1
|
Henderson A, Heaney LM, Rankin-Turner S. Ambient ionisation mass spectrometry for drug and toxin analysis: A review of the recent literature. Drug Test Anal 2024; 16:1323-1344. [PMID: 38326879 DOI: 10.1002/dta.3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Ambient ionisation mass spectrometry (AIMS) is a form of mass spectrometry whereby analyte ionisation occurs outside of a vacuum source under ambient conditions. This enables the direct analysis of samples in their native state, with little or no sample preparation and without chromatographic separation. The removal of these steps facilitates a much faster analytical process, enabling the direct analysis of samples within minutes if not seconds. Consequently, AIMS has gained rapid popularity across a diverse range of applications, in particular the analysis of drugs and toxins. Numerous fields rely upon mass spectrometry for the detection and identification of drugs, including clinical diagnostics, forensic chemistry, and food safety. However, all of these fields are hindered by the time-consuming and laboratory-confined nature of traditional techniques. As such, the potential for AIMS to resolve these challenges has resulted in a growing interest in ambient ionisation for drug and toxin analysis. Since the early 2000s, forensic science, diagnostic testing, anti-doping, pharmaceuticals, environmental analysis and food safety have all seen a marked increase in AIMS applications, foreshadowing a new future for drug testing. In this review, some of the most promising AIMS techniques for drug analysis will be discussed, alongside different applications of AIMS published over a 5-year period, to provide a summary of the recent research activity for ambient ionisation for drug and toxin analysis.
Collapse
Affiliation(s)
- Alisha Henderson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Mauduit M, Derrien M, Grenier M, Greff S, Molinari S, Chevaldonné P, Simmler C, Pérez T. In Situ Capture and Real-Time Enrichment of Marine Chemical Diversity. ACS CENTRAL SCIENCE 2023; 9:2084-2095. [PMID: 38033807 PMCID: PMC10683479 DOI: 10.1021/acscentsci.3c00661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 12/02/2023]
Abstract
Analyzing the chemical composition of seawater to understand its influence on ecosystem functions is a long-lasting challenge due to the inherent complexity and dynamic nature of marine environments. Describing the intricate chemistry of seawater requires optimal in situ sampling. Here is presented a novel underwater hand-held solid-phase extraction device, I-SMEL (In Situ Marine moleculELogger), which aims to concentrate diluted molecules from large volumes of seawater in a delimited zone targeting keystone benthic species. Marine benthic holobionts, such as sponges, can impact the chemical composition of their surroundings possibly through the production and release of their specialized metabolites, hence termed exometabolites (EMs). I-SMEL was deployed in a sponge-dominated Mediterranean ecosystem at a 15 m depth. Untargeted MS-based metabolomics was performed on enriched EM extracts and showed (1) the chemical diversity of enriched seawater metabolites and (2) reproducible recovery and enrichment of specialized sponge EMs such as aerothionin, demethylfurospongin-4, and longamide B methyl ester. These EMs constitute the chemical identity of each targeted species: Aplysina cavernicola, Spongia officinalis, and Agelas oroides, respectively. I-SMEL concentrated sponge EMs from 10 L of water in a 10 min sampling time. The present proof of concept with I-SMEL opens new research perspectives in marine chemical ecology and sets the stage for further sustainable efforts in natural product chemistry.
Collapse
Affiliation(s)
| | | | | | - Stéphane Greff
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | - Sacha Molinari
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | - Pierre Chevaldonné
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | | | | |
Collapse
|
3
|
Carolina de Almeida M, Machado MR, Costa GG, de Oliveira GAR, Nunes HF, Maciel Costa Veloso DF, Ishizawa TA, Pereira J, Ferreira de Oliveira T. Influence of different concentrations of plasticizer diethyl phthalate (DEP) on toxicity of Lactuca sativa seeds, Artemia salina and Zebrafish. Heliyon 2023; 9:e18855. [PMID: 37809487 PMCID: PMC10558298 DOI: 10.1016/j.heliyon.2023.e18855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Like other phthalates, diethyl phthalate (DEP) is considered as a contaminant of emerging concern (CEC) due to its ease in migrating from a package to water and food, and hence contaminate consumers, being metabolized and excreted in the urine. Its presence has a negative impact on aquatic ecosystems, especially with respect to disruption of the endocrine system and to reproductive disorders in humans. It mainly enters water bodies via sewage effluents from effluent treatment plants, due to its incomplete or inefficient removal. The objective of this work was to evaluate the toxicity of DEP at different trophic levels and to analyze data on the incidence and concentration of DEP according to its solubility. The concentrations ranged from 12.5 mg L-1 to 500 mg L-1 considering the response for toxicity at each trophic level and to determine the lethal concentration in 50% of the following organisms (LC50) (in mg L-1): Lactuca sativa seeds, Artemia salina Leach nauplii and Zebrafish embryo larval stage (Danio rerio), being 41,057.58 after 120 h; 401.77 after 48 h; and 470 after 96 h of exposure, respectively. As expected, higher organisms were more affected even at low concentrations, which shows the anthropological contribution of CECs to water bodies.
