1
|
Medeiros D, Masini D, Plewnia C, Boi L, Rosati M, Scalbert N, Fisone G. Dopamine D2 receptor activation counteracts olfactory dysfunction and related cellular abnormalities in experimental parkinsonism. Heliyon 2024; 10:e35948. [PMID: 39224310 PMCID: PMC11366923 DOI: 10.1016/j.heliyon.2024.e35948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Olfactory dysfunction is a common non-motor symptom associated with Parkinson's disease (PD). This condition usually appears before the onset of the cardinal motor symptoms and is still poorly understood. Here, we generated a mouse model of early-stage PD based on partial 6-hydroxydopamine (6-OHDA) lesion of the dorsal striatum to reproduce the olfactory deficit and associated cellular and electrophysiological anomalies observed in patients. Using this model, we investigated the effect of long-term, continuous administration of pramipexole, a dopamine D2/3 selective agonist, on olfactory dysfunction. We found that pramipexole reverted the impairment of odor discrimination displayed by the mouse model in the habituation/dishabituation test. In line with similar observations in PD patients, the mouse model showed an increase of dopamine cells paralleled by augmented levels of the dopamine marker, tyrosine hydroxylase, in the olfactory bulb (OB). These changes, which have been proposed to contribute to olfactory dysfunction, were abolished by oral administration of pramipexole. Local field potential recording in the OB of 6-OHDA lesion mice showed reduced oscillations in the beta frequency range, in comparison to healthy control mice. This abnormality, which is suggestive of defective long range OB transmission, was also counteracted by pramipexole. Altogether these findings indicate that prolonged pharmacological stimulation of dopamine D2-like receptors rescues olfactory discrimination observed in experimental parkinsonism. Moreover, they show that this protective effect is exerted in parallel to a normalization of dopamine neurons and beta band oscillations in the OB, providing information on the potential mechanisms involved in PD-related olfactory dysfunction.
Collapse
Affiliation(s)
| | | | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Boi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martha Rosati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nicolas Scalbert
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
2
|
Ide S, Murakami Y, Futatsuya K, Anai K, Yoshimatsu Y, Fukumitsu S, Tsukamoto J, Hashimoto T, Adachi H, Ueda I, Kakeda S, Aoki T. Usefulness of Olfactory Bulb Measurement in 3D-FIESTA in Differentiating Parkinson Disease from Atypical Parkinsonism. AJNR Am J Neuroradiol 2024; 45:1141-1152. [PMID: 38871365 PMCID: PMC11383392 DOI: 10.3174/ajnr.a8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/06/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND AND PURPOSE Parkinson disease is a prevalent disease, with olfactory dysfunction recognized as an early nonmotor manifestation. It is sometimes difficult to differentiate Parkinson disease from atypical parkinsonism using conventional MR imaging and motor symptoms. It is also known that olfactory loss occurs to a lesser extent or is absent in atypical parkinsonism. To the best of our knowledge, no study has examined olfactory bulb changes to differentiate Parkinson disease from atypical parkinsonism, even in an early diagnosis, and its association with conventional MR imaging findings. Hence, we aimed to assess the utility of olfactory bulb measurements in differentiating Parkinson disease from atypical parkinsonism even in the early stage. MATERIALS AND METHODS In this retrospective study, we enrolled 108 patients with Parkinson disease, 13 with corticobasal syndrome, 15 with multiple system atrophy, and 17 with progressive supranuclear palsy who developed parkinsonism. Thirty-nine age-matched healthy subjects served as controls. All subjects underwent conventional MR imaging and 3D FIESTA for olfactory bulb measurements using manual ROI quantification of the cross-sectional olfactory bulb area using the coronal plane. Bilateral olfactory bulb measurements were averaged. For group comparisons, we used the Welch t test, and we assessed diagnostic accuracy using receiver operating characteristic analysis. RESULTS Patients with Parkinson disease had a mean olfactory bulb area of 4.2 (SD, 1.0 mm2), significantly smaller than in age-matched healthy subjects (6.6 [SD, 1.7 mm2], P < .001), and those with corticobasal syndrome (5.4 [SD, 1.2 mm2], P < .001), multiple system atrophy (6.5 [SD, 1.2 mm2], P < .001), and progressive supranuclear palsy (5.4 [SD, 1.2 mm2], P < .001). The receiver operating characteristic analysis for the olfactory bulb area measurements showed good diagnostic performance in differentiating Parkinson disease from atypical parkinsonism, with an area under the curve of 0.87, an optimal cutoff value of 5.1 mm2, and a false-positive rate of 18%. When we compared within 2 years of symptom onset, the olfactory bulb in Parkinson disease (4.2 [SD, 1.1 mm2]) remained significantly smaller than in atypical parkinsonism (versus corticobasal syndrome (6.1 [SD, 0.7 mm2]), P < .001; multiple system atrophy (6.3 [SD, 1.4 mm2]), P < .001; and progressive supranuclear palsy (5.2 [1.3 mm2], P = .003, respectively). CONCLUSIONS 3D FIESTA-based olfactory bulb measurement holds promise for distinguishing Parkinson disease from atypical parkinsonism, especially in the early stage.
Collapse
Affiliation(s)
- Satoru Ide
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yu Murakami
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Futatsuya
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenta Anai
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuta Yoshimatsu
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoshi Fukumitsu
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun Tsukamoto
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomoyo Hashimoto
- Department of Neurology (T.H., H.A), School of Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology (T.H., H.A), School of Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Issei Ueda
- Center for Evolutionary Cognitive Sciences, (I.U.), Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Kakeda
- Department of Radiology (S.K.), Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takatoshi Aoki
- From the Department of Radiology (S.I., Y.M., K.F., K.A., Y.Y., S.F., J.T., T.A.), School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
4
|
Radlicka-Borysewska A, Jabłońska J, Lenarczyk M, Szumiec Ł, Harda Z, Bagińska M, Barut J, Pera J, Kreiner G, Wójcik DK, Rodriguez Parkitna J. Non-motor symptoms associated with progressive loss of dopaminergic neurons in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1375265. [PMID: 38745938 PMCID: PMC11091341 DOI: 10.3389/fnins.2024.1375265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.
Collapse
Affiliation(s)
- Anna Radlicka-Borysewska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Judyta Jabłońska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Michał Lenarczyk
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Daniel K. Wójcik
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
5
|
Fauser M, Payonk JP, Weber H, Statz M, Winter C, Hadar R, Appali R, van Rienen U, Brandt MD, Storch A. Subthalamic nucleus but not entopeduncular nucleus deep brain stimulation enhances neurogenesis in the SVZ-olfactory bulb system of Parkinsonian rats. Front Cell Neurosci 2024; 18:1396780. [PMID: 38746080 PMCID: PMC11091264 DOI: 10.3389/fncel.2024.1396780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson's disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.g., memory deficits and olfactory dysfunction. Since DBS affects several of these non-motor symptoms, we analyzed the effects of DBS in the subthalamic nucleus (STN) and the entopeduncular nucleus (EPN) on neurogenesis in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. Methods In our study, we applied five weeks of continuous bilateral STN-DBS or EPN-DBS in 6-OHDA-lesioned rats with stable dopaminergic deficits compared to 6-OHDA-lesioned rats with corresponding sham stimulation. We injected two thymidine analogs to quantify newborn neurons early after DBS onset and three weeks later. Immunohistochemistry identified newborn cells co-labeled with NeuN, TH and GABA within the OB and DG. As a putative mechanism, we simulated the electric field distribution depending on the stimulation site to analyze direct electric effects on neural stem cell proliferation. Results STN-DBS persistently increased the number of newborn dopaminergic and GABAergic neurons in the OB but not in the DG, while EPN-DBS does not impact neurogenesis. These effects do not seem to be mediated via direct electric stimulation of neural stem/progenitor cells within the neurogenic niches. Discussion Our data support target-specific effects of STN-DBS on adult neurogenesis, a putative modulator of non-motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Mareike Fauser
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Jan Philipp Payonk
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Hanna Weber
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Meike Statz
