1
|
Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics (Basel) 2024; 13:808. [PMID: 39334983 PMCID: PMC11429059 DOI: 10.3390/antibiotics13090808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., blaNDM), 3rd and 4th generation cephalosporins (i.e., blaCMY-2), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role.
Collapse
Affiliation(s)
- Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| | - Lapo Mughini-Gras
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 BA Bilthoven, The Netherlands;
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, The Netherlands;
| | - Jannigje G. Kers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, The Netherlands;
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| |
Collapse
|
2
|
Li J, Liao Q, Wang Y, Wang X, Liu J, Zha R, He JZ, Zhang M, Zhang W. Involvement of functional metabolism promotes the enrichment of antibiotic resistome in drinking water: Based on the PICRUSt2 functional prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120544. [PMID: 38471323 DOI: 10.1016/j.jenvman.2024.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and β-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.
Collapse
Affiliation(s)
- Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Qiuyu Liao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Yun Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Ruibo Zha
- School of Cultural Tourism and Public Administration, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| |
Collapse
|
3
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Szekeres E, Baricz A, Cristea A, Levei EA, Stupar Z, Brad T, Kenesz M, Moldovan OT, Banciu HL. Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165133. [PMID: 37364839 DOI: 10.1016/j.scitotenv.2023.165133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.
Collapse
Affiliation(s)
- Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adorján Cristea
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Zamfira Stupar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Traian Brad
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Marius Kenesz
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Costa PV, Nascimento JDS, Forsythe SJ, Brandão MLL. Diversity and epidemiological profile of Pseudomonas aeruginosa from drinking water in Brazil genotyped using multi-locus sequence typing. Lett Appl Microbiol 2023; 76:ovad109. [PMID: 37738442 DOI: 10.1093/lambio/ovad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacillus associated with waterborne diseases. The objective of this study was to determine whether particular P. aeruginosa sequence types (STs) were associated with drinking water contamination in Brazil. This was achieved by searching the Pseudomonas PubMLST database, which contains the records for 8358 strains collected between 1938 and 2023. The majority (97.2%) had the complete 7-loci multilocus sequence typing profile and were assigned to 3486 STs. After eBURST (an algorithm used to infer patterns of evolutionary descent among clusters), 1219 groups with single-locus variant and 575 groups with double-locus variant were formed. Brazil was the South American country with the most isolates (n = 219, 58.24%), and the Simpson's index was 0.9392. Of the 219 Brazilian isolates, eight were isolated in water and identified as STs 252, 1417, 1605, 2502, 2620, 3078, and 3312. ST252, 1417, and 3078 have already been isolated from clinical cases worldwide. Furthermore, ST1605 and 2620, after the eBURST, they were grouped in the same clonal complex as STs involved in human infections. In conclusion, P. aeruginosa STs involved in human infections were found in bottled drinking water commercialized in Brazil, revealing that these types of drinking waters can be a vehicle of contamination.
