1
|
Gao L, Yang R, Zhang J, Sheng M, Sun Y, Han B, Kai G. Gas chromatography-ion mobility spectrometry for the detection of human disease: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39450646 DOI: 10.1039/d4ay01452a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Gas chromatography-ion mobility spectrometry (GC-IMS) is an advanced technique used for detecting trace compounds, due to its non-destructive, straightforward, and rapid analytical capabilities. However, the application of GC-IMS in human disease screening is barely reported. This review summarizes the application and related parameters of GC-IMS in human disease diagnosis. GC-IMS detects volatile organic compounds in human breath, feces, urine, bile, etc. It can be applied to diagnose diseases, such as respiratory diseases, cancer, enteropathy, Alzheimer's disease, bacterial infection, and metabolic diseases. Several potential disease markers have been identified by GC-IMS, including ethanal (COVID-19), 2-heptanone (lung cancer) and 3-pentanone (pulmonary cryptococcosis). In conclusion, GC-IMS offers a non-invasive approach to monitor and diagnose human diseases with broad applications.
Collapse
Affiliation(s)
- Li Gao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Jizhou Zhang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Jiaowei Road 9, Liuhongqiao, Wenzhou, 325000, China.
| | - Miaomiao Sheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Yun Sun
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Jiaowei Road 9, Liuhongqiao, Wenzhou, 325000, China.
| | - Bing Han
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Omezzine Gnioua M, Swift SJ, Španěl P. Selected ion flow tube studies of the reactions of H 3O +, NO +, O 2+˙ and O -˙ ions with alkanes in He and N 2 carrier gases at different temperatures. Phys Chem Chem Phys 2024; 26:26585-26593. [PMID: 39400284 DOI: 10.1039/d4cp03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The kinetics of the reactions of H3O+, NO+, O2+˙ and O-˙ with n-hexane, 3-methylpentane, 2,5-dimethylhexane and 2,3-dimethylheptane were studied experimentally under several selected ion flow tube (SIFT) conditions: in a Profile 3 instrument in He and N2 carrier gases at 300 K and in the Voice200 instrument in N2 carrier gas at 300 and 393 K - where the effect of the extraction lens voltage was also assessed. It was found that H3O+ ions react differently than expected, with reaction rates slower than collisional. Instead of transferring a proton, they associate and form fragment product ions [M-H]+. NO+ ions react via hydride ion transfer. O2+˙ ions react via charge transfer followed by fragmentation that is highly sensitive to the temperature and the ion extraction lens voltage. Negative ions did not react, except for the O-˙ ion, which reacted via an associative detachment process. Computational analysis using Density Functional Theory (DFT) provided insights into the exothermicities and exergodicities of these reactions. A notable result is that proton transfer from H3O+ does not take place despite its potential exothermicity; this is important for the interpretation of proton transfer reaction (PTR) and SIFT mass spectrometry data.
Collapse
Affiliation(s)
- Maroua Omezzine Gnioua
- J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia.
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2/747, Prague 8, 180 00, Czechia
| | - Stefan J Swift
- J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia.
| | - Patrik Španěl
- J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia.
| |
Collapse
|
3
|
Schaefer C, Lippmann M, Schindler C, Beukers M, Beijer N, Hitzemann M, van de Kamp B, Peters R, Knotter J, Zimmermann S. Pursuing drug laboratories: Analysis of drug precursors with High Kinetic Energy Ion Mobility Spectrometry. Forensic Sci Int 2024; 363:112196. [PMID: 39151243 DOI: 10.1016/j.forsciint.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) is a technique for rapid and reliable detection of trace compounds down to ppbV-levels within one second. Compared to classical IMS operating at ambient pressure and providing the ion mobility at low electric fields, HiKE-IMS can also provide the analyte-specific field dependence of the ion mobility and a fragmentation pattern at high reduced electric field strengths. The additional information about the analyte obtained by varying the reduced electric field strength can contribute to reliable detection. Furthermore, the reduced number of ion-molecule reactions at the low operating pressure of 10 - 40 mbar and the shorter reaction times reduce the impact of competing ion-molecule reactions that can cause false negatives. In this work, we employ HiKE-IMS for the analysis of phenyl-2-propanone (P2P) and other precursor chemicals used for synthesis of methamphetamine and amphetamine. The results show that the precursor chemicals exhibit different behavior in HiKE-IMS. Some precursors form a single significant ion species, while others readily form a fragmentation pattern. Nevertheless, all drug precursors can be distinguished from each other, from the reactant ions and from interfering compounds. In particular, the field-dependent ion mobility as an additional separation dimension aids identification, potentially reducing the number of false positive alarms in field applications. Furthermore, the analysis of a seized illicit P2P sample shows that even low levels of P2P can be detected despite the complex background present in the headspace of real samples.
Collapse
Affiliation(s)
- Christoph Schaefer
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany.
| | - Martin Lippmann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| | - Clara Schindler
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| | - Michiel Beukers
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Niels Beijer
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Moritz Hitzemann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| | - Ben van de Kamp
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Ruud Peters
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Jaap Knotter
- Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, the Netherlands; Knowledge Centre of Digitalization, Intelligence and Technology, Police Academy of the Netherlands, Arnhemseweg 348, Apeldoorn 7334AC, the Netherlands
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstr. 9A, Hannover 30167, Germany
| |
Collapse
|
4
|
Wang Y, Tang Z, Zhao T, Yang J, Zhang W, Li X, Huan T. BreathXplorer: Processing Online Breathomics Data Generated from Direct Analysis Using High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1818-1825. [PMID: 39052287 DOI: 10.1021/jasms.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nontargeted breath analysis in real time using high-resolution mass spectrometry (HRMS) is a promising approach for high coverage profiling of metabolites in human exhaled breath. However, the information-rich and unique non-Gaussian metabolic signal shapes of real-time HRMS-based data pose a significant challenge for efficient data processing. This work takes a typical real-time HRMS technique as an example, i.e. secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS), and presents BreathXplorer, an open-source Python package designed for the processing of real-time exhaled breath data comprising multiple exhalations. BreathXplorer is composed of four main modules. The first module applies either a topological algorithm or a Gaussian mixture model (GMM) to determine the start and end points of each exhalation. Next, density-based spatial clustering of applications with noise (DBSCAN) is employed to cluster m/z values belonging to the same metabolic feature, followed by applying an intensity relative standard deviation (RSD) filter to extract real breath metabolic features. BreathXplorer also offers functions of (1) feature alignment across the samples and (2) associating MS/MS spectra with their corresponding metabolic features for downstream compound annotation. Manual inspection of the metabolic features extracted from SESI-HRMS breath data suggests that BreathXplorer can achieve 100% accuracy in identifying the start and end points of each exhalation and acquire accurate quantitative measurements of each breath feature. In a proof-of-concept study on exercise breathomics using SESI-HRMS, BreathXplorer successfully reveals the significantly changed metabolites that are pertinent to exercise. BreathXplorer is publicly available on GitHub (https://github.com/HuanLab/breathXplorer). It provides a powerful and convenient-to-use tool for the researchers to process breathomics data obtained by directly analysis using HRMS.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Zhifeng Tang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Jianming Yang
- Guangdong Provincial Key Laboratory of Speed Capability Research; Su Bingtian Center for Speed Research and Training; School of Physical Education, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Guangdong A-HealthX Technologies Co., Ltd, Dongguan 523830, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| |
Collapse
|
5
|
Kim KB, Sohn MS, Min S, Yoon JW, Park JS, Li J, Moon YK, Kang YC. Highly Selective and Reversible Detection of Simulated Breath Hydrogen Sulfide Using Fe-Doped CuO Hollow Spheres: Enhanced Surface Redox Reaction by Multi-Valent Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308963. [PMID: 38461524 DOI: 10.1002/smll.202308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Indexed: 03/12/2024]
Abstract
The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.
Collapse
Affiliation(s)
- Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Sung Sohn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Kook Moon
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Wüthrich C, Käser T, Zenobi R, Giannoukos S. Internal Standard Addition System for Online Breath Analysis. Anal Chem 2024; 96:10871-10876. [PMID: 38937865 PMCID: PMC11238155 DOI: 10.1021/acs.analchem.4c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Breath analysis with secondary electrospray ionization (SESI) coupled to mass spectrometry (MS) is a sensitive method for breath metabolomics. To enable quantitative assessments using SESI-MS, a system was developed to introduce controlled amounts of gases into breath samples and carry out standard addition experiments. The system combines gas standard generation through controlled evaporation, humidification, breath dilution, and standard injection with the help of mass-flow controllers. The system can also dilute breath, which affects the signal of the detected components. This response can be used to filter out contaminating compounds in an untargeted metabolomics workflow. The system's quantitative capabilities have been shown through standard addition of pyridine and butyric acid into breath in real time. This system can improve the quality and robustness of breath data.