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Christine Winter
- Department of Psychiatry and Neurosciences, Charité University Medicine Berlin, Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Neurosciences, Charité University Medicine Berlin, Berlin, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Moritz D. Brandt
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
6
|
Wang R, Lian T, He M, Guo P, Yu S, Zuo L, Hu Y, Zhang W. Clinical features and neurobiochemical mechanisms of olfactory dysfunction in patients with Parkinson disease. J Neurol 2024; 271:1959-1972. [PMID: 38151574 DOI: 10.1007/s00415-023-12122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to investigate clinical features, influencing factors and neurobiochemical mechanisms of olfactory dysfunction (OD) in Parkinson disease (PD). Total 39 patients were divided into the PD with OD (PD-OD) and PD with no OD (PD-nOD) groups according to overall olfactory function, including threshold, discrimination and identification, assessed by Sniffin' Sticks test. Motor function and non-motor symptoms were rated by multiple scales. Dopamine, acetylcholine, norepinephrine and 5-hydroxytryptamine levels in cerebrospinal fluid (CSF) were measured. We found that the PD-OD group showed significantly lower score of Montreal Cognitive Assessment Scale, higher scores of rapid eye movement sleep behavior disorder (RBD) Screening Questionnaire and Epworth Sleepiness Scale than the PD-nOD group (p < 0.05). RBD Screening Questionnaire score was independently associated with the scores of overall olfactory function and discrimination (p < 0.05). Dopamine and acetylcholine levels in CSF from the PD-OD group was significantly lower than that from the PD-nOD group (p < 0.05). Dopamine and acetylcholine levels in CSF were significantly and positively correlated with the scores of overall olfactory function, threshold, discrimination and identification in PD patients (p < 0.05). RBD Screening Questionnaire score was significantly and negatively correlated with acetylcholine level in CSF in PD patients with poor olfactory detection (p < 0.05). This investigation reveals that PD-OD is associated with cognitive impairment, probable RBD and excessive daytime sleepiness. PD-OD is correlated with the decreased levels of dopamine and acetylcholine in CSF. RBD is an independent influencing factor of overall olfactory function and discrimination, and the decreased acetylcholine level in CSF may be the common neurobiochemical basis of RBD and OD in PD patients.
Collapse
Grants
- 2016YFC1306000 National Key Research and Development Program of China
- 2016YFC1306300 National Key Research and Development Program of China
- 81970992 National Natural Science Foundation of China
- 81571229 National Natural Science Foundation of China
- 81071015 National Natural Science Foundation of China
- 30770745 National Natural Science Foundation of China
- 82201639 National Natural Science Foundation of China
- 2022-2-2048 Capital's Funds for Health Improvement and Research (CFH)
- kz201610025030 Key Technology R&D Program of Beijing Municipal Education Commission
- 4161004 Key Project of Natural Science Foundation of Beijing, China
- 7082032 Natural Science Foundation of Beijing, China
- JJ2018-48 Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing
- Z121107001012161 Capital Clinical Characteristic Application Research
- 2009-3-26 High Level Technical Personnel Training Project of Beijing Health System, China
- BIBD-PXM2013_014226_07_000084 Project of Beijing Institute for Brain Disorders
- 20071D0300400076 Excellent Personnel Training Project of Beijing, China
- IDHT20140514 Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality
- JING-15-2 Beijing Healthcare Research Project, China
- 2015-JL-PT-X04 Basic-Clinical Research Cooperation Funding of Capital Medical University, China
- 10JL49 Basic-Clinical Research Cooperation Funding of Capital Medical University, China
- 14JL15 Basic-Clinical Research Cooperation Funding of Capital Medical University, China
- PYZ2018077 Natural Science Foundation of Capital Medical University, Beijing, China
- 2019-028 Science and Technology Development Fund of Beijing Rehabilitation Hospital, Capital Medical University
Collapse
Affiliation(s)
- Ruidan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tenghong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Mingyue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuyang Yu
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lijun Zuo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- Beijing Key Laboratory on Parkinson Disease, Beijing Institute for Brain Disorders, Beijing, 10053, China.