Collapse
Affiliation(s)
- Maria Carolina de Almeida
- Federal Institute of Education, Science and Technology of Goiás-IFG, Inhumas Campus, Avenida Universitária, Vale das Goiabeiras, 75402-556, Inhumas, Goiás, Brazil
| | - Michele Resende Machado
- Environmental Toxicology Research Laboratory-ENVTOX, Pharmacy College, Federal University of Goiás-UFG, Central Campus, Praça Universitária, Bloco B, Rua 240, 406, Setor Leste Universitário, 74605-17, Goiânia, Goiás, Brazil
| | - Gessyca Gonçalves Costa
- Environmental Toxicology Research Laboratory-ENVTOX, Pharmacy College, Federal University of Goiás-UFG, Central Campus, Praça Universitária, Bloco B, Rua 240, 406, Setor Leste Universitário, 74605-17, Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Environmental Toxicology Research Laboratory-ENVTOX, Pharmacy College, Federal University of Goiás-UFG, Central Campus, Praça Universitária, Bloco B, Rua 240, 406, Setor Leste Universitário, 74605-17, Goiânia, Goiás, Brazil
| | - Hugo Freire Nunes
- Laboratory of Extraction and Separation Methods-LAMES, Chemistry College, Federal University of Goiás-UFG, Samambaia Campus, Alameda Palmeiras, Chácaras Califórnia, 74045-155, Goiânia, Goiás, Brazil
| | - Danillo Fabrini Maciel Costa Veloso
- Center for Research, Technological Development and Innovation in Pharmaceuticals, Medicines and Cosmetics-FARMATEC, Pharmacy College, Federal University of Goiás-UFG, Samambaia Campus, Alameda Flamboyant, Quadra K, Edifício Life, Parque Tecnológico Samambaia, 74690-631, Goiânia, Goiás, Brazil
| | - Taís Aragão Ishizawa
- Agronomy School, Federal University of Goiás-UFG, Samambaia Campus, Rodovia Goiânia-Nova Veneza Km-0, Caixa Postal 131, 74690-900, Goiânia, Goiás, Brazil
| | - Julião Pereira
- Agronomy School, Federal University of Goiás-UFG, Samambaia Campus, Rodovia Goiânia-Nova Veneza Km-0, Caixa Postal 131, 74690-900, Goiânia, Goiás, Brazil
| | - Tatianne Ferreira de Oliveira
- Agronomy School, Federal University of Goiás-UFG, Samambaia Campus, Rodovia Goiânia-Nova Veneza Km-0, Caixa Postal 131, 74690-900, Goiânia, Goiás, Brazil
| |
Collapse
|
4
|
Sørhus E, Donald CE, Nakken CL, Perrichon P, Durif CMF, Shema S, Browman HI, Skiftesvik AB, Lie KK, Rasinger JD, Müller MHB, Meier S. Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of Atlantic haddock (Melanogrammus aeglefinus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160080. [PMID: 36375555 DOI: 10.1016/j.scitotenv.2022.160080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Crude oil causes severe abnormalities in developing fish. Photomodification of constituents in crude oil increases its toxicity several fold. We report on the effect of crude oil, in combination with ultraviolet (UV) radiation, on Atlantic haddock (Melanogrammus aeglefinus) embryos. Accumulation of crude oil on the eggshell makes haddock embryos particularly susceptible to exposure. At high latitudes, they can be exposed to UV radiation many hours a day. Haddock embryos were exposed to crude oil (5-300 μg oil/L nominal loading concentrations) for three days in the presence and absence of UV radiation (290-400 nm). UV radiation partly degraded the eggs' outer membrane resulting in less accumulation of oil droplets in the treatment with highest oil concentration (300 μg oil/L). The co-exposure treatments resulted in acute toxicity, manifested by massive tissue necrosis and subsequent mortality, reducing LC50 at hatching stage by 60 % to 0.24 μg totPAH/L compared to 0.62 μg totPAH/L in crude oil only. In the treatment with nominal low oil concentrations (5-30 μg oil/L), only co-exposure to UV led to sublethal morphological heart defects. Including phototoxicity as a parameter in risk assessments of accidental oil spills is recommended.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway.
