1
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
2
|
Varghese S, Jisha M, Rajeshkumar K, Gajbhiye V, Alrefaei AF, Jeewon R. Endophytic fungi: A future prospect for breast cancer therapeutics and drug development. Heliyon 2024; 10:e33995. [PMID: 39091955 PMCID: PMC11292557 DOI: 10.1016/j.heliyon.2024.e33995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Globally, breast cancer is a primary contributor to cancer-related fatalities and illnesses among women. Consequently, there is a pressing need for safe and effective treatments for breast cancer. Bioactive compounds from endophytic fungi that live in symbiosis with medicinal plants have garnered significant interest in pharmaceutical research due to their extensive chemical composition and prospective medicinal attributes. This review underscores the potentiality of fungal endophytes as a promising resource for the development of innovative anticancer agents specifically tailored for breast cancer therapy. The diversity of endophytic fungi residing in medicinal plants, success stories of key endophytic bioactive metabolites tested against breast cancer and the current progress with regards to in vivo studies and clinical trials on endophytic fungal metabolites in breast cancer research forms the underlying theme of this article. A thorough compilation of putative anticancer compounds sourced from endophytic fungi that have demonstrated therapeutic potential against breast cancer, spanning the period from 1990 to 2022, has been presented. This review article also outlines the latest trends in endophyte-based drug discovery, including the use of artificial intelligence, machine learning, multi-omics approaches, and high-throughput strategies. The challenges and future prospects associated with fungal endophytes as substitutive sources for developing anticancer drugs targeting breast cancer are also being highlighted.
Collapse
Affiliation(s)
- Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M.S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajesh Jeewon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
3
|
Zscherpe P, Kalbitz J, Weber LA, Paschke R, Mäder K, von Rechenberg B, Cavalleri JMV, Meißner J, Klein K. Potent drug delivery enhancement of betulinic acid and NVX-207 into equine skin in vitro - a comparison between a novel oxygen flow-assisted transdermal application device and microemulsion gels. BMC Vet Res 2024; 20:202. [PMID: 38755639 PMCID: PMC11097577 DOI: 10.1186/s12917-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Gray horses are predisposed to equine malignant melanoma (EMM) with advancing age. Depending on the tumor's location and size, they can cause severe problems (e.g., defaecation, urination, feeding). A feasible therapy for EMM has not yet been established and surgical excision can be difficult depending on the location of the melanoma. Thus, an effective and safe therapy is needed. Naturally occurring betulinic acid (BA), a pentacyclic triterpene and its synthetic derivate, NVX-207 (3-acetyl-betulinic acid-2-amino-3-hydroxy-2-hydroxymethyl-propanoate) are known for their cytotoxic properties against melanomas and other tumors and have already shown good safety and tolerability in vivo. In this study, BA and NVX-207 were tested for their permeation potential into equine skin in vitro in Franz-type diffusion cell (FDC) experiments after incubation of 5 min, 30 min and 24 h, aiming to use these formulations for prospective in vivo studies as a treatment for early melanoma stages. Potent permeation was defined as reaching or exceeding the half maximal inhibitory concentrations (IC50) of BA or NVX-207 for equine melanoma cells in equine skin samples. The active ingredients were either dissolved in a microemulsion (ME) or in a microemulsion gel (MEG). All of the formulations were transdermally applied but the oil-in-water microemulsion was administered with a novel oxygen flow-assisted (OFA) applicator (DERMADROP TDA). RESULTS All tested formulations exceeded the IC50 values for equine melanoma cells for BA and NVX-207 in equine skin samples, independently of the incubation time NVX-207 applied with the OFA applicator showed a significant time-dependent accumulation and depot-effect in the skin after 30 min and 24 h (P < 0.05). CONCLUSIONS All tested substances showed promising results. Additionally, OFA administration showed a significant accumulation of NVX-207 after 30 min and 24 h of incubation. Further in vivo trials with OFA application are recommended.
Collapse
Affiliation(s)
- Paula Zscherpe
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Jutta Kalbitz
- Biosolutions Halle GmbH, Weinbergweg 22, Halle (Saale), 06120, Germany
| | - Lisa A Weber
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover, 30559, Germany
| | - Reinhard Paschke
- BioCenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale), 06120, Germany
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Jessika-M V Cavalleri
- Equine Internal Medicine, Clinical Centre for Equine Health and Research, Clinical Department for Small Animals and Horses, University of Veterinary Medicine Vienna (Vetmeduni), Veterinärplatz 1, Vienna, 1210, Austria.
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hannover, 30559, Germany
| | - Karina Klein
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| |
Collapse
|
4
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
5
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
6
|
Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia. Metabolites 2023; 13:metabo13020249. [PMID: 36837867 PMCID: PMC9962727 DOI: 10.3390/metabo13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
The objective of this study is to describe the separation and identification of one new phenolic and 19 known compounds from Vitex rotundifolia. Their structures were determined based on spectroscopic (NMR, CD, and MS) data analysis or Mosher's method, and were compared with those reported in the literature. These isolates were then evaluated for their anti-inflammatory and antioxidant activities based on the inhibition of nitric oxide (NO) and interleukin (IL)-8 production in lipopolysaccharide (LPS)-stimulated cells (RAW264.7 and HT-29) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities, respectively. In the NO assay, compounds 12-14 showed strong inhibition with compounds 10 and 15 displaying significant inhibition. In the IL-8 assay, compounds 8, 9, 13, 14, 19, and 20 exhibited potential to inhibit IL-8 production and other compounds displayed moderate inhibition. An in silico docking approach also revealed strong binding affinities for protein-ligand complexes of these active compounds against IL-8 production. The docking results were correlated with the experimental data of the IL-8 assay. Thus, these active compounds should be considered as candidates for further in vivo studies. This study implies the potential of new and active chemicals isolated from V. rotundifolia and provides evidence to support the development of active fractions and constituents into functional products targeting inflammatory diseases the future.
Collapse
|
7
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
8
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
9
|
Samanta SK, Choudhury P, Sarma PP, Gogoi B, Gogoi N, Devi R. Dietary phytochemicals/nutrients as promising protector of breast cancer development: a comprehensive analysis. Pharmacol Rep 2022; 74:583-601. [PMID: 35661126 DOI: 10.1007/s43440-022-00373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Genetic change, particularly epigenetic alteration, is one of the imperative factors for sporadic breast cancer development in the worldwide population of women. The DNA methylation process is essential and natural for human cellular renewal and tissue homeostasis, but its dysregulation contributes to many pathological changes, including breast tumorigenesis. Chemopreventive agents mainly protect the abnormal DNA methylation either by hindering the division of pre-malignant cells or looming the DNA damage, which leads to malignancy. The present review article is about understanding the potential role of dietary phytochemicals in breast cancer prevention. Accordingly, a literature search of the published article until August 2021 has been performed. Further, we have investigated the binding affinity of different phytochemicals isolated from diverse dietary sources against the various oncogenic proteins related to breast cancer initiation to understand the common target(s) in breast cancer prevention mechanisms. Various small phytochemicals, especially dietary phytochemicals including sulforaphane, mahanine, resveratrol, linolenic acid, diallyl sulfide, benzyl/phenethyl isothiocyanate, etc. are being investigated as the chemopreventive agent to manage breast cancer development, and some of them have shown promising outcomes in the cited research. In this present review, we discuss the recent advancement in acceptance of such types of potential dietary phytochemicals as a chemopreventive agent against breast cancer development and their inner lining mechanism. The critical clinical trials and cohort studies have also been considered to understand the progress in contemporary perspectives.
