1
|
Tartor YH, Enany ME, Ismail NI, El-Demerdash AS, Eidaroos NH, Algendy RM, Mahmmod Y, Elsohaby I. Vancomycin-resistant Staphylococcus aureus endangers Egyptian dairy herds. Sci Rep 2024; 14:30606. [PMID: 39715776 DOI: 10.1038/s41598-024-81516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
The emergence of pandrug-resistant (PDR) and extensive drug-resistant (XDR) methicillin-resistant and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) isolates from bovine milk samples along with biofilm formation ability and harboring various virulence genes complicates the treatment of bovine mastitis and highlights the serious threat to public health. This study investigated for the first time the frequency, antimicrobial resistance profiles, biofilm-forming ability, virulence factors, spa and staphylococcal cassette chromosome mec (SCCmec) types of MRSA and VRSA isolated from clinical and subclinical bovine mastitis in Egypt. A total of 808 milk samples were collected from each quarter of 202 dairy animals, including 31 buffaloes and 171 cattle. The frequency of mastitis in the collected milk samples was 48.4% (60/124) in buffaloes and 29.2% (200/684) in cattle. A total of 65 Staphylococcus species isolates were recovered, including 27 coagulase-positive S. aureus (CoPS) isolates and 38 coagulase-negative staphylococci (CoNS). The CoNS included 27 mammaliicocci (20 Mammaliicoccus lentus and 7 M. sciuri) and 11 Non-aureus staphylococci (S. lugdunensis) isolates. All the CoPS isolates were mecA positive and resistant to 20-33 tested antimicrobials with multiple antibiotic resistance index ranging from 0.61 to 1. Three isolates were PDR, four were XDR, and 20 were multidrug resistant isolates. VRSA was detected in 85.2% of CoPS isolates with minimal inhibitory concentration (MIC) ranging from 64 to 1024 µg/mL. The vanA gene was found in 60.8%, vanB in 73.9%, and both genes in 43.5% of VRSA isolates. All the CoPS isolates exhibited biofilm formation ability, with 55.6% being strong, and 44.4% moderate biofilm producers, and harbored icaA (74.1%) and icaD (74.1%) biofilm-forming genes. All S. aureus isolates harbored both beta-haemolysin (hlb) and leucotoxin (lukMF) genes, while 44.4% were positive for toxic shock syndrome toxin (tsst) gene. Enterotoxin genes sea, seb, sec, sed, and see were found in 59.3%, 40.7%, 18.5%, 33.3%, and 14.8% of isolates, respectively. Additionally, 70.4% of the isolates had spa X-region gene, and exhibited eight different MRSA spa types (t127, t267, t037, t011, t843, t1081, t2663, and t1575), with spa t127 being the most common. Three SCCmec types (I, II and III) were identified, with SCCmec I being predominant, and were further classified into subtypes 1.1.1, 1.1.2, 1.n.1, and 4.1.1. The ability of MRSA and VRSA isolates to produce biofilms and resist antimicrobials highlights the serious threat these pathogens pose to bovine milk safety, animal welfare, and public health. Therefore, strict hygiene practices and antimicrobial surveillance are crucial to reduce the risk of MRSA and VRSA colonization and dissemination.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed E Enany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Azza S El-Demerdash
- Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, 44516, Egypt
| | - Nada H Eidaroos
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Reem M Algendy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Sharifi A, Mahmoudi P, Sobhani K, Ashengroph M. The Prevalence and Comparative Analysis of Adhesion and Biofilm-Related Genes in Staphylococcus aureus Isolates: A Network Meta-Analysis. Microbiol Immunol 2024. [PMID: 39639432 DOI: 10.1111/1348-0421.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Staphylococcus aureus is a versatile pathogen capable of causing a wide range of infections, from minor skin infections to life-threatening invasive diseases. The pathogenicity of S. aureus is attributed to its ability to produce various virulence factors, including adhesion and biofilm-related proteins. Understanding the prevalence and distribution of these genes among S. aureus isolates from different sources is crucial for devising effective strategies to combat biofilm-associated contamination. In this study, we conducted a comprehensive network meta-analysis to assess the prevalence of adhesion and biofilm-related genes in S. aureus isolates and investigate the impact of the isolate source on their occurrence. A systematic search of multiple databases was performed, and a total of 53 relevant studies were included. The prevalence of adhesion and biofilm-related genes in S. aureus isolates was determined, with the highest prevalence observed for clfB (p-estimate = 85.4, 95% confidence interval [CI] 78-90.6), followed by eno (p-estimate = 81.1, 95% CI 61.7-91.9), and icaD (p-estimate = 77, 95% CI 68.6-83.6). Conversely, bap and bbp genes exhibited the lowest prevalence rates (p-estimate = 6.7 and 18.7, respectively). The network meta-analysis allowed us to examine the pairwise co-study of adhesion and biofilm-related genes in S. aureus isolates. The most frequently co-studied gene pairs were icaA-icaD (30 times) and fnbA-fnbB (25 times). Subgroup analysis showed that the occurrence of icaC and icaB genes was significantly lower in animal isolates compared to human and food isolates (p < 0.05). It is worth noting that there was limited data available for the analysis of sasG, bbp, bap, eno, and fib genes. In conclusion, the study revealed varying prevalence rates of adhesion and biofilm-related genes in S. aureus isolates. Genes such as clfB, eno, and icaD were found to be highly prevalent, while bap and bbp were less common. Limited existing data on the prevalence of genes like sasG, bbp, bap, eno, and fib highlights the need for further research to determine their exact prevalence rates. Our results contribute to a better understanding of S. aureus pathogenesis and can facilitate the development of effective strategies for the prevention and treatment of S. aureus infections.
Collapse
Affiliation(s)
- Aram Sharifi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Keyvan Sobhani
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Morahem Ashengroph
- Department of Biology, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
3
|
Zhang Z, Chen G, Hussain W, Pan Y, Yang Z, Liu Y, Li E. Machine learning and network analysis with focus on the biofilm in Staphylococcus aureus. Comput Struct Biotechnol J 2024; 23:4148-4160. [PMID: 39640530 PMCID: PMC11617897 DOI: 10.1016/j.csbj.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Research on biofilm formation in Staphylococcus aureus has greatly benefited from the generation of high-throughput sequencing data to drive molecular analysis. The accumulation of high-throughput sequencing data, particularly transcriptomic data, offers a unique opportunity to unearth the network and constituent genes involved in biofilm formation using machine learning strategies and co-expression analysis. Herein, the available RNA sequencing data related to Staphylococcus aureus biofilm studies and identified influenced functional pathways and corresponding genes in the process of the transition of bacteria from planktonic to biofilm state by employing machine learning and differential expression analysis. Using weighted gene co-expression analysis and previously developed online prediction platform, important functional modules, potential biofilm-associated proteins, and subnetworks of the biofilm-formation pathway were uncovered. Additionally, several novel protein interactions within these functional modules were identified by constructing a protein-protein interaction (PPI) network. To make this data more straightforward for experimental biologists, an online database named SAdb was developed (http://sadb.biownmcli.info/), which integrates gene annotations, transcriptomics, and proteomics data. Thus, the current study will be of interest to researchers in the field of bacteriology, particularly those studying biofilms, which play a crucial role in bacterial growth, pathogenicity, and drug resistance.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China
| | - Guozhong Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanyuan Pan
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China
| | - Zhu Yang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Yin Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Erguang Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
4
|
Titouche Y, Akkou M, Djaoui Y, Chergui A, Mechoub D, Bentayeb L, Fatihi A, Nia Y, Hennekinne JA. Investigation of Biofilm Formation Ability and Antibiotic Resistance of Staphylococcus aureus Isolates from Food Products. Foodborne Pathog Dis 2024. [PMID: 39589773 DOI: 10.1089/fpd.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Staphylococcus aureus is one of the major causes of foodborne diseases and its presence in food products may poses a public health challenge. The aims of this study were to assess in vitro the capacity of S. aureus isolates from foods to form biofilm and to determine their antibiotic susceptibility. A total of 80 S. aureus isolates were characterized. The slime production ability was evaluated by congo-red agar (CRA) and the biofilm formation was carried out by microtiter-plate method (MPM). Resistance of isolates to eight antibiotics was determined using disc diffusion method. Sixty-four (80%) of the isolates were slime producers on congo-red agar. However, all isolates were biofilm producers on microtiter-plate method. The highest resistance profiles were ascribed to penicillin G (91.25%) and tetracycline (41.25%). Twelve isolates were methicillin-resistant (MRSA) harboring the mecA gene. All of these MRSA isolates were negative for the genes of the Panton Valentine leukocidine (lukF/S-PV). Typing of the MRSA isolates indicated that they belonged to three spa-types including t024, t450 and t688. The presence of biofilm producers and multidrug resistant isolates (MRSA) in food samples can represent a risk for public health. Therefore, an efficient control and effective measures were needed along the production chain to ensure the food safety.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Sciences, University of Blida 1, Blida, Algeria
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Achour Chergui
- Department of Biology, Faculty of Natural and Life Sciences. University Akli Mohand Oulhadj. Bouira, Algeria
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Lamia Bentayeb
- Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Abdelhak Fatihi
- Laboratory For Food Safety, University Paris Est, Paris, France
| | - Yacine Nia
- Laboratory For Food Safety, University Paris Est, Paris, France
| | | |
Collapse
|
5
|
Oo T, Saiboonjan B, Mongmonsin U, Srijampa S, Srisrattakarn A, Tavichakorntrakool R, Chanawong A, Lulitanond A, Roytrakul S, Sutthanut K, Tippayawat P. Effectiveness of co-cultured Myristica fragrans Houtt. seed extracts with commensal Staphylococcus epidermidis and its metabolites in antimicrobial activity and biofilm formation of skin pathogenic bacteria. BMC Complement Med Ther 2024; 24:380. [PMID: 39482677 PMCID: PMC11526599 DOI: 10.1186/s12906-024-04675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Skin commensal bacteria (Staphylococcus epidermidis) can help defend against skin infections, and they are increasingly being recognized for their role in benefiting skin health. This study aims to demonstrate the activities that Myristica fragrans Houtt. seed extracts, crude extract (CE) and essential oil (EO), have in terms of promoting the growth of the skin commensal bacterium S. epidermidis and providing metabolites under culture conditions to disrupt the biofilm formation of the common pathogen Staphylococcus aureus. METHODS The culture supernatant obtained from a co-culture of S. epidermidis with M. fragrans Houtt. seed extracts in either CE or EO forms were analyzed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), in silico investigations, and applied to assess the survival and biofilm formation of S. aureus. RESULTS The combination of commensal bacteria with M. fragrans Houtt. seed extract either CE or EO produced metabolic compounds such as short-chain fatty acids and antimicrobial peptides, contributing to the antimicrobial activity. This antimicrobial activity was related to downregulating key genes involved in bacterial adherence and biofilm development in S. aureus, including cna, agr, and fnbA. CONCLUSION These findings suggest that using the culture supernatant of the commensal bacteria in combination with CE or EO may provide a potential approach to combat biofilm formation and control the bacterial proliferation of S. aureus. This may be a putative non-invasive therapeutic strategy for maintaining a healthy skin microbiota and preventing skin infections.
