes as well as MS1 analysis of the intact complexes, are used to showcase the absence of ssDNA binding with the intact cross-linked homodimer and to generate two homodimer gp32 model structures which highlight that the homodimer interface overlaps with the monomer ssDNA-binding site. These models suggest that the homodimer may function in a regulatory capacity by controlling the extent of ssDNA binding of the protein monomer. In sum, this work underscores the utility of a multi-faceted mass spectrometry approach for detailed investigation of non-covalent protein-DNA complexes.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
39
|
A Non-Covalent Dimer Formation of Quaternary Ammonium Cation with Unusual Charge Neutralization in Electrospray-Ionization Mass Spectrometry. Molecules 2021; 26:molecules26195868. [PMID: 34641412 PMCID: PMC8511985 DOI: 10.3390/molecules26195868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022] Open
Abstract
Specific and nonspecific non-covalent molecular association of biomolecules is characteristic for electrospray-ionization mass spectrometry analysis of biomolecules. Understanding the interaction between two associated molecules is of significance not only from the biological point of view but also gas phase analysis by mass spectrometry. Here we reported a formation of non-covalent dimer of quaternary ammonium denatonium cation with +1 charge detected in the positive ion mode electrospray ionization mass spectrometry analysis of denatonium benzoate. Hydrogen deuterium exchange of amide and carbon-bonded hydrogens revealed that charge neutralization of one denatonium cation is the consequence of amide hydrogen dissociation. DFT (Density Functional Theory) calculations proved high thermodynamic stable of formed dimer stabilized by the short and strong N..H-N hydrogen bond. The signal intensity of the peak characterizing non-covalent dimer is low intensity and does not depend on the sample concentration. Additionally, dimer observation was found to be instrument-dependent. The current investigation is the first experimental and theoretical study on the quaternary ammonium ions dimer. Thus the present study has great significance for understanding the structures of the biomolecules as well as materials.
Collapse
|
40
|
Use of tandem affinity-buffer exchange chromatography online with native mass spectrometry for optimizing overexpression and purification of recombinant proteins. Methods Enzymol 2021; 659:37-70. [PMID: 34752295 DOI: 10.1016/bs.mie.2021.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purification of recombinant proteins typically entails overexpression in heterologous systems and subsequent chromatography-based isolation. While denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis is routinely used to screen a variety of overexpression conditions (e.g., host, medium, inducer concentration, post-induction temperature and/or incubation time) and to assess the purity of the final product, its limitations, including aberrant protein migration due to compositional eccentricities or incomplete denaturation, often preclude firm conclusions regarding the extent of overexpression and/or purification. Therefore, we recently reported an automated liquid chromatography-mass spectrometry-based strategy that couples immobilized metal affinity chromatography (IMAC) with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS) to directly analyze cell lysates for the presence of target proteins. IMAC-OBE-nMS can be used to assess whether target proteins (1) are overexpressed in soluble form, (2) bind and elute from an IMAC resin, (3) oligomerize, and (4) have the expected mass. Here, we use four poly-His-tagged proteins to demonstrate the potential of IMAC-OBE-nMS for expedient optimization of overexpression and purification conditions for recombinant protein production.
Collapse
|
41
|
Sundaria N, Upadhyay A, Prasad A, Prajapati VK, Poluri KM, Mishra A. Neurodegeneration & imperfect ageing: Technological limitations and challenges? Mech Ageing Dev 2021; 200:111574. [PMID: 34562507 DOI: 10.1016/j.mad.2021.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Cellular homeostasis is regulated by the protein quality control (PQC) machinery, comprising multiple chaperones and enzymes. Studies suggest that the loss of the PQC mechanisms in neurons may lead to the formation of abnormal inclusions that may lead to neurological disorders and defective aging. The questions could be raised how protein aggregate formation precisely engenders multifactorial molecular pathomechanism in neuronal cells and affects different brain regions? Such questions await thorough investigation that may help us understand how aberrant proteinaceous bodies lead to neurodegeneration and imperfect aging. However, these studies face multiple technological challenges in utilizing available tools for detailed characterizations of the protein aggregates or amyloids and developing new techniques to understand the biology and pathology of proteopathies. The lack of detection and analysis methods has decelerated the pace of the research in amyloid biology. Here, we address the significance of aggregation and inclusion formation, followed by exploring the evolutionary contribution of these structures. We also provide a detailed overview of current state-of-the-art techniques and advances in studying amyloids in the diseased brain. A comprehensive understanding of the structural, pathological, and clinical characteristics of different types of aggregates (inclusions, fibrils, plaques, etc.) will aid in developing future therapies.
