1
|
Funakoshi Y, Sugihara Y, Uneda A, Nakashima T, Suzuki H. Recent advances in the molecular understanding of medulloblastoma. Cancer Sci 2023; 114:741-749. [PMID: 36520034 PMCID: PMC9986075 DOI: 10.1111/cas.15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Medulloblastoma is the most common pediatric malignant brain tumor composed of four molecular subgroups. Recent intensive genomics has greatly contributed to our understanding of medulloblastoma pathogenesis. Sequencing studies identified novel mutations involved in the cyclic AMP-dependent pathway or RNA processing in the Sonic Hedgehog (SHH) subgroup, and core-binding factor subunit alpha (CBFA) complex in the group 4 subgroup. Likewise, single-cell sequencing provided detailed insights into the cell of origin associated with brain development. In this review, we will summarize recent findings by sequencing analyses for medulloblastoma.
Collapse
Affiliation(s)
- Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Yuriko Sugihara
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| |
Collapse
|
2
|
Role of Thyroid RFA in the Treatment of Autonomously Functioning Thyroid Nodules. Tech Vasc Interv Radiol 2022; 25:100823. [DOI: 10.1016/j.tvir.2022.100823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Stephenson A, Eszlinger M, Stewardson P, McIntyre JB, Boesenberg E, Bircan R, Sancak S, Gozu HI, Ghaznavi S, Krohn K, Paschke R. Sensitive Sequencing Analysis Suggests Thyrotropin Receptor and Guanine Nucleotide-Binding Protein G Subunit Alpha as Sole Driver Mutations in Hot Thyroid Nodules. Thyroid 2020; 30:1482-1489. [PMID: 32284013 DOI: 10.1089/thy.2019.0648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Constitutively activating mutations in the thyrotropin receptor (TSHR) and the guanine nucleotide-binding protein G subunit alpha (GNAS) are the primary cause of hot thyroid nodules (HTNs). The reported prevalence of TSHR and GNAS mutations in HTNs varies. Previous studies show TSHR mutations in 8-82% of HTNs and GNAS mutations in 8-75% of HTNs. With sensitive and comprehensive targeted next-generation sequencing (tNGS), we re-evaluated the prevalence of TSHR and GNAS mutations in HTNs. Methods: Samples from three previous studies found to be TSHR and GNAS mutation negative were selected and re-evaluated using high-resolution melting (HRM) PCR. Remaining mutation negative samples were further reanalyzed by tNGS with a sequencing depth between 3000 × and 10,000 × . Our tNGS panel covered the entire TSHR coding sequence along with mutation hot spots in GNAS. Sequencing reads were aligned to reference and variants were called using Torrent Suite software v5.8. Results: In total, 154 of 182 previously mutation negative HTNs were positive for TSHR or GNAS mutations, resulting in an 85% prevalence of TSHR and GNAS mutations in HTNs, 79% and 6%, respectively. In a subset of 25 HTNs with multiple samples per nodule, and analyzed by tNGS at high sequencing depth, TSHR mutations were detected in 23 (92%) HTNs and 1 GNAS mutation was detected in 1 (4%) HTN, 96% mutation positive HTNs in this subset. Conclusions: Owing to the higher sensitivity of tNGS as compared with denaturing gradient gel electrophoresis and HRM-PCR, TSHR or GNAS mutations could be detected in 85% of HTNs. The detection of TSHR and GNAS mutations occurred in 96% of HTNs in a sample set with multiple samples per nodule analyzed by tNGS. Taken together with the fact that no other driver mutations could be identified by whole exome sequencing, our study strongly supports the hypothesis that TSHR and GNAS mutations are the main somatic mutations leading to HTNs.
Collapse
Affiliation(s)
- Alexandra Stephenson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Markus Eszlinger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Oncology, Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Paul Stewardson
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Science, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - John B McIntyre
- Precision Oncology Hub Laboratory, Alberta Health Services, Tom Baker Cancer Center, Calgary, Canada
| | - Eileen Boesenberg
- Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Rifat Bircan
- Department of Molecular Biology and Genetics, Namik Kemal University, Tekirdag, Turkey
| | - Seda Sancak
- Department of Internal Medicine, Endocrinology and Metabolism Disorders, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Hulya I Gozu
- Department of Endocrinology and Metabolism, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sana Ghaznavi
- Division of Endocrinology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Knut Krohn
- IZKF Leipzig, University of Leipzig, Germany
| | - Ralf Paschke
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Oncology, Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Division of Endocrinology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Legrand MA, Raverot G, Nicolino M, Chapurlat R. GNAS mutated thyroid carcinoma in a patient with Mc Cune Albright syndrome. Bone Rep 2020; 13:100299. [PMID: 32760762 PMCID: PMC7390770 DOI: 10.1016/j.bonr.2020.100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mc Cune-Albright syndrome (MAS) is a rare disorder defined by the triad of polyostotic fibrous dysplasia, “café au lait” skin hyperpigmentation and hyperfunctioning endocrinopathies, such as precocious puberty. MAS is caused by an activating post zygotic somatic mutation of GNAS gene, coding for the alpha-subunit of the stimulatory G protein (Gsalpha). In endocrine tissues, this mutation results in overproduction of hormones and endocrine cell hyperfunction and proliferation. Whereas the association of hyperthyroidism and thyroid adenomas is well known in MAS, the relation with thyroid carcinoma has rarely been observed. We report the occurrence of a thyroid carcinoma in an 18-years old woman with MAS, revealed by subclinical hyperthyroidism detected during her systematic annual follow-up. Ultrasound and thyroid scintigraphy revealed the presence of a nodule in the right lobe. Pathology on hemithyroidectomy revealed an unexpected thyroid follicular carcinoma. Neoplastic thyroid cells harbored the GNAS R201C activating mutation. This observation suggests that MAS may predispose patients to thyroid carcinomas and supports the importance of thyroid assessment by physical examination, hormonal blood test and ultrasound, in the follow-up of patients with MAS. Because ultrasound diagnostic is challenging in MAS, needle puncture of palpable nodules should be advised.
Collapse
Affiliation(s)
- M A Legrand
- INSERM UMR 1033, Université de Lyon, Hospices Civils de Lyon, Hôpital E Herriot, 69437 Lyon, France.,Centre national de référence de la dysplasie fibreuse des os, Hôpital E Herriot, 69437 Lyon, France
| | - G Raverot
- Fédération d'Endocrinologie, Centre de Référence Maladies Rares Hypophysaires (HYPO), Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - M Nicolino
- Endocrinologie, Diabétologie, Nutrition Pédiatriques, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, F-69677 Bron, France
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hospices Civils de Lyon, Hôpital E Herriot, 69437 Lyon, France.,Centre national de référence de la dysplasie fibreuse des os, Hôpital E Herriot, 69437 Lyon, France
| |
Collapse
|
5
|
Innamorati G, Wilkie TM, Kantheti HS, Valenti MT, Dalle Carbonare L, Giacomello L, Parenti M, Melisi D, Bassi C. The curious case of Gαs gain-of-function in neoplasia. BMC Cancer 2018; 18:293. [PMID: 29544460 PMCID: PMC5856294 DOI: 10.1186/s12885-018-4133-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mutations activating the α subunit of heterotrimeric Gs protein are associated with a number of highly specific pathological molecular phenotypes. One of the best characterized is the McCune Albright syndrome. The disease presents with an increased incidence of neoplasias in specific tissues. MAIN BODY A similar repertoire of neoplasms can develop whether mutations occur spontaneously in somatic tissues during fetal development or after birth. Glands are the most "permissive" tissues, recently found to include the entire gastrointestinal tract. High frequency of activating Gαs mutations is associated with precise diagnoses (e.g., IPMN, Pyloric gland adenoma, pituitary toxic adenoma). Typically, most neoplastic lesions, from thyroid to pancreas, remain well differentiated but may be a precursor to aggressive cancer. CONCLUSIONS Here we propose the possibility that gain-of-function mutations of Gαs interfere with signals in the microenvironment of permissive tissues and lead to a transversal neoplastic phenotype.
Collapse
Affiliation(s)
- Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Thomas M. Wilkie
- Pharmacology Department, UT Southwestern Medical Center, Dallas, TX USA
| | | | - Maria Teresa Valenti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Marco Parenti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Davide Melisi
- Laboratory of Oncology and Molecular Therapy, Department of Medicine, University of Verona, Verona, Italy
| | - Claudio Bassi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Acquaviva G, Visani M, Repaci A, Rhoden KJ, de Biase D, Pession A, Giovanni T. Molecular pathology of thyroid tumours of follicular cells: a review of genetic alterations and their clinicopathological relevance. Histopathology 2018; 72:6-31. [PMID: 29239040 DOI: 10.1111/his.13380] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Knowledge of the molecular pathology of thyroid tumours originating from follicular cells has greatly advanced in the past several years. Common molecular alterations, such as BRAF p.V600E, RAS point mutations, and fusion oncogenes (RET-PTC being the prototypical example), have been, respectively, associated with conventional papillary carcinoma, follicular-patterned tumours (follicular adenoma, follicular carcinoma, and the follicular variant of papillary carcinoma/non-invasive follicular thyroid neoplasm with papillary-like nuclear features), and with papillary carcinomas from young patients and arising after exposure to ionising radiation, respectively. The remarkable correlation between genotype and phenotype shows how specific, mutually exclusive molecular changes can promote tumour development and initiate a multistep tumorigenic process that is characterised by aberrant activation of mitogen-activated protein kinase and phosphoinositide 3-kinase-PTEN-AKT signalling. Molecular alterations are becoming useful biomarkers for diagnosis and risk stratification, and as potential treatment targets for aggressive forms of thyroid carcinoma. What follows is a review of the principal genetic alterations of thyroid tumours originating from follicular cells and of their clinicopathological relevance.