Collapse
Affiliation(s)
- Thidar Oo
- Medical Technology Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Bhanubong Saiboonjan
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Urairat Mongmonsin
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Srijampa
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arpasiri Srisrattakarn
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aroonwadee Chanawong
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Wilkie ED, Alao JO, Sotala TT, Oluduro AO. Molecular characterisation of virulence genes in bacterial pathogens from daycare centres in Ile-Ife, Nigeria: implications for infection control. BMC Infect Dis 2024; 24:1196. [PMID: 39443869 PMCID: PMC11515781 DOI: 10.1186/s12879-024-10095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Daycare centres play a critical role in early childhood development but are high-risk environments for infectious disease transmission due to close physical contact, shared toys, inadequate hygiene, and poor ventilation. These risks are especially concerning in low- and middle-income countries (LMICs) like Nigeria, where resources for infection control may be limited. This study aimed to identify and characterise virulence genes in bacterial isolates from daycare centres in Ile-Ife, Nigeria, to assess infection risks. METHODS Between November 2017 and July 2019, 233 samples were collected from 76 children, 33 daycare workers, and 124 fomites in 17 daycare centres. The bacterial isolates were analysed using conventional PCR and RAPD analysis to detect the presence of virulence genes. The frequency of crucial virulence genes and the prevalence of each bacterial species were recorded. RESULTS Key virulence genes were detected, including fimH in Klebsiella species (22.73% of Gram-negative isolates), algD in Pseudomonas aeruginosa (50%), and icaA and cna in Staphylococcus aureus (16.67%). Staphylococcus aureus was the most prevalent species (35%), followed by Klebsiella (28%) and Pseudomonas aeruginosa (20%). CONCLUSION This study highlights the presence of virulent bacterial pathogens in daycare environments, posing a severe infection risk to children. To mitigate these risks, it is essential to implement enhanced infection control measures, such as regular microbial screening, improved hand hygiene practices, and disinfection protocols for fomites. Training programs for daycare workers on hygiene practices and routine monitoring could also significantly reduce infection transmission. These interventions are vital for safeguarding the health of daycare children in Nigeria and similar settings globally.
Collapse
Affiliation(s)
| | - Jude Oluwapelumi Alao
- School of Public Health and Interdisciplinary Studies, Auckland University of Technology, Auckland, New Zealand
| | - Toyosi Teniola Sotala
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | |
Collapse
|
7
|
Haranahalli Nataraj B, Nayakvadi S, Dhali A, Shome R, Prakash K, Revanasiddappa ST. Evaluation of virulence determinants and cell surface properties associated with biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) and extended spectrum beta-lactamase (ESBL) Escherichia coli from livestock and poultry origin. Microb Pathog 2024; 195:106905. [PMID: 39236967 DOI: 10.1016/j.micpath.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Antibiotic resistance poses a persistent threat to modern medicine due to the emergence of novel antibiotic-resistant strains. Therefore, a timely understanding of antibiotic resistance and the virulence biology of pathogenic bacteria, particularly those of public health significance, is crucial for implementing effective mitigation strategies. This study aimed to investigate the virulence profiles of ten S. aureus isolates (NDa to NDj) and ten E. coli isolates (ND1 to ND10) originating from livestock and poultry, and to assess how various cell surface properties and biofilm formation abilities influence antibiotic resistance phenotypes. Antibiotic resistance profiling through phenotypic (AST) and genotypic methods (PCR) confirmed that NDa to NDe were methicillin-resistant S. aureus (MRSA) and ND1 to ND5 were extended-spectrum β-lactamase (ESBL) producing E. coli isolates. Virulence properties such as hemolytic activity, coagulase activity, and nuclease activity were found to be independent of the antibiotic resistance phenotype in S. aureus. In contrast, biofilm formation phenotype was observed to influence antibiotic resistance phenotypes, with MRSA and ESBL E. coli isolates demonstrating higher biofilm formation potency. Chemical and enzymatic analysis of S. aureus and E. coli biofilms revealed proteins and polysaccharides as major components, followed by nucleic acids. Furthermore, cell surface properties such as auto-aggregation and hydrophobicity were notably higher in isolates with strong to medium biofilm-forming capabilities (ESBL and MRSA isolates), corroborated by genomic confirmation of various genes associated with biofilm, adhesion, and colonization. In conclusion, this study highlights that surface hydrophobicity and biofilm formation ability of MRSA (NDa to NDe) and ESBL E. coli (ND1 to ND5) isolates may influence antibiotic resistance phenotypes.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Dairy Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560 030, Karnataka, India.
| | - Shivasharanappa Nayakvadi
- Antimicrobial Laboratory, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, 560064, Karnataka, India.
| | - Arindam Dhali
- Dairy Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560 030, Karnataka, India.
| | - Rajeswari Shome
- Antimicrobial Laboratory, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, 560064, Karnataka, India.
| | - Kavya Prakash
- Antimicrobial Laboratory, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, 560064, Karnataka, India.
| | - Sangeetha Tadaga Revanasiddappa
- Antimicrobial Laboratory, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
8
|
Javid Moghadam M, Maktabi S, Zarei M, Mahmoodi P. Controlling Staphylococcus aureus biofilm on food contact surfaces: the efficacy of Oliveria decumbens essential oil and its implications on biofilm-related genes. J Appl Microbiol 2024; 135:lxae187. [PMID: 39054303 DOI: 10.1093/jambio/lxae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
AIMS This study aimed to investigate the effect of Oliveria decumbens essential oil (Od-EO) on the phenotypic properties and gene expression of Staphylococcus aureus biofilm on commonly used food contact surfaces. METHODS AND RESULTS The minimum inhibitory concentration and minimum bactericidal concentration of Od-EO on S. aureus ATCC25923 were determined to be 0.5 and 1 µl/ml, respectively. Crystal violet staining, scanning electron microscopy (SEM), biofilm metabolic activity evaluation, and real-time PCR analysis were used to assess the anti-biofilm properties of Od-EO. The results demonstrated that Od-EO exhibited significant anti-biofilm properties against S. aureus and effectively reduced the metabolic activity of biofilm cells. Furthermore, the inhibitory effects of Od-EO on biofilm formation were more pronounced on stainless steel (SS) compared to high-density polyethylene (HDPE) surfaces. Real-time PCR analysis revealed that Od-EO downregulated the expression of biofilm-related genes (icaA, icaD, clfA, clfB, FnbA, FnbB, and hld) in S. aureus grown on SS, while the expression levels of all studied genes except hld in the biofilm formed on HDPE remained unchanged or increased. CONCLUSIONS One of the main anti-biofilm mechanisms of the Od-EO on the HDPE is related to the disturbance in the QS of the cells. These findings highlight the potential of Od-EO as an effective agent for controlling and inhibiting S. aureus biofilm in the food industry and its potential use in disinfectant compounds.
Collapse
Affiliation(s)
- Mahshad Javid Moghadam
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61355-145, Iran
| | - Siavash Maktabi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61355-145, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61355-145, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan 6517658978, Iran
| |
Collapse
|
9
|
Rimi SS, Ashraf MN, Sigma SH, Ahammed MT, Siddique MP, Zinnah MA, Rahman MT, Islam MS. Biofilm formation, agr typing and antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus isolated from hospital environments. PLoS One 2024; 19:e0308282. [PMID: 39102390 PMCID: PMC11299820 DOI: 10.1371/journal.pone.0308282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
Biofilm development significantly enhances the virulence of methicillin-resistant Staphylococcus aureus (MRSA), leading to severe infections and decreased susceptibility to antibiotics, especially in strains associated with hospital environments. This study examined the occurrence of MRSA, their ability to form biofilms, agr typing, and the antibiotic resistance profiles of biofilm-forming MRSA strains isolated from environmental surfaces at Mymensingh Medical College Hospital (MMCH). From 120 swab samples, 86 (71.67%) tested positive for S. aureus. MRSA was identified in 86 isolates using the disk diffusion technique, and by polymerase chain reaction (PCR), 56 (65.1%) isolates were confirmed to carry the mecA gene. The Crystal Violet Microtiter Plate (CVMP) test revealed that 80.35% (45 isolates) were biofilm-forming and 19.6% (11 isolates) were non-biofilm-forming. Out of 45 biofilm producer isolates 37.5% and 42.9% isolates exhibited strong and intermediate biofilm-forming characteristics, respectively. Molecular analysis revealed that 17.78% of MRSA isolates carried at least one gene related to biofilm formation, specifically icaA, icaB, and icaD genes were discovered in 13.33%, 8.89%, 6.67% of the MRSA isolates, respectively. In agr typing, the most prevalent group was agr I (71.11%), followed by group III (17.78%) and group II (11.11%). Group IV was not detected. The distribution of agr gene groups showed a significant difference among biofilm-forming isolates (p < 0.05). In agr group I, 18.75% of isolates carried the icaA gene, 12.5% carried the icaB gene, and 9.37% carried the icaD gene. Biofilm-forming genes were not detected in any of the isolates from agr groups II or III. There are no statistically significant differences between agr groups and the presence of these genes (p > 0.05). Antibiotic resistance varied significantly among agr groups, with agr group I displaying the highest resistance, agr group II, and agr group III exhibiting the least resistance (p < 0.05). Seventy-three (73.3%) of the isolates were multi-drug resistant, with agr group I displaying nineteen MDR patterns. The occurrence of MRSA in hospital environments and their capacity to form biofilm raises concerns for public health. These findings support the importance of further research focused on agr quorum sensing systems as a basis for developing novel antibacterial agents.