Collapse
Affiliation(s)
- Suman Kumar Samanta
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| | - Paramita Choudhury
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Partha Pratim Sarma
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Rajlakshmi Devi
- Traditional and Modern Drug Discovery and Diseases Diagnosis Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
10
|
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, Mokhtari K, Reyes-Zurita FJ, Peragón-Sánchez J, Lupiáñez JA. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072341. [PMID: 35408740 PMCID: PMC9000726 DOI: 10.3390/molecules27072341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.
Collapse
Affiliation(s)
- Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Khalida Mokhtari
- Department of Biology, Faculty of Sciences, Mohammed I University, Oujda BP 717 60000, Morocco;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Juan Peragón-Sánchez
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
- Correspondence: ; Tel.: +34-958-243-089; Fax: +34-958-249-945
| |
Collapse
|
11
|
A functional SNP rs895819 on pre-miR-27a is associated with bipolar disorder by targeting NCAM1. Commun Biol 2022; 5:309. [PMID: 35379867 PMCID: PMC8980034 DOI: 10.1038/s42003-022-03263-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
The aberrant expression or genomic mutations of microRNA are associated with several human diseases. This study analyzes the relationship between genetic variations of miRNA and schizophrenia or bipolar disorder. We performed case-control studies for ten SNPs in a total sample of 1584 subjects. All these ten SNPs were on or near mature microRNAs. We identified the association between bipolar disorder and the T/C polymorphism at rs895819. To illustrate the function of miR-27a, we constructed several miR-27a knockout (KO) cell lines, determined candidates of miR-27a, and then verified NCAM1 as a target gene of miR-27a. Further studies revealed that the T/C polymorphism on miR-27a led to the differential expression of mature and precursor miR-27a without affecting the expression of primary miR-27a. Furthermore, the C mutation on pre-miR-27a suppresses cell migration and dopamine expression levels. Our study highlights the importance of miR-27a and its polymorphism at rs895819 in bipolar disorder. A T/C variant in miR-27a is associated with bipolar disorder, potentially by reducing the ability of this microRNA to target important neurodevelopmental genes like NCAM1.
Collapse
|
12
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
14
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
15
|
Lombrea A, Scurtu AD, Avram S, Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Dehelean CA, Soica C, Danciu C. Anticancer Potential of Betulonic Acid Derivatives. Int J Mol Sci 2021; 22:3676. [PMID: 33916089 PMCID: PMC8037575 DOI: 10.3390/ijms22073676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have evidenced that several natural compounds, belonging to the phytochemical classes of alkaloids, terpenes, phenols and flavonoids, are effective for the management of various types of cancer. Latest research has proven that natural products and their semisynthetic variants may serve as a starting point for new drug candidates with a diversity of biological and pharmacological activities, designed to improve bioavailability, overcome cellular resistance, and enhance therapeutic efficacy. This review was designed to bring an update regarding the anticancer potential of betulonic acid and its semisynthetic derivatives. Chemical derivative structures of betulonic acid including amide, thiol, and piperidine groups, exert an amplification of the in vitro anticancer potential of betulonic acid. With the need for more mechanistic and in vivo data, some derivatives of betulonic acids may represent promising anticancer agents.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Alexandra Denisa Scurtu
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Uldis Peipiņš
- Nature Science Technologies Ltd., Saules Str. 19, LV-3601 Ventspils, Latvia;
| | - Cristina Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Pharmaceutical Chemistry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| |
Collapse
|
16
|
John R, Dalal B, Shankarkumar A, Devarajan PV. Innovative Betulin Nanosuspension exhibits enhanced anticancer activity in a Triple Negative Breast Cancer Cell line and Zebrafish angiogenesis model. Int J Pharm 2021; 600:120511. [PMID: 33766639 DOI: 10.1016/j.ijpharm.2021.120511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
We present a nanosuspension of betulin, a BCS class II anticancer drug, particularly effective against resistant breast cancer. As anticancer efficacy of betulin is hampered by poor aqueous solubility, a nanosuspension with surface area was considered to enhance efficacy. An innovative approach wherein the betulin nanosuspension is generated instantaneously in situ, by adding a betulin preconcentrate (BeTPC) comprising drug and excipients, to aqueous medium, is successfully demonstrated. The optimal BeTPC when added to isotonic dextrose solution instantaneously generated an in situ nanosuspension (BeTNS-15) with high precipitation efficiency (92.7 ± 1.21%), average particle size (383.74 ± 7.24 nm) and good stability as per ICH guidelines. TEM revealed elongated particles while DSC and XRD indicated partial amorphization. Significantly higher cytotoxicity of BeTNS-15 (IC50 38.44 µg/ml) compared to betulin (BetS) (IC50 69.54 µg/ml) in the resistant triple negative human breast cancer cell line MDA-MB-231, was attributed to high intracellular uptake confirmed by HPLC and Imaging Flow cytometry (IFC). IFC confirmed superior anti-cancer efficacy of BeTNS-15 mediated by mitochondrial membrane disruption and inhibition of the G0/G1 phase. BeTNS-15 also exhibited significantly greater anti-angiogenic efficacy (p < 0.05) in the zebrafish model confirming superior efficacy. Simplicity of the innovative in situ approach coupled with superior efficacy proposes BeTNS as an innovative and highly promising anticancer formulation.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga East, Mumbai, Maharashtra 400019, India
| | - Bhavik Dalal
- Transfusion Transmitted Diseases Department, ICMR-National Institute of Immunohaematology, KEM Hospital Campus, Parel, Mumbai, Maharashtra 400012, India
| | - Aruna Shankarkumar
- Transfusion Transmitted Diseases Department, ICMR-National Institute of Immunohaematology, KEM Hospital Campus, Parel, Mumbai, Maharashtra 400012, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga East, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
17
|
Aswathy M, Banik K, Parama D, Sasikumar P, Harsha C, Joseph AG, Sherin DR, Thanathu MK, Kunnumakkara AB, Vasu RK. Exploring the Cytotoxic Effects of the Extracts and Bioactive Triterpenoids from Dillenia indica against Oral Squamous Cell Carcinoma: A Scientific Interpretation and Validation of Indigenous Knowledge. ACS Pharmacol Transl Sci 2021; 4:834-847. [PMID: 33860206 DOI: 10.1021/acsptsci.1c00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Triterpenoids are ubiquitously distributed secondary metabolites, primarily scrutinized as a source of medication and preventive measures for various chronic diseases. The ease of isolation and excellent pharmacological properties of triterpenoids are notable reasons behind the exponential rise of extensive research on the bioactive triterpenoids over the past few decades. Herein, we attempted to explore the anticancer potential of the fruit extract of the ethnomedicinal plant Dillenia indica against oral squamous cell carcinoma (OSCC) and have exclusively attributed the efficacy of the extracts to the presence of two triterpenoids, namely, betulinic acid (BA) and koetjapic acid (KA). Preliminary in vitro screening of both BA and KA unveiled that the entities could impart cytotoxicity and induce apoptosis in OSCC cell lines, which were further well-supported by virtual screening based on ligand binding affinity and molecular dynamic simulations. Additionally, the aforementioned metabolites could significantly modulate the critical players such as Akt/mTOR, NF-κB, and JAK/STAT3 signaling pathways involved in the regulation of important hallmarks of cancer like cell survival, proliferation, invasion, angiogenesis, and metastasis. The present findings provide insight and immense scientific support and integrity to a piece of indigenous knowledge. However, in vivo validation is a requisite for moving to clinical trials and developing it as a commercial drug.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Parameswaran Sasikumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Daisy R Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram 695581, India
| | - Manojkumar K Thanathu
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management-Kerala (IIITM-K), Thiruvananthapuram 695581, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, Assam, India
| | - Radhakrishnan Kokkuvayil Vasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Malík M, Velechovský J, Tlustoš P. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia 2021; 151:104845. [PMID: 33684460 DOI: 10.1016/j.fitote.2021.104845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
The importance of natural raw materials has grown recently because of their ready availability, renewable nature, biocompatibility and controllable degradability. One such group of plant-derived substances includes the triterpenoid acids, terpenic compounds consisting of six isoprene units, a carboxyl group and other functional groups producing various isomers. Most can be easily extracted from different parts of the plant and modified successfully. By themselves or as aglycones (genins) of triterpene saponins, they have potentially useful pharmaceutical activity. This review focuses on the supramolecular properties of triterpenoid acids with regard to their subsequent use as biocompatible nanocarriers. The review also considers the current list of pentacyclic triterpene acids for which molecular self-assembly has been confirmed without the need for structural modification.