Collapse
Affiliation(s)
- Giorgia Acquaviva
- Anatomical Pathology, Molecular Diagnostic Unit, University of Bologna School of Medicine, Azienda USL di Bologna, Bologna, Italy
| | - Michela Visani
- Anatomical Pathology, Molecular Diagnostic Unit, University of Bologna School of Medicine, Azienda USL di Bologna, Bologna, Italy
| | - Andrea Repaci
- Endocrinology Unit, University of Bologna School of Medicine, Bologna, Italy
| | - Kerry J Rhoden
- Medical Genetics Unit, University of Bologna School of Medicine, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Tallini Giovanni
- Anatomical Pathology, Molecular Diagnostic Unit, University of Bologna School of Medicine, Azienda USL di Bologna, Bologna, Italy
| |
Collapse
|
7
|
GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm. Oncogene 2015; 35:2407-12. [PMID: 26257060 DOI: 10.1038/onc.2015.294] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/29/2022]
Abstract
Intraductal papillary mucinous neoplasm (IPMN), the most common pancreatic cystic neoplasm, is known to progress to invasive ductal adenocarcinoma. IPMNs commonly harbor activating somatic mutations in GNAS and KRAS, primarily GNAS(R201H) and KRAS(G12D). GNAS encodes the stimulatory G-protein α subunit (Gsα) that mediates a stimulatory signal to adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), subsequently activating cAMP-dependent protein kinase A. The GNAS(R201H) mutation results in constitutive activation of Gsα. To study the potential role of GNAS in pancreatic tumorigenesis in vivo, we generated lines of transgenic mice in which the transgene consisted of Lox-STOP-Lox (LSL)-GNAS(R201H) under the control of the CAG promoter (Tg(CAG-LSL-GNAS)). These mice were crossed with pancreatic transcription factor 1a (Ptf1a)-Cre mice (Ptf1a(Cre/+)), generating Tg(CAG-LSL-GNAS);Ptf1a(Cre/+) mice. This mouse line showed elevated cAMP levels, small dilated tubular complex formation, loss of acinar cells and fibrosis in the pancreas; however, no macroscopic tumorigenesis was apparent by 2 months of age. We then crossed Tg(CAG-LSL-GNAS);Ptf1a(Cre/+) mice with LSL-Kras(G12D) mice, generating Tg(CAG-LSL-GNAS);LSL-Kras(G12D);Ptf1a(Cre/+) mice. We used these mice to investigate a possible cooperative effect of GNAS(R201H) and Kras(G12D) in pancreatic tumorigenesis. Within 5 weeks, Tg(CAG-LSL-GNAS);LSL-Kras(G12D);Ptf1a(Cre/+) mice developed a cystic tumor consisting of marked dilated ducts lined with papillary dysplastic epithelia in the pancreas, which closely mimicked the human IPMN. Our data strongly suggest that activating mutations in GNAS and Kras cooperatively promote murine pancreatic tumorigenesis, which recapitulates IPMN. Our mouse model may serve as a unique in vivo platform to find biomarkers and effective drugs for diseases associated with GNAS mutations.
Collapse
|
8
|
G Protein-Coupled Receptors in cancer: biochemical interactions and drug design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:143-73. [PMID: 23415094 DOI: 10.1016/b978-0-12-394587-7.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.
Collapse
|
9
|
Abstract
INTRODUCTION The thyrotropin receptor (TSHR) is essential for thyroid growth and for the production of thyroid hormones. It is unique among the glycoprotein hormone receptors, in that some of the TSHRs undergo cleavage and shedding of the alpha subunit. AREAS COVERED This review discusses the structure and function of the TSHR, followed by an evaluation of its role in thyroid disease. Possible limitations of the TSHR as a therapeutic target are also discussed. EXPERT OPINION The TSHR is involved in a number of hereditary and acquired disorders of the thyroid making it of potential importance as a therapeutic target in thyroid disease. Expression of the TSHR in several non-thyroidal tissues and the development of systemic manifestations of thyroid disease suggest that the TSHR is also of interest as a therapeutic target outside the thyroid.
Collapse
Affiliation(s)
- Samer El-Kaissi
- Specialized Diabetes and Endocrine Centre, King Fahad Medical City, Dabab Street, P.O. Box 59046, Riyadh 11525, Saudi Arabia.
| | | |
Collapse
|
10
|
Sastre-Perona A, Santisteban P. Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne) 2012; 3:31. [PMID: 22645520 PMCID: PMC3355838 DOI: 10.3389/fendo.2012.00031] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Aberrant activation of Wnt signaling is involved in the development of several epithelial tumors. Wnt signaling includes two major types of pathways: (i) the canonical or Wnt/β-catenin pathway; and (ii) the non-canonical pathways, which do not involve β-catenin stabilization. Among these pathways, the Wnt/β-catenin pathway has received most attention during the past years for its critical role in cancer. A number of publications emphasize the role of the Wnt/β-catenin pathway in thyroid cancer. This pathway plays a crucial role in development and epithelial renewal, and components such as β-catenin and Axin are often mutated in thyroid cancer. Although it is accepted that altered Wnt signaling is a late event in thyroid cell transformation that affects anaplastic thyroid tumors, recent data suggest that it is also altered in papillary thyroid carcinoma (PTC) with RET/PTC mutations. Therefore, the purpose of this review is to summarize the main relevant data of Wnt signaling in thyroid cancer, with special emphasis on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
- *Correspondence: Pilar Santisteban, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain. e-mail:
| |
Collapse
|
11
|
Nanba K, Usui T, Minamiguchi S, Mori Y, Watanabe Y, Honda K, Asato R, Nakao K, Kawashima ST, Yuno A, Tamanaha T, Tagami T, Naruse M, Akiyama Y, Shimatsu A. Two rare TSH receptor amino acid substitutions in toxic thyroid adenomas. Endocr J 2012; 59:13-9. [PMID: 22001338 DOI: 10.1507/endocrj.ej11-0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Toxic adenoma and toxic multinodular goiter (TMNG) are common causes of hyperthyroidism in iodine-deficient regions, but they are relatively rare in iodine-sufficient regions, including Japan. Constitutive activating mutations of the thyroid stimulating hormone receptor (TSHR) gene and adenylate cyclase-stimulating G α protein (GNAS) gene are frequent in these thyrotoxic disorders. Here we report two cases of rare TSHR gene mutations in Japanese thyrotoxicosis patients. In Case 1, we observed multiple toxic nodules with thyrotoxicosis, and in Case 2, we detected a solitary toxic nodule in an 8-year-old girl. In both cases, ultrasonography showed thyroid nodules and scintigraphy revealed increased uptake. Total thyroidectomy was performed for Case 1 and a hemi-thyroidectomy was performed for Case 2. Genetic analysis of the resected tissues revealed an I568F mutation in Case 1 and a S281I mutation in the TSHR gene in Case 2. The I568F mutation was located in the second extracellular loop, and the S281I mutation was located in the N-terminal extracellular domain of the TSH receptor. In Case 1, the mutation was restricted to the largest nodule, and was not detected in other functioning nodules or non-nodule thyroid tissue. Bi-allelic expression of the TSHR gene was confirmed by reverse transcription-polymerase chain reaction in both tumors. Both the I568F and S281I mutations were studied previously in vitro, and were revealed to cause basal activation of the protein kinase A pathway. Case 1 represents the second reported case of an I568F mutation and Case 2 represents the third reported case of an S281I mutation.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mansourian AR. Central dogma in thyroid dysfunction: a review on structure modification of TSHR as a cornerstone for thyroid abnormalities. Pak J Biol Sci 2011; 14:170-81. [PMID: 21870640 DOI: 10.3923/pjbs.2011.170.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyroid stimulating hormone receptor (TSHR) is a vital thyrocyte membrane protein in the thyroid gland. Thyroid Stimulating Hormone (TSH) which is a pituitary hormone is the main stimulator of thyroid gland to produce thyroid hormones, it binds with high affinity to the TSHR through weak bonds including hydrophobic, ionic, hydrogen bonds and trigger the initial steps in thyroid gland stimulation to produce the related hormones. This study was carried out at department of biochemistry of Golestan university of medical sciences. All the related articles related to TSHR modification happened due to mutations and any other alterations which affect the level of TSH-TSHR complex were studied and the main points were extracted out of the pile of information and were organized as present review. TSH-TSHR is the initial and vital step of a long process of thyroid hormone production within the thyroid gland. Any alteration on the TSH-TSHR affinity which may happen due to the direct effect of TSHR modification eventually lead to the serious adverse effects of either hypothyroidism or hyperthyroidism if the TSH-TSHR level are suppressed or elevated, respectively. The prime cause of the thyroid disorders relay on the possible modification on the biochemical structure of TSHR with subsequent alteration on the level of TSH-TSHR complex. TSHR mutation accompanied by biochemical modification, unable it to bind properly to TSH. In some other conditions such mutation leave a TSHR with either of higher affinity towards to TSH or even TSHR which can be activated in the absence of TSH. The structural modification of TSHR and alteration in the level of TSH-TSHR in the thyroid gland eventually lead to thyroid disorders either of hypothyroidism or hyperthyroidism.