Collapse
Affiliation(s)
- Sabrina Sultana Rimi
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nahid Ashraf
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sanzila Hossain Sigma
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanjir Ahammed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
10
|
Yu J, Han W, Xu Y, Shen L, Zhao H, Zhang J, Xiao Y, Guo Y, Yu F. Biofilm-producing ability of methicillin-resistant Staphylococcus aureus clinically isolated in China. BMC Microbiol 2024; 24:241. [PMID: 38961344 PMCID: PMC11223284 DOI: 10.1186/s12866-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections. RESULTS Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types. CONCLUSIONS MRSA strains with biofilm production capability warrant increased vigilance.
Collapse
Affiliation(s)
- Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanghua Xiao
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Chan YL, Chee CF, Tang SN, Tay ST. Unveilling genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance in Staphylococcus aureus isolated from a Malaysian Teaching Hospital. Eur J Med Res 2024; 29:246. [PMID: 38649897 PMCID: PMC11036768 DOI: 10.1186/s40001-024-01831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a notorious multidrug resistant pathogen prevalent in healthcare facilities worldwide. Unveiling the mechanisms underlying biofilm formation, quorum sensing and antibiotic resistance can help in developing more effective therapy for S. aureus infection. There is a scarcity of literature addressing the genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance among S. aureus isolates from Malaysia. METHODS Biofilm and slime production of 68 methicillin-susceptible S. aureus (MSSA) and 54 methicillin-resistant (MRSA) isolates were determined using a a plate-based crystal violet assay and Congo Red agar method, respectively. The minimum inhibitory concentration values against 14 antibiotics were determined using VITEK® AST-GP67 cards and interpreted according to CLSI-M100 guidelines. Genetic profiling of 11 S. aureus biofilm-associated genes and agr/sar quorum sensing genes was performed using single or multiplex polymerase chain reaction (PCR) assays. RESULTS In this study, 75.9% (n = 41) of MRSA and 83.8% (n = 57) of MSSA isolates showed strong biofilm-forming capabilities. Intermediate slime production was detected in approximately 70% of the isolates. Compared to MSSA, significantly higher resistance of clindamycin, erythromycin, and fluoroquinolones was noted among the MRSA isolates. The presence of intracellular adhesion A (icaA) gene was detected in all S. aureus isolates. All MSSA isolates harbored the laminin-binding protein (eno) gene, while all MRSA isolates harbored intracellular adhesion D (icaD), clumping factors A and B (clfA and clfB) genes. The presence of agrI and elastin-binding protein (ebpS) genes was significantly associated with biofilm production in MSSA and MRSA isolates, respectively. In addition, agrI gene was also significantly correlated with oxacillin, cefoxitin, and fluoroquinolone resistance. CONCLUSIONS The high prevalence of biofilm and slime production among MSSA and MRSA isolates correlates well with the detection of a high prevalence of biofilm-associated genes and agr quorum sensing system. A significant association of agrI gene was found with cefoxitin, oxacillin, and fluoroquinolone resistance. A more focused approach targeting biofilm-associated and quorum sensing genes is important in developing new surveillance and treatment strategies against S. aureus biofilm infection.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Sharifi A, Mahmoudi P, Sobhani K. The prevalence of adhesion and biofilm genes in Staphylococcus aureus isolates from bovine mastitis: A comprehensive meta-analysis. Vet Med Sci 2024; 10:e31378. [PMID: 38358017 PMCID: PMC10867877 DOI: 10.1002/vms3.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Mastitis poses significant challenges to the dairy industry, resulting in economic losses and increased veterinary expenses. Staphylococcus aureus is a common cause of bovine mastitis, relying on efficient adhesion and biofilm formation for infection. OBJECTIVES This study aimed to employ meta-analysis to investigate the occurrence of adhesion and biofilm genes in S. aureus associated with bovine mastitis, as documented in previous studies. METHODS This meta-analysis was done according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses, examined 22 eligible articles and revealed varying prevalence rates of adhesion and biofilm genes in S. aureus isolates from bovine mastitis. RESULTS Among the genes, clfB showed the highest prevalence (p-estimate = 0.905), followed by fnbA (p-estimate = 0.689) and fnbB (p-estimate = 0.502). The icaA and icaD genes also showed a relatively high prevalence (p-estimate = 0.694 and 0.814, respectively). Conversely, the biofilm-associated proteins gene had the lowest prevalence (p-estimate = 0.043). Subgroup analyses based on mastitis types and publication years revealed no significant differences in gene prevalence. Insufficient data hindered the analysis of fib, sasG , eno and bbp genes. CONCLUSION This study provides valuable insights for managing S. aureus-induced bovine mastitis. Additionally, larger-scale research, particularly on less-studied genes, is necessary to comprehend the molecular roles of adhesion and biofilm genes in S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Aram Sharifi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Peyman Mahmoudi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Keyvan Sobhani
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| |
Collapse
|
13
|
Pyzik E, Urban-Chmiel R, Kurek Ł, Herman K, Stachura R, Marek A. Bacteriophages for Controlling Staphylococcus spp. Pathogens on Dairy Cattle Farms: In Vitro Assessment. Animals (Basel) 2024; 14:683. [PMID: 38473068 DOI: 10.3390/ani14050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Pathogenic Staphylococcus spp. strains are significant agents involved in mastitis and in skin and limb infections in dairy cattle. The aim of this study was to assess the antibacterial effectiveness of bacteriophages isolated from dairy cattle housing as potential tools for maintaining environmental homeostasis. The research will contribute to the use of phages as alternatives to antibiotics. The material was 56 samples obtained from dairy cows with signs of limb and hoof injuries. Staphylococcus species were identified by phenotypic, MALDI-TOF MS and PCR methods. Antibiotic resistance was determined by the disc diffusion method. Phages were isolated from cattle housing systems. Phage activity (plaque forming units, PFU/mL) was determined on double-layer agar plates. Morphology was examined using TEM microscopy, and molecular characteristics were determined with PCR. Among 52 strains of Staphylococcus spp., 16 were used as hosts for bacteriophages. Nearly all isolates (94%, 15/16) showed resistance to neomycin, and 87% were resistant to spectinomycin. Cefuroxime and vancomycin were the most effective antibiotics. On the basis of their morphology, bacteriophages were identified as class Caudoviricetes, formerly Caudovirales, families Myoviridae-like (6), and Siphoviridae-like (9). Three bacteriophages of the family Myoviridae-like, with the broadest spectrum of activity, were used for further analysis. This study showed a wide spectrum of activity against the Staphylococcus spp. strains tested. The positive results indicate that bacteriophages can be used to improve the welfare of cattle.
Collapse
Affiliation(s)
- Ewelina Pyzik
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Łukasz Kurek
- Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Klaudia Herman
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| | - Rafał Stachura
- Agromarina Company, Kulczyn-Kolonia 48, 22-235 Hańsk Pierwszy, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland
| |
Collapse
|
14
|
Sharan M, Dhaka P, Bedi JS, Singh R, Mehta N. Characterization of chicken eggs associated Escherichia coli and Staphylococcus aureus for biofilm production and antimicrobial resistance traits. Anim Biotechnol 2023; 34:3533-3544. [PMID: 36705272 DOI: 10.1080/10495398.2023.2171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study assessed the prevalence, virulence characteristics, antimicrobial resistance and biofilm-forming ability of E. coli and S. aureus recovered from egg samples in Ludhiana, Punjab. A total of 393 samples from hatcheries (n = 238), retail shops (n = 94), and households (n = 61) were collected. The prevalence of E. coli was observed as 11.70% and 9.16% for S. aureus. A total of 41.30% of E. coli isolates were positive for aggR gene and 52.17% were for fimA gene; while 36.11% of the S. aureus isolates were positive for coa gene. A high proportion of E. coli (76.10%) and S. aureus (69.44%) isolates were resistant toward ≥3 tested antibiotic classes. A total of 39.13% of E. coli isolates were moderate biofilm former, whereas the majority of the S. aureus (41.67%) were weak biofilm former. No significant difference regarding biofilm formation was observed between MDR and non-MDR isolates of E. coli and S. aureus. Biofilm genes viz., fimC and crl were reported in 43.47% and 80.43% of E. coli isolates, respectively; while icaA and icaD genes were reported in 58.34% and 47.22% of S. aureus isolates, respectively. A strong metabolic activity among 52.17% of E. coli and 41.66% of S. aureus isolates was observed using XTT assay. The present study highlights the need for applied food safety measures across the egg production chain of the region to prevent the development of MDR strains and biofilms.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Randhir Singh
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
15
|
Chen Q, Zhao G, Yang W, Chen F, Qi Y, Lou Z. Investigation into the prevalence of enterotoxin genes and genetic background of Staphylococcus aureus isolates from retain foods in Hangzhou, China. BMC Microbiol 2023; 23:294. [PMID: 37848808 PMCID: PMC10580612 DOI: 10.1186/s12866-023-03027-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Staphylococcus aureus expresses numerous toxins, many of which are strongly believed to be responsible for specific symptoms and even diseases, making it significant in the pathogenesis of human health. Enterotoxins, which are vital toxins, are associated with foodborne illnesses that manifest through symptoms like vomiting and diarrhea. In the present study, 264 S. aureus isolates obtained from various retail foods in Hangzhou, China were further investigated the profiles of enterotoxin genes and genetic backgrounds. RESULTS Approximately, 64.02% of the isolates from diverse sources contained at least one Staphylococcal Enterotoxin (SE) genes, displaying a total of 36 distinct combinations. Enterotoxin gene cluster (egc) encoded enterotoxin genes, normally designated by seg, sei, sem, sen, seo and selu, plus with sep were more frequently detected (33.73%, each). In contrast, see, ses and set were absent in any of the isolates tested. A total of 44 sequence types (STs), 20 clonal complexes (CCs) and 66 different staphylococcal protein A (spa) types (including six novel types) were identified among those 169 SE-positive isolates. Moreover, nineteen methicillin-resistant Staphylococcus aureus (MRSA) isolates were identified. The majority of those isolates belonged to the CC59-Sccmec IVa cluster and carried the seb-sek-seq gene cluster. The egc cluster, either coexisting with or without other enterotoxin genes, was observed in all isolates allocated into CC5, CC9, CC20, CC25, CC72 and ST672. Irrespective of the spa types and origins of the food, it appeared that seh was a distinct genetic element present in isolates belonging to the CC1 clonal lineage. CONCLUSIONS The results not only proposed a suspected relationship between distribution of enterotoxigenic strains and genetic backgrounds, but also attributed the presence of novel enterotoxins to potential hazards in food safety.