| | - Carey E Donald
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Charlotte L Nakken
- University of Bergen, Department of Chemistry, Allégaten 41, 5020 Bergen, Norway
| | - Prescilla Perrichon
- Institute of Marine Research, Reproduction and Developmental Biology, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Caroline M F Durif
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Steven Shema
- Grótti ehf, Melabraut 22, 220 Hafnarfirði, Iceland
| | - Howard I Browman
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Kai K Lie
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Josef D Rasinger
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Mette H B Müller
- Norwegian University of Life Sciences, Section for Experimental Biomedicine, Universitetstunet 3, 1433 Ås, Norway
| | - Sonnich Meier
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| |
Collapse
|
5
|
Mazur DM, Sosnova AA, Latkin TB, Artaev BV, Siek K, Koluntaev DA, Lebedev AT. Application of clusterization algorithms for analysis of semivolatile pollutants in Arkhangelsk snow. Anal Bioanal Chem 2022; 415:2587-2599. [PMID: 36289105 DOI: 10.1007/s00216-022-04390-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
The best way to understand the environmental status of a certain region involves thorough non-target analysis, which will result in a list of pollutants under concern. Arkhangelsk (64° 32' N 40° 32' E, pop. ~ 344,000) is the largest city in the world to the north of the 60th parallel. Several industrial enterprises and the "cold finger" effect represent the major sources of air contamination in the city. Analysis of snow with comprehensive two-dimensional gas chromatography-high-resolution mass spectrometry allows detecting and quantifying the most hazardous volatile and semivolatile anthropogenic pollutants and estimating long-term air pollution. Target analysis, suspect screening, and non-target analysis of snow samples collected from ten sites within the city revealed the presence of several hundreds of organic compounds including 18 species from the US EPA list of priority pollutants. Fortunately, the levels of these compounds appeared to be much lower than the safe levels established in Russia. Phenol and dioctylphthalate could be considered as the pollutants of concern because their levels were about 20% of the safe thresholds. ChromaTOF® Tile, MetaboAnalyst software platform, and open-source software protocols were applied to process the obtained data. The obtained clusterization results of the samples were generally similar for various tools; however, each of them had certain peculiarities. Bis(2-ethylhexyl) hexanedioate, benzyl alcohol, phthalates, aniline, dinitrotoluenes, and fluoranthene showed the strongest influence on the clusterization of the studied samples. Possible sources of the major pollutants were proposed: car traffic and pulp and paper mills.
Collapse
Affiliation(s)
- D M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia.
| | - A A Sosnova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - T B Latkin
- Core Facility Center "Arktika", Lomonosov Northern (Arctic) Federal University, nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - B V Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| | - K Siek
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| | - D A Koluntaev
- "Scietegra", 12, 5 quarter, EZhKEdem, Gavrilkovo, Moscow Region, Russia
| | - A T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
6
|
Benedetti B, Baglietto M, MacKeown H, Scapuzzi C, Di Carro M, Magi E. An optimized processing method for polar organic chemical integrative samplers deployed in seawater: Toward a maximization of the analysis accuracy for trace emerging contaminants. J Chromatogr A 2022; 1677:463309. [PMID: 35853423 DOI: 10.1016/j.chroma.2022.463309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Passive sampling of emerging contaminants (ECs) in seawater represents a challenge in environmental monitoring. A specific protocol for Polar Organic Chemical Integrative Sampler (POCIS) processing may be necessary when dealing with marine applications, due to the peculiarity of the considered matrix. Herein, both the instrumental LC-MS/MS analysis and the sampler processing for the determination of 22 ECs in seawater were carefully optimized. The study entailed a test simulating POCIS sorbent exposure to seawater as well as the processing of replicated field POCIS with different elution solvents. The final method involved washing the sorbent with water, to eliminate most salts, and a two-step elution, by using methanol and a small volume of a dichloromethane-isopropanol mixture. With this protocol, recoveries between 58 and 137% (average 106%) were obtained for most analytes, including non-steroidal anti-inflammatory drugs, UV-filters, perfluorinated substances and caffeine. Still, the protocol was not suitable for very hydrophilic compounds (recovery under 20% for artificial sweeteners and the pharmaceutical salbutamol), which also showed remarkable ion suppression (matrix effects in the range 4-46%). For all other chemicals, the matrix effects were in the range 67-103% (average 86%), indicating satisfactory accuracy. Also, the overall method showed high sensitivity (detection limits in the range 0.04-9 ng g-1 of POCIS sorbent) and excellent specificity, thanks to the monitoring of two "precursor ion-product ion" MS transitions for identity confirmation. The method was applied to samplers deployed in the Ligurian coast (Italy), detecting caffeine, bisphenol A, ketoprofen and two UV-filters as the most concentrated in the POCIS sorbent.