Collapse
Affiliation(s)
- Cedric Wüthrich
- Department
of Chemistry and Applied Biosciences, ETHZ, Zurich, CH 8093, Switzerland
| | - Timon Käser
- Department
of Chemistry and Applied Biosciences, ETHZ, Zurich, CH 8093, Switzerland
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETHZ, Zurich, CH 8093, Switzerland
| | - Stamatios Giannoukos
- Department
of Chemistry and Applied Biosciences, ETHZ, Zurich, CH 8093, Switzerland
| |
Collapse
|
7
|
Wang S, Jiao C, Gerlach G, Körner J. Porosity Engineering of Dried Smart Poly( N-isopropylacrylamide) Hydrogels for Gas Sensing. Biomacromolecules 2024; 25:2715-2727. [PMID: 38047737 PMCID: PMC11094736 DOI: 10.1021/acs.biomac.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
A recent study unveiled the potential of acrylamide-based stimulus-responsive hydrogels for volatile organic compound detection in gaseous environments. However, for gas sensing, a large surface area, that is, a highly porous material, offering many adsorption sites is crucial. The large humidity variation in the gaseous environment constitutes a significant challenge for preserving an initially porous structure, as the pores tend to be unstable and irreversibly collapse. Therefore, the present investigation focuses on enhancing the porosity of smart PNiPAAm hydrogels under the conditions of a gaseous environment and the preservation of the structural integrity for long-term use. We have studied the influence of polyethylene glycol (PEG) as a porogen and the application of different drying methods and posttreatment. The investigations lead to the conclusion that only the combination of PEG addition, freeze-drying, and subsequent conditioning in high relative humidity enables a long-term stable formation of a porous surface and inner structure of the material. The significantly enhanced swelling response in a gaseous environment and in the test gas acetone is confirmed by gravimetric experiments of bulk samples and continuous measurements of thin films on piezoresistive pressure sensor chips. These measurements are furthermore complemented by an in-depth analysis of the morphology and microstructure. While the study was conducted for PNiPAAm, the insights and developed processes are general in nature and can be applied for porosity engineering of other smart hydrogel materials for VOC detection in gaseous environments.
Collapse
Affiliation(s)
- Sitao Wang
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Chen Jiao
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Gerald Gerlach
- Institute
of Solid-State Electronics, Dresden University
of Technology, 01062 Dresden, Germany
| | - Julia Körner
- Institute
of Electrical Engineering and Measurement Technology, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
8
|
Eichinger J, Reiche AM, Dohme-Meier F, Fuchsmann P. Optimization of volatile organic compounds sampling from dairy cow exhaled breath using polymer-based solid-phase extraction cartridges for gas chromatographic analysis. J Breath Res 2024; 18:036001. [PMID: 38547532 DOI: 10.1088/1752-7163/ad38d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
We explored appropriate technical setups for the detection of volatile organic compounds (VOCs) from exhaled cow breath by comparing six different polymer-based solid-phase extraction (SPE) cartridges currently on the market for gas chromatography/mass spectrometry (GC-MS) screening. Exhaled breath was sampled at a single timepoint from five lactating dairy cows using six different SPE cartridges (Bond Elut ENV (ENV); Chromabond HRX (HRX); Chromabond HRP (HRP); Chromabond HLB (HLB); Chromabond HR-XCW (XCW) and Chromabond HR-XAW (XAW)). The trapped VOCs were analyzed by dynamic headspace vacuum in-tube extraction GC-MS (DHS-V-ITEX-GC-MS). Depending on the SPE cartridge, we detected 1174-1312 VOCs per cartridge. Most VOCs were alkenes, alkanes, esters, ketones, alcohols, aldehydes, amines, nitriles, ethers, amides, carboxylic acids, alkynes, azoles, terpenes, pyridines, or sulfur-containing compounds. The six SPE cartridges differed in their specificity for the chemical compounds, with the XAW cartridge showing the best specificity for ketones. The greatest differences between the tested SPE cartridges appeared in the detection of specific VOCs. In total, 176 different VOCs were detected with a match factor >80%. The greatest number of specific VOCs was captured by XAW (149), followed by ENV (118), HLB (117), HRP (115), HRX (114), and XCW (114). We conclude that the tested SPE cartridges are suitable for VOC sampling from exhaled cow breath, but the SPE cartridge choice enormously affects the detected chemical groups and the number of detected VOCs. Therefore, an appropriate SPE adsorbent cartridge should be selected according to our proposed inclusion criteria. For targeted metabolomics approaches, the SPE cartridge choice depends on the VOCs or chemical compound groups of interest based on our provided VOC list. For untargeted approaches without information on the animals' metabolic condition, we suggest using multi-sorbent SPE cartridges or multiple cartridges per animal.
Collapse
Affiliation(s)
- Julia Eichinger
- Ruminant Nutrition and Emissions, Agroscope, Posieux, Switzerland
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | | | - Pascal Fuchsmann
- Human Nutrition, Sensory Analysis and Flavour, Agroscope, Bern, Switzerland
| |
Collapse
|
9
|
Whitaker-Lockwood JA, Scholten SK, Karim F, Luiten AN, Perrella C. Comb spectroscopy of CO 2 produced from microbial metabolism. BIOMEDICAL OPTICS EXPRESS 2024; 15:1553-1570. [PMID: 38495728 PMCID: PMC10942673 DOI: 10.1364/boe.515988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
We have developed a direct frequency comb spectroscopy instrument, which we have tested on Saccharomyces cerevisiae (baker's yeast) by measuring its CO2 output and production rate as we varied the environmental conditions, including the amount and type of feed sugar, the temperature, and the amount of yeast. By feeding isotopically-enhanced sugar to the yeast, we demonstrate the capability of our device to differentiate between two isotopologues of CO2, with a concentration measurement precision of 260 ppm for 12C16O2 and 175 ppm for 13C16O2. We also demonstrate the ability of our spectrometer to measure the proportion of carbon in the feed sugar converted to CO2, and estimate the amount incorporated into the yeast biomass.
Collapse
Affiliation(s)
- Joshua A Whitaker-Lockwood
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sarah K Scholten
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Faisal Karim
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - André N Luiten
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Christopher Perrella
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), University of Adelaide, Adelaide, South Australia, 5005, Australia
- Centre of Light for Life and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
10
|
Belluomo I, Whitlock SE, Myridakis A, Parker AG, Converso V, Perkins MJ, Langford VS, Španěl P, Hanna GB. Combining Thermal Desorption with Selected Ion Flow Tube Mass Spectrometry for Analyses of Breath Volatile Organic Compounds. Anal Chem 2024; 96:1397-1401. [PMID: 38243802 PMCID: PMC10831795 DOI: 10.1021/acs.analchem.3c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
An instrument integrating thermal desorption (TD) to selected ion flow tube mass spectrometry (SIFT-MS) is presented, and its application to analyze volatile organic compounds (VOCs) in human breath is demonstrated for the first time. The rationale behind this development is the need to analyze breath samples in large-scale multicenter clinical projects involving thousands of patients recruited in different hospitals. Following adapted guidelines for validating analytical techniques, we developed and validated a targeted analytical method for 21 compounds of diverse chemical class, chosen for their clinical and biological relevance. Validation has been carried out by two independent laboratories, using calibration standards and real breath samples from healthy volunteers. The merging of SIFT-MS and TD integrates the rapid analytical capabilities of SIFT-MS with the capacity to collect breath samples across multiple hospitals. Thanks to these features, the novel instrument has the potential to be easily employed in clinical practice.