Collapse
Affiliation(s)
- Qi Chen
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China.
| | - Gang Zhao
- Hangzhou Center for Disease Control and Prevention, 310021, Hangzhou, China
| | - Wei Yang
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China
| | - Fuhong Chen
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China
| | - Yan Qi
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China
| | - Zhengqing Lou
- Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 310000, Hangzhou, China.
| |
Collapse
|
16
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
17
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
18
|
Martínez A, Stashenko EE, Sáez RT, Zafra G, Ortiz C. Effect of Essential Oil from Lippia origanoides on the Transcriptional Expression of Genes Related to Quorum Sensing, Biofilm Formation, and Virulence of Escherichia coli and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12050845. [PMID: 37237748 DOI: 10.3390/antibiotics12050845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial infections resistant to conventional antibiotics constitute one of the most important causes of mortality in the world. In some bacterial species, such as Escherichia coli and Staphylococcus aureus pathogens, biofilm formation can favor their antimicrobial resistance. These biofilm-forming bacteria produce a compact and protective matrix, allowing their adherence and colonization to different surfaces, and contributing to resistance, recurrence, and chronicity of the infections. Therefore, different therapeutic alternatives have been investigated to interrupt both cellular communication routes and biofilm formation. Among these, essential oils (EO) from Lippia origanoides thymol-carvacrol II chemotype (LOTC II) plants have demonstrated biological activity against different biofilm-forming pathogenic bacteria. In this work, we determined the effect of LOTC II EO on the expression of genes associated with quorum sensing (QS) communication, biofilm formation, and virulence of E. coli ATCC 25922 and S. aureus ATCC 29213. This EO was found to have high efficacy against biofilm formation, decreasing-by negative regulation-the expression of genes involved in motility (fimH), adherence and cellular aggregation (csgD), and exopolysaccharide production (pgaC) in E. coli. In addition, this effect was also determined in S. aureus where the L. origanoides EO diminished the expression of genes involved in QS communication (agrA), production of exopolysaccharides by PIA/PNG (icaA), synthesis of alpha hemolysin (hla), transcriptional regulators of the production of extracellular toxins (RNA III), QS and biofilm formation transcriptional regulators (sarA) and global regulators of biofilm formation (rbf and aur). Positive regulation was observed on the expression of genes encoding inhibitors of biofilm formation (e.g., sdiA and ariR). These findings suggest that LOTCII EO can affect biological pathways associated with QS communication, biofilm formation, and virulence of E. coli and S. aureus at subinhibitory concentrations and could be a promising candidate as a natural antibacterial alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Andrés Martínez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Escuela de Química, Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Rodrigo Torres Sáez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - German Zafra
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Claudia Ortiz
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
19
|
Nesaraj J, Grinberg A, Laven R, Biggs P. Genomic epidemiology of bovine mastitis-causing Staphylococcus aureus in New Zealand. Vet Microbiol 2023; 282:109750. [PMID: 37099864 DOI: 10.1016/j.vetmic.2023.109750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
We analysed the genomes of 188 bovine-mastitis-causing S. aureus isolates obtained over a 17-year period from more than 65 dairy farms across New Zealand. The analysis revealed a unique pattern of dominance over the entire period of study, of clonal complex 1, sequence type 1 (CC1/ST1), which accounted for ∼75% of the isolates. CC1/ST1 was also the commonest lineage infecting humans in New Zealand in the same period, but most bovine CC1/ST1 analysed in this study carried the genes coding for the bovine-adaptive bicomponent leucocidin lukF and lukM and lacked the corresponding human-adaptive lukF-PV and lukS-PV genes. Typical ruminant-associated lineages, such as ST97, ST151 and CC133 were also observed. Cluster analyses of the core and accessory genomes revealed genomic segregations according to the CCs, but lack of segregation based on the geographical location or collection year, suggesting a stable population in space and time. To our knowledge, this is the first identification of genomic markers of host adaptation to cattle in S. aureus CC1/ST1, a lineage commonly associated with humans, worldwide. The temporal clonal stability observed would enable the development of a S. aureus vaccine for New Zealand cattle, which is unlikely to undergo substantial reduction of efficacy due to clonal drifts or shifts.
Collapse
Affiliation(s)
- Jabin Nesaraj
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Alex Grinberg
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand.
| | - Richard Laven
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Patrick Biggs
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
20
|
Sipahi N, Kaya E, Çelik C, Pınar O. The Characterization and Beta-Lactam Resistance of Staphylococcal Community Recovered from Raw Bovine Milk. Antibiotics (Basel) 2023; 12:antibiotics12030556. [PMID: 36978423 PMCID: PMC10044537 DOI: 10.3390/antibiotics12030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Staphylococci is an opportunistic bacterial population that is permanent in the normal flora of milk and poses a serious threat to animal and human health with some virulence factors and antibiotic-resistance genes. This study was aimed at identifying staphylococcal species isolated from raw milk and to determine hemolysis, biofilm, coagulase activities, and beta-lactam resistance. The raw milk samples were collected from the Düzce (Türkiye) region, and the study data represent a first for this region. The characterization of the bacteria was performed with MALDI-TOF MS and 16S rRNA sequence analysis. The presence of coa, icaB, blaZ, and mecA was investigated with PCR. A nitrocefin chromogenic assay was used for beta-lactamase screening. In this context, 84 staphylococci were isolated from 10 different species, and the dominant species was determined as S. aureus (32.14%). Although 32.14% of all staphylococci were positive for beta hemolysis, the icaB gene was found in 57.14%, coa in 46.42%, mecA in 15.47%, and blaZ in 8.33%. As a result, Staphylococcus spp. strains that were isolated from raw milk in this study contained some virulence factors at a high level, but also contained a relatively low level of beta-lactam resistance genes. However, considering the animal–environment–human interaction, it is considered that the current situation must be monitored constantly in terms of resistance concerns. It must not be forgotten that the development of resistance is in constant change among bacteria.
Collapse
Affiliation(s)
- Nisa Sipahi
- Traditional and Complementary Medicine Applied and Research Center, Düzce University, 81620 Düzce, Türkiye
- Correspondence:
| | - Ertugrul Kaya
- Medical Pharmacology Department, Medicine Faculty, Düzce University, 81620 Düzce, Türkiye;
| | - Cansu Çelik
- Food Technology Program, Food Processing Department, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye;
| | - Orhan Pınar
- Equine and Equine Training Program, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye;
| |
Collapse
|
21
|
Merghni A, Hamdi H, Ben Abdallah M, Al-Hasawi ZM, Al-Quwaie DA, Abid-Essefi S. Detection of Methicillin-Resistant Staphylococcus aureus among Foodborne Pathogenic Strains and Assessment of Their Adhesion Ability and Cytotoxic Effects in HCT-116 Cells. Foods 2023; 12:foods12050974. [PMID: 36900491 PMCID: PMC10001405 DOI: 10.3390/foods12050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is one of the high-threat pathogens equipped with a repertoire of virulence factors making it responsible for many infections in humans, including foodborne diseases. The present study aims to characterize antibiotic resistance and virulence factors in foodborne S. aureus isolates, and to investigate their cytotoxic effects in human intestinal cells (HCT-116). Our results revealed methicillin resistance phenotypes (MRSA) along with the detection of mecA gene (20%) among tested foodborne S. aureus strains. Furthermore, 40% of tested isolates showed a strong ability for adhesion and biofilm formation. A high rate of exoenzymes production by tested bacteria was also registered. Additionally, treatment with S. aureus extracts leads to a significant decrease in HCT-116 cell viability, accompanied by a reduction in the mitochondrial membrane potential (MMP), as a result of reactive oxygen species (ROS) generation. Thereby, S. aureus food poisoning remains daunting and needs particular concern to prevent foodborne illness.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
- Correspondence:
| | - Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| | - Marwa Ben Abdallah
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Zaki M. Al-Hasawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Diana A. Al-Quwaie
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
22
|
Chajęcka-Wierzchowska W, Gajewska J, Zakrzewski AJ, Caggia C, Zadernowska A. Molecular Analysis of Pathogenicity, Adhesive Matrix Molecules (MSCRAMMs) and Biofilm Genes of Coagulase-Negative Staphylococci Isolated from Ready-to-Eat Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1375. [PMID: 36674132 PMCID: PMC9859056 DOI: 10.3390/ijerph20021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This paper provides a snapshot on the pathogenic traits within CoNS isolated from ready-to-eat (RTE) food. Eighty-five strains were subjected to biofilm and slime production, as well as biofilm-associated genes (icaA, icaD, icaB, icaC, eno, bap, bhp, aap, fbe, embP and atlE), the insertion sequence elements IS256 and IS257 and hemolytic genes. The results showed that the most prevalent determinants responsible for the primary adherence were eno (57.6%) and aap (56.5%) genes. The icaADBC operon was detected in 45.9% of the tested strains and was correlated to slime production. Moreover, most strains carrying the icaADBC operon simultaneously carried the IS257 insertion sequence element. Among the genes encoding for surface proteins involved in the adhesion to abiotic surfaces process, atlE was the most commonly (31.8%) followed by bap (4.7%) and bhp (1.2%). The MSCRAMMs, including fbe and embp were detected in the 11.8% and 28.2% of strains, respectively. A high occurrence of genes involved in the hemolytic toxin production were detected, such as hla_yiD (50.6%), hlb (48.2%), hld (41.2%) and hla_haem (34.1%). The results of the present study revealed an unexpected occurrence of the genes involved in biofilm production and the high hemolytic activity among the CoNS strains, isolated from RTE food, highlighting that this group seems to be acquiring pathogenic traits similar to those of S. aureus, suggesting the need to be included in the routine microbiological analyses of food.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Arkadiusz Józef Zakrzewski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| |
Collapse
|
23
|
Giordano I, Mauriello G. Ultrasound Attenuation Improves Some Surface Properties of the Probiotic Strain Lacticaseibacillus casei ATCC 393. Microorganisms 2023; 11:microorganisms11010142. [PMID: 36677433 PMCID: PMC9862422 DOI: 10.3390/microorganisms11010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Ultrasound attenuation has been recently proposed as a tool to modulate probiotic metabolism. The study aimed to characterize the response of the probiotic Lacticaseibacillus casei ATCC 393 to sonication. Two ultrasound treatments were tested (57 W, duty cycle 50%, 6 or 8 min). Attenuation was assessed as a pH decrease in MRS broth after 6 and 24 h of incubation at 37 °C. Cultivability was evaluated by plate count immediately after sonication and by growth index on overnight cultures. Surface changes were determined by auto-aggregation, hydrophobicity, biofilm production tests, and by membrane damages. The 6 min treatment induced a temporary attenuation, while a prolongated exposure to sonic waves caused major attenuation effects (ΔpH 0.97 after 24 h). Both sonication treatments affected probiotic cultivability with a significant (p < 0.05) reduction of plate counts and an alteration of the growth index. Although auto-aggregation was negatively affected upon sonication, the hydrophobicity and biofilm production were improved with no significant differences (p > 0.05) between the sonicated samples. Moreover, sonicated L. casei ATCC 393 resulted in increased membrane permeability. These results suggest that ultrasound technology can be successfully used to modulate the L. casei ATCC 393 fermentative metabolism and to improve its surface properties.