Collapse
Affiliation(s)
- Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Jiří Velechovský
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| |
Collapse
|
19
|
Şoica C, Voicu M, Ghiulai R, Dehelean C, Racoviceanu R, Trandafirescu C, Roșca OJ, Nistor G, Mioc M, Mioc A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front Endocrinol (Lausanne) 2021; 11:612396. [PMID: 33552000 PMCID: PMC7859451 DOI: 10.3389/fendo.2020.612396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex hormone-dependent cancers currently contribute to the high number of cancer-related deaths worldwide. The study and elucidation of the molecular mechanisms underlying the progression of these tumors was a double-edged sword, leading to the expansion and development of new treatment options, with the cost of triggering more aggressive, therapy resistant relapses. The interaction of androgen, estrogen and progesterone hormones with specific receptors (AR, ER, PR) has emerged as a key player in the development and progression of breast, ovarian, prostate and endometrium cancers. Sex hormone-dependent cancers share a common and rather unique carcinogenesis mechanism involving the active role of endogenous and exogenous sex hormones to maintain high mitotic rates and increased cell proliferation thus increasing the probability of aberrant gene occurrence and accumulation highly correlated with abnormal cell division and the occurrence of malignant phenotypes. Cancer related hormone therapy has evolved, currently being associated with the blockade of other signaling pathways often associated with carcinogenesis and tumor progression in cancers, with promising results. However, despite the established developments, there are still several shortcomings to be addressed. Triterpenes are natural occurring secondary metabolites biosynthesized by various pathways starting from squalene cyclization. Due to their versatile therapeutic potential, including the extensively researched antiproliferative effect, these compounds are most definitely a cornerstone in the research and development of new natural/semisynthetic anticancer therapies. The present work thoroughly describes the ongoing research related to the antitumor activity of triterpenes in sex hormone-dependent cancers. Also, the current review highlights both the biological activity of various triterpenoid compounds and their featured mechanisms of action correlated with important chemical structural features.
Collapse
Affiliation(s)
- Codruţa Şoica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Janina Roșca
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Vascular Surgery, Pius Brinzeu Timisoara City Emergency Clinical Hospital, Timisoara, Romania
| | - Gabriela Nistor
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
20
|
Petrenko M, Güttler A, Funtan A, Keßler J, Emmerich D, Paschke R, Vordermark D, Bache M. Combined 3-O-acetylbetulin treatment and carbonic anhydrase IX inhibition results in additive effects on human breast cancer cells. Chem Biol Interact 2021; 333:109326. [PMID: 33245928 DOI: 10.1016/j.cbi.2020.109326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia plays a key role in tumor progression and resistance to radiotherapy. Expression of the transmembrane-tethered enzyme carbonic anhydrase IX (CA IX) is strongly induced by hypoxia. High CA IX expression levels correlate with poor prognosis in cancer patients. Previously, we showed that the downregulation of CA IX expression by siRNA interference and the inhibition of CA IX activity results in increased cytotoxicity, inhibition of migration and radiosensitization of hypoxic cancer cells. Betulinic acid (BA) is a natural compound derived from birch bark. It has shown promising anti-tumor effects due to its cancer cell specific cytotoxic properties. We have shown that BA inhibits the HIF-1α pathway, resulting in apoptosis, inhibition of migration and enhanced cytotoxicity of breast cancer cells. In this study, we investigate the effects of the novel betulin derivative 3-O-acetylbetulin (3-AC) and carbonic anhydrase inhibitors (CAI) octyl disulfamate (OCT) or 4-(3-[4-fluorophenyl]ureido)benzenesulfonamide (SLC-0111), on cellular and radiobiological parameters in MDA-MB-231 and MCF-7 cells. Treatment with 3-AC or OCT alone only caused moderate cytotoxicity, reduction in cell migration, ROS production and DNA damage. However, the combined treatment with 3-AC and CAI strongly enhanced radiosensitivity, increased cytotoxicity, inhibited cell motility and enhanced DNA damage. Our findings suggest that the combination of two bioactive drugs 3-AC and a CAI, such as OCT or SLC-0111, could be a promising therapeutic approach for targeting hypoxic tumor cells.