Collapse
Affiliation(s)
- Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Sophia E. Whitlock
- Syft
Technologies Limited, 68 St. Asaph Street, Christchurch 8011, New Zealand
| | - Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Valerio Converso
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Mark J. Perkins
- Element
Lab Solutions, Wellbrook
Court, Girton Road, Cambridge CB3 0NA, United Kingdom
| | - Vaughan S. Langford
- Syft
Technologies Limited, 68 St. Asaph Street, Christchurch 8011, New Zealand
| | - Patrik Španěl
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, 182 23 Prague, Czechia
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| |
Collapse
|
11
|
Marzoog B. Breathomics Detect the Cardiovascular Disease: Delusion or Dilution of the Metabolomic Signature. Curr Cardiol Rev 2024; 20:e020224226647. [PMID: 38318837 PMCID: PMC11327829 DOI: 10.2174/011573403x283768240124065853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Volatile organic compounds (VOCs) can be subdivided into exogenous and endogenous categories based on their origin. Analyzing the endogenous VOCs can provide insights into maintaining the internal organs' homeostasis. Despite the ongoing development and the current understanding, studies have suggested a link between cardiovascular metabolic alterations in patients with ischemic heart disease and elevated levels of ethane and isoprene detectable through exhaled breath analysis. Conversely, patients with chronic heart failure exhibit elevated acetone and pentane in their exhaled air. These substances originate from disturbances in the heart tissue, including cellular and subcellular modulations. Hypothetically, ethane levels in the exhaled breath analysis can demonstrate the severity of ischemic heart disease and, consequently, the risk of death in the next 10 years due to cardiovascular disease (CVD). Real-time direct mass spectrometry is the preferred method for assessing VOCs in exhaled breath analysis. The accuracy of this analysis depends on several factors, including the selection of the relevant breath fraction, the type of breath collection container (if used), and the pre-concentration technique.
Collapse
Affiliation(s)
- Basheer Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
12
|
Osorio Perez O, Nguyen NA, Hendricks A, Victor S, Mora SJ, Yu N, Xian X, Wang S, Kulick D, Forzani E. A Novel Acetone Sensor for Body Fluids. BIOSENSORS 2023; 14:4. [PMID: 38248381 PMCID: PMC10813317 DOI: 10.3390/bios14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Ketones are well-known biomarkers of fat oxidation produced in the liver as a result of lipolysis. These biomarkers include acetoacetic acid and β-hydroxybutyric acid in the blood/urine and acetone in our breath and skin. Monitoring ketone production in the body is essential for people who use caloric intake deficit to reduce body weight or use ketogenic diets for wellness or therapeutic treatments. Current methods to monitor ketones include urine dipsticks, capillary blood monitors, and breath analyzers. However, these existing methods have certain disadvantages that preclude them from being used more widely. In this work, we introduce a novel acetone sensor device that can detect acetone levels in breath and overcome the drawbacks of existing sensing approaches. The critical element of the device is a robust sensor with the capability to measure acetone using a complementary metal oxide semiconductor (CMOS) chip and convenient data analysis from a red, green, and blue deconvolution imaging approach. The acetone sensor device demonstrated sensitivity of detection in the micromolar-concentration range, selectivity for detection of acetone in breath, and a lifetime stability of at least one month. The sensor device utility was probed with real tests on breath samples using an established blood ketone reference method.
Collapse
Affiliation(s)
- Oscar Osorio Perez
- School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; (O.O.P.); (N.A.N.); (A.H.)
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
| | - Ngan Anh Nguyen
- School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; (O.O.P.); (N.A.N.); (A.H.)
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
| | - Asher Hendricks
- School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; (O.O.P.); (N.A.N.); (A.H.)
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
| | - Shaun Victor
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
| | - Sabrina Jimena Mora
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
| | - Nanxi Yu
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaojun Xian
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
- Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | - Erica Forzani
- School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; (O.O.P.); (N.A.N.); (A.H.)
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85281, USA; (S.V.); (S.J.M.); (N.Y.); (X.X.); (S.W.)
- Mayo Clinic, Scottsdale, AZ 85289, USA;
| |
Collapse
|
13
|
Langford VS, Dryahina K, Španěl P. Robust Automated SIFT-MS Quantitation of Volatile Compounds in Air Using a Multicomponent Gas Standard. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2630-2645. [PMID: 37988479 DOI: 10.1021/jasms.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Selected ion flow tube mass spectrometry, SIFT-MS, has been widely used in industry and research since its introduction in the mid-1990s. Previously described quantitation methods have been advanced to include a gas standard for a more robust and repeatable analytical performance. The details of this approach to calculate the concentrations from ion-molecule reaction kinetics based on reaction times and instrument calibration functions determined from known concentrations in the standard mix are discussed. Important practical issues such as the overlap of product ions are outlined, and best-practice approaches are presented to enable them to be addressed during method development. This review provides a fundamental basis for a plethora of studies in broad application areas that are possible with SIFT-MS instruments.
Collapse
Affiliation(s)
- Vaughan S Langford
- Syft Technologies Limited, 68 Saint Asaph Street, Christchurch 8011, New Zealand
| | - Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 23, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 23, Czechia
| |
Collapse
|
14
|
Omezzine Gnioua M, Spesyvyi A, Španěl P. Gas phase H +, H 3O + and NH 4+ affinities of oxygen-bearing volatile organic compounds; DFT calculations for soft chemical ionisation mass spectrometry. Phys Chem Chem Phys 2023; 25:30343-30348. [PMID: 37909271 DOI: 10.1039/d3cp03604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Quantum chemistry calculations were performed using the density functional theory, DFT, to understand the structures and energetics of organic ions relevant to gas phase ion chemistry in soft chemical ionisation mass spectrometry analytical methods. Geometries of a range of neutral volatile organic compound molecules and ions resulting from protonation, the addition of H3O+ and the addition of NH4+ were optimised using the B3LYP hybrid DFT method. Then, the total energies and the normal mode vibrational frequencies were determined, and the total enthalpies of the neutral molecules and ions were calculated for the standard temperature and pressure. The calculations were performed for several feasible structures of each of the ions. The proton affinities of several benchmark molecules agree with the accepted values within ±4 kJ mol-1, indicating that B3LYP/6-311++G(d,p) provides chemical accuracy for oxygen-containing volatile organic compounds. It was also found that the binding energies of H3O+ and NH4+ to molecules correlate with their proton affinities. The results contribute to the understanding of ligand switching ion-molecule reactions important for secondary electrospray ionisation, SESI, and selected ion flow tube, SIFT, mass spectrometries.
Collapse
Affiliation(s)
- Maroua Omezzine Gnioua
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, 18000 Prague 8, Czech Republic
| | - Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| |
Collapse
|
15
|
Kapur R, Kumar Y, Sharma S, Rastogi V, Sharma S, Kanwar V, Sharma T, Bhavsar A, Dutt V. DiabeticSense: A Non-Invasive, Multi-Sensor, IoT-Based Pre-Diagnostic System for Diabetes Detection Using Breath. J Clin Med 2023; 12:6439. [PMID: 37892575 PMCID: PMC10607308 DOI: 10.3390/jcm12206439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus is a widespread chronic metabolic disorder that requires regular blood glucose level surveillance. Current invasive techniques, such as finger-prick tests, often result in discomfort, leading to infrequent monitoring and potential health complications. The primary objective of this study was to design a novel, portable, non-invasive system for diabetes detection using breath samples, named DiabeticSense, an affordable digital health device for early detection, to encourage immediate intervention. The device employed electrochemical sensors to assess volatile organic compounds in breath samples, whose concentrations differed between diabetic and non-diabetic individuals. The system merged vital signs with sensor voltages obtained by processing breath sample data to predict diabetic conditions. Our research used clinical breath samples from 100 patients at a nationally recognized hospital to form the dataset. Data were then processed using a gradient boosting classifier model, and the performance was cross-validated. The proposed system attained a promising accuracy of 86.6%, indicating an improvement of 20.72% over an existing regression technique. The developed device introduces a non-invasive, cost-effective, and user-friendly solution for preliminary diabetes detection. This has the potential to increase patient adherence to regular monitoring.
Collapse
Affiliation(s)
- Ritu Kapur
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| | - Yashwant Kumar
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| | - Swati Sharma
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| | - Vedant Rastogi
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| | - Shivani Sharma
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| | - Vikrant Kanwar
- All India Institute of Medical Science Bilaspur, Noa 174001, Himachal Pradesh, India; (V.K.); (T.S.)
| | - Tarun Sharma
- All India Institute of Medical Science Bilaspur, Noa 174001, Himachal Pradesh, India; (V.K.); (T.S.)
| | - Arnav Bhavsar
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| | - Varun Dutt
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India; (R.K.); (Y.K.); (S.S.); (V.R.); (S.S.); (A.B.)