Collapse
|
24
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
25
|
Phenotypic and molecular detection of biofilm formation in clinical methicillin-resistant Staphylococcus aureus isolates from Malaysia. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2147387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14122662. [PMID: 36559155 PMCID: PMC9788229 DOI: 10.3390/pharmaceutics14122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Infections caused by bacterial biofilms represent a global health problem, causing considerable patient morbidity and mortality in addition to an economic burden. Escherichia coli, Staphylococcus aureus, and other medically relevant bacterial strains colonize clinical surfaces and medical devices via biofilm in which bacterial cells are protected from the action of the immune system, disinfectants, and antibiotics. Several approaches have been investigated to inhibit and disperse bacterial biofilms, and the use of drug delivery could represent a fascinating strategy. Ciprofloxacin (CIP), which belongs to the class of fluoroquinolones, has been extensively used against various bacterial infections, and its loading in nanocarriers, such as niosomes, could support the CIP antibiofilm activity. Niosomes, composed of two surfactants (Tween 85 and Span 80) without the presence of cholesterol, are prepared and characterized considering the following features: hydrodynamic diameter, ζ-potential, morphology, vesicle bilayer characteristics, physical-chemical stability, and biological efficacy. The obtained results suggest that: (i) niosomes by surfactants in the absence of cholesterol are formed, can entrap CIP, and are stable over time and in artificial biological media; (ii) the CIP inclusion in nanocarriers increase its stability, with respect to free drug; (iii) niosomes preparations were able to induce a relevant inhibition of biofilm formation.
Collapse
|
27
|
Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Pathogens 2022; 11:pathogens11121404. [PMID: 36558738 PMCID: PMC9781172 DOI: 10.3390/pathogens11121404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains.
Collapse
|
28
|
Antibiofilm Combinatory Strategy: Moxifloxacin-Loaded Nanosystems and Encapsulated N-Acetyl-L-Cysteine. Pharmaceutics 2022; 14:pharmaceutics14112294. [PMID: 36365113 PMCID: PMC9699636 DOI: 10.3390/pharmaceutics14112294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms of Staphylococcus aureus, formed on implants, have a massive impact on the increasing number of antimicrobial resistance cases. The current treatment for biofilm-associated infections is based on the administration of antibiotics, failing to target the biofilm matrix. This work is focused on the development of multiple lipid nanoparticles (MLNs) encapsulating the antibiotic moxifloxacin (MOX). The nanoparticles were functionalized with d-amino acids to target the biofilm matrix. The produced formulations exhibited a mean hydrodynamic diameter below 300 nm, a low polydispersity index, and high encapsulation efficiency. The nanoparticles exhibited low cytotoxicity towards fibroblasts and low hemolytic activity. To target bacterial cells and the biofilm matrix, MOX-loaded MLNs were combined with a nanosystem encapsulating a matrix-disruptive agent: N-acetyl-L-cysteine (NAC). The nanosystems alone showed a significant reduction of both S. aureus biofilm viability and biomass, using the microtiter plate biofilm model. Further, biofilms grown inside polyurethane catheters were used to assess the effect of combining MOX-loaded and NAC-loaded nanosystems on biofilm viability. An increased antibiofilm efficacy was observed when combining the functionalized MOX-loaded MLNs and NAC-loaded nanosystems. Thus, nanosystems as carriers of bactericidal and matrix-disruptive agents are a promising combinatory strategy towards the eradication of S. aureus biofilms.
Collapse
|
29
|
Zhao R, Wang X, Wang X, Du B, Xu K, Zhang F, Jiang C, Zhao Y, Zhu Y. Molecular characterization and virulence gene profiling of methicillin-resistant Staphylococcus aureus associated with bloodstream infections in southern China. Front Microbiol 2022; 13:1008052. [PMID: 36325019 PMCID: PMC9618618 DOI: 10.3389/fmicb.2022.1008052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes an enormous illness burden, including skin and soft tissue infections (SSTIs), pneumonia, bloodstream infections (BSI), and sepsis. BSI are associated with significant patient morbidity and mortality worldwide. However, limited information is available on MRSA-related BSI in China. This study aimed to investigate the molecular characterization of 77 MRSA isolates recovered from hospitalized patients with BSI between 2012 and 2020 at three first-class tertiary hospitals in southern China based on multilocus sequence typing (MLST), spa typing, and staphylococcal cassette chromosome mec (SCCmec) typing. Overall, 13 clonal complexes (CCs) were identified, with CC59 and CC5 being the largest clusters, indicating high genetic diversity among BSI-causing MRSA isolates. ST59 was the most prevalent MLST type (22.1%). ST5/ST764-MRSA SCCmec II was the predominant adult MRSA clone, whereas ST59-MRSA SCCmec IV was the most common pediatric MRSA clone. ST5-t2460, ST764-t1084, and ST59-t437 were the most common types of adult MRSA isolates, whereas ST59-t437 and ST59-t172 were the predominant types of children’s MRSA isolates. ST59-SCCmec IV/V represented the most common clone among community acquired-MRSA isolates. ST5/ST764-SCCmec II was the most common type of hospital-associated MRSA isolate. The most prevalent toxin-encoding genes detected were hla, hld, icaA, and clfA (96.1–100%). Forty-three (100%, 43/43) isolates harbored more than 18 of the tested virulence genes in adults and eight virulence genes (23.5%, 8/34) in children. Virulence gene analysis revealed diversity among different clones: the positivity rates for the Panton-Valentine leukocidin (PVL) gene were 55.8 and 35.3% in adult and pediatric MRSA isolates, respectively; the genes seb–sei were present in all adult strains; seb–seg–sei–seo were present in all ST5, ST59, ST15, ST45, and ST22 adult strains; and seg–sei–sem–sen–seo were present in different clones, including ST15, ST45, and ST22 adult MRSA isolates and ST25, ST30, ST546, and ST72 children’s MRSA isolates. Adult MRSA isolates had significantly higher antibiotic resistance rates and virulence gene prevalence than pediatric MRSA isolates. For 8 years, this study provided epidemiological data on the molecular characteristics and virulence genes in different groups of MRSA BSI in China. Our findings may provide critical information for a better understanding of MRSA BSI.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bingyu Du
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Kexin Xu
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Changhong Jiang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfeng Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Yanfeng Zhao,
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yefei Zhu,
| |
Collapse
|
30
|
Ejaz H, Junaid K, Yasmeen H, Naseer A, Alam H, Younas S, Qamar MU, Abdalla AE, Abosalif KOA, Ahmad N, Bukhari SNA. Multiple Antimicrobial Resistance and Heavy Metal Tolerance of Biofilm-Producing Bacteria Isolated from Dairy and Non-Dairy Food Products. Foods 2022; 11:foods11182728. [PMID: 36140855 PMCID: PMC9497630 DOI: 10.3390/foods11182728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Foodborne pathogens have acquired the ability to produce biofilms to survive in hostile environments. This study evaluated biofilm formation, antimicrobial resistance (AMR), and heavy metal tolerance of bacteria isolated from dairy and non-dairy food products. We aseptically collected and processed 200 dairy and non-dairy food specimens in peptone broth, incubated them overnight at 37 °C, and sub-cultured them on various culture media. Bacterial growth was identified with biochemical tests and API 20E and 20NE strips. The AMR of the isolates was observed against different antibacterial drug classes. Biofilm formation was detected with the crystal violet tube method. Heavy metal salts were used at concentrations of 250−1500 µg/100 mL to observe heavy metal tolerance. We isolated 180 (50.4%) bacteria from dairy and 177 (49.6%) from non-dairy food samples. The average colony-forming unit (CFU) count for dairy and non-dairy samples was 2.9 ± 0.9 log CFU/mL and 5.1 ± 0.3 log CFU/mL, respectively. Corynebacterium kutscheri (n = 74), lactobacilli (n = 73), and Staphylococcus aureus (n = 56) were the predominant Gram-positive and Shigella (n = 10) the predominant Gram-negative bacteria isolated. The correlation between biofilm formation and AMR was significant (p < 0.05) for most cephalosporins, aminoglycosides, and fluoroquinolones. Heavy metal tolerance tended to be higher in biofilm producers at different metal concentrations. The pathogens isolated from dairy and non-dairy food showed a high burden of AMR, high propensity for biofilm formation, and heavy metal tolerance, and pose an imminent threat to public health.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence:
| | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Humaira Yasmeen
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan
| | - Amina Naseer
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan
| | - Hafsa Alam
- Department of Microbiology and Molecular Genetics, The Women University, Multan 66000, Pakistan
| | - Sonia Younas
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abualgasim E. Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Khalid O. A. Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
31
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
32
|
Ballah FM, Islam MS, Rana ML, Ferdous FB, Ahmed R, Pramanik PK, Karmoker J, Ievy S, Sobur MA, Siddique MP, Khatun MM, Rahman M, Rahman MT. Phenotypic and Genotypic Detection of Biofilm-Forming Staphylococcus aureus from Different Food Sources in Bangladesh. BIOLOGY 2022; 11:biology11070949. [PMID: 36101330 PMCID: PMC9311614 DOI: 10.3390/biology11070949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is a major foodborne pathogen. The ability of S. aureus to produce biofilm is a significant virulence factor, triggering its persistence in hostile environments. In this study, we screened a total of 420 different food samples and human hand swabs to detect S. aureus and to determine their biofilm formation ability. Samples analyzed were meat, milk, eggs, fish, fast foods, and hand swabs. S. aureus were detected by culturing, staining, biochemical, and PCR. Biofilm formation ability was determined by Congo Red Agar (CRA) plate and Crystal Violet Microtiter Plate (CVMP) tests. The icaA, icaB, icaC, icaD, and bap genes involved in the synthesis of biofilm-forming intracellular adhesion compounds were detected by PCR. About 23.81% (100/420; 95% CI: 14.17−29.98%) of the samples harbored S. aureus, as revealed by detection of the nuc gene. The CRA plate test revealed 20% of S. aureus isolates as strong biofilm producers and 69% and 11% as intermediate and non-biofilm producers, respectively. By the CVMP staining method, 20%, 77%, and 3% of the isolates were found to be strong, intermediate, and non-biofilm producers. Furthermore, 21% of S. aureus isolates carried at least one biofilm-forming gene, where icaA, icaB, icaC, icaD, and bap genes were detected in 15%, 20%, 7%, 20%, and 10% of the S. aureus isolates, respectively. Bivariate analysis showed highly significant correlations (p < 0.001) between any of the two adhesion genes of S. aureus isolates. To the best of our knowledge, this is the first study in Bangladesh describing the detection of biofilm-forming S. aureus from foods and hand swabs using molecular-based evidence. Our findings suggest that food samples should be deemed a potential reservoir of biofilm-forming S. aureus, which indicates a potential public health significance.