Collapse
Affiliation(s)
- Azad Reza Mansourian
- Biochemistry and Metabolic Disorder Research Center, Gorgan Medial School, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
13
|
Lu C, Zhao L, Ying H, Willingham MC, Cheng SY. Growth activation alone is not sufficient to cause metastatic thyroid cancer in a mouse model of follicular thyroid carcinoma. Endocrinology 2010; 151:1929-39. [PMID: 20133453 PMCID: PMC2851190 DOI: 10.1210/en.2009-1017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TSH is the major stimulator of thyrocyte proliferation, but its role in thyroid carcinogenesis remains unclear. To address this question, we used a mouse model of follicular thyroid carcinoma (FTC) (TRbeta(PV/PV) mice). These mice, harboring a dominantly negative mutation (PV) of the thyroid hormone-beta receptor (TRbeta), exhibit increased serum thyroid hormone and elevated TSH. To eliminate TSH growth-stimulating effect, TRbeta(PV/PV) mice were crossed with TSH receptor gene knockout (TSHR(-/-)) mice. Wild-type siblings of TRbeta(PV/PV) mice were treated with an antithyroid agent, propylthiouracil, to elevate serum TSH for evaluating long-term TSH effect (WT-PTU mice). Thyroids from TRbeta(PV/PV)TSHR(-/-) showed impaired growth with no occurrence of FTC. Both WT-PTU and TRbeta(PV/PV) mice displayed enlarged thyroids, but only TRbeta(PV/PV) mice developed metastatic FTC. Molecular analyses indicate that PV acted, via multiple mechanisms, to activate the integrins-Src-focal adhesion kinase-p38 MAPK pathway and affect cytoskeletal restructuring to increase tumor cell migration and invasion. Thus, growth stimulated by TSH is a prerequisite but not sufficient for metastatic cancer to occur. Additional genetic alterations (such as PV), destined to alter focal adhesion and migration capacities, are required to empower hyperplastic follicular cells to invade and metastasize. These in vivo findings provide new insights in understanding carcinogenesis of the human thyroid.
Collapse
Affiliation(s)
- Changxue Lu
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5128, Bethesda, Maryland 20892-4264, USA
| | | | | | | | | |
Collapse
|
14
|
Visconti R, Federico A, Coppola V, Pentimalli F, Berlingieri MT, Pallante P, Kruhoffer M, Orntoft TF, Fusco A. Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells. Cancer Invest 2009; 25:256-66. [PMID: 17612936 DOI: 10.1080/07357900701206406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the nature of most of the target genes, whose expression is modulated by the Ras-induced signaling pathways and that are ultimately responsible for Ras-induced cellular transformation, remains largely unknown. To analyze Ras-dependent modulation of gene expression in thyroid cells we took advantage of a differentiated rat thyroid cell line, FRTL-5. As a model for Ras-dependent thyroid transformation, we used FRTL-5 cells infected with the Kirsten murine sarcoma virus, carrying the v-Ki-Ras oncogene. The infected cells (FRTL-5 v-Ki-Ras) have lost expression of the thyroid differentiation markers and also are completely transformed. We hybridized two different Affimetrix chips containing probe sets interrogating both known rat genes and ESTs for a total of more than 17,000 sequences using mRNA extracted from FRTL-5 and FRTL-5 v-Ki-Ras cell lines. We identified about 50 genes whose expression was induced and about 40 genes whose expression was downregulated more than 10-fold by Ras. We confirmed the differential expression of many of these genes in FRTL-5 v-Ki-Ras as compared to parental cells by using alternative techniques. Remarkably, we investigated the expression of some of the Ras-regulated genes in human thyroid carcinoma cell lines and tumor samples, our results, therefore, providing a new molecular profile of the genes involved in thyroid neoplastic transformation.
Collapse
Affiliation(s)
- Roberta Visconti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L. Califano, Universita' degli Studi di Napoli Federico II e/o Istituto di Endocrinologia e Oncologia Sperimentale G. Salvatore del CNR, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Castro I, Lima L, Seoane R, Lado-Abeal J. Identification and functional characterization of two novel activating thyrotropin receptor mutants in toxic thyroid follicular adenomas. Thyroid 2009; 19:645-9. [PMID: 19499991 DOI: 10.1089/thy.2009.0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Two previously unreported thyrotropin (TSH) receptor mutations, A623F and I635V, were identified in toxic follicular thyroid adenoma specimens from two patients with hyperthyroidism. Our aim was to characterize both novel mutants in terms of the following: cAMP basal constitutive activity, cAMP response to TSH, plasma membrane expression levels, and TSH binding properties. METHODS We performed DNA extraction for TSHR gene sequencing. COS-7 cells were transiently transfected with wild-type and mutated TSH receptor constructs for determination of basal cAMP constitutive activity and dose-response accumulation of cAMP using recombinant human TSH. Flow cytometry analysis was performed to evaluate plasma membrane expression. Binding studies using bovine TSH as a ligand were performed to compare the affinities of wild-type and mutated TSH receptors for TSH. RESULTS Both mutants, A623F and I635V, had higher cAMP basal constitutive activities than the wild-type TSH receptor. A623F but not I635V showed lower plasma membrane expression than the wild-type receptor. IC50, an indirect measurement of ligand-receptor affinity, was lower in A623F and higher in I635V than in the wild-type TSH receptor, although no statistically significant differences were observed. No differences were observed in EC50 and although the absolute values of maximal stimulation achieved with both mutants were higher than the wild type, the differences did not achieve statistical significance. CONCLUSIONS A623F and I635V are two naturally occurring TSH receptor mutations that increase basal cAMP accumulation and consequently promote the development of toxic follicular thyroid adenoma. cAMP response to increasing TSH dose is retained by A623F and I635V mutated receptors and the maximal stimulation obtained is not different from that of the wild-type receptor. Substitution of alanine 623 by phenylalanine 623 at the third intracellular loop of the TSH receptor decreases its plasma membrane expression, indicating that alanine 623 is important in directing the TSH receptor to the cell surface or in down-regulating the constitutive receptor. By contrast, isoleucine 635, located in the sixth transmembrane domain, is important in regulating TSH receptor basal activity but does not modify its plasma membrane expression.
Collapse
Affiliation(s)
- Isabel Castro
- Unidade de Enfermedades Tiroideas e Metabolicas, Department of Medicine, School of Medicine, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
16
|
Schwab KO, Pfarr N, van der Werf-Grohmann N, Pohl M, Rädecke J, Musholt T, Pohlenz J. Autonomous thyroid adenoma: only an adulthood disease? J Pediatr 2009; 154:931-3.e2. [PMID: 19446102 DOI: 10.1016/j.jpeds.2008.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/25/2008] [Accepted: 12/05/2008] [Indexed: 11/16/2022]
Abstract
We identified somatic activating thyrotropin-receptor gene mutations within autonomous thyroid nodules (ATN) in 2 girls with 1 ATN and in 1 girl with 3 ATN. A fourth patient had a somatic activating gene mutation of the alpha-subunit of the stimulating G-protein in 2 ATN. Activating somatic mutations in ATN can cause non-autoimmune hyperthyroidism in children.
Collapse
Affiliation(s)
- Karl Otfried Schwab
- Department of Pediatrics and Adolescent Medicine, University Hospital, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Nishihara E, Amino N, Maekawa K, Yoshida H, Ito M, Kubota S, Fukata S, Miyauchi A. Prevalence of TSH receptor and Gsalpha mutations in 45 autonomously functioning thyroid nodules in Japan. Endocr J 2009; 56:791-8. [PMID: 19550078 DOI: 10.1507/endocrj.k09e-073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Somatic mutations of the thyrotropin receptor (TSHR) gene and the gene encoding the alpha subunit of the stimulatory GTP-binding protein (Gsalpha) are the main cause for autonomously functioning thyroid nodules (AFTN) in iodine-deficient regions of the world. In iodine-sufficient regions, including Japan, the genetic relevance of AFTN is unclear. In a series of 45 Japanese subjects with AFTN, exons 9 and 10 of the TSHR and exons 7-10 of Gsalpha , where the activating mutations have been found, were analyzed using direct sequencing. We found 29 somatic mutations: 22 in the TSHR gene and 7 in the Gsalpha gene. The most frequent mutation in TSHR was Met453Thr (10 cases), followed by clustered residues from codons 630 through 633 on TSHR (7 cases). Mutations of Gsalpha were detected at codon 201 in 5 cases and at codon 227 in 2 cases. No patients had coexistent TSHR and Gsalpha mutations in the same nodule. All mutated residues but one, which was deleted at codon 403 on the TSHR gene, are constitutively active. The prevalences of a germline polymorphism of Asp727Glu on the TSHR gene and incidental papillary thyroid carcinoma in thyroid surgical specimens were similar to those reported in other studies. In the present study, more than half of the cases with AFTN had a somatic activating mutation either of the TSHR or Gsalpha gene, despite their high iodine intake.