| |
Collapse
|
16
|
Biagini D, Pugliese NR, Vivaldi FM, Ghimenti S, Lenzi A, De Angelis F, Ripszam M, Bruderer T, Armenia S, Cappeli F, Taddei S, Masi S, Francesco FD, Lomonaco T. Breath analysis combined with cardiopulmonary exercise testing and echocardiography for monitoring heart failure patients: the AEOLUS protocol. J Breath Res 2023; 17:046006. [PMID: 37524075 DOI: 10.1088/1752-7163/acec08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (r= 0.646,p< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Nicola R Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico M Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesca De Angelis
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Matyas Ripszam
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tobias Bruderer
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Cappeli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Dalis C, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Markel TA. Volatile Organic Compound Assessment as a Screening Tool for Early Detection of Gastrointestinal Diseases. Microorganisms 2023; 11:1822. [PMID: 37512994 PMCID: PMC10385474 DOI: 10.3390/microorganisms11071822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal (GI) diseases have a high prevalence throughout the United States. Screening and diagnostic modalities are often expensive and invasive, and therefore, people do not utilize them effectively. Lack of proper screening and diagnostic assessment may lead to delays in diagnosis, more advanced disease at the time of diagnosis, and higher morbidity and mortality rates. Research on the intestinal microbiome has demonstrated that dysbiosis, or unfavorable alteration of organismal composition, precedes the onset of clinical symptoms for various GI diseases. GI disease diagnostic research has led to a shift towards non-invasive methods for GI screening, including chemical-detection tests that measure changes in volatile organic compounds (VOCs), which are the byproducts of bacterial metabolism that result in the distinct smell of stool. Many of these tools are expensive, immobile benchtop instruments that require highly trained individuals to interpret the results. These attributes make them difficult to implement in clinical settings. Alternatively, electronic noses (E-noses) are relatively cheaper, handheld devices that utilize multi-sensor arrays and pattern recognition technology to analyze VOCs. The purpose of this review is to (1) highlight how dysbiosis impacts intestinal diseases and how VOC metabolites can be utilized to detect alterations in the microbiome, (2) summarize the available VOC analytical platforms that can be used to detect aberrancies in intestinal health, (3) define the current technological advancements and limitations of E-nose technology, and finally, (4) review the literature surrounding several intestinal diseases in which headspace VOCs can be used to detect or predict disease.
Collapse
Affiliation(s)
- Costa Dalis
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Swift SJ, Španěl P, Sixtová N, Demarais N. How to Use Ion-Molecule Reaction Data Previously Obtained in Helium at 300 K in the New Generation of Selected Ion Flow Tube Mass Spectrometry Instruments Operating in Nitrogen at 393 K. Anal Chem 2023. [PMID: 37454354 PMCID: PMC10372871 DOI: 10.1021/acs.analchem.3c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) instruments have significantly developed since this technique was introduced more than 20 years ago. Most studies of the ion-molecule reaction kinetics that are essential for accurate analyses of trace gases and vapors in air and breath were conducted in He carrier gas at 300 K, while the new SIFT-MS instruments (optimized to quantify concentrations down to parts per trillion by volume) operate with N2 carrier gas at 393 K. Thus, we pose the question of how to reuse the data from the extensive body of previous literature using He at room temperature in the new instruments operating with N2 carrier gas at elevated temperatures. Experimentally, we found the product ions to be qualitatively similar, although there were differences in the branching ratios, and some reaction rate coefficients were lower in the heated N2 carrier gas. The differences in the reaction kinetics may be attributed to temperature, an electric field in the current flow tubes, and the change from He to N2 carrier gas. These results highlight the importance of adopting an updated reaction kinetics library that accounts for the new instruments' specific conditions. In conclusion, almost all previous rate coefficients may be used after adjustment for higher temperatures, while some product ion branching ratios need to be updated.
Collapse
Affiliation(s)
- Stefan J Swift
- J. Heyrovsky Institute of Physical Chemistry, 3, Dolejškova 2155, Praha 8 182 00, Libeň, Czechia
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry, 3, Dolejškova 2155, Praha 8 182 00, Libeň, Czechia
| | - Nikola Sixtová
- J. Heyrovsky Institute of Physical Chemistry, 3, Dolejškova 2155, Praha 8 182 00, Libeň, Czechia
| | - Nicholas Demarais
- Syft Technologies, 68 Saint Asaph Street, Christchurch Central City, Christchurch 8011, New Zealand
| |
Collapse
|
19
|
Swift SJ, Sixtová N, Omezzine Gnioua M, Španěl P. A SIFT-MS study of positive and negative ion chemistry of the ortho-, meta- and para-isomers of cymene, cresol, and ethylphenol. Phys Chem Chem Phys 2023. [PMID: 37377058 DOI: 10.1039/d3cp02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is a soft ionisation technique based on gas phase ion-molecule reaction kinetics for the quantification of trace amounts of volatile organic compound vapours. One of its previous limitations is difficulty in resolving isomers, although this can now be overcome using different reactivities of several available reagent cations and anions (H3O+, NO+, O2+˙, O-˙, OH-, O2-˙, NO2-, NO3-). Thus, the ion-molecule reactions of these eight ions with all isomers of the aromatic compounds cymene, cresol and ethylphenol were studied to explore the possibility of their immediate identification and quantification without chromatographic separation. Rate coefficients and product ion branching ratios determined experimentally for the 72 reactions are reported. DFT calculations of their energetics confirmed the feasibility of the suggested reaction pathways. All positive ion reactions proceeded fast but largely did not discriminate between the isomers. The reactivity of the anions was much more varied. In all cases, OH- reacts by proton transfer forming (M-H); NO2- and NO3- were unreactive. The differences observed for product ion branching ratios can be used to identify isomers approximately.
Collapse
Affiliation(s)
- Stefan J Swift
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
| | - Nikola Sixtová
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
| | - Maroua Omezzine Gnioua
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 120 00 Prague, Czechia
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of CAS, v.v.i, Dolejškova 2155/3, 182 23 Prague, Czechia.
| |
Collapse
|
20
|
Španěl P, Dryahina K, Omezzine Gnioua M, Smith D. Different reactivities of H 3 O + (H 2 O) n with unsaturated and saturated aldehydes: ligand-switching reactions govern the quantitative analytical sensitivity of SESI-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9496. [PMID: 36807598 DOI: 10.1002/rcm.9496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE The detection sensitivity of secondary electrospray ionisation mass spectrometry (SESI-MS) is much lower for saturated aldehydes than for unsaturated aldehydes. This needs to be understood in terms of gas phase ion-molecule reaction kinetics and energetics to make SESI-MS analytically more quantitative. METHODS Parallel SESI-MS and selected ion flow tube mass spectrometry (SIFT-MS) analyses were carried out of air containing variable accurately determined concentrations of saturated (C5, pentanal; C7, heptanal; C8 octanal) and unsaturated (C5, 2-pentenal; C7, 2-heptenal; C8, 2-octenal) aldehyde vapours. The influence of the source gas humidity and the ion transfer capillary temperature, 250 and 300°C, in a commercial SESI-MS instrument was explored. Separate experiments were carried out using SIFT to determine the rate coefficients, k73 , for the ligand-switching reactions of the H3 O+ (H2 O)3 ions with the six aldehydes. RESULTS The relative slopes of the plots of SESI-MS ion signal against SIFT-MS concentration were interpreted as the relative SESI-MS sensitivities for these six compounds. The sensitivities for the unsaturated aldehydes were 20 to 60 times greater than for the corresponding C5, C7 and C8 saturated aldehydes. Additionally, the SIFT experiments revealed that the measured k73 are three or four times greater for the unsaturated than for the saturated aldehydes. CONCLUSIONS The trends in SESI-MS sensitivities are rationally explained by differences in the rates of the ligand-switching reactions, which are justified by theoretically calculated equilibrium rate constants derived from thermochemical density functional theory (DFT) calculations of Gibb's free energy changes. The humidity of SESI gas thus favours the reverse reactions of the saturated aldehyde analyte ions, effectively suppressing their signals in contrast to their unsaturated counterparts.
Collapse
Affiliation(s)
- Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Kseniya Dryahina
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Maroua Omezzine Gnioua
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - David Smith
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
21
|
Smith D, Španěl P, Demarais N, Langford VS, McEwan MJ. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). MASS SPECTROMETRY REVIEWS 2023:e21835. [PMID: 36776107 DOI: 10.1002/mas.21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Murray J McEwan
- Syft Technologies Limited, Christchurch, New Zealand
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
22
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Swift SJ, Smith D, Dryahina K, Gnioua MO, Španěl P. Kinetics of reactions of NH 4 + with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9328. [PMID: 35603529 DOI: 10.1002/rcm.9328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE To assess the suitability of NH4 + as a reagent ion for trace gas analysis by selected ion flow tube mass spectrometry, SIFT-MS, its ion chemistry must be understood. Thus, rate coefficients and product ions for its reactions with typical biogenic molecules and monoterpenes need to be experimentally determined in both helium, He, and nitrogen, N2 , carrier gases. METHODS NH4 + and H3 O+ were generated in a microwave gas discharge through an NH3 and H2 O vapour mixture and, after m/z selection, injected into He and N2 carrier gas. Using the conventional SIFT method, NH4 + reactions were then studied with M, the biogenic molecules acetone, 1-propanol, 2-butenal, trans-2-heptenal, heptanal, 2-heptanone, 2,3-heptanedione and 15 monoterpene isomers to obtain rate coefficients, k, and product ion branching ratios. Polarisabilities and dipole moments of the reactant molecules and the enthalpy changes in proton transfer reactions were calculated using density functional theory. RESULTS The k values for the reactions of the biogenic molecules were invariably faster in N2 than in He but similar in both bath gases for the monoterpenes. Adducts NH4 + M were the dominant product ions in He and N2 for the biogenic molecules, whereas both MH+ and NH4 + M product ions were observed in the monoterpene reactions; the monoterpene ratio correlating (R2 = 0.7) with the proton affinity, PA, of the monoterpene molecule as calculated. The data indicate that this adduct ion formation is the result of bimolecular rather than termolecular association. CONCLUSIONS NH4 + can be a useful reagent ion for SIFT-MS analyses of molecules with PA(M) < PA(NH3 ) when the dominant single product ion is the adduct NH4 + M. For molecules with PA(M) > PA(NH3 ), such as monoterpenes, both MH+ and NH4 + M ions are likely products, which must be determined along with k by experiment.