Collapse
|
33
|
Wang Y, Liang X, Xu J, Nan L, Liu F, Duan G, Yang H. Rapid and Ultrasensitive Detection of Methicillin-Resistant Staphylococcus aureus Based on CRISPR-Cas12a Combined With Recombinase-Aided Amplification. Front Microbiol 2022; 13:903298. [PMID: 35722329 PMCID: PMC9204182 DOI: 10.3389/fmicb.2022.903298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is one of the main pathogens causing hospital and community-acquired infections, in particular, infections caused by methicillin-resistant Staphylococcus aureus (MRSA) cause a higher mortality rate than those caused by methicillin-sensitive strains, which poses a serious global public health problem. Therefore, rapid and ultrasensitive detection of patients with clinical MRSA infection and timely control of infection are essential. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) based on nucleic acid detection methods are well-known for its high specificity and sensitivity and programmability. Here, we successfully proposed a method based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA) through fluorescent readout to achieve accurate identification and highly sensitive detection of MRSA in clinical samples. Results showed that the limit of detection (LoD) of the RAA-Cas12a method could reach 10 copies/μl at 60 min of reaction. Specificity tests showed that the method could distinguish MRSA from clinically common bacteria. The results of RAA-Cas12a were consistent with that of antimicrobial susceptibility tests (AST) and polymerase chain reaction (PCR) in 83 clinical samples. These results indicated that the detection method based on RAA-Cas12a has high sensitivity and specificity, and provides important value for rapid detection of MRSA.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jie Xu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lan Nan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Fang Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Haiyan Yang
| |
Collapse
|
34
|
Four temporin-derived peptides exhibit antimicrobial and antibiofilm activities against methicillin-resistant. Acta Biochim Biophys Sin (Shanghai) 2022; 54:350-360. [PMID: 35538042 PMCID: PMC9828137 DOI: 10.3724/abbs.2022013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Temporin-GHa (GHa) was cloned from , showing a weak antimicrobial activity. In order to improve its bactericidal efficacy, GHaR6R, GHaR7R, GHaR8R and GHaR9W were designed and synthesized. Compared to the parent peptide, the GHa-derived peptides show potent antimicrobial activities against methicillin-resistant (MRSA), which is the main pathogen with high morbidity and mortality that causes various infections in humans. These peptides exert bactericidal actions on MRSA by permeabilizing the cytoplasmic membranes and damaging membrane integrity. All of the four peptides exhibit excellent stability under harsh conditions, including extreme temperature and salts. Furthermore, they inhibit the formation of biofilm and eradicate mature biofilm of MRSA. The GHa-derived peptides decrease bacterial surface hydrophobicity, autoaggregation and polysaccharide intercellular adhesion synthesis in concentration-dependent manner. Real-time quantitative reverse transcription PCR analysis revealed that the peptides downregulate the expression of adhesion genes involved in biofilm formation. Except for GHaR7R, the other three peptides have low hemolytic toxicity against human erythrocytes. In the presence of human erythrocytes, GHaR7R, GHaR8R and GHaR9W interact with MRSA preferentially. GHaR6R, GHaR8R and GHaR9W show less toxicity toward normal cells HL-7702 and hFOB1.19. These results suggest that the GHa-derived peptides may be promising antimicrobial candidates against MRSA infections.
Collapse
|
35
|
Saber T, Samir M, El-Mekkawy RM, Ariny E, El-Sayed SR, Enan G, Abdelatif SH, Askora A, Merwad AMA, Tartor YH. Methicillin- and Vancomycin-Resistant Staphylococcus aureus From Humans and Ready-To-Eat Meat: Characterization of Antimicrobial Resistance and Biofilm Formation Ability. Front Microbiol 2022; 12:735494. [PMID: 35211098 PMCID: PMC8861318 DOI: 10.3389/fmicb.2021.735494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) are zoonotic life-threatening pathogens, and their presence in food raises a public health concern. Yet, scarce data are available regarding MRSA and VRSA in both ready-to-eat (RTE) meat and food handlers. This study was undertaken to determine the frequency, antimicrobial resistance, and biofilm-forming ability of MRSA and VRSA isolated from RTE meat (shawarma and burger) and humans (food handlers, and hospitalized patients) in Zagazig city, Sharkia Governorate, Egypt. We analyzed 176 samples (112 human samples: 72 from hospitalized patients and 40 from food handlers, 64 RTE meat samples: 38 from shawarma and 26 from burger). Using phenotypic, PCR-based identification of nuc gene and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), 60 coagulase-positive S. aureus (COPS) isolates were identified in the samples as follow: RTE meat (15/64, 23.4%), hospitalized patients (33/72, 45.8%) and food handlers (12/40, 30%). All the COPS isolates were mecA positive (and thus were classified as MRSA) and multidrug resistant with multiple antibiotic resistance indices ranging from 0.25 to 0.92. Overall, resistance to cefepime (96.7%), penicillin (88.3%), were common, followed by ampicillin-sulbactam (65%), ciprofloxacin (55%), nitrofurontoin (51.7%), and gentamicin (43.3%). VRSA was detected in 30.3% of COPS hospitalized patient's isolates, 26.7% of COPS RTE meat isolates and 25% of COPS food handler's isolates. VanA, vanB, or both genes were detected in 64.7, 5.9, and 29.4% of all VAN-resistant isolates, respectively. The majority of the COPS isolates (50/60, 83.3%) have biofilm formation ability and harbored icaA (76%), icaD (74%), icaC (50%), and icaB (46%) biofilm-forming genes. The bap gene was not detected in any of the isolates. The ability of MRSA and VRSA isolates to produce biofilms in addition to being resistant to antimicrobials highlight the danger posed by these potentially virulent microorganisms persisting in RTE meat, food handlers, and patients. Taken together, good hygiene practices and antimicrobial surveillance plans should be strictly implemented along the food chain to reduce the risk of colonization and dissemination of MRSA and VRSA biofilm-producing strains.
Collapse
Affiliation(s)
- Taisir Saber
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Eman Ariny
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Sara Ramadan El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Sawasn H. Abdelatif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Askora
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdallah M. A. Merwad
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
36
|
Mupirocin-Resistant Staphylococcus aureus in Iran: A Biofilm Production and Genetic Characteristics. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7408029. [PMID: 35075429 PMCID: PMC8783719 DOI: 10.1155/2022/7408029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The spread of mupirocin-resistant Staphylococcus aureus strains in hospitals and communities is a universal challenge. Limited data is available on the genetic features of high-level mupirocin resistant- (HLMUPR-) S. aureus isolates in Tehran. In the present research, we investigated 48 high-level mupirocin resistance S. aureus by antimicrobial activity, virulence analysis, biofilm formation, multilocus sequence typing (MLST), and staphylocoagulase (SC) typing. All the HLMUPR strains were positive for mupA gene. The frequency of multidrug resistance was 97.9%. Twenty-one (43.8%) were toxinogenic with 14 producing pvl (29.2%), 5 tst (10.4%), and two eta (4.2%). Among the HLMUPR isolates, biofilm production was detected in 45 (89.6%) isolates with complete dominance clfB, clfA genes, and a noticeably high frequency fnbA (95.8%), followed by fnbB (93.8%), eno and icaD (each 83.3%), sdrC (81.3%), ebps (79.2%), icaA (75%), sdrD (66.7%), fib (60.4%), sdrE (50%), cna (41.7%), and bap (4.2%). Coagulase typing distinguished isolates into four genotypic patterns including III (50%), II (27.1%), and type IVa (22.9%). A total of three clonal complexes (CCs) and 4 sequence types (STs) including CC/ST22 as the most prevalent (52.1%), CC8/ST239 (20.8%), CC/ST8 (16.7%), and CC/ST5 (10.4%) were identified in current work. According to our analysis, nonbiofilm producer isolates belonged to CC8/ST239 (6.3%) and CC/ST8 (4.2%). Fusidic acid-resistant isolates belonged to CC/ST45 (n = 3) and CC8/ST239 (n = 1). Observations highlighted the circulation of the CC/ST22 HLMUPR S. aureus strains with strong biofilm-production ability in our hospitals, indicating the possibility of transmission of this type between community and hospital.