Collapse
Affiliation(s)
- Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy.
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| |
Collapse
|
7
|
MacKeown H, Benedetti B, Di Carro M, Magi E. The study of polar emerging contaminants in seawater by passive sampling: A review. CHEMOSPHERE 2022; 299:134448. [PMID: 35364083 DOI: 10.1016/j.chemosphere.2022.134448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Emerging Contaminants (ECs) in marine waters include different classes of compounds, such as pharmaceuticals and personal care products, showing "emerging concern" related to the environment and human health. Their measurement in seawater is challenging mainly due to the low concentration levels and the possible matrix interferences. Mass spectrometry combined with chromatographic techniques represents the method of choice to study seawater ECs, due to its sensitivity and versatility. Nevertheless, these instrumental techniques have to be preceded by suitable sample collection and pre-treatment: passive sampling represents a powerful approach in this regard. The present review compiles the existing occurrence studies on passive sampling coupled to mass spectrometry for the monitoring of polar ECs in seawater and discusses the availability of calibration data that enabled quantitative estimations. A vast majority of the published studies carried out during the last two decades describe the use of integrative samplers, while applications of equilibrium samplers represent approximately 10%. The polar Chemcatcher was the first applied to marine waters, while the more sensitive Polar Organic Chemical Integrative Sampler rapidly became the most widely employed passive sampler. The organic Diffusive Gradients in Thin film technology is a recently introduced and promising device, due to its more reliable sampling rates. The best passive sampler selection for the monitoring of ECs in the marine environment as well as future research and development needs in this area are further discussed. On the instrumental side, combining passive sampling with high resolution mass spectrometry to better assess polar ECs is strongly advocated, despite the current challenges associated.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso, 31, 16146, Genoa, Italy.
| |
Collapse
|
8
|
Kanwischer M, Asker N, Wernersson AS, Wirth MA, Fisch K, Dahlgren E, Osterholz H, Habedank F, Naumann M, Mannio J, Schulz-Bull DE. Substances of emerging concern in Baltic Sea water: Review on methodological advances for the environmental assessment and proposal for future monitoring. AMBIO 2022; 51:1588-1608. [PMID: 34637089 PMCID: PMC9005613 DOI: 10.1007/s13280-021-01627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.
Collapse
Affiliation(s)
- Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18A, 41390 Göteborg, Sweden
| | - Ann-Sofie Wernersson
- Department for Management of Contaminated Sites, Swedish Geotechnical Institute, Hugo Grauers gata 5 B, 41296 Göteborg, Sweden
| | - Marisa A. Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Elin Dahlgren
- Swedish University of Agricultural Sciences, Stångholmsvägen 2, 178 93 Drottningholm, Sweden
| | - Helena Osterholz
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Friederike Habedank
- State Office for Agriculture, Food Safety and Fisheries, Mecklenburg-Western Pomerania, Thierfelderstraße 18, 18059 Rostock, Germany
| | - Michael Naumann
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jaakko Mannio
- Centre for Sustainable Consumption and Production/Contaminants, Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Detlef E. Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
9
|
Cameron SJS, Perdones-Montero A, Van Meulebroek L, Burke A, Alexander-Hardiman K, Simon D, Schaffer R, Balog J, Karancsi T, Rickards T, Rebec M, Stead S, Vanhaecke L, Takáts Z. Sample Preparation Free Mass Spectrometry Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry: Applications to Microbiology, Metabolic Biofluid Phenotyping, and Food Authenticity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1393-1401. [PMID: 33980015 DOI: 10.1021/jasms.0c00452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mass spectrometry has established itself as a powerful tool in the chemical, biological, medical, environmental, and agricultural fields. However, experimental approaches and potential application areas have been limited by a traditional reliance on sample preparation, extraction, and chromatographic separation. Ambient ionization mass spectrometry methods have addressed this challenge but are still somewhat restricted in requirements for sample manipulation to make it suitable for analysis. These limitations are particularly restrictive in view of the move toward high-throughput and automated analytical workflows. To address this, we present what we consider to be the first automated sample-preparation-free mass spectrometry platform utilizing a carbon dioxide (CO2) laser for sample thermal desorption linked to the rapid evaporative ionization mass spectrometry (LA-REIMS) methodology. We show that the pulsatile operation of the CO2 laser is the primary factor in achieving high signal-to-noise ratios. We further show that the LA-REIMS automated platform is suited to the analysis of three diverse biological materials within different application areas. First, clinical microbiology isolates were classified to species level with an accuracy of 97.2%, the highest accuracy reported in current literature. Second, fecal samples from a type 2 diabetes mellitus cohort were analyzed with LA-REIMS, which allowed tentative identification of biomarkers which are potentially associated with disease pathogenesis and a disease classification accuracy of 94%. Finally, we showed the ability of the LA-REIMS system to detect instances of adulteration of cooking oil and determine the geographical area of production of three protected olive oil products with 100% classification accuracy.