Collapse
Affiliation(s)
- Marina Petrenko
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Antje Güttler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Anne Funtan
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Daniel Emmerich
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Reinhard Paschke
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| |
Collapse
|
21
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
22
|
Guerra ÂR, Paulino AF, Castro MM, Oliveira H, Duarte MF, Duarte IF. Triple Negative Breast Cancer and Breast Epithelial Cells Differentially Reprogram Glucose and Lipid Metabolism upon Treatment with Triterpenic Acids. Biomolecules 2020; 10:E1163. [PMID: 32784479 PMCID: PMC7464159 DOI: 10.3390/biom10081163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Plant-derived pentacyclic triterpenic acids (TAs) have gained increasing attention due to their multiple biological activities. Betulinic acid (BA) and ursolic acid (UA) modulate diverse pathways in carcinogenesis, offering increased changes of success in refractory cancers, such as triple negative breast cancer (TNBC). The present work aimed to assess the metabolic effects of BA and UA in MDA-MB-231 breast cancer cells (TNBC model), as well as in MCF-10A non-cancer breast epithelial cells, with a view to unveiling the involvement of metabolic reprogramming in cellular responses to these TAs. Cell viability and cell cycle analyses were followed by assessment of changes in the cells exo- and endometabolome through 1H NMR analysis of cell culture medium supernatants, aqueous and organic cell extracts. In MDA-MB-231 cells, BA was suggested to induce a transient upregulation of glucose consumption and glycolytic conversion, tricarboxylic acid (TCA) cycle intensification, and hydrolysis of neutral lipids, while UA effects were much less pronounced. In MCF-10A cells, boosting of glucose metabolism by the two TAs was accompanied by diversion of glycolytic intermediates to the hexosamine biosynthetic pathway (HBP) and the synthesis of neutral lipids, possibly stored in detoxifying lipid droplets. Additionally, breast epithelial cells intensified pyruvate consumption and TCA cycle activity, possibly to compensate for oxidative impairment of pyruvate glycolytic production. This study provided novel insights into the metabolic effects of BA and UA in cancer and non-cancer breast cells, thus improving current understanding of the action of these compounds at the molecular level.
Collapse
Affiliation(s)
- Ângela R. Guerra
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
| | - Ana F. Paulino
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
| | - Maria M. Castro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria F. Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908 Beja, Portugal; (A.F.P.); (M.M.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, CEBAL, 7801-908 Beja, Portugal
| | - Iola F. Duarte
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
23
|
Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest New Drugs 2020; 38:1743-1754. [PMID: 32767162 DOI: 10.1007/s10637-020-00979-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Naringenin (NG) is a natural antioxidant flavonoid which is isolated from citrus fruits, and has been reported to inhibit colon cancer proliferation. However, the effects of NG treatment on glioma remain to be elucidated. The present study aimed to explore the effects of NG on glioma in vitro and in vivo. Also, the interactions between NG and APO2 ligand (APO2L; also known as tumor necrosis factor-related apoptosis-inducing ligand) were investigated in glioma. A synergistic effect of NG and APO2L combination on apoptotic induction was observed, though glioma cells were insensitive to APO2L alone. After NG treatment, glioma cells resumed the sensitivity to APO2L and cell apoptosis was induced via the activation of caspases, elevation of decoy receptors 4 and 5 (DR4 and DR5) and induction of p53. Coadministration of NG and APO2L decreased levels of anti-apoptotic B cell lymphoma 2 (Bcl-2) family members Bcl-2 and Bcl-extra large (Bcl-xL), while increased levels of proapoptotic factors Bcl-2-associated agonist of cell death (Bad) and Bcl-2 antagonist/killer 1 (Bak). Furthermore, an in vivo mouse xenograft model demonstrated that NG and APO2L cotreatment markedly suppressed glioma growth by activating apoptosis in tumor tissues when compared with NG or APO2L monotherapy. The present study provides a novel therapeutic strategy for glioma by potentiating APO2L-induced apoptosis via the combination with NG in glioma tumor cells.
Collapse
|
24
|
Noratto G, Layosa MA, Lage NN, Atienza L, Ivanov I, Mertens-Talcott SU, Chew BP. Antitumor potential of dark sweet cherry sweet (Prunus avium) phenolics in suppressing xenograft tumor growth of MDA-MB-453 breast cancer cells. J Nutr Biochem 2020; 84:108437. [PMID: 32615370 DOI: 10.1016/j.jnutbio.2020.108437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
This study investigated in vivo the antitumor activity of dark sweet cherry (DSC) whole extracted phenolics (WE) and fractions enriched in anthocyanins (ACN) or proanthocyanidins (PCA) in athymic mice xenografted with MDA-MB-453 breast cancer cells. Mice were gavaged with WE, ACN or PCA extracts (150 mg/kg body weight/day) for 36 days. Results showed that tumor growth was suppressed at similar levels by WE, ACN and PCA compared to control group (C) without signs of toxicity or significant changes in mRNA oncogenic biomarkers in tumors or mRNA invasive biomarker in distant organs. Tumor protein analyses showed that WE, ACN and PCA induced at similar levels the stress-regulated ERK1/2 phosphorylation, known to be linked to apoptosis induction. However, ACN showed enhanced antitumor activity through down-regulation of total oncogenic and stress-related Akt, STAT3, p38, JNK and NF-kB proteins. In addition, immunohistochemistry analysis of Ki-67 revealed inhibition of tumor cell proliferation with potency WE ≥ ACN ≥ PCA. Differential quantitative proteomic high-resolution nano-HPLC tandem mass spectrometry analysis of tumors from ACN and C groups revealed the identity of 66 proteins associated with poor breast cancer prognosis that were expressed only in C group (61 proteins) or differentially up-regulated (P<.05) in C group (5 proteins). These findings revealed ACN-targeted proteins associated to tumor growth and invasion and the potential of DSC ACN for breast cancer treatment. Results lead to a follow-up study with highly immunodeficient mice/invasive cell line subtype and advanced tumor development to validate the anti-invasive activity of DSC anthocyanins.
Collapse
Affiliation(s)
- Giuliana Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| | - Marjorie A Layosa
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Nara N Lage
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Liezl Atienza
- Institute of Human Nutrition and Food, College of Human Ecology, University of the Philippines Los Baños, Laguna, Philippines
| | - Ivan Ivanov
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Boon P Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
An T, Zha W, Zi J. Biotechnological production of betulinic acid and derivatives and their applications. Appl Microbiol Biotechnol 2020; 104:3339-3348. [DOI: 10.1007/s00253-020-10495-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
|
26
|
Lage NN, Layosa MAA, Arbizu S, Chew BP, Pedrosa ML, Mertens-Talcott S, Talcott S, Noratto GD. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8781690. [PMID: 31531187 PMCID: PMC6721262 DOI: 10.1155/2019/8781690] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022]
Abstract
Targeting aberrant metabolism is a promising strategy for inhibiting cancer growth and metastasis. Research is now geared towards investigating the inhibition of glycolysis for anticancer drug development. Betulinic acid (BA) has demonstrated potent anticancer activities in multiple malignancies. However, its regulatory effects on glycolysis and the underlying molecular mechanisms are still unclear. BA inhibited invasion and migration of highly aggressive breast cancer cells. Moreover, BA could suppress aerobic glycolysis of breast cancer cells presenting as a reduction of lactate production, quiescent energy phenotype transition, and downregulation of aerobic glycolysis-related proteins. In this study, glucose-regulated protein 78 (GRP78) was also identified as the molecular target of BA in inhibiting aerobic glycolysis. BA treatment led to GRP78 overexpression, and GRP78 knockdown abrogated the inhibitory effect of BA on glycolysis. Further studies demonstrated that overexpressed GRP78 activated the endoplasmic reticulum (ER) stress sensor PERK. Subsequent phosphorylation of eIF2α led to the inhibition of β-catenin expression, which resulted in the inhibition of c-Myc-mediated glycolysis. Coimmunoprecipitation assay revealed that BA interrupted the binding between GRP78 and PERK, thereby initiating the glycolysis inhibition cascade. Finally, the lung colonization model validated that BA inhibited breast cancer metastasis in vivo, as well as suppressed the expression of aerobic glycolysis-related proteins. In conclusion, our study not only provided a promising drug for aerobic glycolysis inhibition but also revealed that GRP78 is a novel molecular link between glycolytic metabolism and ER stress during tumor metastasis.