Collapse
|
37
|
Rihayat T, Hadi AE, Aidy N, Safitri A, Siregar JP, Cionita T, Irawan AP, Hamdan MHM, Fitriyana DF. Biodegradation of Polylactic Acid-Based Bio Composites Reinforced with Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging. Polymers (Basel) 2021; 13:4019. [PMID: 34833315 PMCID: PMC8620801 DOI: 10.3390/polym13224019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm-1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.
Collapse
Affiliation(s)
- Teuku Rihayat
- Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe 24301, Indonesia
| | - Agung Efriyo Hadi
- Mechanical Engineering Department, Faculty of Engineering, Universitas Malahayati, Bandar Lampung 35153, Indonesia;
| | - Nurhanifa Aidy
- Department of Renewable Energy Engineering, Universitas Malikussaleh, Muara Batu 24355, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Kota Medan 20222, Indonesia;
| | | | - Tezara Cionita
- Department of Mechanical Engineering, Faculty of Engineering and Quantity Surveying, INTI International University, Seremban 71800, Malaysia;
| | | | | | - Deni Fajar Fitriyana
- Department of Mechanical Engineering, Universitas Negeri Semarang, Semarang 50229, Indonesia;
| |
Collapse
|
38
|
Lin LC, Liu TP, Chang SC, Lu JJ. Characterization of New Staphylococcus haemolyticus ST42 Populations in Northern Taiwan. Microb Drug Resist 2021; 28:56-62. [PMID: 34491866 DOI: 10.1089/mdr.2019.0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Staphylococcus haemolyticus is an acquired opportunistic pathogen causing nosocomial infections. Our previous studies of S. haemolyticus showed a group of isolates that produced a significantly higher disease severity than the others. Further molecular typing showed that the sequence type (ST) 42 was the major clone among the isolates. The main aim of this study was to characterize ST42. Materials and Methods: Sixty-one and 36 isolates were collected from burn and nonburn patients, respectively. Molecular typing, antibiotic susceptibility assays, and phenotypic characterizations were performed. Results: Thirteen STs, including seven new STs, were established (ST42 to ST48). ST42 was prevalent in burn and nonburn patients, and all the pulsotype C isolates were ST42. Four of the novel STs originated from ST3, suggesting that these clonal lineages evolved locally. ST3 and ST42 showed a significant difference in clindamycin susceptibility; molecular typing showed only one MLST locus variation among seven loci in SH1431, which has been reportedly involved in the regulation of biofilm formation through Zn 2+ binding affinities. Conclusions: Seven novel S. haemolyticus STs were identified; phylogenetic analysis suggested the presence of locally evolved clonal lineages. The predominant ST42 showed weak biofilm formation abilities; other factors that cause the clonal lineage change still need further investigation.
Collapse
Affiliation(s)
- Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Medical Biotechnology and Laboratory Science and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science and College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
39
|
Muneeb KH, Sudha S, Sivaraman GK, Shome B, Cole J, Holmes M. Virulence and intermediate resistance to high-end antibiotic (teicoplanin) among coagulase-negative staphylococci sourced from retail market fish. Arch Microbiol 2021; 203:5695-5702. [PMID: 34468806 DOI: 10.1007/s00203-021-02558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
This study reports the distribution of enterotoxigenic determinants among staphylococci and the susceptibility of staphylococci to various classes of antibiotics. We observed all the isolates as resistant to beta-lactam antibiotics and a few as resistant to non-beta-lactam antibiotics such as clindamycin (47.4%), erythromycin (44.7%), gentamicin (23.7%), norfloxacin (34.2%), tetracycline (26.3%), trimethoprim-sulfamethoxazole (15.8%) etc. The resistance of S. sciuri (n = 1) and S. haemolyticus (n = 1) to rifampicin and intermediate resistance of S. gallinarum (n = 2) to teicoplanin, a high-end antibiotic, are also observed in this study. The multidrug-resistance (≥ 3 classes of antibiotics) was recorded in 23 (60.5%) isolates. The virulomes such as sea, seb, seg and sei were identified predominantly in S. haemolyticus. Surprisingly, certain isolates which were phenotypically confirmed as biofilm-producers by Congo red agar (CRA) test did not harbor biofilm-associated loci. This implies the protein-mediated mechanism of biofilm formation as an alternative to polysaccharide intercellular adhesin (PIA) in staphylococci. However, icaAD locus which encodes PIA was identified in 10 (26.3%) isolates and the eno locus, encoding elastin-binding protein which can accelerate the biofilm production, is identified in all the isolates. The possession of type V SCCmec elements by the S. haemolyticus (15.8%) raised the concern about the rapid dissemination of mecA gene to other species of staphylococci including the virulent S. aureus. In short, this study acknowledges the toxigenicity of coagulase-negative staphylococci (CoNS). Through this study, surveillance of antimicrobial resistance and transference of virulomes in staphylococci is warranted.
Collapse
Affiliation(s)
- K H Muneeb
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P. O, Willingdon Island, Kochi, Kerala, 682 029, India.,Department of Biotechnology, Faculty of Sciences, Cochin University of Science and Technology, Kochi, India
| | - S Sudha
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P. O, Willingdon Island, Kochi, Kerala, 682 029, India
| | - G K Sivaraman
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Matsyapuri P. O, Willingdon Island, Kochi, Kerala, 682 029, India.
| | - Bibek Shome
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Jennifer Cole
- Department of Geography, Royal Holloway, University of London, London, UK
| | - Mark Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Prevalence of virulent and biofilm forming ST88-IV-t2526 methicillin-resistant Staphylococcus aureus clones circulating in local retail fish markets in Assam, India. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7602. [PMID: 34300053 PMCID: PMC8304105 DOI: 10.3390/ijerph18147602] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a nosocomial bacterium causing different infectious diseases, ranging from skin and soft tissue infections to more serious and life-threatening infections such as septicaemia. S. aureus forms a complex structure of extracellular polymeric biofilm that provides a fully secured and functional environment for the formation of microcolonies, their sustenance and recolonization of sessile cells after its dispersal. Staphylococcus aureus biofilm protects the cells against hostile conditions, i.e., changes in temperature, limitations or deprivation of nutrients and dehydration, and, more importantly, protects the cells against antibacterial drugs. Drugs are increasingly becoming partially or fully inactive against S. aureus as they are either less penetrable or totally impenetrable due to the presence of biofilms surrounding the bacterial cells. Other factors, such as evasion of innate host immune system, genome plasticity and adaptability through gene evolution and exchange of genetic material, also contribute to the ineffectiveness of antibacterial drugs. This increasing tolerance to antibiotics has contributed to the emergence and rise of antimicrobial resistance (AMR), a serious problem that has resulted in increased morbidity and mortality of human and animal populations globally, in addition to causing huge financial losses to the global economy. The purpose of this review is to highlight different aspects of S. aureus biofilm formation and its overall architecture, individual biofilm constituents, clinical implications and role in pathogenesis and drug resistance. The review also discusses different techniques used in the qualitative and quantitative investigation of S. aureus biofilm and various strategies that can be employed to inhibit and eradicate S. aureus biofilm.
Collapse
Affiliation(s)
| | | | | | - Ayesha Rahman
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (S.S.); (N.K.)
| |
Collapse
|
42
|
Interference in Staphylococcus Aureus Biofilm and Virulence Factors Production by Human Probiotic Bacteria with Antimutagenic Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05934-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Jiang Y, Xu Q, Jiang L, Zheng R. Isolation and Characterization of a Lytic Staphylococcus aureus Phage WV against Staphylococcus aureus Biofilm. Intervirology 2021; 64:169-177. [PMID: 34229320 DOI: 10.1159/000515282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive, pathogenic bacterium that causes a wide range of symptoms in humans and can form biofilm, which is a multicellular community of microorganisms that attaches to nonbiological and biological surfaces. METHODS Here, we aimed to isolate and characterize an S. aureus phage and examine the bactericidal activity alone and in conjunction with streptomycin treatment. RESULTS We isolated a virulent phage, WV, from a slaughterhouse in Jiangsu, China. This strain belonged to the family Myoviridae and presented a genome size of 141,342 bp. The optimal pH of the preservation buffer was 6-7, optimal growth temperature was 37°C, and optimal multiplicity of infection was 0.01. Phage WV can sterilize most clinical strains of S. aureus that had been isolated from clinical patients in the First People's Hospital of the Yunnan Province. Against low-concentration S. aureus culture, streptomycin demonstrated a greater antibiofilm effect than that of phage WV. By contrast, in high-concentration S. aureus culture, phage WV demonstrated greater antibiofilm effect than that of streptomycin. The use of phage WV and streptomycin together had a substantially greater overall antibiofilm effect than that achieved using either component alone. CONCLUSION This study provides strong evidence for the effectiveness of phage application for the reduction of S. aureus biofilm growth and suggests that phages can be considered as a viable alternative to antibiotics in clinical settings.