Collapse
Affiliation(s)
- Stefan James Swift
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Maroua Omezzine Gnioua
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| |
Collapse
|
24
|
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Volatile Organic Compounds in Exhaled Breath as Biomarkers of Lung Cancer: Advances and Potential Problems. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482207005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Baerenzung dit Baron T, Yobrégat O, Jacques A, Simon V, Geffroy O. A novel approach to discriminate the volatilome of Vitis vinifera berries by Selected Ion Flow Tube Mass Spectrometry analysis and chemometrics. Food Res Int 2022; 157:111434. [DOI: 10.1016/j.foodres.2022.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
|
26
|
Smith D, Španěl P. Ternary association reactions of H 3 O + , NO + and O 2 +• with N 2 , O 2 , CO 2 and H 2 O; implications for selected ion flow tube mass spectrometry analyses of air and breath. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9241. [PMID: 34904315 DOI: 10.1002/rcm.9241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE The reactions of the reagent ions used for trace gas analysis in selected ion flow tube mass spectrometry (SIFT-MS), R+ , viz. H3 O+ , NO+ and O2 + , with the major gases in air and breath samples, M, viz. N2 , O2 , CO2 and H2 O, are investigated. These reactions are seen to form weakly-bound adduct ions, R+ M, by ternary association reactions that must not be mistaken for genuine volatile organic compound (VOC) analyte ions. METHODS The ternary association rate coefficients mediated by helium (He) carrier gas atoms, k3a , have been determined for all combinations of R+ and M, which form R+ M adduct ions ranging in m/z from 47 (H3 O+ N2 ) to 76 (O2 +• CO2 ). This was achieved by adding variable amounts of M (up to 0.5 mbar pressure) into the He carrier gas (pressure of 1.33 mbar) in a SIFT-MS flow tube at 300 K. Parabolic curvature was observed on some of the semi-logarithmic decay curves that allowed the rate coefficients mediated by M molecules, k3b , to be estimated. RESULTS Values of k3a were found to range from 1 × 10-31 cm6 s-1 to 5 × 10-29 cm6 s-1 , which form mass spectral R+ M "ghost peaks" of significant strength when analysing VOCs at parts-per-billion concentrations. It was seen that the R+ M adduct ions (except when M is H2 O) react with H2 O molecules by ligand switching forming the readily recognised monohydrates of the initial reagent cations R+ H2 O. Whilst this ligand switching diminishes the R+ M adduct ghost peaks, it does not eliminate them entirely. CONCLUSIONS The significance of these adduct ions for trace gas analysis by SIFT-MS in the low m/z region is alluded to, and some examples are given of m/z spectral overlaps of the R+ M and R+ H2 O adduct cations with analyte cations of VOCs formed by analysis of complex media like exhaled breath, warning that ghost peaks will be enhanced using nitrogen carrier gas in SIFT-MS.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Han D, Han X, Liu L, Li D, Liu Y, Liu Z, Liu D, Chen Y, Zhuo K, Sang S. Sub-ppb-Level Detection of Nitrogen Dioxide Based on High-Quality Black Phosphorus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13942-13951. [PMID: 35275490 DOI: 10.1021/acsami.2c00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of gas sensors based on two-dimensional (2D) layered materials has received lots of focus attributing to their excellent gas sensitivity. Here, a black phosphorus (BP) gas sensor device is fabricated based on high-quality few-layered BP microribbons using a facile route. Although BP is well known to oxidize in ambient conditions, energy dispersive spectroscopy (EDS) mapping manifests that the few-layered BP microribbons undergo slight oxidation and contamination during the grinding process. It is interesting that the surface and side of BP microribbons have nanoscale thin films and step-like nanoscale thin films, respectively, owing to the in-plane slip of the few-layered BP microribbons in the process of grinding, which are different from the conventional BP bulk crystals. The layered BP microribbon gas sensor demonstrated a high response to low-concentration NO2 and a very low limit of detection (LOD) of 0.4 ppb of NO2 under N2 and air conditions, which is the lowest LOD for NO2 detection reported so far. The mechanisms for excellently sensitive detection of NO2 for the BP microribbons have been investigated by first-principles calculations combined with experiment results, revealing that the sensitization mechanisms of the BP microribbon sensor are abundant nanoscale thin films, an optimum bandgap range with optimal carrier concentration, a hierarchical homojunction structure, and strong adsorption energy to NO2. In addition, the BP microribbon sensor demonstrated high selectivity to NO2, a low LOD under a high relative humidity, and good repeatability. The reported results of the BP sensor may provide great promise for improving the performance of other 2D material-based gas sensors and may expand sensing applications.
Collapse
Affiliation(s)
- Dan Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaomei Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lulu Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Donghui Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhihua Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dongming Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Chen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Zhuo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
28
|
Park SW, Jeong SY, Moon YK, Kim K, Yoon JW, Lee JH. Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO 3 Spheres and Au Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11587-11596. [PMID: 35174700 DOI: 10.1021/acsami.1c19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise detection of breath isoprene can provide valuable information for monitoring the physical and physiological status of human beings or for the early diagnosis of cardiovascular diseases. However, the extremely low concentration and low chemical reactivity of breath isoprene hamper the selective and sensitive detection of isoprene using oxide semiconductor chemiresistors. Herein, we report that macroporous WO3 microspheres whose inner macropores are surrounded by Au nanoparticles exhibit a high response (resistance ratio = 11.3) to 0.1 ppm isoprene under highly humid conditions at 275 °C and an extremely low detection limit (0.2 ppb). Furthermore, the sensor showed excellent selectivity to isoprene over five interferants that could be exhaled by humans. Notably, the selectivity to isoprene is critically dependent on the location of Au nanocatalysts and macroporosity. The mechanism underlying the selective isoprene detection is investigated in relation to the reforming of less reactive isoprene into more reactive intermediate species promoted by macroporous catalytic reactors, which is confirmed by the analysis using a proton transfer reaction quadrupole mass spectrometer. The sensor for breath analysis has high potential for simple physical and physiological monitoring as well as disease diagnosis.
Collapse
Affiliation(s)
- Sei-Woong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Yong Jeong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - KiBeom Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
30
|
Biagini D, Fusi J, Vezzosi A, Oliveri P, Ghimenti S, Lenzi A, Salvo P, Daniele S, Scarfò G, Vivaldi FM, Bonini A, Martini C, Franzoni F, Di Francesco F, Lomonaco T. Effects of long-term vegan diet on breath composition. J Breath Res 2022; 16. [PMID: 35051905 DOI: 10.1088/1752-7163/ac4d41] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a "normal" breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a two-liter handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 mL) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members . Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 ppbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Jonathan Fusi
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Annasilvia Vezzosi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Paolo Oliveri
- Department of Drug and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno, 13, Genoa, 16100, ITALY
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, Pisa, Tuscany, 56124, ITALY
| | - Pietro Salvo
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, Pisa, 56124, ITALY
| | - Simona Daniele
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Giorgia Scarfò
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Claudia Martini
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Ferdinando Franzoni
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| |
Collapse
|
31
|
Abstract
Background COVID-19 is a highly contagious respiratory disease that can be transmitted through human exhaled breath. It has caused immense loss and has challenged the healthcare sector. It has affected the economy of countries and thereby affected numerous sectors. Analysis of human breath samples is an attractive strategy for rapid diagnosis of COVID-19 by monitoring breath biomarkers. Content Breath collection is a noninvasive process. Various technologies are employed for detection of breath biomarkers like mass spectrometry, biosensors, artificial learning, and machine learning. These tools have low turnaround time, robustness, and provide onsite results. Also, MS-based approaches are promising tools with high speed, specificity, sensitivity, reproducibility, and broader coverage, as well as its coupling with various chromatographic separation techniques providing better clinical and biochemical understanding of COVID-19 using breath samples. Summary Herein, we have tried to review the MS-based approaches as well as other techniques used for the analysis of breath samples for COVID-19 diagnosis. We have also highlighted the different breath analyzers being developed for COVID-19 detection.