Collapse
Affiliation(s)
- Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH‑8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
42
|
Jung S, Fuchs N, Johe P, Wagner A, Diehl E, Yuliani T, Zimmer C, Barthels F, Zimmermann RA, Klein P, Waigel W, Meyr J, Opatz T, Tenzer S, Distler U, Räder HJ, Kersten C, Engels B, Hellmich UA, Klein J, Schirmeister T. Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure-Activity Relationship, Inhibition Mechanism, Metabolism, and In Vivo Studies. J Med Chem 2021; 64:12322-12358. [PMID: 34378914 DOI: 10.1021/acs.jmedchem.1c01002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorable metabolism and biodistribution by accumulation in mice brain tissue after intraperitoneal and oral administration. The highest antitrypanosomal activity was observed for inhibitors with an N-terminal 2,3-dihydrobenzo[b][1,4]dioxine group and a 4-Me-Phe residue in P2 (2e/4e) with nanomolar EC50 values (0.14/0.80 μM). The different mechanisms of reversible and irreversible inhibitors were explained using QM/MM calculations and MD simulations.
Collapse
Affiliation(s)
- Sascha Jung
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Annika Wagner
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Tri Yuliani
- Institute for Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Philipp Klein
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Waldemar Waigel
- Department of Physical and Theoretical Chemistry, Julius-Maximilians-University, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Jessica Meyr
- Department of Physical and Theoretical Chemistry, Julius-Maximilians-University, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hans-Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Bernd Engels
- Department of Physical and Theoretical Chemistry, Julius-Maximilians-University, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Ute A Hellmich
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jochen Klein
- Institute for Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
43
|
Nitsche T, Sheil MM, Blinco JP, Barner-Kowollik C, Blanksby SJ. Electrospray Ionization-Mass Spectrometry of Synthetic Polymers Functionalized with Carboxylic Acid End-Groups. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2123-2134. [PMID: 34242006 DOI: 10.1021/jasms.1c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrospray ionization-mass spectrometry (ESI-MS) of low-charging synthetic polymers typically produces mass spectra exhibiting a bias toward the low-mass region of the polymer mass distribution. To examine the origin(s) of this ionization bias, narrow dispersity polystyrene polymers (Đ < 1.10) were prepared with ionizable carboxylic acid end-groups at one or both chain termini. The mixture complexity was further reduced through preparative size-exclusion chromatography (SEC), and these well-defined polymers were subjected to negative ion ESI-MS on a high-resolution instrument with a mass-to-charge (m/z) range up to 8000. Incorporation of one carboxylic acid end-group facilitated the generation of singly charged [M - H]- ions across the entire range of the mass analyzer. The comparison of mass spectra with size-exclusion chromatograms of the same polymer revealed an ionization bias toward lower masses, which was partially overcome through fractionation, modification of electrospray solvent, and increased declustering potentials. Incorporation of a second ionizable moiety within polymers of equivalent size facilitated multiply charged [M - 2H]2- ion formation with significantly improved ionization efficiency, spectral coverage of the molar mass distribution, and minimal cluster ion formation. These findings indicate that increased charging of polymers through multiple, well-defined sites of ionization can enhance volatilization and ionization of higher-mass polymers. Generation of higher-molecular-weight polymers in low-charge states-while possible under ideal conditions-competes ineffectively with either nonspecific, multiple-charging of similar sized polymers or ionization of the smaller polymers in the distribution.