Collapse
Affiliation(s)
- Paula Vasconcelos Costa
- Institute of Technology in Immunobiologicals, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, 21040-900, Brazil
- Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rio de Janeiro/RJ, 20270-021, Brazil
| | - Janaína Dos Santos Nascimento
- Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rio de Janeiro/RJ, 20270-021, Brazil
| | | | - Marcelo Luiz Lima Brandão
- Institute of Technology in Immunobiologicals, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, 21040-900, Brazil
| |
Collapse
|
6
|
Zhao Y, Wei HM, Yuan JL, Xu L, Sun JQ. A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Front Microbiol 2023; 14:1177951. [PMID: 37138596 PMCID: PMC10149724 DOI: 10.3389/fmicb.2023.1177951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acinetobacter is ubiquitous, and it has a high species diversity and a complex evolutionary pattern. To elucidate the mechanism of its high ability to adapt to various environment, 312 genomes of Acinetobacter strains were analyzed using the phylogenomic and comparative genomics methods. It was revealed that the Acinetobacter genus has an open pan-genome and strong genome plasticity. The pan-genome consists of 47,500 genes, with 818 shared by all the genomes of Acinetobacter, while 22,291 are unique genes. Although Acinetobacter strains do not have a complete glycolytic pathway to directly utilize glucose as carbon source, most of them harbored the n-alkane-degrading genes alkB/alkM (97.1% of tested strains) and almA (96.7% of tested strains), which were responsible for medium-and long-chain n-alkane terminal oxidation reaction, respectively. Most Acinetobacter strains also have catA (93.3% of tested strains) and benAB (92.0% of tested strains) genes that can degrade the aromatic compounds catechol and benzoic acid, respectively. These abilities enable the Acinetobacter strains to easily obtain carbon and energy sources from their environment for survival. The Acinetobacter strains can manage osmotic pressure by accumulating potassium and compatible solutes, including betaine, mannitol, trehalose, glutamic acid, and proline. They respond to oxidative stress by synthesizing superoxide dismutase, catalase, disulfide isomerase, and methionine sulfoxide reductase that repair the damage caused by reactive oxygen species. In addition, most Acinetobacter strains contain many efflux pump genes and resistance genes to manage antibiotic stress and can synthesize a variety of secondary metabolites, including arylpolyene, β-lactone and siderophores among others, to adapt to their environment. These genes enable Acinetobacter strains to survive extreme stresses. The genome of each Acinetobacter strain contained different numbers of prophages (0-12) and genomic islands (GIs) (6-70), and genes related to antibiotic resistance were found in the GIs. The phylogenetic analysis revealed that the alkM and almA genes have a similar evolutionary position with the core genome, indicating that they may have been acquired by vertical gene transfer from their ancestor, while catA, benA, benB and the antibiotic resistance genes could have been acquired by horizontal gene transfer from the other organisms.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua-Mei Wei
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jia-Li Yuan
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Ji-Quan Sun,
| |
Collapse
|
7
|
Hegarty B, Dai Z, Raskin L, Pinto A, Wigginton K, Duhaime M. A snapshot of the global drinking water virome: Diversity and metabolic potential vary with residual disinfectant use. WATER RESEARCH 2022; 218:118484. [PMID: 35504157 DOI: 10.1016/j.watres.2022.118484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 05/22/2023]
Abstract
Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA.
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105N University Ave., 4068 Biological Sciences Building, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
8
|
The Presence of Opportunistic Premise Plumbing Pathogens in Residential Buildings: A Literature Review. WATER 2022. [DOI: 10.3390/w14071129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Opportunistic premise plumbing pathogens (OPPP) are microorganisms that are native to the plumbing environment and that present an emerging infectious disease problem. They share characteristics, such as disinfectant resistance, thermal tolerance, and biofilm formation. The colonisation of domestic water systems presents an elevated health risk for immune-compromised individuals who receive healthcare at home. The literature that has identified the previously described OPPPs (Aeromonas spp., Acinetobacter spp., Helicobacter spp., Legionella spp., Methylobacterium spp., Mycobacteria spp., Pseudomonas spp., and Stenotrophomonas spp.) in residential drinking water systems were systematically reviewed. By applying the Preferred reporting items for systematic reviews and meta-analyses guidelines, 214 studies were identified from the Scopus and Web of Science databases, which included 30 clinical case investigations. Tap components and showerheads were the most frequently identified sources of OPPPs. Sixty-four of these studies detected additional clinically relevant pathogens that are not classified as OPPPs in these reservoirs. There was considerable variation in the detection methods, which included traditional culturing and molecular approaches. These identified studies demonstrate that the current drinking water treatment methods are ineffective against many waterborne pathogens. It is critical that, as at-home healthcare services continue to be promoted, we understand the emergent risks that are posed by OPPPs in residential drinking water. Future research is needed in order to provide consistent data on the prevalence of OPPPs in residential water, and on the incidence of waterborne homecare-associated infections. This will enable the identification of the contributing risk factors, and the development of effective controls.