Collapse
Affiliation(s)
- Jyoti Kanwar Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, Rajasthan, India
| | - Mithu Banerjee
- Address correspondence to this author at: AIIMS, Road, MI Phase-2, Basni, Jodhpur, Rajasthan, India—342005. E-mail:
| |
Collapse
|
32
|
Geng X, Zhao Z, Li H, Chen DDY. Tee-Shaped Sample Introduction Device Coupled with Direct Analysis in Real-Time Mass Spectrometry for Gaseous Analytes. Anal Chem 2021; 93:16813-16820. [PMID: 34825821 DOI: 10.1021/acs.analchem.1c03281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ambient ionization mass spectrometry (AIMS) is simple to operate for analytes adsorbed on the surface of various shaped probes. However, gaseous substances or liquids that are easy to evaporate, diffuse, and escape in the atmosphere are harder to capture. In this work, a Tee-shaped sample introduction device coupled with direct analysis in real time mass spectrometry (DART-MS) is developed. The Tee-shaped device is placed between the DART ion source and the MS inlet with a heated sample transfer tube. Gaseous samples from either a Tedlar sampling bag or liquids evaporated from a graduated syringe were tested. The Tee-shaped device was used for several volatile organic compounds with a wide range of boiling points, and detection limits of ng/mL to fg/mL were obtained. To test the device for real-life samples, puff-by-puff analysis of a complex gaseous mainstream smoke was performed. Individual puffs can be analyzed rapidly, and there is no cross contamination between consecutive puffs. The dynamic changes of chemical components among different puffs for different types of cigarettes can be observed. This work provides a universal Tee-shaped sampling device to enhance AIMS for the analysis of volatile compounds and gases, which is adapted to different sampling modules applicable for various forms of samples. The device enables direct exploration of chemical components in complex gaseous samples without tedious sample preparation and time-consuming LC or GC separation.
Collapse
Affiliation(s)
- Xin Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhengyan Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.,Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
33
|
Dryahina K, Polášek M, Smith D, Španěl P. Sensitivity of secondary electrospray ionization mass spectrometry to a range of volatile organic compounds: Ligand switching ion chemistry and the influence of Zspray™ guiding electric fields. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9187. [PMID: 34473872 DOI: 10.1002/rcm.9187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Secondary electrospray ionization (SESI) is currently only semi-quantitative. In the Zspray™ arrangement of SESI-MS, the transfer of ions from near atmospheric pressure to a triple quadrupole is achieved by guiding electric fields that partially desolvate both reagent and analyte ions which must be understood. Also, to make SESI-MS more quantitative, the mechanisms and the kinetics of the reaction processes, especially ligand switching reactions of hydrated hydronium reagent ions, H3 O+ (H2 O)n , with volatile organic compound (VOC) molecules, need to be understood. METHODS A modified Zspray™ ESI ion source operating at sub-atmospheric pressure with analyte sample gas introduced via an inlet coaxial with the spray was used. Variation of the ion-guiding electric fields was used to reveal the degree of desolvation of both reagent and analyte ions. The instrument sensitivity was determined for several classes of VOCs by introducing bag samples of suitably varying concentrations as quantified on-line using selected ion flow tube MS. RESULTS Electric field desolvation resulted in largely protonated VOCs, MH+ , and their monohydrates, MH+ H2 O, and for some VOCs proton-bound dimer ions, MH+ M, were formed. There was a highly linear response of the ion signal to the measured VOC sample concentration, which provided the instrument sensitivities, S, for 25 VOCs. The startling results show very wide variations in S from near 0 to 1 for hydrocarbons, and up to 100, on a relative scale, for polar compounds such as monoketones and unsaturated aldehydes. CONCLUSIONS The complex ion chemistry occurring in the SESI ion source, largely involving gas-phase ligand switching, results in widely variable sensitivities for different classes of VOCs. The sensitivity is observed to depend on the dipole moment and proton affinity of the analyte VOC molecule, M, and to decrease with the observed fraction of MH+ H2 O, but other yet unrecognized factors must play a significant role.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslav Polášek
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - David Smith
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
34
|
Ghislain M, Reyrolle M, Sotiropoulos JM, Pigot T, Le Bechec M. Chemical ionization of carboxylic acids and esters in negative mode selected ion flow tube – Mass spectrometry (SIFT-MS). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Yuan ZC, Hu B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. JOURNAL OF ANALYSIS AND TESTING 2021; 5:287-297. [PMID: 34422436 PMCID: PMC8364943 DOI: 10.1007/s41664-021-00194-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 is a highly contagious respiratory disease that can be infected through human exhaled breath. Human breath analysis is an attractive strategy for rapid diagnosis of COVID-19 in a non-invasive way by monitoring breath biomarkers. Mass spectrometry (MS)-based approaches offer a promising analytical platform for human breath analysis due to their high speed, specificity, sensitivity, reproducibility, and broad coverage, as well as its versatile coupling methods with different chromatographic separation, and thus can lead to a better understanding of the clinical and biochemical processes of COVID-19. Herein, we try to review the developments and applications of MS-based approaches for multidimensional analysis of COVID-19 breath samples, including metabolites, proteins, microorganisms, and elements. New features of breath sampling and analysis are highlighted. Prospects and challenges on MS-based breath analysis related to COVID-19 diagnosis and study are discussed.
Collapse
Affiliation(s)
- Zi-Cheng Yuan
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632 China
| | - Bin Hu
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
36
|
López-Lorente CI, Awchi M, Sinues P, García-Gómez D. Real-time pharmacokinetics via online analysis of exhaled breath. J Pharm Biomed Anal 2021; 205:114311. [PMID: 34403867 DOI: 10.1016/j.jpba.2021.114311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
The advantages that on-line breath analysis has shown in different fields have already made it stand as an interesting tool for pharmacokinetic studies. This review summarizes recent progress in the field, diving into the different analytical methods and the different advantages and hurdles encountered. We conclude that there is a wealth of limitations in the application of this technique, and key aspects like standardization are still outstanding. Nevertheless, this is an experimental field that has not yet been fully explored; and the advantages it offers for animal welfare, decrease in the amount of drug needed in experimental studies, and complementary insights to current pharmacological studies, warrant further exploration. Further studies are needed to overcome current limitations and incorporate this technique into the toolbox of pharmacological studies, both at an industrial and academic level.
Collapse
Affiliation(s)
| | - Mo Awchi
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Diego García-Gómez
- Department of Analytical Chemistry, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
37
|
Investigating Bacterial Volatilome for the Classification and Identification of Mycobacterial Species by HS-SPME-GC-MS and Machine Learning. Molecules 2021; 26:molecules26154600. [PMID: 34361751 PMCID: PMC8348828 DOI: 10.3390/molecules26154600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Species of Mycobacteriaceae cause disease in animals and humans, including tuberculosis and leprosy. Individuals infected with organisms in the Mycobacterium tuberculosis complex (MTBC) or non-tuberculous mycobacteria (NTM) may present identical symptoms, however the treatment for each can be different. Although the NTM infection is considered less vital due to the chronicity of the disease and the infrequency of occurrence in healthy populations, diagnosis and differentiation among Mycobacterium species currently require culture isolation, which can take several weeks. The use of volatile organic compounds (VOCs) is a promising approach for species identification and in recent years has shown promise for use in the rapid analysis of both in vitro cultures as well as ex vivo diagnosis using breath or sputum. The aim of this contribution is to analyze VOCs in the culture headspace of seven different species of mycobacteria and to define the volatilome profiles that are discriminant for each species. For the pre-concentration of VOCs, solid-phase micro-extraction (SPME) was employed and samples were subsequently analyzed using gas chromatography–quadrupole mass spectrometry (GC-qMS). A machine learning approach was applied for the selection of the 13 discriminatory features, which might represent clinically translatable bacterial biomarkers.