| |
Collapse
|
7
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
8
|
Lau MYH, Gadiwalla S, Jones S, Galliano E. Different electrophysiological profiles of genetically labelled dopaminergic neurons in the mouse midbrain and olfactory bulb. Eur J Neurosci 2024; 59:1480-1499. [PMID: 38169095 DOI: 10.1111/ejn.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Dopaminergic (DA) neurons play pivotal roles in diverse brain functions, spanning movement, reward processing and sensory perception. DA neurons are most abundant in the midbrain (Substantia Nigra pars compacta [SNC] and Ventral Tegmental Area [VTA]) and the olfactory bulb (OB) in the forebrain. Interestingly, a subtype of OB DA neurons is capable of regenerating throughout life, while a second class is exclusively born during embryonic development. Compelling evidence in SNC and VTA also indicates substantial heterogeneity in terms of morphology, connectivity and function. To further investigate this heterogeneity and directly compare form and function of midbrain and forebrain bulbar DA neurons, we performed immunohistochemistry and whole-cell patch-clamp recordings in ex vivo brain slices from juvenile DAT-tdTomato mice. After confirming the penetrance and specificity of the dopamine transporter (DAT) Cre line, we compared soma shape, passive membrane properties, voltage sags and action potential (AP) firing across midbrain and forebrain bulbar DA subtypes. We found that each DA subgroup within midbrain and OB was highly heterogeneous, and that DA neurons across the two brain areas are also substantially different. These findings complement previous work in rats as well as gene expression and in vivo datasets, further questioning the existence of a single "dopaminergic" neuronal phenotype.
Collapse
Affiliation(s)
- Maggy Yu Hei Lau
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Sana Gadiwalla
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| |
Collapse
|
9
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
10
|
Lima MMS, Targa ADS, Dos Santos Lima GZ, Cavarsan CF, Torterolo P. Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:187-209. [PMID: 38341229 DOI: 10.1016/bs.irn.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep disturbances are highly prevalent among patients with Parkinson's disease (PD) and often appear from the early-phase disease or prodromal stages. In this chapter, we will discuss the current evidence addressing the links between sleep dysfunctions in PD, focusing most closely on those data from animal and mathematical/computational models, as well as in human-based studies that explore the electrophysiological and molecular mechanisms by which PD and sleep may be intertwined, whether as predictors or consequences of the disease. It is possible to clearly state that leucine-rich repeat kinase 2 gene (LRRK2) is significantly related to alterations in sleep architecture, particularly affecting rapid eye movement (REM) sleep and non-REM sleep, thus impacting sleep quality. Also, decreases in gamma power, observed after dopaminergic lesions, correlates negatively with the degree of injury, which brings other levels of understanding the impacts of the disease. Besides, abnormal synchronized oscillations among basal ganglia nuclei can be detrimental for information processing considering both motor and sleep-related processes. Altogether, despite clear advances in the field, it is still difficult to definitely establish a comprehensive understanding of causality among all the sleep dysfunctions with the disease itself. Although, certainly, the search for biomarkers is helping in shortening this road towards a better and faster diagnosis, as well as looking for more efficient treatments.