Collapse
|
28
|
Huang J, Zha W, An T, Dong H, Huang Y, Wang D, Yu R, Duan L, Zhang X, Peters RJ, Dai Z, Zi J. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Appl Microbiol Biotechnol 2019; 103:7029-7039. [DOI: 10.1007/s00253-019-10004-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022]
|
29
|
Lee D, Lee SR, Kang KS, Ko Y, Pang C, Yamabe N, Kim KH. Betulinic Acid Suppresses Ovarian Cancer Cell Proliferation through Induction of Apoptosis. Biomolecules 2019; 9:E257. [PMID: 31277238 PMCID: PMC6681197 DOI: 10.3390/biom9070257] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the leading causes of cancer deaths worldwide in women, and the most malignant cancer among the different gynecological cancers. In this study, we explored potentially anticancer compounds from Cornus walteri (Cornaceae), the MeOH extract of which has been reported to show considerable cytotoxicity against several cancer cell lines. Phytochemical investigations of the MeOH extract of the stem and stem bark of C. walteri by extensive application of chromatographic techniques resulted in the isolation of 14 compounds (1-14). The isolated compounds were evaluated for inhibitory effects on the viability of A2780 human ovarian carcinoma cells and the underlying molecular mechanisms were investigated. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the anticancer effects of compounds 1-14 on A2780 cells, which showed that compound 11 (betulinic acid) reduced the viability of these cells in a concentration-dependent manner and had an half maximal (50%) inhibitory concentration (IC50) of 44.47 μM at 24 h. Nuclear staining and image-based cytometric assay were carried out to detect the induction of apoptosis by betulinic acid. Betulinic acid significantly increased the condensation of nuclei and the percentage of apoptotic cells in a concentration-dependent manner in A2780 cells. Western blot analysis was performed to investigate the underlying mechanism of apoptosis. The results indicated that the expression levels of cleaved caspase-8, -3, -9, and Bax were increased in A2780 cells treated with betulinic acid, whereas those of Bcl-2 were decreased. Thus, we provide the experimental evidence that betulinic acid can induce apoptosis in A2780 cells through both mitochondria-dependent and -independent pathways and suggest the potential use of betulinic acid in the development of novel chemotherapeutics for ovarian cancer therapy.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Yuri Ko
- Department of Obstetrics and Gynecology, University of Ulsan, Asan Medical Center, Seoul 05505, Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
30
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
31
|
Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway. Biochem Pharmacol 2019; 161:149-162. [DOI: 10.1016/j.bcp.2019.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
|
32
|
Kontomanolis EN, Fasoulakis Z, Papamanolis V, Koliantzaki S, Dimopoulos G, Kambas NJ. The Impact of microRNAs in Breast Cancer Angiogenesis and Progression. Microrna 2019; 8:101-109. [PMID: 30332982 DOI: 10.2174/2211536607666181017122921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/22/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The study aims to review the recent data considering the expression profile and the role of microRNAs in breast tumorigenesis, and their impact on -the vital for breast cancer progression- angiogenesis. METHODS PubMed was searched for studies focused on data that associate microRNA with breast cancer, using the terms ''breast", "mammary gland", "neoplasia'', "angiogenesis" and ''microRNA'' between 1997-2018. RESULTS Aberrant expression of several circulating and tissue miRNAs is observed in human breast neoplasms with the deregulation of several miRNAs having a major participation in breast cancer progression. Angiogenesis seems to be directly affected by either overexpression or down regulation of many miRNAs, defining the overall prognostic rates. Many miRNAs differentially expressed in breast cancer that reveal a key role in suppression - progression and metastasis of breast cancer along with the contribution of the EGF, TNF-a and EGF cytokines. Conclusion Angiogenesis has proven to be vital for tumor development and metastasis while microRNAs are proposed to have multiple biological roles, including participation in immunosuppressive, immunomodulatory and recent studies reveal their implication in angiogenesis and its possible use as prognostic factors in cancer Even though larger studies are needed in order to reach safe conclusions, important steps are made that reveal the connection of serum microRNA expression to the angiogenic course of breast cancer, while miRNAs could be potential prognostic factors for the different breast cancer types.
Collapse
Affiliation(s)
- Emmanuel N. Kontomanolis
- Department of Obstetrics & Gynecology, Democritus University in Alexandroupolis, Dragana, Greece
| | - Zacharias Fasoulakis
- Department of Obstetrics & Gynecology, Democritus University in Alexandroupolis, Dragana, Greece
| | | | - Sofia Koliantzaki
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| | - Georgios Dimopoulos
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| | - Nikolaos J. Kambas
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| |
Collapse
|
33
|
Kumar P, Bhadauria AS, Singh AK, Saha S. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci 2018; 209:24-33. [PMID: 30076920 DOI: 10.1016/j.lfs.2018.07.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 01/11/2023]
Abstract
A natural product betulinic acid (BA) has gained a huge significance in the recent years for its strong cytotoxicity. Surprisingly, in spite of being an interesting cancer protecting agent on a variety of tumor cells, the normal cells and tissues are rarely affected by BA. Betulinic acid and analogues (BAs) generally exert through the mechanisms that provokes an event of direct cell death and bypass the resistance to normal chemotherapeutics. Although the major mechanism associated with its ability to induce direct cell death is mitochondrial apoptosis, there are several other mechanisms explored recently. Importantly, mathematical modeling of apoptosis has been an important tool to explore the precise mechanism involved in mitochondrial apoptosis. Thus, this review is an endeavor to sum up the molecular mechanisms underlying the action of BA and future directions to apply mathematical modeling technique to better understand the precise mechanism of BA-induced apoptosis. The last section of the review encompasses the plausible structural modifications and formulations to enhance the therapeutic efficacy of BA.
Collapse
Affiliation(s)
- Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Archana S Bhadauria
- Department of Mathematics and Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|
34
|
Yang C, Li Y, Fu L, Jiang T, Meng F. Betulinic acid induces apoptosis and inhibits metastasis of human renal carcinoma cells in vitro and in vivo. J Cell Biochem 2018; 119:8611-8622. [PMID: 29923216 DOI: 10.1002/jcb.27116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/04/2018] [Indexed: 11/07/2022]
Abstract
Betulinic acid (BA), a natural product with a broad range of biological properties, is a lupane-type pentacyclic triterpene isolated from various plants. Evidence is accumulating that BA is cytotoxic against multiple types of human cancer cells; however, its effects on renal carcinoma cells remain obscure. This study aimed to evaluate the anticancer activity of BA in human renal cancer cells in vitro and in vivo. In the current study, we found that BA inhibited renal cancer cell proliferation in a time-dependent and dose-dependent manner in vitro. Moreover, flow cytometry analysis revealed that BA affected the survival of renal cancer cells via the induction of apoptosis. Western blot analysis showed that the occurrence of apoptosis was associated with upregulation of Bcl2-associated X protein and cleaved caspase-3 and downregulation of B-cell lymphoma 2 in renal cancer cells. Additionally, BA treatment augmented the production of reactive oxygen species and induced a significant loss of mitochondrial membrane potential in renal cancer cells, suggesting that BA may trigger apoptosis via the mitochondria-mediated apoptotic pathway. Furthermore, the migrative and invasive capabilities of renal cancer cells were markedly repressed by BA treatment, which was related to upregulation of matrix metalloproteinase (MMP)2, MMP9, and vimentin, and downregulation of tissue inhibitor of metalloproteinase 2 and E-cadherin. Notably, administration of BA retarded tumor growth in 786-O-bearing mice in vivo. Taken together, our results demonstrated the anticancer potential of BA in human renal cancer cells by triggering apoptosis and suppressing migration and invasion.