Collapse
|
18
|
Eszlinger M, Krohn K, Hauptmann S, Dralle H, Giordano TJ, Paschke R. Perspectives for improved and more accurate classification of thyroid epithelial tumors. J Clin Endocrinol Metab 2008; 93:3286-94. [PMID: 18593772 DOI: 10.1210/jc.2008-0201] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Histologic examination of thyroid nodules is the current standard to distinguish benign from malignant thyroid epithelial tumors and to classify histologic subtypes. This review analyzes the problems in histological differential diagnosis as well as contradictions between histology and molecular data and describes possibilities to combine histology with molecular data in an effort to more accurately classify thyroid epithelial tumors. EVIDENCE ACQUISITION Published literature, addressing the current recommendations for thyroid tumor classification, as well as literature on the application of histology and molecular studies on the etiology of thyroid tumors is analyzed. EVIDENCE SYNTHESIS The current histologic criteria to classify thyroid tumors, especially follicular-patterned tumors, are hampered by considerable interobserver variability. The detection of somatic mutations via genotyping and the definition of potentially informative gene expression signatures by microarray analyses, which can distinguish cancer subtypes as well as low- and high-risk cohorts, have recently demonstrated significant diagnostic potential. Moreover, in a routine diagnostic setting, micro-RNA profiling appears most promising due to their relative stability and the high accuracy of their expression profiles. CONCLUSIONS It is very likely that molecular definitions of thyroid tumors mentioned in the current World Health Organization classification will be further developed, leading to future progress in defining thyroid tumor types by an integrated histologic and molecular approach. These integrated classifications need to be evaluated for their specific impact on thyroid tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- Markus Eszlinger
- Third Medical Department, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Sobrinho-Simões M, Máximo V, Rocha AS, Trovisco V, Castro P, Preto A, Lima J, Soares P. Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am 2008; 37:333-62, viii. [PMID: 18502330 DOI: 10.1016/j.ecl.2008.02.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The close genotype-phenotype relationship that characterizes thyroid oncology stimulated the authors to address this article by using a mixed, genetic and phenotypic approach. As such, this article addresses the following aspects of intragenic mutations in thyroid cancer: thyroid stimulating hormone receptor and guanine-nucleotide-binding proteins of the stimulatory family mutations in hyperfunctioning tumors; mutations in RAS and other genes and aneuploidy; PAX8-PPARgamma rearrangements; BRAF mutations; mutations in oxidative phosphorylation and Krebs cycle genes in Hürthle cell tumors; mutations in succinate dehydrogenase genes in medullary carcinoma and C-cell hyperplasia; and mutations in TP53 and other genes in poorly differentiated and anaplastic carcinomas.
Collapse
Affiliation(s)
- Manuel Sobrinho-Simões
- Institute of Molecular Pathology and Immunology of the University of Porto, Rua Roberto Frias s/n, 4200-465 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Thyroid cancers stand out among solid tumours because many of the tumour-initiating genetic events have been identified. Mutations leading to constitutive activation of MAP kinase effectors -the tyrosine receptor kinase RET and the intracellular signalling effectors RAS and BRAF- are essential for the pathogenesis of papillary thyroid carcinoma (PTC). Similarly, there is increasing evidence demonstrating that mutations leading to activation of the phosphatidylinositol 3- kinase (PI3K)/AKT effectors -PTEN and PI3KCa- are essential for the pathogenesis of follicular thyroid carcinoma (FTC). Besides this strong relationship between the histological phenotype and the pathway predominantly activated, the nature of the genetic event seems to determine the biological behaviour of the tumour and the ultimate clinical outcome of the patient. In this review we will summarise and discuss the main genetic events related to thyroid cancer initiation, the contribution of genomics and the convenience of using a new molecular classification of thyroid cancer, complementary to the clinicopathological classification. This may help us to predict more faithfully the clinical outcome of patients with thyroid cancer and to select more appropriately candidates for targeted therapies.
Collapse
Affiliation(s)
- G Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas 'Alberto Sols' Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
21
|
Eszlinger M, Jaeschke H, Paschke R. Insights from molecular pathways: potential pharmacologic targets of benign thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2007; 14:393-7. [PMID: 17940470 DOI: 10.1097/med.0b013e3282ef5f96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To describe molecular pathways that might be of relevance for a potential pharmacologic therapy of benign thyroid nodules. RECENT FINDINGS Constitutively activating thyrotropin receptor mutations have been found in about 60% of hot nodules. Its predominant role for signaling in hot nodules has been confirmed by in-vitro mutagenesis studies, thyrotropin receptor modeling and microarray studies. In contrast, the basic molecular cause of cold thyroid nodules is so far largely unknown. Defective sodium/iodide symporter trafficking, accumulation of T4-deficient, insufficiently iodinated thyroglobulin, increased oxidative stress and differential expression of several Gqalpha-protein kinase C pathway-associated genes have, however, recently been identified in cold thyroid nodules. SUMMARY As disturbed thyrotropin receptor signaling plays a central role in hot thyroid nodules, the identification of effective low-molecular-weight thyrotropin receptor ligands, such as thyrotropin receptor agonists, inverse agonists and antagonists has a pharmacologic potential in the diagnosis and treatment of thyroid cancer, Graves' disease and hot thyroid nodules, respectively. Further studies have to clarify the pharmacologic potential of the enhancement of antioxidative mechanisms and the inhibition of Gqalpha-protein kinase C signaling in cold thyroid nodules.
Collapse
|
22
|
Abstract
Fibrous dysplasia (FD) is a focal bone lesion composed of immature mesenchymal osteoblastic precursor cells. Some FD patients also have hyperpigmented skin lesions (café-au-lait spots), gonadotropin-independent sexual precocity, and/or other endocrine and nonendocrine manifestations (McCune-Albright syndrome [MAS]). MAS results from somatic mutations occurring during early development, resulting in a widespread mosaic of normal and mutant-bearing cells, which predicts that the clinical presentation of each patient is determined by the extent and distribution of abnormal cells. These mutations encode constitutively active forms of G(s)alpha, the ubiquitously expressed G protein alpha-subunit that couples hormone receptors to intracellular cAMP generation. These mutations lead to substitution of amino acid residues that are critical for the intrinsic GTPase activity that is normally required to deactivate the G protein. This leads to prolonged activation of G(s)alpha and its downstream effectors even with minimal receptor activation. This explains why MAS patients have stimulation of multiple peripheral endocrine glands in the absence of circulating stimulatory pituitary hormones and increased skin pigment, which is normally induced by melanocyte-stimulating hormone through G(s)alpha/cAMP. Similar mutations are also present in 40% of pituitary tumors in acromegaly patients and less commonly in other endocrine tumors. FD results from increased cAMP in bone marrow stromal cells, leading to increased proliferation and abnormal differentiation. Parental origin of the mutated allele may also affect the clinical presentation, because G(s)alpha is imprinted and expressed only from the maternal allele in some tissues (e.g., pituitary somatotrophs).
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Alemany R, Perona JS, Sánchez-Dominguez JM, Montero E, Cañizares J, Bressani R, Escribá PV, Ruiz-Gutierrez V. G protein-coupled receptor systems and their lipid environment in health disorders during aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:964-75. [PMID: 17070497 DOI: 10.1016/j.bbamem.2006.09.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 02/05/2023]
Abstract
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.
Collapse
Affiliation(s)
- Regina Alemany
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitary d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kalfa N, Lumbroso S, Boulle N, Guiter J, Soustelle L, Costa P, Chapuis H, Baldet P, Sultan C. Activating mutations of Gsalpha in kidney cancer. J Urol 2006; 176:891-5. [PMID: 16890646 DOI: 10.1016/j.juro.2006.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Indexed: 11/22/2022]
Abstract
PURPOSE Heterotrimeric G proteins are signal transduction proteins coupled to hormone receptors that activate intracellular second messenger systems, mainly cyclic adenosine monophosphate mediated protein kinase. Recent studies indicate that G proteins may have a major role in oncogenesis as well as in tumor invasiveness and cell proliferation. The involvement of G proteins was formerly thought to be limited to hormonal signal transduction. Activating Gsalpha mutations have been reported in tumors arising only from highly specialized endocrine tissue, such as pituitary adenomas, toxic thyroid adenomas and differentiated thyroid carcinomas, but never in other nonendocrine tumors. We hypothesized that a constitutive activation of this pathway, that is activated Gsalpha and inhibited Gialpha, could be implicated in kidney cancers. We searched for alterations on the Gsalpha gene GNAS and the Gialpha gene in renal cell carcinoma. MATERIALS AND METHODS Using nested polymerase chain reaction, enzyme digestions, laser microdissection and direct sequencing we looked for activating mutations on GNAS codons 201 and 227, and inhibiting mutations on the Gialpha gene in 30 consecutive patients with clear cell renal cell carcinoma between January 2003 and January 2004. RESULTS Somatic (tumor specific) activating mutations of Gsalpha were present in a significant proportion of human clear cell renal cell carcinomas. Activating mutations were identified in 5 of the 30 patient DNA preparations (16.6%) with a substitution of arginine 201 by cysteine in 3 and histidine in 2. CONCLUSIONS These findings suggest the implication of this pathway in human oncogenesis. It may provide a potential therapeutic approach to these frequent and aggressive tumors.