Collapse
Affiliation(s)
- Yaxian Jiang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qian Xu
- Department of Blood Transfusion, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Liming Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
44
|
Efficacy of a Next Generation Quaternary Ammonium Chloride Sanitizer on Staphylococcus and Pseudomonas Biofilms and Practical Application in a Food Processing Environment. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Foodborne pathogens are known to adhere strongly to surfaces and can form biofilms in food processing facilities; therefore, their potential to contaminate manufactured foods underscores the importance of sanitation. The objectives of this study were to (1) examine the efficacy of a new-generation sanitizer (Decon7) on Staphylococcus and Pseudomonas biofilms, (2) identify biofilm bacteria from workers’ boots in relation to previous sanitizer chemistry, (3) validate the efficacy of Decon7 on biofilm from workers’ boots from an abattoir/food processing environment, and (4) compare the sensitivity of isolated boot biofilm bacteria to new- and early (Bi-Quat)-generation QAC sanitizers. Decon7 was applied at two concentrations (5%, 10%) and was shown to be effective within 1 min of exposure against enhanced biofilms of Staphylococcus spp. and Pseudomonas spp. in 96-well microplates. Decon7 was also used to treat workers’ boots that had accumulated high levels of biofilm bacteria due to ineffective sanitization. Bacteria isolated before enzyme/sanitizer treatment were identified through 16S rRNA PCR and DNA sequencing. All treatments were carried out in triplicate and analyzed by one-way RM-ANOVA or ANOVA using the Holm–Sidak test for pairwise multiple comparisons to determine significant differences (p < 0.05). The data show a significant difference between Decon7 sanitizer treatment and untreated control groups. There was a ~4–5 log reduction in Staphylococcus spp. and Pseudomonas spp. (microplate assay) within the first 1 min of treatment and also a > 3-log reduction in the bacterial population observed in the biofilms from workers’ boots. The new next-generation QAC sanitizers are more effective than prior QAC sanitizers, and enzyme pre-treatment can facilitate biofilm sanitizer penetration on food contact surfaces. The rotation of sanitizer chemistries may prevent the selective retention of chemistry-tolerant microorganisms in processing facilities.
Collapse
|
45
|
Walczak M, Michalska-Sionkowska M, Olkiewicz D, Tarnawska P, Warżyńska O. Potential of Carvacrol and Thymol in Reducing Biofilm Formation on Technical Surfaces. Molecules 2021; 26:molecules26092723. [PMID: 34066411 PMCID: PMC8125478 DOI: 10.3390/molecules26092723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/18/2023] Open
Abstract
Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70–77% and 52–75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74–88% for Pseudomonas aeruginosa and up to 86–100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40–100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80–100% for Pseudomonas aeruginosa and by about 79–100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91–100% for Pseudomonas aeruginosa and up to 95–100% for Staphylococcus aureus.
Collapse
|
46
|
Effect of sub-lethal doses of nisin on Staphylococcus aureus toxin production and biofilm formation. Toxicon 2021; 197:1-5. [PMID: 33838179 DOI: 10.1016/j.toxicon.2021.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is one of the commonest food-borne pathogens that can cause gastroenteritis owing to having several enterotoxins. Also, biofilm formation can complicate infections caused by this microorganism. Nisin is a safe food bio preservative which is usually used as an agent to prevent pathogen growth; however, it is important to identify the exact impact of nisin on the growth of S. aureus and to determine the suitable concentration needed for elimination of this pathogen in food. In this study, after MIC determination of nisin against S. aureus ATCC 29213, this strain was treated with sub-MIC (1/2) of nisin (4 μg/ml) and transcript levels of toxin-encoding (hla, SEA, SEB, and SED) and biofilm-associated (fnb, ebpS, eno, and icaA) genes were determined using Quantitative Real-time PCR at 2, 8, and 24 h post exposure. All toxin genes were down-regulated following exposure to sub-MIC of nisin, whereas biofilm-associated genes were up-regulated. The expression levels of fnb and icaA in S. aureus were highest after 8 h (4.5-fold and 6.8-fold increase, respectively), while the expression levels of eno and ebpS genes were highest after 2 h (3.3 and 4.5-fold increase, respectively). According to these results, although transcriptional levels of toxin genes were reduced, sub-MIC concentrations of nisin could trigger the expression of biofilm-associated genes in S. aureus. This can further lead to bacteriocin tolerance such that even its higher concentrations cannot kill bacterial cells after exposure to sub-lethal doses. Therefore, it is pivotal to add appropriate concentrations of nisin to food products for preservation purposes.
Collapse
|
47
|
Özdemir F, Arslan S, Eken CB. Biofilm formation, icaABCD genes and agr genotyping of Staphylococcus aureus from fish and ground beef. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2020.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractA total of 46 Staphylococcus aureus isolates from fish and ground beef were tested for the agr types, icaABCD genes, and biofilm formation at 12, 25 and 37 °C by the microtiter plate and the MTT assays. All isolates were positive for the icaABD genes, while 97.8% were positive for the icaC. All isolates produced biofilms at 37 and 25 °C, but 93.5% of them were also biofilm producers at 12 °C. There was no significant difference in biofilm formation between 25 and 37 °C using the crystal violet assay (P > 0.05). However, statistically significant differences were detected between 12 and 25 °C as well as 12 and 37 °C (P < 0.05). All isolates were significantly different in biofilm production by the MTT assay at all tested temperatures. Furthermore, a relationship between the presence of the icaABCD genes and biofilm formation was observed. The agr type I was the most prevalent (54.4%) among the isolates, followed by agr type II (41.3%) and agr type III (9.6%). In this study, the S. aureus isolates exhibited biofilm formation ability responsible for persistence of bacteria in foods, which may lead to food spoilage and human health problems.
Collapse
Affiliation(s)
- F. Özdemir
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Gölköy, Bolu, Turkey
| | - S. Arslan
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Gölköy, Bolu, Turkey
| | - C. B. Eken
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Gölköy, Bolu, Turkey
| |
Collapse
|
48
|
Kim U, Kim JH, Oh SW. Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Crit Rev Food Sci Nutr 2021; 62:5783-5793. [PMID: 33663287 DOI: 10.1080/10408398.2021.1892585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multi-species biofilms are ubiquitous worldwide and are a concern in the food industry. Multi-species biofilms have a higher resistance to antimicrobial therapies than mono-species biofilms. In addition, multi-species biofilms can cause severe foodborne diseases. To remove multi-species biofilms, controlling the formation process of extracellular polymeric substances (EPS) and quorum sensing (QS) effects is essential. EPS disruption, inhibition of QS, and disinfection have been utilized to remove multi-species biofilms. This review presents information on the formation and novel removal methods for multi-species biofilms.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| |
Collapse
|
49
|
Naorem RS, Blom J, Fekete C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 2021; 9:e10185. [PMID: 33520430 PMCID: PMC7811285 DOI: 10.7717/peerj.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a drug-resistant pathogen, capable of colonizing diverse ecological niches and causing a broad spectrum of infections related to a community and healthcare. In this study, we choose four methicillin-resistant S. aureus (MRSA) clinical isolates from Germany and Hungary based on our previous polyphasic characterization finding. We assumed that the selected strains have a different genetic background in terms of the presence of resistance and virulence genes, prophages, plasmids, and secondary metabolite biosynthesis genes that may play a crucial role in niche adaptation and pathogenesis. To clarify these assumptions, we performed a comparative genome analysis of these strains and observed many differences in their genomic compositions. The Hungarian isolates (SA H27 and SA H32) with ST22-SCCmec type IVa have fewer genes for multiple-drug resistance, virulence, and prophages reported in Germany isolates. Germany isolate, SA G6 acquires aminoglycoside (ant(6)-Ia and aph(3’)-III) and nucleoside (sat-4) resistance genes via phage transduction and may determine its pathogenic potential. The comparative genome study allowed the segregation of isolates of geographical origin and differentiation of the clinical isolates from the commensal isolates. This study suggested that Germany and Hungarian isolates are genetically diverse and showing variation among them due to the gain or loss of mobile genetic elements (MGEs). An interesting finding is the addition of SA G6 genome responsible for the drastic decline of the core/pan-genome ratio curve and causing the pan-genome to open wider. Functional characterizations revealed that S. aureus isolates survival are maintained by the amino acids catabolism and favor adaptation to growing in a protein-rich medium. The dispersible and singleton genes content of S. aureus genomes allows us to understand the genetic variation among the CC5 and CC22 groups. The strains with the same genetic background were clustered together, which suggests that these strains are highly alike; however, comparative genome analysis exposed that the acquisition of phage elements, and plasmids through the events of MGEs transfer contribute to differences in their phenotypic characters. This comparative genome analysis would improve the knowledge about the pathogenic S. aureus strain’s characterization, and responsible for clinically important phenotypic differences among the S. aureus strains.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Fekete
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
50
|
Kowalska J, MaĆkiw E, Stasiak M, Kucharek K, Postupolski J. Biofilm-Forming Ability of Pathogenic Bacteria Isolated from Retail Food in Poland. J Food Prot 2020; 83:2032-2040. [PMID: 32663301 DOI: 10.4315/jfp-20-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
ABSTRACT Biofilms have a significant impact on food safety in the food industry. Many foodborne outbreaks have been associated with pathogenic bacterial strains that can form a biofilm. The present study was conducted under the Official Control and Monitoring Program in Poland to examine the ability of pathogenic bacteria collected from retail food samples to form biofilms. Biofilm formation was assessed by qualitative detection of extracellular polymeric substances on Congo red agar, by adherence to glass with the tube method, by the crystal violet biofilm (CV) assay, and by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. A total of 40 isolates from food samples (10 strains each of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Bacillus cereus) were examined. The strains were classified as adherent, slightly adherent, or nonadherent; biofilm production was classified as weak (WBP), moderate (MBP), or strong (SBP); and metabolic activity was classified as weak (WMA), moderate (MMA), or high (HMA). The incubation conditions and time influenced the amount of biofilm formed as well as did the growth medium. In the test tubes with Luria-Bertani broth (LBB), 22.5% of the strains were adherent and 77.5% were slightly adherent. Stronger adhesion was obtained in brain heart infusion (BHI) with 2% sucrose; 60% of the isolates were classified as adherent. With the CV assay with LBB, SBP was noted for 7.5% of the strains after 24 h of incubation and for 37.5% of the strains after 48 h. In BHI plus 2% sucrose, SBP was noted for 42.5 and 37.6% of the strains after 24 and 48 h, respectively. With the MTT assay with LBB, HMA was found for 15% of the strains after 24 h of incubation and for 25% of the strains after 48 h. In BHI plus 2% sucrose, 70 and 85% of the incubated strains were classified as HMA after 24 and 48 h, respectively. HIGHLIGHTS
Collapse
Affiliation(s)
- Joanna Kowalska
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland.,(ORCID: https://orcid.org/0000-0001-9798-1068 [J.K.])
| | - ElŻbieta MaĆkiw
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Monika Stasiak
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Katarzyna Kucharek
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Jacek Postupolski
- National Institute of Public Health, National Institute of Hygiene, Food Safety Department, Laboratory of Food Microbiology, 24 Chocimska str, 00-791 Warsaw, Poland
| |
Collapse
|