Collapse
Affiliation(s)
- Simon J S Cameron
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Alvaro Perdones-Montero
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Ghent University, Ghent B-9820, Belgium
| | - Adam Burke
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Kate Alexander-Hardiman
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Daniel Simon
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
- Waters Research Center, Budapest 1031, Hungary
| | | | - Julia Balog
- Waters Research Center, Budapest 1031, Hungary
| | | | - Tony Rickards
- Department of Microbiology, Imperial College Healthcare NHS Trust, London W6 8RD, U.K
| | - Monica Rebec
- Department of Microbiology, Imperial College Healthcare NHS Trust, London W6 8RD, U.K
| | - Sara Stead
- Waters Corporation, Wilmslow SK9 4AX, U.K
| | - Lynn Vanhaecke
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Ghent University, Ghent B-9820, Belgium
| | - Zoltán Takáts
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| |
Collapse
|
10
|
Petras D, Minich JJ, Cancelada LB, Torres RR, Kunselman E, Wang M, White ME, Allen EE, Prather KA, Aluwihare LI, Dorrestein PC. Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater. CHEMOSPHERE 2021; 271:129450. [PMID: 33460888 PMCID: PMC7969459 DOI: 10.1016/j.chemosphere.2020.129450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 05/31/2023]
Abstract
Urbanization along coastlines alters marine ecosystems including contributing molecules of anthropogenic origin to the coastal dissolved organic matter (DOM) pool. A broad assessment of the nature and extent of anthropogenic impacts on coastal ecosystems is urgently needed to inform regulatory guidelines and ecosystem management. Recently, non-targeted tandem mass spectrometry approaches are gaining momentum for the analysis of global organic matter composition (chemotypes) including a wide array of natural and anthropogenic compounds. In line with these efforts, we developed a non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) workflow that utilizes advanced data analysis approaches such as feature-based molecular networking and repository-scale spectrum searches. This workflow allows the scalable comparison and mapping of seawater chemotypes from large-scale spatial surveys as well as molecular family level annotation of unknown compounds. As a case study, we visualized organic matter chemotype shifts in coastal environments in northern San Diego, USA, after notable rain fall in winter 2017/2018 and highlight potential anthropogenic impacts. The observed seawater chemotype, consisting of 4384 LC-MS/MS features, shifted significantly after a major rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, including pesticides (Imazapyr and Isoxaben), cleaning products (Benzyl-tetradecyl-dimethylammonium) and chemical additives (Hexa (methoxymethyl)melamine) and potential degradation products. By expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we further contextualized their possible origin and show their importance in other ecosystems. The mass spectrometry and data analysis pipelines applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which will contribute to a deliberate assessment of how chemical pollution impacts our oceans.
Collapse
Affiliation(s)
- Daniel Petras
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500, Gilman Drive, La Jolla, USA; University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA.