Collapse
Affiliation(s)
- Marcelo M S Lima
- Neurophysiology Laboratory, Department of Physiology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Adriano D S Targa
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Gustavo Z Dos Santos Lima
- Science and Technology School, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Clarissa F Cavarsan
- College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Pablo Torterolo
- Laboratory of Sleep Neurobiology, Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Brand G, Bontempi C, Jacquot L. Impact of deep brain stimulation (DBS) on olfaction in Parkinson's disease: Clinical features and functional hypotheses. Rev Neurol (Paris) 2023; 179:947-954. [PMID: 37301657 DOI: 10.1016/j.neurol.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
Deep brain stimulation (DBS) is a surgical therapy typically applied in Parkinson's disease (PD). The efficacity of DBS on the control of motor symptoms in PD is well grounded while the efficacity on non-motor symptoms is more controversial, especially on olfactory disorders (ODs). The present review shows that DBS does not improve hyposmia but can affect positively identification/discrimination scores in PD. The functional hypotheses suggest complex mechanisms in terms of cerebral connectivity and neurogenesis process which could act indirectly on the olfactory bulb and olfactory pathways related to specific cognitive olfactory tasks. The functional hypotheses also suggest complex mechanisms of cholinergic neurotransmitter interactions involved in these pathways. Finally, the impact of DBS on general cognitive functions in PD could also be beneficial to identification/discrimination tasks in PD.
Collapse
Affiliation(s)
- G Brand
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France.
| | - C Bontempi
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France
| | - L Jacquot
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France
| |
Collapse
|
12
|
Yuan Y, Ma X, Mi X, Qu L, Liang M, Li M, Wang Y, Song N, Xie J. Dopaminergic neurodegeneration in the substantia nigra is associated with olfactory dysfunction in mice models of Parkinson's disease. Cell Death Discov 2023; 9:388. [PMID: 37865662 PMCID: PMC10590405 DOI: 10.1038/s41420-023-01684-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Olfactory dysfunction represents a prodromal stage in Parkinson's disease (PD). However, the mechanisms underlying hyposmia are not specified yet. In this study, we first observed an early olfactory dysfunction in mice with intragastric rotenone administration, consistent with dopaminergic neurons loss and α-synuclein pathology in the olfactory bulb. However, a much severer olfactory dysfunction was observed without severer pathology in olfactory bulb when the loss of dopaminergic neurons in the substantia nigra occurred. Then, we established the mice models by intrastriatal α-synuclein preformed fibrils injection and demonstrated the performance in the olfactory discrimination test was correlated to the loss of dopaminergic neurons in the substantia nigra, without any changes in the olfactory bulb analyzed by RNA-sequence. In mice with intranasal ferric ammonium citrate administration, we observed olfactory dysfunction when dopaminergic neurodegeneration in substantia nigra occurred and was restored when dopaminergic neurons were rescued. Finally we demonstrated that chemogenetic inhibition of dopaminergic neurons in the substantia nigra was sufficient to cause hyposmia and motor incoordination. Taken together, this study shows a direct relationship between nigral dopaminergic neurodegeneration and olfactory dysfunction in PD models and put forward the understandings that olfactory dysfunction represents the early stage of neurodegeneration in PD progression.
Collapse
Affiliation(s)
- Yu Yuan
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Lingang Laboratory, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Le Qu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Mengyu Li
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Youcui Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Cai C, Luo Q, Jia L, Xia Y, Lan X, Wei X, Shi S, Liu Y, Wang Y, Xiong Z, Shi R, Huang C, Chen Z. TRIM67 Implicates in Regulating the Homeostasis and Synaptic Development of Mitral Cells in the Olfactory Bulb. Int J Mol Sci 2023; 24:13439. [PMID: 37686246 PMCID: PMC10487898 DOI: 10.3390/ijms241713439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, olfactory dysfunction has attracted increasingly more attention as a hallmark symptom of neurodegenerative diseases (ND). Deeply understanding the molecular basis underlying the development of the olfactory bulb (OB) will provide important insights for ND studies and treatments. Now, with a genetic knockout mouse model, we show that TRIM67, a new member of the tripartite motif (TRIM) protein family, plays an important role in regulating the proliferation and development of mitral cells in the OB. TRIM67 is abundantly expressed in the mitral cell layer of the OB. The genetic deletion of TRIM67 in mice leads to excessive proliferation of mitral cells in the OB and defects in its synaptic development, resulting in reduced olfactory function in mice. Finally, we show that TRIM67 may achieve its effect on mitral cells by regulating the Semaphorin 7A/Plexin C1 (Sema7A/PlxnC1) signaling pathway.