Collapse
Affiliation(s)
- Nicolas Kalfa
- INSERM U540, Endocrinologie Moléculaire et Cellulaire des Cancers and Service d'Hormonologie du Développement et de la Reproduction, Hôpital Lapeyronie, CHU Montpellier, 34295 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
26
|
Gozu H, Avsar M, Bircan R, Sahin S, Deyneli O, Cirakoglu B, Akalin S. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population. Endocr J 2005; 52:577-85. [PMID: 16284436 DOI: 10.1507/endocrj.52.577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.
Collapse
Affiliation(s)
- Hulya Gozu
- Section of Endocrinology and Metabolism, Department of Medicine, Marmara University Medical School, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
27
|
Bezerra MGT, Latronico AC, Fragoso MCBV. [Endocrine tumors associated to protein Gsalpha/Gi2alpha mutations]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2005; 49:784-90. [PMID: 16444361 DOI: 10.1590/s0004-27302005000500019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many oncogenic mutations promote tumor growth by inducing autonomous activity of proteins that normally transmit proliferative signal initiated by extracellular factors. G proteins are a family of guanine nucleotide binding proteins, which are structurally homologous and widely distributed in eukaryotic cells. They are composed of three different subunits (alpha, beta e gamma). The alpha subunit, which contains the guanine nucleotide-binding site, is unique to each G protein. The G proteins couple an array of seven transmembrane receptors at the cell surface with a variety of intracellular effectors, which produce second messenger molecules. A subset of endocrine tumors, such as GH- or ACTH-secreting pituitary adenomas, functioning thyroid adenomas, adrenocortical and gonadal tumors were associated with somatic activating mutations in the highly conserved codons of the Gs (Arg201 and Gln227) and Gi (Arg179 and Gln205) proteins. These findings indicated that the G proteins play a role as oncogenes, contributing with the human endocrine tumorigenesis.
Collapse
|
28
|
Krohn K, Führer D, Bayer Y, Eszlinger M, Brauer V, Neumann S, Paschke R. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 2005; 26:504-24. [PMID: 15615818 DOI: 10.1210/er.2004-0005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to summarize current knowledge of the etiology of euthyroid and toxic multinodular goiter (MNG) with respect to the epidemiology, clinical characteristics, and molecular pathology. In reconstructing the line of events from early thyroid hyperplasia to MNG we will argue the predominant neoplastic character of nodular structures, the nature of known somatic mutations, and the importance of mutagenesis. Furthermore, we outline direct and indirect consequences of these somatic mutations for thyroid pathophysiology and summarize information concerning a possible genetic background of euthyroid goiter. Finally, we discuss uncertainties and open questions in differential diagnosis and therapy of euthyroid and toxic MNG.
Collapse
Affiliation(s)
- Knut Krohn
- Universität Leipzig, Zentrum für Innere Medizin, Medizinische Klinik und Poliklinik III, Ph.-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Spada A, Mantovani G, Lania A. Inactivating and activating mutations of the Gs alpha gene. ANNALES D'ENDOCRINOLOGIE 2005; 66:258-63. [PMID: 15988388 DOI: 10.1016/s0003-4266(05)81759-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- A Spada
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore IRCCS, Via F. Sforza 35-20122 Milano Italy.
| | | | | |
Collapse
|
30
|
Gozu H, Avsar M, Bircan R, Claus M, Sahin S, Sezgin O, Deyneli O, Paschke R, Cirakoglu B, Akalin S. Two novel mutations in the sixth transmembrane segment of the thyrotropin receptor gene causing hyperfunctioning thyroid nodules. Thyroid 2005; 15:389-97. [PMID: 15876166 DOI: 10.1089/thy.2005.15.389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autonomously functioning thyroid nodules (AFTNs) can present as hyperfunctioning adenomas or toxic multinodular goiters. In the last decade, a large number of activating mutations have been identified in the thyrotropin receptor (TSHR) gene in autonomously functioning thyroid nodules. Most have been situated close to, or within the sixth transmembrane segment and third intracellular loop of the TSHR where the receptor interacts with the Gs protein. In this study we describe two novel mutations in the sixth transmembrane segment of the TSHR causing hyperfunctioning thyroid nodules. Genomic DNAs were isolated from four hyperfunctioning thyroid nodules, normal tissues and peripheral leukocytes of two patients with toxic multinodular goiter. After amplifying the related regions, TSHR and G(s)alpha genes were analyzed by single-strand conformation polymorphism (SSCP) analysis. The precise localization of the mutations was identified by automatic DNA sequence analysis. Functional studies were done by site-directed mutagenesis and transfection of a mutant construct into COS-7 cells. We identified two novel TSHR mutations in two hyperfunctioning thyroid nodules: Phe631Val in the first patient and Iso630Met in the second patient. Both mutant receptors display an increase in constitutive stimulation of basal cyclic adenosine monophosphate (cAMP) levels compared to the wild-type receptor. This confirms that these mutant receptors cause hyperfunctioning thyroid nodules.
Collapse
Affiliation(s)
- Hulya Gozu
- Section of Endocrinology and Metabolism, Department of Medicine, Marmara University Medical School, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gozu H, Avsar M, Bircan R, Sahin S, Ahiskanali R, Gulluoglu B, Deyneli O, Ones T, Narin Y, Akalin S, Cirakoglu B. Does a Leu 512 Arg thyrotropin receptor mutation cause an autonomously functioning papillary carcinoma? Thyroid 2004; 14:975-80. [PMID: 15671779 DOI: 10.1089/thy.2004.14.975] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the last decade, studies were first done to determine the frequency of Gsalpha and later thyrotropin receptor (TSHR) mutations in benign autonomously functioning thyroid nodules (AFTN). Different frequencies ranging from 0% to 38% for GSp mutations and from 20% to 86% for TSHR mutations were found. There were only some limited case reports related to TSHR genetic alterations in malignant AFTN. Their role in autonomously functioning thyroid carcinomas is not well established. We present a patient who had thyroidectomy for toxic multinodular goiter and a papillary carcinoma was demonstrated histopathologically. Genomic DNA was isolated from two solid areas in the hot nodule and peripheral leukocytes of the patient. After amplifying the related regions, TSHR and GSalpha genes were analyzed by single-strand conformation polymorphism (SSCP) analysis. The precise localization of the mutations was identified by automatic DNA sequence analysis. An activating mutation of the TSHR gene (Leu 512 Arg) was found in the autonomously functioning papillary carcinoma. It is believed that this mutation causes constitutive activation of the cyclic adenosine monophosphate (cAMP) signal transduction pathway and thereby causes thyrotoxicosis and a hot thyroid nodule in an autonomously functioning papillary carcinoma.
Collapse
Affiliation(s)
- Hulya Gozu
- Section of Endocrinology and Metabolism, Marmara University Medical School, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Antonini SR, Fragoso MC, Lacroix A. Hiperplasia adrenal macronodular independente de ACTH (AIMAH): aspectos clínicos e moleculares. ACTA ACUST UNITED AC 2004; 48:620-36. [PMID: 15761531 DOI: 10.1590/s0004-27302004000500006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A AIMAH é caracterizada pela presença de macronódulos em ambas as adrenais, na ausência da estimulação do ACTH. Habitualmente, as manifestações clínicas aparecem somente após várias décadas de vida, provavelmente em função da baixa atividade esteroidogênica do tecido hiperplásico. Entretanto, em indivíduos assintomáticos cuja AIMAH foi descoberta acidentalmente, o eixo HHA já se encontra alterado. Estudos têm demonstrado que, na maioria dos casos de AIMAH, a secreção de cortisol é regulada de modo "aberrante" por hormônios como o GIP, AVP, catecolaminas, LH/hCG e serotonina, através de seus respectivos receptores, ectópicos ou eutópicos, porém aberrantemente acoplados à esteroidogênese. Os mecanismos moleculares responsáveis pela expressão ectópica dos receptores hormonais e/ou de seu acoplamento anormal à esteroidogênese adrenal ainda são pouco conhecidos. Embora a expressão aberrante destes receptores hormonais possa desempenhar um papel importante na iniciação da proliferação celular aumentada, bem como na esteroidogênese, é provável que eventos genéticos adicionais ocorram, envolvendo a regulação do ciclo celular, adesão e transcrição. Mutações no gene GNAS1 não associadas à síndrome de McCune-Albright podem ser encontradas em raros casos de AIMAH. Em alguns casos, a presença de receptor hormonal aberrante abre novas possibilidades de tratamento farmacológico específico do hipercortisolismo, seja isolado ou associado à adrenalectomia unilateral.