Collapse
|
38
|
Hagens LA, Verschueren ARM, Lammers A, Heijnen NFL, Smit MR, Nijsen TME, Geven I, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Development and validation of a point-of-care breath test for octane detection. Analyst 2021; 146:4605-4614. [PMID: 34160491 DOI: 10.1039/d1an00378j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is a demand for a non-invasive bedside method to diagnose Acute Respiratory Distress Syndrome (ARDS). Octane was discovered and validated as the most important breath biomarker for diagnosis of ARDS using gas-chromatography and mass-spectrometry (GC-MS). However, GC-MS is unsuitable as a point-of-care (POC) test in the intensive care unit (ICU). Therefore, we determined if a newly developed POC breath test can reliably detect octane in exhaled breath of invasively ventilated ICU patients. METHODS Two developmental steps were taken to design a POC breath test that relies on gas-chromatography using air as carrier gas with a photoionization detector. Calibration measurements were performed with a laboratory prototype in healthy subjects. Subsequently, invasively ventilated patients were included for validation and assessment of repeatability. After evolving to a POC breath test, this device was validated in a second group of invasively ventilated patients. Octane concentration was based on the area under the curve, which was extracted from the chromatogram and compared to known values from calibration measurements. RESULTS Five healthy subjects and 53 invasively ventilated patients were included. Calibration showed a linear relation (R2 = 1.0) between the octane concentration and the quantified octane peak in the low parts per billion (ppb) range. For the POC breath test the repeatability was excellent (R2 = 0.98, ICC = 0.97 (95% CI 0.94-0.99)). CONCLUSION This is the first study to show that a POC breath test can rapidly and reliably detect octane, with excellent repeatability, at clinically relevant levels of low ppb in exhaled breath of ventilated ICU patients. This opens possibilities for targeted exhaled breath analysis to be used as a bedside test and makes it a potential diagnostic tool for the early detection of ARDS.
Collapse
Affiliation(s)
- Laura A Hagens
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Alwin R M Verschueren
- Remote Patient Monitoring & Connected Care, Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, Netherlands
| | - Ariana Lammers
- Department of Respiratory Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marry R Smit
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tamara M E Nijsen
- Remote Patient Monitoring & Connected Care, Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, Netherlands
| | - Inge Geven
- Remote Patient Monitoring & Connected Care, Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands and Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands and Department of Respiratory Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Belluomo I, Boshier PR, Myridakis A, Vadhwana B, Markar SR, Spanel P, Hanna GB. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath. Nat Protoc 2021; 16:3419-3438. [PMID: 34089020 DOI: 10.1038/s41596-021-00542-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
The analysis of volatile organic compounds (VOCs) within breath for noninvasive disease detection and monitoring is an emergent research field that has the potential to reshape current clinical practice. However, adoption of breath testing has been limited by a lack of standardization. This protocol provides a comprehensive workflow for online and offline breath analysis using selected ion flow tube mass spectrometry (SIFT-MS). Following the suggested protocol, 50 human breath samples can be analyzed and interpreted in <3 h. Key advantages of SIFT-MS are exploited, including the acquisition of real-time results and direct compound quantification without need for calibration curves. The protocol includes details of methods developed for targeted analysis of disease-specific VOCs, specifically short-chain fatty acids, aldehydes, phenols, alcohols and alkanes. A procedure to make custom breath collection bags is also described. This standardized protocol for VOC analysis using SIFT-MS is intended to provide a basis for wider application and the use of breath analysis in clinical studies.
Collapse
Affiliation(s)
- Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Piers R Boshier
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Patrik Spanel
- Department of Surgery and Cancer, Imperial College London, London, UK
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
40
|
Bednařík A, Prysiazhnyi V, Preisler J. Metal Ionization in Sub-atmospheric Pressure MALDI Interface: A New Tool for Mass Spectrometry of Volatile Organic Compounds. Anal Chem 2021; 93:9445-9453. [PMID: 34191481 DOI: 10.1021/acs.analchem.1c01124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the analysis of volatile organic compounds (VOCs) based on chemical ionization by Au+ ions has been proposed. The ionization is carried out in a commercially available dual sub-atmospheric pressure MALDI/ESI interface without any modifications. The Au+ ions are generated by laser ablation of a gold nanolayer with the MALDI laser, and VOCs are infused via the ESI capillary. The ultrahigh resolving power and sub-ppm mass accuracy of the employed mass spectrometer allow straightforward identification of the formed ion-molecule complexes and other products of Au+ interactions with VOCs in the gas phase. The performance of the technique is demonstrated on the analysis of various classes of organic molecules, namely, alkanes, alkenes, alcohols, aldehydes, ketones, aromatic compounds, carboxylic acids, ethers, or organosulfur compounds, expanding the portfolio of currently available methods for the analysis of VOCs such as secondary electrospray ionization, proton-transfer reaction, and selected ion flow tube mass spectrometry.
Collapse
Affiliation(s)
- Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno , Czech Republic
| | - Vadym Prysiazhnyi
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno , Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno , Czech Republic
| |
Collapse
|
41
|
La Nasa J, Lomonaco T, Manco E, Ceccarini A, Fuoco R, Corti A, Modugno F, Castelvetro V, Degano I. Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry. CHEMOSPHERE 2021; 270:128612. [PMID: 33127106 DOI: 10.1016/j.chemosphere.2020.128612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported. In this work, we applied a non-destructive approach based on selected-ion flow tube mass spectrometry (SIFT-MS) for the characterization of VOCs released from a set of plastic debris collected from a sandy beach in northern Tuscany. The interpretation of the individual SIFT-MS spectra, aided by principal component data analysis, allowed us to relate the aged polymeric materials that make up the plastic debris (polyethylene, polypropylene, and polyethylene terephthalate) to their VOC emission profile, degradation level, and sampling site. The study proves the potential of SIFT-MS application in the field, as a major advance to obtain fast and reliable information on the VOCs emitted from microplastics. The possibility to obtain qualitative and quantitative data on plastic debris in less than 2 min also makes SIFT-MS a useful and innovative tool for future monitoring campaigns involving statistically significant sets of environmental samples.
Collapse
Affiliation(s)
- Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Enrico Manco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Roger Fuoco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy.
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13 I-56124, Pisa, Italy
| |
Collapse
|
42
|
Tsou PH, Lin ZL, Pan YC, Yang HC, Chang CJ, Liang SK, Wen YF, Chang CH, Chang LY, Yu KL, Liu CJ, Keng LT, Lee MR, Ko JC, Huang GH, Li YK. Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer. Cancers (Basel) 2021; 13:1431. [PMID: 33801001 PMCID: PMC8003836 DOI: 10.3390/cancers13061431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting screening effectiveness. Breathomics, a noninvasive strategy, has recently been studied extensively. Volatile organic compounds (VOCs) derived from human breath can reflect metabolic changes caused by diseases and possibly serve as biomarkers of lung cancer. (2) Methods: The selected ion flow tube mass spectrometry (SIFT-MS) technique was used to quantitatively analyze 116 VOCs in breath samples from 148 patients with histologically confirmed lung cancers and 168 healthy volunteers. We used eXtreme Gradient Boosting (XGBoost), a machine learning method, to build a model for predicting lung cancer occurrence based on quantitative VOC measurements. (3) Results: The proposed prediction model achieved better performance than other previous approaches, with an accuracy, sensitivity, specificity, and area under the curve (AUC) of 0.89, 0.82, 0.94, and 0.95, respectively. When we further adjusted the confounding effect of environmental VOCs on the relationship between participants' exhaled VOCs and lung cancer occurrence, our model was improved to reach 0.92 accuracy, 0.96 sensitivity, 0.88 specificity, and 0.98 AUC. (4) Conclusion: A quantitative VOCs databank integrated with the application of an XGBoost classifier provides a persuasive platform for lung cancer prediction.
Collapse
Affiliation(s)
- Ping-Hsien Tsou
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Zong-Lin Lin
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan;
| | - Yu-Chiang Pan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan;
| | - Hui-Chen Yang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Chien-Jen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Sheng-Kai Liang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Yueh-Feng Wen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Chia-Hao Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Lih-Yu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Kai-Lun Yu
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Chia-Jung Liu
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Li-Ta Keng
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan; (P.-H.T.); (H.-C.Y.); (C.-J.C.); (S.-K.L.); (Y.-F.W.); (C.-H.C.); (L.-Y.C.); (K.-L.Y.); (C.-J.L.); (L.-T.K.); (M.-R.L.)
| | - Guan-Hua Huang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan;
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan;
| | - Yaw-Kuen Li
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan;
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan
| |
Collapse
|
43
|
Abstract
Colorimetric sensing technologies have been widely used for both quantitative detection of specific analyte and recognition of a large set of analytes in gas phase, ranging from environmental chemicals to biomarkers in breath. However, the accuracy and reliability of the colorimetric gas sensors are threatened by the humidity interference in different application scenarios. Though substantial progress has been made toward new colorimetric sensors development, unless the humidity interference is well addressed, the colorimetric sensors cannot be deployed for real-world applications. Although there are comprehensive and insightful review articles about the colorimetric gas sensors, they have focused more on the progress in new sensing materials, new sensing systems, and new applications. There is a need for reviewing the works that have been done to solve the humidity issue, a challenge that the colorimetric gas sensors commonly face. In this review paper, we analyzed the mechanisms of the humidity interference and discussed the approaches that have been reported to mitigate the humidity interference in colorimetric sensing of environmental gases and breath biomarkers. Finally, the future perspectives of colorimetric sensing technologies are also discussed.