Collapse
Affiliation(s)
- Chunming Yang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yan Li
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Liye Fu
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tao Jiang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Fandong Meng
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis 2018; 9:636. [PMID: 29802332 PMCID: PMC5970196 DOI: 10.1038/s41419-018-0669-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
Abstract
Stress-induced cellular defense machinery has a critical role in mediating cancer drug resistance, and targeting stress-related signaling has become a novel strategy to improve chemosensitivity. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid with potent anticancer bioactivities in multiple malignancies, whereas its underlying mechanisms remain unclear. Here in, we found that BA has synergistic effects with taxol to induce breast cancer cells G2/M checkpoint arrest and apoptosis induction, but had little cytotoxicity effects on normal mammary epithelial cells. Drug affinity responsive target stability (DARTS) strategy further identified glucose-regulated protein 78 (GRP78) as the direct interacting target of BA. BA administration significantly elevated GRP78-mediated endoplasmic reticulum (ER) stress and resulted in the activation of protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2a/CCAAT/enhancer-binding protein homologous protein apoptotic pathway. GRP78 silencing or ER stress inhibitor salubrinal administration was revealed to abolish the anticancer effects of BA, indicating the critical role of GRP78 in mediating the bioactivity of BA. Molecular docking and coimmunoprecipitation assay further demonstrated that BA might competitively bind with ATPase domain of GRP78 to interrupt its interaction with ER stress sensor PERK, thereby initiating the downstream apoptosis cascade. In vivo breast cancer xenografts finally validated the chemosensitizing effects of BA and its biofunction in activating GRP78 to trigger ER stress-mediated apoptosis. Taken together, our study not only uncovers GRP78 as a novel target underlying the chemosensitizing effects of BA, but also highlights GRP78-based targeting strategy as a promising approach to improve breast cancer prognosis.
Collapse
|
36
|
Chen J, Zhang X, Wang Y, Ye Y, Huang Z. Differential ability of formononetin to stimulate proliferation of endothelial cells and breast cancer cells via a feedback loop involving MicroRNA-375, RASD1, and ERα. Mol Carcinog 2018; 57:817-830. [PMID: 29722068 DOI: 10.1002/mc.22531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/24/2016] [Indexed: 01/12/2023]
Abstract
For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Jian Chen
- School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xing Zhang
- School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yong Wang
- School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yu Ye
- Department of Emergency, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoquan Huang
- Department of Pathology, Guilin Medical University, Guilin, China
| |
Collapse
|
37
|
Lup-20(29)-en-3β,28-di-yl-nitrooxy acetate affects MCF-7 proliferation through the crosstalk between apoptosis and autophagy in mitochondria. Cell Death Dis 2018; 9:241. [PMID: 29445224 PMCID: PMC5833777 DOI: 10.1038/s41419-017-0255-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
Betulin (BT), a pentacyclic lupine-type triterpenoid natural product, possesses antitumor activity in various types of cancers. However, its clinical development was discouraged due to its low biological activities and poor solubility. We prepared lup-20(29)-en-3β,28-di-yl-nitrooxy acetate (NBT), a derivative of BT, that was chemically modified at position 3 of ring A and C-28 by introducing a NO-releasing moiety. This study mainly explored the mechanism of NBT in treating breast cancer through the crosstalk between apoptosis and autophagy in mitochondria. NBT possessed a potent antiproliferative activity in MCF-7 cells both in vitro and in vivo. Mechanically, NBT affected cell death through the mitochondrial apoptosis pathway and autophagy. NBT induced cell cycle arrest in the G0/G1 phase by decreasing the expression of cyclin D1. It also induced mitochondrial apoptosis by increasing the expression of Bax, caspase-9, and poly(ADP-ribose) polymerase and mitochondrial membrane potential loss and leaks of cytochrome c (Cyt C) from mitochondria in MCF-7 cells and decreasing the expression of mitochondrial Bcl-2. We further demonstrated whether chloroquine (CQ), which inhibits the degradation of autophagosome induced by NBT, affects the proliferation of MCF-7 cells compared with NBT. The experiments inferred that the combination of NBT and CQ significantly promoted MCF-7 cell mitochondria to divide and Cyt C to be released from mitochondria to the cytoplasm, resulting in an increased apoptosis rate. The in vivo experiments showed that NBT inhibited the growth of MCF-7 tumor via the apoptosis pathway, and its effect was similar to 5-fluorouracil.
Collapse
|
38
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
39
|
Lewinska A, Bednarz D, Adamczyk-Grochala J, Wnuk M. Phytochemical-induced nucleolar stress results in the inhibition of breast cancer cell proliferation. Redox Biol 2017; 12:469-482. [PMID: 28334682 PMCID: PMC5362140 DOI: 10.1016/j.redox.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/25/2017] [Accepted: 03/11/2017] [Indexed: 11/19/2022] Open
Abstract
The nucleolus is a stress sensor and compromised nucleolar activity may be considered as an attractive anticancer strategy. In the present study, the effects of three plant-derived natural compounds, i.e., sulforaphane (SFN), ursolic acid (UA) and betulinic acid (BA) on nucleolar state were investigated in breast cancer cell lines of different receptor status, namely MCF-7, MDA-MB-231 and SK-BR-3 cells. Cytostatic action of phytochemicals against breast cancer cells was observed at low micromolar concentration window (5-20µM) and mediated by elevated p21 levels, and cell proliferation of SFN-, UA- and BA-treated normal human mammary epithelial cells (HMEC) was unaffected. Phytochemical-mediated inhibition of cell proliferation was accompanied by increased levels of superoxide and protein carbonylation that lead to disorganization of A- and B-type lamin networks and alterations in the nuclear architecture. Phytochemicals promoted nucleolar stress as judged by the nucleoplasmic translocation of RNA polymerase I-specific transcription initiation factor RRN3/TIF-IA, inhibition of new rRNA synthesis and decrease in number of nucleoli. Phytochemicals also decreased the levels of NOP2, proliferation-associated nucleolar protein p120, and WDR12 required for maturation of 28S and 5.8S ribosomal RNAs and formation of the 60S ribosome, and phosphorylation of S6 ribosomal protein that may result in diminished translation and inhibition of cell proliferation. In summary, three novel ribotoxic stress stimuli were revealed with a potential to be used in nucleolus-focused anticancer therapy.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland.
| | - Diana Bednarz
- Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | | | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| |
Collapse
|
40
|
Demolli S, Doddaballapur A, Devraj K, Stark K, Manavski Y, Eckart A, Zehendner CM, Lucas T, Korff T, Hecker M, Massberg S, Liebner S, Kaluza D, Boon RA, Dimmeler S. Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovasc Res 2017; 113:681-691. [PMID: 28453731 DOI: 10.1093/cvr/cvx032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 11/14/2022] Open
Abstract
AIMS Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. METHODS AND RESULTS Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro. In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo, pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro. CONCLUSION The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D.