Collapse
Affiliation(s)
- Tobias Nitsche
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Margaret M Sheil
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - James P Blinco
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
44
|
Lebede M, Di Marco F, Esser-Skala W, Hennig R, Wohlschlager T, Huber CG. Exploring the Chemical Space of Protein Glycosylation in Noncovalent Protein Complexes: An Expedition along Different Structural Levels of Human Chorionic Gonadotropin by Employing Mass Spectrometry. Anal Chem 2021; 93:10424-10434. [PMID: 34288669 PMCID: PMC8340079 DOI: 10.1021/acs.analchem.1c02199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Modern analytical
approaches employing high-resolution mass spectrometry
(MS) facilitate the generation of a vast amount of structural data
of highly complex glycoproteins. Nevertheless, systematic interpretation
of this data at different structural levels remains an analytical
challenge. The glycoprotein utilized as a model system in this study,
human chorionic gonadotropin (hCG), exists as a heterodimer composed
of two heavily glycosylated subunits. In order to unravel the multitude
of glycoforms of recombinant hCG (drug product Ovitrelle), we combine
established techniques, such as released glycan and glycopeptide analysis,
with novel approaches employing high-performance liquid chromatography-mass
spectrometry (HPLC-MS) to characterize protein subunits and native
MS to analyze the noncovalent hCG complex. Starting from the deconvoluted
mass spectrum of dimeric hCG comprising about 50 signals, it was possible
to explore the chemical space of hCG glycoforms and elucidate the
complexity that hides behind just 50 signals. Systematic, stepwise
integration of data obtained at the levels of released glycans, glycopeptides,
and subunits using a computational annotation tool allowed us to reveal
1031 underlying glycoforms. Additionally, critical quality attributes
such as sialylation and core fucosylation were compared for two batches
of Ovitrelle to assess the potential product variability.
Collapse
Affiliation(s)
- Maximilian Lebede
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - René Hennig
- glyXera GmbH, Brenneckestraße 20 - ZENIT, 39120 Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
45
|
Schachner LF, Tran DP, Lee A, McGee JP, Jooss K, Durbin K, Seckler HDS, Adams L, Cline E, Melani R, Ives AN, Des Soye B, Kelleher NL, Patrie SM. Reassembling protein complexes after controlled disassembly by top-down mass spectrometry in native mode. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 465:116591. [PMID: 34539228 PMCID: PMC8445521 DOI: 10.1016/j.ijms.2021.116591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The combined use of electrospray ionization run in so-called "native mode" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies. We include an overview of strategies to navigate this type of analysis, provide example data sets, and highlight software for the hypothesis-driven interrogation of fragment ions for localization of PTMs, metals, and cofactors on native proteoforms. Throughout we have emphasized the key features (deconvolution, search mode, validation, other) that the reader can consider when deciding upon their specific experimental and data processing design using both open-access and commercial software.
Collapse
Affiliation(s)
- Luis F. Schachner
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Denise P. Tran
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Alexander Lee
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - John P. McGee
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Kevin Jooss
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Kenneth Durbin
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Henrique Dos Santos Seckler
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Lauren Adams
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Erika Cline
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Rafael Melani
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Ashley N. Ives
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Benjamin Des Soye
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Neil L. Kelleher
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Steven M. Patrie
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| |
Collapse
|
46
|
Abstract
One essential prerequisite of any experiment involving a purified protein, such as interaction studies or structural and biophysical characterization, is to work with a "good-quality" sample in order to ensure reproducibility and reliability of the data. Here, we define a "good-quality" sample as a protein preparation that fulfills three criteria: (1) the preparation contains a protein that is pure and soluble and exhibits structural and functional integrity, (2) the protein must be structurally homogeneous, and (3) the preparation must be reproducible. To ensure effective quality control (QC) of all these parameters, we suggest to follow a simple workflow involving the use of gel electrophoresis, light scattering, and spectroscopic experiments. We describe the techniques used in every step of this workflow and provide easy-to-use standard protocols for each step.
Collapse
|
47
|
Busch F, VanAernum ZL, Lai SM, Gopalan V, Wysocki VH. Analysis of Tagged Proteins Using Tandem Affinity-Buffer Exchange Chromatography Online with Native Mass Spectrometry. Biochemistry 2021; 60:1876-1884. [PMID: 34100589 PMCID: PMC9080447 DOI: 10.1021/acs.biochem.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein overexpression and purification are critical for in vitro structure-function characterization studies. However, some proteins are difficult to express in heterologous systems due to host-related (e.g., codon usage, translation rate) and/or protein-specific (e.g., toxicity, aggregation) challenges. Therefore, it is often necessary to test multiple overexpression and purification conditions to maximize the yield of functional protein, particularly for resource-heavy downstream applications (e.g., biocatalysts, tertiary structure determination, biotherapeutics). Here, we describe an automatable liquid chromatography-mass spectrometry-based method for direct analysis of target proteins in cell lysates. This approach is facilitated by coupling immobilized metal affinity chromatography (IMAC), which leverages engineered poly-histidine tags in proteins of interest, with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS). While we illustrate a proof of concept here using relatively straightforward examples, the use of IMAC-OBE-nMS to optimize conditions for large-scale protein production may become invaluable for expediting structural biology and biotherapeutic initiatives.