Collapse
Affiliation(s)
- Jingjing Yu
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Di Wang
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Vishal Varun Tipparaju
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Francis Tsow
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaojun Xian
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
44
|
Dong Y, Karboune S. A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Compr Rev Food Sci Food Saf 2021; 20:1937-1981. [DOI: 10.1111/1541-4337.12717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| |
Collapse
|
45
|
Wylleman A, Vuylsteke F, Dekeyser C, Teughels W, Quirynen M, Laleman I. Alternative therapies in controlling oral malodour: a systematic review. J Breath Res 2021; 15. [PMID: 33227726 DOI: 10.1088/1752-7163/abcd2b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/12/2022]
Abstract
Is there a role for alternative therapies in controlling intra-oral halitosis? Treatments other than tongue cleaning and anti-halitosis products containing zinc, chlorhexidine and cetylpyridinium chloride were considered as alternative therapies. Four databases were searched (PubMed, EMBASE, Web of Science and The Cochrane Library). Inclusion criteria were: examination of alternative halitosis therapies, study population with oral malodour, a (negative or positive) control group and evaluation of breath odour via organoleptic and/or instrumental assessment. Data were extracted for descriptive analysis. The screening of 7656 titles led to the inclusion of 26 articles. Analysis showed heterogeneity concerning the population of interest (from cysteine-induced to genuine halitosis), the examined treatment and the reported outcomes. This made a meta-analysis impossible. Essential oils, fluoride-containing products and herbal substances were the most studied. Results varied enormously and none of the active ingredients had an unambiguously positive effect on the malodour. The risk of bias was assessed as high in all articles. Given the fact that little evidence was found for each of the investigated treatments, it could be concluded that there is currently insufficient evidence that alternative therapies are of added value in the treatment of halitosis.Clinical relevanceScientific rationale:Halitosis is a common problem causing social isolation. Out of embarrassment, patients search the internet, leading to many questions about alternative solutions (e.g. oil pulling, herbs). This is the first systematic review on these alternative therapies.Principal findings: Results varied among studies. Some promising results were found for fluoride-containing toothpastes and probiotics. For other products (such as herbal and antibacterial products and essential oils) results were inconsistent. Long-term follow-up studies on these products are scarce. Moreover, the quality of the studies was poor.Practical implications:No clear evidence was found to support a certain alternative anti-halitosis therapy.
Collapse
Affiliation(s)
- A Wylleman
- Section of Periodontology, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000, Belgium.,Equally contributing first authors.,Author to whom any correspondence should be addressed
| | - F Vuylsteke
- KU, Leuven, Belgium.,Equally contributing first authors
| | - C Dekeyser
- Section of Periodontology, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000, Belgium
| | - W Teughels
- Section of Periodontology, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000, Belgium
| | - M Quirynen
- Section of Periodontology, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000, Belgium
| | - I Laleman
- Section of Periodontology, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000, Belgium
| |
Collapse
|
46
|
Segers K, Slosse A, Viaene J, Bannier MAGE, Van de Kant KDG, Dompeling E, Van Eeckhaut A, Vercammen J, Vander Heyden Y. Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021; 225:122080. [PMID: 33592793 DOI: 10.1016/j.talanta.2021.122080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/26/2023]
Abstract
Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with H3O+, NO+ and O2+. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.
Collapse
Affiliation(s)
- Karen Segers
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Amorn Slosse
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Michiel A G E Bannier
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Kim D G Van de Kant
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Edward Dompeling
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Joeri Vercammen
- Interscience Expert Center (IS-X), Avenue Jean-Etienne Lenoir 2, 1348, Louvain-la-Neuve, Belgium; Industrial Catalysis and Adsorption Technology (INCAT), Faculty of Engineering and Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
47
|
Lammers A, van Bragt J, Brinkman P, Neerincx A, Bos L, Vijverberg S, Maitland-van der Zee A. Breathomics in Chronic Airway Diseases. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Li Q, Xiaoan F, Xu K, He H, Jiang N. A stability study of carbonyl compounds in Tedlar bags by a fabricated MEMS microreactor approach. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Peltrini R, Cordell R, Ibrahim W, Wilde M, Salman D, Singapuri A, Hargadon B, Brightling CE, Thomas CLP, Monks P, Siddiqui S. Volatile organic compounds in a headspace sampling system and asthmatics sputum samples. J Breath Res 2020; 15. [PMID: 33227714 DOI: 10.1088/1752-7163/abcd2a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Background:The headspace of a biological sample contains exogenous VOCs present within the sampling environment which represent the background signal.Study aims:This study aimed to characterise the background signal generated from a headspace sampling system in a clinical site, to evaluate intra- and inter-day variation of background VOC and to understand the impact of a sample itself upon commonly reported background VOC using sputum headspace samples from severe asthmatics.Methods:The headspace, in absence of a biological sample, was collected hourly from 11am to 3pm within a day (time of clinical samples acquisition), and from Monday to Friday in a week, and analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Chemometric analysis identified 1120 features, 37 of which were present in at least the 80% of all the samples. The analyses of intra- and inter-day background variations were performed on thirteen of the most abundant features, ubiquitously present in headspace samples. The concentration ratios relative to background were reported for the selected abundant VOC in 36 asthmatic sputum samples, acquired from 36 stable severe asthma patients recruited at Glenfield Hospital, Leicester, UK.Results:The results identified no significant intra- or inter-day variations in compounds levels and no systematic bias of z-scores, with the exclusion of benzothiazole, whose abundance increased linearly between 11am and 3pm with a maximal intra-day fold change of 2.13. Many of the identified background features are reported in literature as components of headspace of biological samples and are considered potential biomarkers for several diseases. The selected background features were identified in headspace of all severe asthma sputum samples, albeit with varying levels of enrichment relative to background.Conclusion:Our observations support the need to consider the background signal derived from the headspace sampling system when developing and validating headspace biomarker signatures using clinical samples.
Collapse
Affiliation(s)
- Rosa Peltrini
- University of Leicester College of Life Sciences, Leicester, LE1 9HN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Cordell
- Chemistry department, University of Leicester, Leicester, Leicestershire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Wadah Ibrahim
- University of Leicester College of Life Sciences, Leicester, Leicester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Michael Wilde
- Chemistry department, University of Leicester, Leicester, Leicestershire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Dahlia Salman
- Chemistry, Loughborough University School of Science, Loughborough, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Amisha Singapuri
- University of Leicester, Leicester, Leicestershire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Beverley Hargadon
- University of Leicester, Leicester, Leicestershire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Christopher E Brightling
- University of Leicester, Leicester, Leicestershire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - C L Paul Thomas
- Department of Chemistry, Centre for Analytical Science, Loughborough University School of Science, LOUGHBOROUGH, Leicestershire, LE11 3TU, Loughborough, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Paul Monks
- Chemistry department, University of Leicester, Leicester, Leicestershire, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Salman Siddiqui
- University of Leicester College of Life Sciences, Leicester, Leicester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
50
|
da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:27-37. [PMID: 34820523 PMCID: PMC8600992 DOI: 10.1016/j.clinms.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.
Collapse
Key Words
- Biomarkers
- CAS, chemical abstracts service
- CYP450, cytochrome P450
- Cancer
- FAIMS, high-field asymmetric waveform ion mobility spectrometry
- GC, gas chromatography
- HS, headspace
- IMS, ion mobility spectrometry
- LC, liquid chromatography
- MS, mass spectrometry or mass spectrometric
- Mass Spectrometry
- Metabolomics
- NT, needle trap
- PSA, prostate-specific antigen
- PTR, proton transfer reaction
- PTV, programed temperature vaporizer
- ROS, reactive oxygen species
- SBSE, stir bar sorptive extraction
- SIFT, selected ion flow tube
- SPME, solid phase microextraction
- Urine
- VOCs
- VOCs, volatile organic compounds
- eNose, electronic nose
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP 14040-903, Brazil
| | - Bruno Spinosa De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo. Av., Bandeirantes, 3900, Ribeirão Preto, SP 14040-900, Brazil
| |
Collapse
|