| | - Jeremiah J Minich
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Lucia B Cancelada
- University of California San Diego, Department of Chemistry, 9500, Gilman Drive, La Jolla, USA
| | - Ralph R Torres
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Emily Kunselman
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Mingxun Wang
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500, Gilman Drive, La Jolla, USA
| | - Margot E White
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Eric E Allen
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA; University of California San Diego, Center for Microbiome Innovation, 9500, Gilman Drive, La Jolla, USA
| | - Kimberly A Prather
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA; University of California San Diego, Department of Chemistry, 9500, Gilman Drive, La Jolla, USA
| | - Lihini I Aluwihare
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Pieter C Dorrestein
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500, Gilman Drive, La Jolla, USA; University of California San Diego, Department of Chemistry, 9500, Gilman Drive, La Jolla, USA
| |
Collapse
|
11
|
Beitollahi H, Tajik S, Garkani Nejad F, Safaei M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J Mater Chem B 2021; 8:5826-5844. [PMID: 32542277 DOI: 10.1039/d0tb00569j] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | | | | | | |
Collapse
|
12
|
Mazur DM, Detenchuk EA, Sosnova AA, Artaev VB, Lebedev AT. GC-HRMS with Complementary Ionization Techniques for Target and Non-target Screening for Chemical Exposure: Expanding the Insights of the Air Pollution Markers in Moscow Snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144506. [PMID: 33360203 DOI: 10.1016/j.scitotenv.2020.144506] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Environmental exposure assessment is an important step in establishing a list of local priority pollutants and finding the sources of the threats for proposing appropriate protection measures. Exposome targeted and non-targeted analysis as well as suspect screening may be applied to reveal these pollutants. The non-targeted screening is a challenging task and requires the application of the most powerful analytical tools available, assuring wide analytical coverage, sensitivity, identification reliability, and quantitation. Moscow, Russia, is the largest and most rapidly growing European city. That rapid growth is causing changes in the environment which require periodic clarification of the real environmental situation regarding the presence of the classic pollutants and possible new contaminants. Gas chromatography - high resolution time-of-flight mass spectrometry (GC-HR-TOFMS) with electron ionization (EI), positive chemical ionization (PCI), and electron capture negative ionization (ECNI) ion sources were used for the analysis of Moscow snow samples collected in the early spring of 2018 in nine different locations. Collection of snow samples represents an efficient approach for the estimation of long-term air pollution, due to accumulation and preservation of environmental contaminants by snow during winter period. The high separation power of GC, complementary ionization methods, high mass accuracy, and wide mass range of TOFMS allowed for the identification of several hundred organic compounds belonging to the various classes of pollutants, exposure to which could represent a danger to the health of the population. Although quantitative analysis was not a primary aim of the study, targeted analysis revealed that some priority pollutants exceeded the established safe levels. Thus, dibutylphthalate concentration was over 10-fold higher than its safe level (0.001 mg/L), while benz[a]pyrene concentration exceeded Russian maximal permissible concentration value of 5 ng/L in three samples. The large amount of information generated during the combination of targeted and non-targeted analysis and screening samples for suspects makes it feasible to apply the big data analysis to observe the trends and tendencies in the pollution exposome across the city.
Collapse
Affiliation(s)
- D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - E A Detenchuk
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - A A Sosnova
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
| | - V B Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA.
| | - A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
13
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
14
|
Di Carro M, Lluveras-Tenorio A, Benedetti B, Magi E. An innovative sampling approach combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging pollutants in drinking water. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4608. [PMID: 32707599 DOI: 10.1002/jms.4608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, an innovative sampling and preconcentration method followed by analysis with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization (LC-ESI-MS/MS) was developed for the determination of different emerging pollutants (five anti-inflammatory drugs and one antibacterial agent) in water matrices. Thin-film microextraction blades, consisting of stainless steel blades with a coating made of divinylbenzene, have been employed. The blades, fixed onto a stainless steel support, were mounted on a laboratory stirrer with adjustable speed, immersed in water samples and eluted with methanol. The analytical procedure was developed, carefully optimizing stirring speed and extraction time. A good reproducibility among the blades was observed; quantitation limits at the ng L-1 level were achieved. Calibration curves were constructed by applying the whole procedure to tap water samples, free from analytes, spiked with standards in the concentration range 0.01-2 μg L-1 ; good linearity was obtained, with R2 between 0.9984 and 0.9991. The optimized method was applied to tap and surface waters; two anti-inflammatory drugs were detected at the ng L-1 level in surface water. In one sample, diclofenac and naproxen were measured at 26 ± 5 and 15 ± 1 ng L-1 , respectively; only diclofenac was quantified in the other sample at 14 ± 3 ng L-1 .