Collapse
Affiliation(s)
- Sonir R Antonini
- Departamento de Pediatria, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, USP.
| | | | | |
Collapse
|
33
|
Kim DS, McCabe CJ, Buchanan MA, Watkinson JC. Oncogenes in thyroid cancer. CLINICAL OTOLARYNGOLOGY AND ALLIED SCIENCES 2003; 28:386-95. [PMID: 12969338 DOI: 10.1046/j.1365-2273.2003.00732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There have been significant advances in our understanding of carcinogenesis at the molecular level over the last 25 years. Oncogenes are of major interest as part of our search for knowledge surrounding the aetiology of cancer. There are several oncogenes associated with thyroid cancer. Detailed investigation of the nature and function of these tumour genes has provided important insights into both the tumour biology and the complex biochemical pathways of normal cellular functioning. Our knowledge of oncogene biology offers the hope of better diagnostic, therapeutic and prognostic modalities in our fight against this and other common cancers. Development of specific thyroid tumour markers and gene therapy is now a realistic prospect to supplement our present armamentarium of surgery and radiotherapy. This review aims to outline the pertinent information gained so far from studies of these oncogenes and provides both clinical relevance and fuel for further interest amongst the ENT thyroid community in this exciting area of research.
Collapse
Affiliation(s)
- D S Kim
- Departments of Otolaryngology, Head & Neck Surgery, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK.
| | | | | | | |
Collapse
|
34
|
Kan B, Esapa C, Sipahi T, Nacar C, Ozer F, Sayhan NB, Kaynar MY, Sarioğlu AC, Harris PE. G protein mutations in pituitary tumors: a study on Turkish patients. Pituitary 2003; 6:75-80. [PMID: 14703016 DOI: 10.1023/b:pitu.0000004797.89592.5e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activating mutations of the G proteins, Gsalpha (gsp) and Gi2alpha (gip) have been reported in subsets of pituitary tumors. The objective of the study was to assess the frequency of gsp and gip mutations in pituitary tumors from Turkish patients and to investigate the possibility of mutations of protein kinase A catalytic subunit (PKAC) that activates the downstream effectors of adenylyl cyclase. PCR-amplified genomic DNA was analyzed for the presence of mutations in codons 201 and 227 of Gsalpha, codon 179 and 205 of Gi2alpha and codon 196 of PKAC, by single strand conformation polymorphism analysis, allele-specific oligonucleotide hybridization and DNA sequencing. Twenty-two patients from Turkey, 15 females and 7 males were investigated; 7 somatotroph adenomas, 7 clinically non-functioning tumors, 7 prolactinomas and 1 corticotroph adenoma. G protein mutations were identified in 6 of 22 (27.3%) pituitary tumors. Four tumors (3/7 somatotroph adenomas, 43%, 1/7 clinically non-functioning tumor) demonstrated gsp mutations at codon 201 arginine to cysteine and one recurrent somatotroph adenoma demonstrated a mutation of the Gi2alpha gene at codon 193 lysine to arginine. One tumor exhibited a C to T variation in the intervening sequence between codons 179 and 205 of the Gi2alpha gene. No mutations at codon 227 of Gsalpha, codons 179 and 205 of Gi2alpha and codon 196 of the PKAC gene were identified.
Collapse
Affiliation(s)
- Beki Kan
- Department of Biophysics, Marmara University School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A number of molecular abnormalities have been described in association with the progression from normal thyroid tissue to benign adenomas to well-differentiated and finally anaplastic epithelial thyroid cancer. These include upregulation of proliferative factors, such as growth hormones and oncogenes, downregulation of apoptotic and cell-cycle inhibitory factors, such as tumor suppressors, disruption of normal cell-to-cell interactions, and cellular immortalization. The progression model for thyroid carcinoma has not been proven, but evidence suggests that an evolutionary molecular process is involved, especially in the development of follicular thyroid cancers for which there are distinct intermediate phenotypes. We present a comprehensive evaluation of factors involved in thyroid tumorigenesis and attempt to describe preliminary attributes of a progression model. The organization of this model should also provide a template for the incorporation of new information as it is derived from large-scale genomic studies.
Collapse
Affiliation(s)
- Dorry L Segev
- Department of Surgery, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
36
|
Celano M, Arturi F, Presta I, Bruno R, Scarpelli D, Calvagno MG, Cristofaro C, Bulotta S, Giannasio P, Sacco R, Filetti S, Russo D. Expression of adenylyl cyclase types III and VI in human hyperfunctioning thyroid nodules. Mol Cell Endocrinol 2003; 203:129-35. [PMID: 12782409 DOI: 10.1016/s0303-7207(03)00086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperfunctioning thyroid nodules are characterized by the presence of spontaneous somatic mutations responsible for constitutive activation of the cAMP pathway. However, alterations affecting other elements of the cAMP signaling system may counteract the effects of the mutations. In this study, the expression of the adenylyl cyclase (AC) types III and VI was investigated by Western blot in 18 hyperfunctioning thyroid nodules; in 12 samples, we also assessed the presence of TSH receptor (TSHR) or gsp mutations and levels of AC VI and III mRNA. We found that the expression of nodular AC VI (but not AC III) was significantly lower (85.1% of normal, P=0.014) than the expression of both adenylyl cycles types of perinodular tissue from the same patients. Slightly, but not significant differences were detected in nodules with or without mutations and AC protein levels generally showed correlation with the levels of the transcripts detected by RT-PCR. In addition, AC III and AC VI expression levels within a given nodule were characterized by a significant positive correlation. These findings indicate that a diminished expression of AC type VI may be part of the mechanisms occurring in the hyperfunctioning nodules, independently of the presence of TSHR or gsp mutations, which influence the resulting phenotype.
Collapse
Affiliation(s)
- M Celano
- Dipartimento di Scienze Farmacobiologiche, Facoltà di Farmacia, University of Catanzaro, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arturi F, Scarpelli D, Coco A, Sacco R, Bruno R, Filetti S, Russo D. Thyrotropin receptor mutations and thyroid hyperfunctioning adenomas ten years after their first discovery: unresolved questions. Thyroid 2003; 13:341-3. [PMID: 12804102 DOI: 10.1089/105072503321669811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ten years after the first description of activating mutations in the thyroid stimulating hormone receptor (TSHR) gene in sporadic autonomous hyperfunctioning thyroid adenomas, there is general agreement in assigning a major pathogenic role of this genetic abnormality, acting via the constitutive activation of the cAMP pathway, in both the growth and functional characteristic of these tumours. From the beginning, however, the pathophysiological and clinical relevance of somatic TSHR mutations has been debated and some arguments still exist against a fully causative role of these mutations and the practical value of detecting these mutations for the diagnosis, treatment and prognosis of thyroid hot nodules. Some major issues will be examined herein, including (a) the frequency of TSHR alterations in various reports showing that the genetic abnormality underlying the pathogenesis of a substantial subset of thyroid tumours has yet to be identified; (b) the limitations of the present experimental models, which suggest greater caution in the interpretation of in vitro results; (c) the still unresolved question of absence of genotype-phenotype correlation. Clarification of these issues may hopefully provide new and useful tools for improving the clinical management of this disease.
Collapse
Affiliation(s)
- F Arturi
- Dipartimento di Medicina Sperimentale e Clinica, University of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In recent years the demonstration that human pituitary adenomas are monoclonal provides further evidence of genomic mutations occurring in the progenitor cell that subsequently undergoes clonal expansion. Up to now the only mutations identified in a significant proportion of pituitary tumors, and particular in GH-secreting adenomas, occur in the Gsalpha gene and cause constitutive activation of the cAMP pathway. Subsequent studies revealed that these mutations are associated with several feedback mechanisms that, at least in part, counteract the oncogenic potential of mutant Gsalpha. As far as the promoting agents are concerned, several lines of evidence indicate that in pituitary tumors growth factors or their receptors may be overexpressed at variable levels. The contribution of these defects in human pituitary tumorigenesis remains to be established.
Collapse
Affiliation(s)
- Anna Spada
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore IRCCS, Via F. Sforza 35, 20122 Milan, Italy.
| | | |
Collapse
|
39
|
Vieira TCA, Cerutti JM, Dias da Silva MR, Delcelo R, Abucham J. Absence of activating mutations in the hot spots of the LH receptor and Gs-alpha genes in Leydig cell tumors. J Endocrinol Invest 2002; 25:598-602. [PMID: 12150333 DOI: 10.1007/bf03345082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Leydig-cell tumors are functioning endocrine tumors that produce T autonomously leading to isosexual precocity in boys and virilization in female patients. Molecular abnormalities such as activating mutations of the luteinizing hormone receptor (LHR), a G protein-coupled receptor, and of the Gs-alpha subunit of G protein have recently been described in these tumors. Both mutations cause continuous activation of the cAMP signaling cascade, autonomous production of T and cell proliferation. We searched for activating mutations in exon 11 of the LHR gene and in exons 8 and 9 of the Gs-a gene, which contain all hot spots for those mutations, in 4 Leydig cell tumors obtained from 4 patients (one boy with LH-independent precocious puberty and 3 women with virilization). DNA was extracted from paraffin-embedded neoplastic and non-neoplastic tissues and from peripheral lymphocytes. Hot spot regions of exons 11 of LHR and exons 8 and 9 of Gs-alpha genes were amplified by PCR and the purified PCR products were directly sequenced. No LHR or Gs-alpha gene mutations were found in the 4 tumors studied. Considering the previously reported mutations found in Leydig cell tumors, the absence of activating mutations in the hot spot regions for activating mutations in these tumors indicate molecular heterogeneity among Leydig cell tumors.