Collapse
Affiliation(s)
- Shemsi Demolli
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Anuradha Doddaballapur
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Kavi Devraj
- Institute for Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Yosif Manavski
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Annekathrin Eckart
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Christoph M Zehendner
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- ZIM III, Department of Cardiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tina Lucas
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, 69120 Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, 69120 Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Munich, Germany
| | - Stefan Liebner
- Institute for Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - David Kaluza
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite RheinMain, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite RheinMain, Germany
| |
Collapse
|
41
|
Betulinic acid promotes TRAIL function on liver cancer progression inhibition through p53/Caspase-3 signaling activation. Biomed Pharmacother 2017; 88:349-358. [DOI: 10.1016/j.biopha.2017.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
|
42
|
Kim H, Banerjee N, Sirven MA, Minamoto Y, Markel ME, Suchodolski JS, Talcott ST, Mertens-Talcott SU. Pomegranate polyphenolics reduce inflammation and ulceration in intestinal colitis-involvement of the miR-145/p70S6K1/HIF1α axis in vivo and in vitro. J Nutr Biochem 2017; 43:107-115. [PMID: 28282584 DOI: 10.1016/j.jnutbio.2017.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
This study investigated the potential role of the p70S6K1/HIF1α axis in the anti-inflammatory activities of pomegranate (Punica granatum L.) polyphenolics in dextran sodium sulfate (DSS)-induced colitis in Sprague-Dawley rats and in lipopolysaccharide (LPS)-treated CCD-18Co colon-myofibroblastic cells. Rats were administered either control (CT) or pomegranate beverage (PG), containing ellagic acid and ellagitannins, then exposed to three cycles of 3% DSS followed by a 2-week recovery period. PG protected against DSS-induced colon inflammation and ulceration (50% and 66.7%, P=.05 and .045, respectively), and decreased the Ki-67 proliferative index in the central and basal regions compared to the control. PG also significantly reduced the expression of proinflammatory cytokines (TNF-α and IL-1β), COX-2, and iNOS at mRNA and protein levels. In addition, the expression of p70S6K1 and HIF1α was reduced, while the tumor suppressor miR-145 was induced by PG. The intestinal microbiota of rats treated with PG showed a significant increase in Ruminococcaceae that include several butyrate producing bacteria (P=.03). In vitro, PG reduced the expression of p70S6K1 and HIF1α and induced miR-145 in a dose-dependent manner. The involvement of miR-145/p70S6K1 was confirmed by treating LPS-treated CCD-18Co cells with miR-145 antagomiR, where the pomegranate polyphenolics reversed the effects of the antagomiR for p70S6K1 mRNA and protein levels. These results suggest that pomegranate polyphenols attenuated DSS-induced colitis by modulating the miR-145/p70S6K/HIF1α axis, indicating potential use in therapeutic treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Hyemee Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Nivedita Banerjee
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX, USA
| | - Maritza A Sirven
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Melissa E Markel
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Susanne U Mertens-Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
43
|
Kim H, Banerjee N, Barnes RC, Pfent CM, Talcott ST, Dashwood RH, Mertens-Talcott SU. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol Carcinog 2017; 56:197-207. [PMID: 27061150 PMCID: PMC5053910 DOI: 10.1002/mc.22484] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
Abstract
This study sought to elucidate the mechanisms underlying the anti-inflammatory effect of mango (Mangifera Indica L.) polyphenolics containing gallic acid and gallotanins, and the role of the miR-126/PI3K/AKT/mTOR signaling axis in vitro and in vivo. Polyphenolics extracted from mango (var. Keitt) were investigated in lipopolysaccharide (LPS)-treated CCD-18Co cells. Rats received either a beverage with mango polyphenolics or a control beverage, and were exposed to three cycles of 3% dextran sodium sulfate (DSS) followed by a 2-wk recovery period. The mango extract (10 mg GAE/L) suppressed the protein expression of NF-κB, p-NF-κB, PI3K (p85β), HIF-1α, p70S6K1, and RPS6 in LPS-treated CCD-18Co cells. LPS reduced miR-126 expression, whereas, the mango extract induced miR-126 expression in a dose-dependent manner. The relationship between miR-126 and its target, PI3K (p85β), was confirmed by treating cells with miR-126 antagomiR where mango polyphenols reversed the effects of the antagomiR. In vivo, mango beverage protected against DSS-induced colonic inflammation (47%, P = 0.05) and decreased the Ki-67 labeling index in the central and basal regions compared to the control. Mango beverage significantly attenuated the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and iNOS at the mRNA and protein level. Moreover, the expression of PI3K, AKT, and mTOR was reduced, whereas, miR-126 was upregulated by the mango treatment. These results suggest that mango polyphenols attenuated inflammatory response by modulating the PI3K/AKT/mTOR pathway at least in part through upregulation of miRNA-126 expression both in vitro and in vivo; thus, mango polyphenolics might be relevant as preventive agents in ulcerative colitis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyemee Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Nivedita Banerjee
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, Texas
| | - Ryan C Barnes
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Catherine M Pfent
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Roderick H Dashwood
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
- Center for Epigenetics and Disease Prevention, Texas A&M Health Science Center, Houston, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susanne U Mertens-Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
44
|
Valdés K, Morales J, Rodríguez L, Günther G. Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments. Nanomedicine (Lond) 2016; 11:3139-3156. [PMID: 27809705 DOI: 10.2217/nnm-2016-0251] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ursolic, oleanolic and betulinic acids are representative pentacyclic triterpenoids found in various plants and fruits. Despite having marked antitumor potentials, the very poor water solubility of these triterpenes hinders treatment development. Nanotechnology can enhance solubility, stability, bioavailability and phytochemical delivery, improving the therapeutic efficiency of triterpenes. This review focuses on the formulation, characterization and in vitro/in vivo evaluation of several delivery nanosystems used to enhance the physicochemical properties of ursolic, oleanolic and betulinic acids.