Collapse
Affiliation(s)
- Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa 16146, Italy
| | - Anna Lluveras-Tenorio
- National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, Florence, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa 16146, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa 16146, Italy
| |
Collapse
|
15
|
de Oliveira M, Frihling BEF, Velasques J, Filho FJCM, Cavalheri PS, Migliolo L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135568. [PMID: 31846817 DOI: 10.1016/j.scitotenv.2019.135568] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 04/13/2023]
Abstract
Emerging contaminants are increasingly present in the environment, and their appearance on both the environment and health of living beings are still poorly understood by society. Conventional sewage treatment facilities that are under validity and were designed years ago are not developed to remove pharmaceutical compounds, their main focus is organic and bacteriological removal. Pharmaceutical residues are associated directly with quantitative production aspects as well as inadequate waste management policies. Persistent classes of emerging compounds such as xenobiotics present molecules whose physicochemical properties such as small molecular size, ionizability, water solubility, lipophilicity, polarity and volatility make degradability, identification and quantification of these complex compounds difficult. Based on research results showing that there is a possibility of risk to human and environmental health the presence of these compounds in the environment this article aimed to review the main pharmaceutical and xenobiotic residues present in the environment, as well as to present the most common methodologies used. The most commonly used analytical methods for identifying these compounds were HPLC and Gas Chromatography coupled with mass spectrometry with potential for characterize complex substances in the environment with low concentrations. An alternative and low-cost technology for emerging compound treatment demonstrated in the literature with a satisfactory performance for several types of sewage such as domestic sewage, wastewater and agroindustrial, was the Wetlands Constructed. The study was able to identify the main compounds that are being found in the environment and identify the most used analytical methods to identify and quantify these compounds, bringing some alternatives combining technologies for the treatment of compounds. Environmental contamination is eminent, since the production of emerging compounds aims to increase along with technological development. This demonstrates the need to explore and aggregate sewage treatment technologies to reduce or prevent the deposition of these compounds into the environment.
Collapse
Affiliation(s)
- Milina de Oliveira
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Jannaina Velasques
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Fernando Jorge Corrêa Magalhães Filho
- Departamento de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Ludovico Migliolo
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
16
|
Assessing the effect on the generation of environmentally persistent free radicals in hydrothermal carbonization of sewage sludge. Sci Rep 2019; 9:17092. [PMID: 31745230 PMCID: PMC6863856 DOI: 10.1038/s41598-019-53781-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Environmentally persistent free radicals (EPFRs) have attracted increasing research interest in recent years. Herein, the generation of EPFRs during the hydrothermal carbonization of sewage sludge (SS) was studied. First, the surface morphology, functional groups, constituent elements and free radicals were characterized for a holistic description of the raw SS and the selected hydrochar obtained from hydrothermal carbonization of SS (SHC). Then, the impact of hydrothermal temperature, residence time and initial pH on the formation of EPFRs was explored in detail through the investigation of g-factors and intensities of EPFRs identified in SHC. The results have shown that the formation of EPFRs was affected by the factors mentioned above, in which the impact of temperature is the greatest. Two types of EPFRs were spotted in the hydrochar, oxygen-centered (O-centered) and carbon-centered (C-centered) EPFRs, which were caught in 120-150 °C and 260-280 °C, respectively. Moreover, the intensities of Electron Paramagnetic Resonance (EPR) signals enhanced with increasing hydrothermal temperature. Whereas, residence time and initial pH only affected the amount of EPFRs in a manner. Additionally, the half-life of the O-centered EPFRs and the C-centered EPFRs was determined as long as 160.45 days and 401.10 days, respectively, indicating that EPFRs are stable in a long time.
Collapse
|
17
|
Mihaljević I, Bašica B, Maraković N, Kovačević R, Smital T. Interaction of organotin compounds with three major glutathione S-transferases in zebrafish. Toxicol In Vitro 2019; 62:104713. [PMID: 31706034 DOI: 10.1016/j.tiv.2019.104713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Glutathione S-transferases (GSTs) play an important role in cellular detoxification as enzymatic mediators of glutathione (GSH) conjugation with a wide range of deleterious compounds, enabling their easier extrusion out of the organism. GSTs are shown to interact with organotin compounds (OTCs), known environmental pollutants, either as substrates, serving as electrophilic targets to the nucleophilic attack of GSH, or as noncompetitive inhibitors by binding to GST active sites and disrupting their enzymatic functions. There is a wide range of deleterious biological effects caused by OTCs in low concentration range. Their environmental concentrations, further potentiated by bioaccumulation in aquatic organisms, correspond with inhibitory constants reported for Gsts in zebrafish, which implies their environmental significance. Therefore, our main goal in this study was to analyze interactions of three major zebrafish Gsts - Gstp1, Gstr1, and Gstt1a - with a series of ten environmentally relevant organotin compounds. Using previously developed Gst inhibition assay with recombinant Gst proteins and fluorescent monochlorobimane as a model substrate, we determined Gst inhibitory constants for all tested OCTs. Furthermore, in order to elucidate nature of Gst interactions with OTCs, we determined type of interactions between tested Gsts and the strongest OTC inhibitors. Our results showed that OTCs can interact with zebrafish Gsts as competitive, noncompetitive, or mixed-type inhibitors. Determined types of interactions were additionally confirmed in silico by molecular docking studies of tested OTCs with newly developed Gst models. In silico models were further used to reveal structures of tested Gsts in more detail and identify crucial amino acid residues which interact with OTCs within Gst active sites. Our results revealed more extensive involvement of Gstr1 and Gstp1 in detoxification of numerous tested OTCs, with low inhibitory constants in nanomolar to low micromolar range and different types of inhibition, whereas Gstt1a noncompetitively interacted with only two tested OTCs with significantly higher inhibitory constants.