Collapse
Affiliation(s)
- Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu 611130, China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu 611130, China
| | - Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Xinting Lan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Xiaoli Wei
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Shuai Shi
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Zongliang Xiong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
| | - Riyi Shi
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (C.C.); (Q.L.); (L.J.); (Y.X.); (X.L.); (X.W.); (S.S.); (Y.L.); (Y.W.); (Z.X.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu 611130, China
| |
Collapse
|
14
|
Fang TC, Tsai YS, Chang MH. Sequential change in olfaction and (non) motor symptoms: the difference between anosmia and non-anosmia in Parkinson's disease. Front Aging Neurosci 2023; 15:1213977. [PMID: 37533763 PMCID: PMC10390767 DOI: 10.3389/fnagi.2023.1213977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Hyposmia is a common prodrome in patients with Parkinson's disease (PD). This study investigates whether olfactory changes in PD differ according to the degree of olfactory dysfunction and whether there are changes in motor and non-motor symptoms. Methods The 129 subjects with PD were divided into two groups: anosmia and non-anosmia. All cases were reassessed within 1-3 years after the initial assessment. The assessment included the MDS-Unified PD Rating Scale (MDS-UPDRS), the University of Pennsylvania Smell Identification Test (UPSIT), Beck's Depression Inventory-II (BDI-II), Montreal Cognitive Assessment (MoCA), and equivalence dose of daily levodopa (LEDD). The generalized estimating equation (GEE) model with an exchangeable correlation structure was used to analyze the change in baseline and follow-up tracking and the disparity in change between these two groups. Results The anosmia group was older and had a longer disease duration than the non-anosmia group. There was a significant decrease in UPSIT after follow-up in the non-anosmia group (β = -3.62, p < 0.001) and a significant difference in the change between the two groups (group-by-time effect, β = 4.03, p < 0.001). In the third part of the UPDRS motor scores, there was a tendency to increase the score in the non-anosmia group compared to the anosmia group (group-by-time effect, β = -4.2, p < 0.038). There was no significant difference in the group-by-time effect for UPDRS total score, LEDD, BDI-II, and MoCA scores. Discussion In conclusion, this study found that olfactory sensation may still regress in PD with a shorter disease course without anosmia, but it remains stable in the anosmia group. Such a decline in olfaction may not be related to cognitive status but may be associated with motor progression.
Collapse
Affiliation(s)
- Ting-Chun Fang
- Department of Neurology, Taichung Veterans General Hospital, Neurological Institute, Taichung, Taiwan
| | - Yu-Shan Tsai
- Department of Neurology, Taichung Veterans General Hospital, Neurological Institute, Taichung, Taiwan
| | - Ming-Hong Chang
- Department of Neurology, Taichung Veterans General Hospital, Neurological Institute, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Brain and Neuroscience Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Torres-Pasillas G, Chi-Castañeda D, Carrillo-Castilla P, Marín G, Hernández-Aguilar ME, Aranda-Abreu GE, Manzo J, García LI. Olfactory Dysfunction in Parkinson's Disease, Its Functional and Neuroanatomical Correlates. NEUROSCI 2023; 4:134-151. [PMID: 39483318 PMCID: PMC11523736 DOI: 10.3390/neurosci4020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 11/03/2024] Open
Abstract
Parkinson's disease (PD) is known for its motor alterations, but the importance of non-motor symptoms (NMSs), such as olfactory dysfunction (OD), is increasingly recognized. OD may manifest during the prodromal period of the disease, even before motor symptoms appear. Therefore, it is suggested that this symptom could be considered a marker of PD. This article briefly describes PD, the evolution of the knowledge about OD in PD, the prevalence of this NMS and its role in diagnosis and as a marker of PD progression, the assessment of olfaction in patients with PD, the role of α-synuclein and its aggregates in the pathophysiology of PD, and then describes some functional, morphological, and histological alterations observed in different structures related to the olfactory system, such as the olfactory epithelium, olfactory bulb, anterior olfactory nucleus, olfactory tract, piriform cortex, hippocampus, orbitofrontal cortex, and amygdala. In addition, considering the growing evidence that suggests that the cerebellum is also involved in the olfactory system, it has also been included in this work. Comprehending the existing functional and neuroanatomical alterations in PD could be relevant for a better understanding of the mechanisms behind OD in patients with this neurodegenerative disorder.