Collapse
Affiliation(s)
- Karina Valdés
- Departamento de Ciencias y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lennin Rodríguez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Luo R, Fang D, Chu P, Wu H, Zhang Z, Tang Z. Multiple molecular targets in breast cancer therapy by betulinic acid. Biomed Pharmacother 2016; 84:1321-1330. [DOI: 10.1016/j.biopha.2016.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023] Open
|
46
|
Zhao W, Zhang X, Liu J, Sun B, Tang H, Zhang H. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7. Oncol Rep 2016; 36:3691-3699. [DOI: 10.3892/or.2016.5199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
47
|
Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep 2016; 14:4489-4495. [PMID: 27748864 DOI: 10.3892/mmr.2016.5792] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
Betulinic acid (BA), a lupane-type pentacyclic triterpenoid saponin from tree bark, has the potential to induce the apoptosis of cancer cells without toxicity towards normal cells in vitro and in vivo. The antitumor pharmacological effects of BA consist of triggering apoptosis via the mitochondrial pathway, regulating the cell cycle and the angiogenic pathway via factors, including specificity protein transcription factors, cyclin D1 and epidermal growth factor receptor, inhibiting the signal transducer and activator of transcription 3 and nuclear factor‑κB signaling pathways, preventing the invasion and metastasis of tumor cells, and affecting the expression of topoisomerase I, p53 and lamin B1. In previous years, several studies have shown its antitumor effect, initially applied to malignant melanoma, however, it also has broad efficacies against most solid types of tumor from different regions of the body. There have been few investigations in hematological malignancies, however, this direction may offer potential in such a novel field of research. In this review, the primary pharmacological effects of BA in tumors, particularly in hematological malignancies are discussed.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
48
|
Silva G, Marins M, Fachin AL, Lee SH, Baek SJ. Anti-cancer activity of trans-chalcone in osteosarcoma: Involvement of Sp1 and p53. Mol Carcinog 2016; 55:1438-48. [PMID: 26294168 DOI: 10.1002/mc.22386] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most common bone cancer. Although the emergence of multidrug therapies has improved available treatments for osteosarcoma, approximately 30% of patients will still develop metastasis. Currently, much anticancer therapy uses drugs that affect oncogenes/tumor suppressor genes, such as p53 (up-regulation) and Sp1 (down-regulation). Chalcones are secondary metabolites of plants and have been demonstrated to induce apoptosis in human cancer cells. Building on this knowledge, we evaluated the ability of trans-chalcone to reduce viability, to induce apoptosis, and to alter gene expression of p53 and Sp1 in human osteosarcoma cell lines. We found that treatment of trans-chalcone inhibited growth of osteosarcoma cells in a dose- and time-dependent manner, with significant inhibition at 10 μM after 48 h; apoptosis was also induced in a dose-dependent manner, with 1.9- and 3.6-fold induction at 10 μM and 50 μM, respectively, compared to non-treated cells. Further experiments suggest that trans-chalcone affected Sp1 down-regulation at the transcriptional level, whereas trans-chalcone up-regulated p53 expression at the post-translational level. trans-chalcone and its derivatives could be important in the development of future clinical trials in osteosarcoma. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabriel Silva
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
49
|
Biersack B. Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res 2016; 1:12-34. [PMID: 30159408 PMCID: PMC6096431 DOI: 10.1016/j.ncrna.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The epigenetic regulation of cancer cells by small non-coding RNA molecules, the microRNAs (miRNAs), has raised particular interest in the field of oncology. These miRNAs play crucial roles concerning pathogenic properties of cancer cells and the sensitivity of cancer cells towards anticancer drugs. Certain miRNAs are responsible for an enhanced activity of drugs, while others lead to the formation of tumor resistance. In addition, miRNAs regulate survival and proliferation of cancer cells, in particular of cancer stem-like cells (CSCs), that are especially drug-resistant and, thus, cause tumor relapse in many cases. Various small molecule compounds were discovered that target miRNAs that are known to modulate tumor aggressiveness and drug resistance. This review comprises the effects of naturally occurring small molecules (phenolic compounds and terpenoids) on miRNAs involved in cancer diseases.
Collapse
Key Words
- 1,25-D, 1,25-dihydroxyvitamin D3
- 18-AGA, 18α-glycyrrhetinic acid
- 3,6-DHF, 3,6-dihydroxyflavone
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- CAPE, caffeic acid phenethyl ester
- CDODA-Me, methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate
- Dox, doxorubicin
- EGCG, (−)-epigallocatechin-3-O-gallate
- MicroRNA
- PEG, polyethylene glycol
- PPAP, polycyclic polyprenylated acylphloroglucinol
- Polyphenols
- RA, retinoic acid
- ROS, reactive oxygen species
- TQ, thymoquinone
- Terpenes
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
50
|
Tzenov YR, Andrews P, Voisey K, Gai L, Carter B, Whelan K, Popadiuk C, Kao KR. Selective estrogen receptor modulators and betulinic acid act synergistically to target ERα and SP1 transcription factor dependent Pygopus expression in breast cancer. J Clin Pathol 2016; 69:518-26. [PMID: 26645832 DOI: 10.1136/jclinpath-2015-203395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
AIMS Estrogen and progesterone hormone receptor (ER and PR) expression in invasive breast cancer predicts response to hormone disruptive therapy. Pygopus2 (hPYGO2) encodes a chromatin remodelling protein important for breast cancer growth and cell cycle progression. The aims of this study were to determine the mechanism of expression of hPYGO2 in breast cancer and to examine how this expression is affected therapeutically. METHODS hPYGO2 and ER protein expression was examined in a breast tumour microarray by immunohistochemistry. hPYGO2 RNA and protein expression was examined in ER+ and ER- breast cancer cell lines in the presence of selective estrogen hormone receptor modulator drugs and the specificity protein-1 (SP1) inhibitor, betulinic acid (BA). The effects of these drugs on the ability for ER and SP1 to bind the hPYGO2 promoter and affect cell cycle progression were studied using chromatin immunoprecipitation assays. RESULTS hPYGO2 was expressed in seven of eight lines and in nuclei of 98% of 65 breast tumours, including 3 Ductal carcinoma in situ and 62 invasive specimens representing ER-negative (22%) and ER-positive (78%) cases. Treatment with either 4-Hydroxytamoxifen (OHT) or fulvestrant reduced hPYGO2 mRNA 10-fold and protein 5-10-fold within 4 h. Promoter analysis indicated an ER/SP1 binding site at nt -225 to -531 of hPYGO2. SP1 RNA interference and BA reduced hPYGO2 protein and RNA expression by fivefold in both ER- and ER+ cells. Further attenuation was achieved by combining BA and 4-OHT resulting in eightfold reduction in cell growth. CONCLUSIONS Our findings reveal a mechanistic link between hormone signalling and the growth transcriptional programme. The activation of its expression by ERα and/or SP1 suggests hPYGO2 as a theranostic target for hormone therapy responsive and refractory breast cancer.
Collapse
Affiliation(s)
- Youlian R Tzenov
- Divisions of BioMedical Science, Memorial University, St. John's, Newfoundland, Canada
| | - Phillip Andrews
- Divisions of BioMedical Science, Memorial University, St. John's, Newfoundland, Canada
| | - Kim Voisey
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | - Luis Gai
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | - Beverley Carter
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | - Kathryn Whelan
- Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| | | | - Kenneth R Kao
- Divisions of BioMedical Science, Memorial University, St. John's, Newfoundland, Canada Division of Laboratory Medicine, Eastern Health, St. John's, Newfoundland, Canada
| |
Collapse
|