Collapse
Affiliation(s)
- Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Branka Bašica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Radmila Kovačević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Campos CF, Morelli S, De Campos Júnior EO, Santos VSV, De Morais CR, Cunha MC, Souto HN, Pavanin LA, Bonetti AM, Pereira BB. Assessment of the genotoxic potential of water courses impacted by wastewater treatment effluents using micronucleus assay in plants from the specie s Tradescantia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:752-759. [PMID: 31362592 DOI: 10.1080/15287394.2019.1648345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water pollution and the increase in genotoxic consequences in aquatic environments are well documented indicating the necessity and importance of biomonitoring programs. The objective of the present study was to determine the environmental quality of water resources and genotoxic potential of materials present within water samples obtained from the Perdizes River and the Mumbuca Stream, located in a region of discharge of wastewater treatment effluents using Tradescantia micronucleus assay (Trad - MCN). Water samples were collected from different locations up and downstream of the wastewater treatment plant during rainy season and subsequently submitted to physico-chemical analysis and Trad-MCN bioassay. The spatial distribution of the physico-chemical parameters assessed suggested that discharges of wastewater treatment effluents reduced water quality at all sites examined. Further, exposure to wastewater treatment effluents produced genotoxic effects on tetrads of Tradescantia pallida. These results reinforce the sensitivity of the Trad-MCN bioassay and its potential application in water quality monitoring programs concomitant with physicochemical evaluation.
Collapse
Affiliation(s)
- Carlos Fernando Campos
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Sandra Morelli
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | | | - Vanessa Santana Vieira Santos
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Cássio Resende De Morais
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Matheus Campos Cunha
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Henrique Nazareth Souto
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Luiz Alfredo Pavanin
- Department of Environmental Chemistry, Federal University of Uberlândia, Institute of Chemistry , Uberlândia , Minas Gerais , Brazil
| | - Ana Maria Bonetti
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Boscolli Barbosa Pereira
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
- Department of Environmental Health, Federal University of Uberlândia, Institute of Geography , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|
19
|
Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:601-614. [PMID: 28399499 DOI: 10.1016/j.scitotenv.2017.03.286] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 05/27/2023]
Abstract
Personal care products (PCPs) are a diverse group of common household substances used for health, beauty and cleaning purposes. These include disinfectants, fragrances, insect repellents, preservatives and UV filters, among others. Some of them are considered chemicals of emerging concern due to their presence and negative impact on aquatic ecosystems, specially related to endocrine disruption and reproductive disorders. The entry of those chemicals to water bodies occurs mainly through the sewage effluents from wastewater treatment plants due to their incomplete or inefficient removal. The purpose of this review was to collect and analyze data about the incidence and concentrations of PCPs reported as emerging pollutants in different water matrices, including wastewater influents and effluents. Our database is composed of 141 articles with information about 72 PCPs recorded as emerging pollutants in 30 countries, in concentrations ranging from 0.029ng/L to 7.811×106ng/L. Fragrances, antiseptics and sunscreens were the most reported groups. As expected, the largest number of PCPs documented as emerging pollutants were found in wastewater treatment plant effluents with a total of 64 compounds, compared to 43 in surface water and 23 in groundwater, which evidence the anthropological contribution of PCPs to water bodies. These molecules were found in all the continents, however, there is a lack of information regarding the presence of emerging pollutants from PCPs in developing countries. Therefore, we suggest further efforts in assessing the occurrence and concentrations of these chemicals in those areas.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia; Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 565-A, Mexico.
| | - Mary Fennix-Agudelo
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia
| | - Wendy Miranda-Castro
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia
| |
Collapse
|