Collapse
|
40
|
Abstract
Gs is the ubiquitously expressed heterotrimeric G protein that couples receptors to the effector enzyme adenylyl cyclase and is required for receptor-stimulated intracellular cAMP generation. Activated receptors promote the exchange of GTP for GDP on the Gs alpha-subunit (Gs(alpha)), resulting in Gs activation; an intrinsic GTPase activity of Gs(alpha) deactivates Gs by hydrolyzing bound GTP to GDP. Mutations of Gs(alpha) residues involved in the GTPase reaction that lead to constitutive activation are present in endocrine tumors, fibrous dysplasia of bone, and McCune-Albright syndrome. Heterozygous loss-of-function mutations lead to Albright hereditary osteodystrophy (AHO), a disease characterized by short stature, obesity, and skeletal defects, and are sometimes associated with progressive osseous heteroplasia. Maternal transmission of Gs(alpha) mutations leads to AHO plus resistance to several hormones (e.g., parathyroid hormone) that activate Gs in their target tissues (pseudohypoparathyroidism type IA), while paternal transmission leads only to the AHO phenotype (pseudopseudohypoparathyroidism). Studies in both mice and humans demonstrate that Gs(alpha) is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in some tissues and biallelically expressed in most other tissues. This likely explains why multihormone resistance occurs only when Gs(alpha) mutations are inherited maternally. The Gs(alpha) gene GNAS1 has at least four alternative promoters and first exons, leading to the production of alternative gene products including Gs(alpha), XL alphas (a novel Gs(alpha) isoform expressed only from the paternal allele), and NESP55 (a chromogranin-like protein expressed only from the maternal allele). The fourth alternative promoter and first exon (exon 1A) located just upstream of the Gs(alpha) promoter is normally methylated on the maternal allele and is transcriptionally active on the paternal allele. In patients with parathyroid hormone resistance but without AHO (pseudohypoparathyroidism type IB), the exon 1A promoter region is unmethylated and transcriptionally active on both alleles. This GNAS1 imprinting defect is predicted to decrease Gs(alpha) expression in tissues where Gs(alpha) is normally imprinted and therefore to lead to renal parathyroid hormone resistance.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
41
|
Abstract
Thyroid nodules can be found in up to 50% of inhabitants of iodine-deficient areas and are classified as hot or cold thyroid nodules according to their scintigraphic characteristics. Studies of hot thyroid nodules with comparable mutation detection methods and screening at least exon 10 of the TSH receptor reported frequencies for somatic TSH-receptor mutations ranging from 20 to 82% in patients with similar iodine supply. We have recently screened 75 hot thyroid nodules for somatic TSH-receptor mutations with the more sensitive DGGE method and found somatic TSH-receptor mutations in 57% and Gsalpha mutations in 3%. As 50% of the mutation-negative nodules from female patients are of monoclonal origin when tested for X-chromosome inactivation somatic mutations in other genes are likely to cause the development of hot thyroid nodules. Scintigraphically nonsuppressible areas have been identified in up to 40% of euthyroid goiters in iodine-deficient areas. We recently identified somatic TSH-receptor mutations in microscopic autonomous areas with increased 125T uptake in euthyroid goiters studied by autoradiography 20 years ago. These constitutively activating somatic TSH-receptor mutations in minute autoradiographically hot areas of euthyroid goiters are very likely starting foci which most likely lead to toxic thyroid nodules in iodine-deficient goiters. Therefore iodine deficiency does not only lead to euthyroid goiters but also to thyroid autonomy. The latter is also suggested by epidemiologic studies. Similar mechanisms induced by iodine deficiency and the subsequent hyperplasia, mutagenesis, and selection of cell clones could also lead to cold thyroid nodules by somatic mutations that only initiate growth but not hyperfunction of the affected thyroid epithelial cell. Somatic ras mutations have frequently been detected in histologically characterized thyroid adenomas or adenomatous nodules. However, they seem to be rare in cold thyroid nodules. Since the majority of these latter nodules and 60% of the cold thyroid nodules are monoclonal other somatic mutations are likely in these nodules.
Collapse
Affiliation(s)
- Knut Krohn
- III. Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | | |
Collapse
|
42
|
Abstract
Feline hyperthyroidism is the most common endocrine disorder of the elderly cat. Traditionally, the disease is treated by surgical thyroidectomy, medical management with antithyroid drugs or radiation therapy using iodine-131. However, none of these treatments is ideal and molecular therapeutics may offer novel methods of treating the disease. This article reviews the background of, and preliminary investigations into, the development of a transcriptionally targeted somatic gene therapy strategy for the treatment of this feline condition.
Collapse
Affiliation(s)
- L Blackwood
- Molecular Therapeutics Research Group, Division of Small Animal Clinical Studies, Faculty of Veterinary Medicine, University of Glasgow
| | | |
Collapse
|
43
|
Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001; 22:675-705. [PMID: 11588148 DOI: 10.1210/edrv.22.5.0439] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The heterotrimeric G protein G(s) couples hormone receptors (as well as other receptors) to the effector enzyme adenylyl cyclase and is therefore required for hormone-stimulated intracellular cAMP generation. Receptors activate G(s) by promoting exchange of GTP for GDP on the G(s) alpha-subunit (G(s)alpha) while an intrinsic GTPase activity of G(s)alpha that hydrolyzes bound GTP to GDP leads to deactivation. Mutations of specific G(s)alpha residues (Arg(201) or Gln(227)) that are critical for the GTPase reaction lead to constitutive activation of G(s)-coupled signaling pathways, and such somatic mutations are found in endocrine tumors, fibrous dysplasia of bone, and the McCune-Albright syndrome. Conversely, heterozygous loss-of-function mutations may lead to Albright hereditary osteodystrophy (AHO), a disease characterized by short stature, obesity, brachydactyly, sc ossifications, and mental deficits. Similar mutations are also associated with progressive osseous heteroplasia. Interestingly, paternal transmission of GNAS1 mutations leads to the AHO phenotype alone (pseudopseudohypoparathyroidism), while maternal transmission leads to AHO plus resistance to several hormones (e.g., PTH, TSH) that activate G(s) in their target tissues (pseudohypoparathyroidism type IA). Studies in G(s)alpha knockout mice demonstrate that G(s)alpha is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in some tissues (e.g., renal proximal tubule, the major site of renal PTH action), while being biallelically expressed in most other tissues. Disrupting mutations in the maternal allele lead to loss of G(s)alpha expression in proximal tubules and therefore loss of PTH action in the kidney, while mutations in the paternal allele have little effect on G(s)alpha expression or PTH action. G(s)alpha has recently been shown to be also imprinted in human pituitary glands. The G(s)alpha gene GNAS1 (as well as its murine ortholog Gnas) has at least four alternative promoters and first exons, leading to the production of alternative gene products including G(s)alpha, XLalphas (a novel G(s)alpha isoform that is expressed only from the paternal allele), and NESP55 (a chromogranin-like protein that is expressed only from the maternal allele). A fourth alternative promoter and first exon (exon 1A) located approximately 2.5 kb upstream of the G(s)alpha promoter is normally methylated on the maternal allele and transcriptionally active on the paternal allele. In patients with isolated renal resistance to PTH (pseudohypoparathyroidism type IB), the exon 1A promoter region has a paternal-specific imprinting pattern on both alleles (unmethylated, transcriptionally active), suggesting that this region is critical for the tissue-specific imprinting of G(s)alpha. The GNAS1 imprinting defect in pseudohypoparathyroidism type IB is predicted to decrease G(s)alpha expression in renal proximal tubules. Studies in G(s)alpha knockout mice also demonstrate that this gene is critical in the regulation of lipid and glucose metabolism.
Collapse
Affiliation(s)
- L S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
44
|
Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 2001; 22:631-56. [PMID: 11588145 DOI: 10.1210/edrv.22.5.0444] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TSH via cAMP, and various growth factors, in cooperation with insulin or IGF-I stimulate cell cycle progression and proliferation in various thyrocyte culture systems, including rat thyroid cell lines (FRTL-5, WRT, PC Cl3) and primary cultures of rat, dog, sheep and human thyroid. The available data on cell signaling cascades, cell cycle kinetics, and cell cycle-regulatory proteins are thoroughly and critically reviewed in these experimental systems. In most FRTL-5 cells, TSH (cAMP) merely acts as a priming/competence factor amplifying PI3K and MAPK pathway activation and DNA synthesis elicited by insulin/IGF-I. In WRT cells, TSH and insulin/IGF-I can independently activate Ras and PI3K pathways and DNA synthesis. In dog thyroid primary cultures, TSH (cAMP) does not activate Ras and PI3K, and cAMP must be continuously elevated by TSH to directly control the progression through G(1) phase. This effect is exerted, at least in part, via the cAMP-dependent activation of the required cyclin D3, itself synthesized in response to insulin/IGF-I. This and other discrepancies show that the mechanistic logics of cell cycle stimulation by cAMP profoundly diverge in these different in vitro models of the same cell. Therefore, although these different thyrocyte systems constitute interesting models of the wide diversity of possible mechanisms of cAMP-dependent proliferation in various cell types, extrapolation of in vitro mechanistic data to TSH-dependent goitrogenesis in man can only be accepted in the cases where independent validation is provided.