Collapse
|
9
|
Rahmatika I, Kurisu F, Furumai H, Kasuga I. Dynamics of the Microbial Community and Opportunistic Pathogens after Water Stagnation in the Premise Plumbing of a Building. Microbes Environ 2022; 37. [PMID: 35321996 PMCID: PMC8958293 DOI: 10.1264/jsme2.me21065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In premise plumbing, microbial water quality may deteriorate under certain conditions, such as stagnation. Stagnation results in a loss of disinfectant residual, which may lead to the regrowth of microorganisms, including opportunistic pathogens. In the present study, microbial regrowth was investigated at eight faucets in a building over four seasons in one year. Water samples were obtained before and after 24 h of stagnation. In the first 100 mL after stagnation, total cell counts measured by flow cytometry increased 14- to 220-fold with a simultaneous decrease in free chlorine from 0.17–0.36 mg L–1 to <0.02 mg L–1. After stagnation, total cell counts were not significantly different among seasons; however, the composition of the microbial community varied seasonally. The relative abundance of Pseudomonas spp. was dominant in winter, whereas Sphingomonas spp. were dominant in most faucets after stagnation in other seasons. Opportunistic pathogens, such as Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, and Acanthamoeba spp., were below the quantification limit for real-time quantitative PCR in all samples. However, sequences related to other opportunistic pathogens, including L. feeleii, L. maceachernii, L. micdadei, M. paragordonae, M. gordonae, and M. haemophilum, were detected. These results indicate that health risks may increase after stagnation due to the regrowth of opportunistic pathogens.
Collapse
Affiliation(s)
- Iftita Rahmatika
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
10
|
Lenart-Boroń AM, Boroń PM, Prajsnar JA, Guzik MW, Żelazny MS, Pufelska MD, Chmiel MJ. COVID-19 lockdown shows how much natural mountain regions are affected by heavy tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151355. [PMID: 34740648 PMCID: PMC9755070 DOI: 10.1016/j.scitotenv.2021.151355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/02/2023]
Abstract
Mountain areas in Poland are among the most frequented tourist destinations and such intensive tourism negatively affects the natural environment. The COVID-19 pandemic and the resulting lockdown restricted travel for a few months in 2020, providing a unique opportunity to observe the studied mountain environment without the impact of typical tourist traffic. This study is based on the determination of antibiotic content, hydrochemical parameters, enumeration of culturable bacterial water quality indicators, antimicrobial susceptibility tests together with extended spectrum beta-lactamase (ESBL) gene detection in waterborne E. coli and NGS-based bacterial community composition at six sites along the Białka river valley (one of the most popular touristic regions in Poland) in three periods: in summer and winter tourist seasons and during the COVID-19 lockdown. The results of individual measurements showed decreased numbers of bacterial indicators of water contamination (e.g. numbers of E. coli dropped from 99 × 104 CFU/100 ml to 12 CFU/100 ml at the most contaminated site) and the share of antimicrobial resistant E. coli (total resistance dropped from 21% in summer to 9% during lockdown, share of multidrug resistant strains from 100 to 44%, and ESBL from 20% in summer to none during lockdown). Antibiotic concentrations were the highest during lockdown. The use of multivariate analysis (principal component analysis - PCA and heatmaps) revealed a clear pattern of tourism-related anthropogenic pressure on the water environment and positive impact of COVID-19 lockdown on water quality. PCA distinguished three major factors determining water quality: F1 shows strong effect of anthropogenic pressure; F2 describes the lockdown-related quality restoration processes; F3 is semi-natural and describes the differences between the most pristine and most anthropogenically-impacted waters.