Collapse
Affiliation(s)
- Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210 USA
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Stella M. Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
48
|
Harvey SR, VanAernum ZL, Wysocki VH. Surface-Induced Dissociation of Anionic vs Cationic Native-Like Protein Complexes. J Am Chem Soc 2021; 143:7698-7706. [PMID: 33983719 DOI: 10.1021/jacs.1c00855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Characterizing protein-protein interactions, stoichiometries, and subunit connectivity is key to understanding how subunits assemble into biologically relevant, multisubunit protein complexes. Native mass spectrometry (nMS) has emerged as a powerful tool to study protein complexes due to its low sample consumption and tolerance for heterogeneity. In nMS, positive mode ionization is routinely used and charge reduction, through the addition of solution additives, is often used, as the resulting lower charge states are often considered more native-like. When fragmented by surface-induced dissociation (SID), charge reduced complexes often give increased structural information over their "normal-charged" counterparts. A disadvantage of solution phase charge reduction is that increased adduction, and hence peak broadening, is often observed. Previous studies have shown that protein complexes ionized using negative mode generally form lower charge states relative to positive mode. Here we demonstrate that the lower charged protein complex anions activated by surface collisions fragment in a manner consistent with their solved structures, hence providing substructural information. Negative mode ionization in ammonium acetate offers the advantage of charge reduction without the peak broadening associated with solution phase charge reduction additives and provides direct structural information when coupled with SID. SID of 20S human proteasome (a 28-mer comprised of four stacked heptamer rings in an αββα formation), for example, provides information on both substructure (e.g., splitting into a 7α ring and the corresponding ββα 21-mer, and into α dimers and trimers to provide connectivity around the 7 α ring) and proteoform information on monomers.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Jooß K, McGee JP, Melani RD, Kelleher NL. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. Electrophoresis 2021; 42:1050-1059. [PMID: 33502026 PMCID: PMC8122066 DOI: 10.1002/elps.202000317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Native mass spectrometry (nMS) is a rapidly growing method for the characterization of large proteins and protein complexes, preserving "native" non-covalent inter- and intramolecular interactions. Direct infusion of purified analytes into a mass spectrometer represents the standard approach for conducting nMS experiments. Alternatively, CZE can be performed under native conditions, providing high separation performance while consuming trace amounts of sample material. Here, we provide standard operating procedures for acquiring high-quality data using CZE in native mode coupled online to various Orbitrap mass spectrometers via a commercial sheathless interface, covering a wide range of analytes from 30-800 kDa. Using a standard protein mix, the influence of various CZE method parameters were evaluated, such as BGE/conductive liquid composition and separation voltage. Additionally, a universal approach for the optimization of fragmentation settings in the context of protein subunit and metalloenzyme characterization is discussed in detail for model analytes. A short section is dedicated to troubleshooting of the nCZE-MS setup. This study is aimed to help normalize nCZE-MS practices to enhance the CE community and provide a resource for the production of reproducible and high-quality data.
Collapse
Affiliation(s)
- Kevin Jooß
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - John P McGee
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Rafael D Melani
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
50
|
Sakamoto W, Azegami N, Konuma T, Akashi S. Single-Cell Native Mass Spectrometry of Human Erythrocytes. Anal Chem 2021; 93:6583-6588. [PMID: 33871982 DOI: 10.1021/acs.analchem.1c00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Native mass spectrometry (MS) enables the determination of the molecular mass of protein complexes. Generally, samples for native MS are isolated, purified, and prepared in volatile solutions. However, to understand the function of proteins in living cells, it is essential to characterize the protein complex as is, without isolation/purification of the protein, using the smallest possible amount of the sample. In the present study, we modified the "live single-cell MS" method, which has mainly been used in metabolomics, and applied it to observe hemoglobin directly sampled from human erythrocytes. By optimizing the experimental methods and conditions, we obtained native mass spectra of hemoglobin using only a single erythrocyte, which was directly sampled into a nanoelectrospray ionization emitter using a micromanipulator and microinjector system. That is, our method enables the analysis of ∼0.45 fmol of hemoglobin directly sampled from an erythrocyte. To our knowledge, this is the first report of native MS for endogenous proteins using a single intact human cell.
Collapse
|