Collapse
Affiliation(s)
- T Kimura
- Institute of Interdisciplinary Research (IRIBHN), School of Medicine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Ramirez R, Hsu D, Patel A, Fenton C, Dinauer C, Tuttle RM, Francis GL. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2000; 53:635-44. [PMID: 11106926 DOI: 10.1046/j.1365-2265.2000.01124.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The study determined if hepatocyte growth factor/scatter factor (HGF/SF) or the HGF/SF receptor (cMET) might be important for metastasis in thyroid cancer. DESIGN We examined HGF/SF and cMET expression by immunohistochemistry in a retrospective group of benign and malignant thyroid lesions from children and young adults, and correlated the intensity of expression with clinical outcome. PATIENTS Patients included 42 children and young adults with papillary thyroid carcinomas (PTC), seven with follicular thyroid carcinomas (FTC), two with medullary thyroid carcinomas (MTC), 14 with benign thyroid disorders, and two with normal thyroids. MEASUREMENTS Expression of cMET was graded from 0 (absent) to 4 (intense); and HGF/SF expression was graded from 0 (absent-minimal) to 3 (diffuse and intense). RESULTS cMET staining was greater in PTC (mean intensity 2.3 +/- 0.4 vs. 0.8 +/- 0.2, P < 0.005) and FTC (2.4 +/- 0.6 vs. 0.8 +/- 0.2, P = 0.04) than benign lesions (0.8 +/- 0.2) or normal thyroids (0.4 +/- 0.5). PTC with intense cMET staining had shorter disease free survival (P = 0.05) and increased HGF/SF staining (r = 0.39, P = 0.017). HGF/SF correlated with the extent of disease at diagnosis (r = 0.33, P = 0.049). Patients with PTC were stratified into quartiles based on combined cMET and HGF/SF staining. Those with intense cMET and HGF/SF staining were younger (P = 0.05), and had reduced disease free survival (P = 0.03). CONCLUSIONS We conclude that increased cMET and HGF/SF expression is associated with a high risk for metastasis and recurrence in children and young adults with papillary thyroid carcinoma.
Collapse
Affiliation(s)
- R Ramirez
- Department of Paediatrics, Walter Reed Army Medical Center, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, Stambrook PJ, Fagin JA. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000; 19:3948-54. [PMID: 10951588 DOI: 10.1038/sj.onc.1203723] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activating mutations of RAS are thought to be early events in the evolution of thyroid follicular neoplasms. We used a doxycycline-inducible expression system to explore the acute effects of H-RAS12 on genomic stability in thyroid PCCL3 cells. At 2-3 days (first or second cell cycle) there was a significant increase in the frequency of micronucleation. Treatment of cells with YVAD-CHO inhibited RAS-induced apoptosis, but had no effect on micronucleation. The effects of H-RAS(V12) were mediated by activation of MAPK, as treatment with PD98059 at concentrations verified to selectively inhibit MEK1 reduced the frequency of prevalence of cells with micronuclei. In addition, doxycycline-inducible expression of a constitutively active MEK1, but not of a mutant RAC1, mimicked the effects of H-RAS(V12). The effects of H-RAS(V12) on genome destabilization were apparent even though the sequence of p53 in PCCL3 cells was confirmed to be wild-type. Acute activation of H-RAS(V12) evoked a proportional increase in both CREST negative and CREST positive micronuclei, indicating that both clastogenic and aneugenic effects were involved. H-RAS(V12) and activated MEK1 also induced centrosome amplification, and chromosome misalignment. Evidence that acute expression of constitutively activated RAS destabilizes the genome of PCCL3 cells is consistent with a mode of tumor initiation in which this oncogene promotes phenotypic progression by predisposing to large scale genomic abnormalities.
Collapse
Affiliation(s)
- H I Saavedra
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Suarez HG. Molecular basis of epithelial thyroid tumorigenesis. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2000; 323:519-28. [PMID: 10923207 DOI: 10.1016/s0764-4469(00)00170-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The results of experiments carried out in different laboratories (including ours) during the last 10 years have enabled us to propose the hypothesis that there are different initiators able to start the epithelial thyroid tumorigenic process via different pathways:--gsp and TSHR genes: at the origin of hyperfunctioning tumors (toxic nodules and adenomas);--ras and probably gsp genes (in a minority of samples): via a vesicular adenoma progressing eventually to a vesicular carcinoma. This could be also the case for ret but only in radiation-associated tumours;--ras, ret, trk and probably gsp and met: starting from small papillary lesions ('spontaneous' or radiation-induced) and progressing to a clinically evident papillary carcinoma;--the p53 gene playing a role only in the final dedifferentiation process. Simultaneous alteration in the same sample of combinations of ras, gsp, ret, trk and TSHR was found in only a minority of the approximately 150 tumours studied. These data suggest an interchangeable role for these genes in the initiation of 'spontaneous' or radiation-associated epithelial thyroid tumorigenesis. The requirement of one of the genes cited above to interact with other genes must not be neglected. Ras is the most frequently altered gene in 'spontaneous' thyroid tumours and ret in radiation-associated thyroid tumours.
Collapse
Affiliation(s)
- H G Suarez
- Laboratoire de génétique moléculaire UPR 42 CNRS, Institut de recherches sur le cancer-IFR Y 1221, Villejuif, France.
| |
Collapse
|
48
|
Brunetti A, Chiefari E, Filetti S, Russo D. The 3',5'-cyclic adenosine monophosphate response element binding protein (CREB) is functionally reduced in human toxic thyroid adenomas. Endocrinology 2000; 141:722-30. [PMID: 10650954 DOI: 10.1210/endo.141.2.7331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In human normal thyrocytes, the cAMP-responsive signaling pathway plays a central role in gene regulation, cell proliferation, and differentiation. Constitutive activation of the cAMP signal transduction system has been documented in thyroid autonomously hyperfunctioning adenomas in which activating mutations in either the TSH receptor gene or the Gsalpha protein gene (gsp oncogene) have been described. The molecular mechanism whereby cAMP induces thyrocyte proliferation is unknown, but recent evidence suggests that the transcription factor cAMP response element binding protein (CREB) may serve as an important biochemical intermediate in this proliferative response. Herein we have investigated the expression of CREB in normal and tumoral thyroid tissues from a series of ten unrelated patients with autonomously hyperfunctioning adenomas, previously screened for mutations in the TSH receptor and Gsalpha genes. In all tumors examined, the expression of the activated, phosphorylated form of CREB was markedly reduced compared with that of the corresponding paired normal thyroid tissue, and this reduction was independent of the presence of mutations in the TSH receptor gene and Gsalpha gene. Moreover, no correlation was observed in these tissues between CREB phosphorylation and either protein kinase A activity or protein phosphatase expression. Thus, these data suggest that in human hyperfunctioning thyroid adenomas, the PKA/CREB system does not play a role in cell proliferation.
Collapse
Affiliation(s)
- A Brunetti
- Cattedra di Endocrinologia, Dipartimento di Medicina Sperimentale e Clinica, Facolta di Medicina e Chirurgia, Universita degli Studi di Catanzaro, Italy
| | | | | | | |
Collapse
|
49
|
Bugalho MJ, Li X, Rao CV, Soares J, Sobrinho LG. Presence of a Gs alpha mutation in an adrenal tumor expressing LH/hCG receptors and clinically associated with Cushing's syndrome. Gynecol Endocrinol 2000; 14:50-4. [PMID: 10813107 DOI: 10.3109/09513590009167660] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the case of a patient with Cushing's syndrome due to a functioning adrenal adenoma. There was a pronounced increase in serum and urinary cortisol after administration of human chorionic gonadotropin. Immunocytochemistry revealed positive immunostaining for LH/hCG receptors. Molecular analysis documented the presence of a gsp mutation at codon 201 (CGT to TGT). The existence of this type of hCG-responsive adrenal tumor may help explain the higher prevalence of cortisol-secreting adrenal tumors versus pituitary-dependent disease in pregnant women with Cushing's syndrome as well as some reported cases of remission following delivery.
Collapse
Affiliation(s)
- M J Bugalho
- Department of Endocrinology/Laboratory of Molecular Biology, Portuguese Cancer Institute, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
50
|
Abstract
Hyperfunctioning thyroid adenomas are benign tumors characterized by their autonomous growth and functional activity, which frequently cause clinical hyperthyroidism and show a predominant radioactive iodine uptake in the nodule. Activating mutations in the gene encoding the alpha subunit of the stimulatory G protein (Gs alpha), as well as activating mutations in the gene encoding thyrotropin receptor in hyperfunctioning thyroid adenomas, have been reported. The mutations in Gs alpha involved the replacement of either arginine 201 with cysteine or histidine, or glutamine 227 with arginine or leucine. These residues are involved in GDP/GTP binding of Gs alpha and these mutations inhibit intrinsic GTPase activity that results in constitutive activation of adenylyl cyclase. The pathophysiological roles of these mutations in the formation of hyperfunctioning thyroid adenoma have been suggested.
Collapse
Affiliation(s)
- M Murakami
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | |
Collapse
|