Collapse
Affiliation(s)
- Anna M Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| | - Piotr M Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna A Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław S Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Marta D Pufelska
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| |
Collapse
|
11
|
Carvalheira A, Silva J, Teixeira P. Acinetobacter spp. in food and drinking water - A review. Food Microbiol 2020; 95:103675. [PMID: 33397609 DOI: 10.1016/j.fm.2020.103675] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
Acinetobacter spp. has emerged as a pathogen of major public health concern due to their increased resistance to antibiotics and their association with a wide range of nosocomial infections, community-acquired infections and war and natural disaster-related infections. It is recognized as a ubiquitous organism however, information about the prevalence of different pathogenic species of this genus in food sources and drinking water is scarce. Since the implementation of molecular techniques, the role of foods as a source of several species, including the Acinetobacter baumannii group, has been elucidated. Multidrug resistance was also detected among Acinetobacter spp. isolated from food products. This highlights the importance of foods as potential sources of dissemination of Acinetobacter spp. between the community and clinical environments and reinforces the need for further investigations on the potential health risks of Acinetobacter spp. as foodborne pathogens. The aim of this review was to summarize the published data on the occurrence of Acinetobacter spp. in different food sources and drinking water. This information should be taken into consideration by those responsible for infection control in hospitals and other healthcare facilities.
Collapse
Affiliation(s)
- Ana Carvalheira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Joana Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
12
|
Paduano S, Marchesi I, Casali ME, Valeriani F, Frezza G, Vecchi E, Sircana L, Romano Spica V, Borella P, Bargellini A. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital hot Water Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2158. [PMID: 32213901 PMCID: PMC7143765 DOI: 10.3390/ijerph17062158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was to study under real-life conditions the microbial community associated with different chemical (monochloramine, hydrogen peroxide, chlorine dioxide) and non-chemical (hyperthermia) treatments, continuously applied since many years in four hot water networks of the same hospital. Municipal cold water, untreated secondary, and treated hot water were analysed for microbiome characterization by 16S amplicon sequencing. Cold waters had a common microbial profile at genera level. The hot water bacterial profiles differed according to treatment. Our results confirm the effectiveness of disinfection strategies in our hospital for controlling potential pathogens such as Legionella, as the investigated genera containing opportunistic pathogens were absent or had relative abundances ≤1%, except for non-tuberculous mycobacteria, Sphingomonas, Ochrobactrum and Brevundimonas. Monitoring the microbial complexity of healthcare water networks through 16S amplicon sequencing is an innovative and effective approach useful for Public Health purpose in order to verify possible modifications of microbiota associated with disinfection treatments.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Maria Elisabetta Casali
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Elena Vecchi
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Luca Sircana
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Paola Borella
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| |
Collapse
|
13
|
Van Assche A, Crauwels S, De Brabanter J, Willems KA, Lievens B. Characterization of the bacterial community composition in water of drinking water production and distribution systems in Flanders, Belgium. Microbiologyopen 2018; 8:e00726. [PMID: 30318762 PMCID: PMC6528567 DOI: 10.1002/mbo3.726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022] Open
Abstract
The quality of drinking water is influenced by its chemical and microbial composition which in turn may be affected by the source water and the different processes applied in drinking water purification systems. In this study, we investigated the bacterial diversity in different water samples from the production and distribution chain of thirteen drinking water production and distribution systems from Flanders (Belgium) that use surface water or groundwater as source water. Water samples were collected over two seasons from the source water, the processed drinking water within the production facility and out of the tap in houses along its distribution network. 454‐pyrosequencing of 16S ribosomal RNA gene sequences revealed a total of 1,570 species‐level bacterial operational taxonomic units. Strong differences in community composition were found between processed drinking water samples originating from companies that use surface water and other that use groundwater as source water. Proteobacteria was the most abundant phylum in all samples. Yet, several phyla including Actinobacteria were significantly more abundant in surface water while Cyanobacteria were more abundant in surface water and processed water originating from surface water. Gallionella, Acinetobacter, and Pseudomonas were the three most abundant genera detected. Members of the Acinetobacter genus were even found at a relative read abundance of up to 47.5% in processed water samples, indicating a general occurrence of Acinetobacter in drinking water (systems).
Collapse
Affiliation(s)
- Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Joseph De Brabanter
- Department of Electrical Engineering (ESAT - STADIUS), KU Leuven, Leuven, Belgium
| | - Kris A Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| |
Collapse
|