Collapse
Affiliation(s)
| | - Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Gerardo Marín
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
16
|
Dutta D, Karthik K, Holla VV, Kamble N, Yadav R, Pal PK, Mahale RR. Olfactory Bulb Volume, Olfactory Sulcus Depth in Parkinson's Disease, Atypical Parkinsonism. Mov Disord Clin Pract 2023; 10:794-801. [PMID: 37205255 PMCID: PMC10187014 DOI: 10.1002/mdc3.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Background About 70-90% of Parkinson's disease (PD) patients have olfactory deficits which is considered as pre-motor symptom of PD. Lewy bodies have been demonstrated in the olfactory bulb (OB) in PD. Objective To assess the OB volume (OBV), olfactory sulcus depth (OSD) in PD and compare with progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and vascular parkinsonism (VP) patients and determine the cut-off volume of OB that will aid in the diagnosis of PD. Methods This was a cross-sectional, hospital based, single-center study. Forty PD, 20 PSP, 10 MSA, 10 VP patients and 30 controls were recruited. OBV and OSD was assessed using 3-T magnetic resonance imaging (MRI) brain. Olfaction was tested using Indian Smell Identification test (INSIT). Results The mean total OBV in PD was 113.3 ± 79.2 mm3 and 187.4 ± 65.0 mm3 in controls (P = 0.003) which was significantly lower in PD. The mean total OSD in PD was 19.4 ± 8.1 and 21.1 ± 2.2 mm in controls (P = 0.41) with no difference. The mean total OBV was significantly lower in PD as compared to that of PSP, MSA and VP patients. There was no difference in the OSD among the groups. The total OBV in PD had no association with age at onset, duration of disease, dopaminergic drugs dosage, motor and non-motor symptoms severity but had positive correlation with cognitive scores. Conclusion OBV is reduced in PD patients as compared to PSP, MSA, VP patients and controls. OBV estimation by MRI adds to the armamentarium in the diagnosis of PD.
Collapse
Affiliation(s)
- Debayan Dutta
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Kulanthaivelu Karthik
- Department of Neuroimaging and Interventional Radiology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Vikram V Holla
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Nitish Kamble
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Ravi Yadav
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Pramod Kumar Pal
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| | - Rohan R Mahale
- Department of Neurology National Institute of Mental Health and Neurosciences Bengaluru India
| |
Collapse
|
17
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
18
|
Characterization by Gene Expression Analysis of Two Groups of Dopaminergic Cells Isolated from the Mouse Olfactory Bulb. BIOLOGY 2023; 12:biology12030367. [PMID: 36979058 PMCID: PMC10045757 DOI: 10.3390/biology12030367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The olfactory bulb (OB) is one of two regions of the mammalian brain which undergo continuous neuronal replacement during adulthood. A significant fraction of the cells added in adulthood to the bulbar circuitry is constituted by dopaminergic (DA) neurons. We took advantage of a peculiar property of dopaminergic neurons in transgenic mice expressing eGFP under the tyrosine hydroxylase (TH) promoter: while DA neurons located in the glomerular layer (GL) display full electrophysiological maturation, eGFP+ cells in the mitral layer (ML) show characteristics of immature cells. In addition, they also display a lower fluorescence intensity, possibly reflecting different degrees of maturation. To investigate whether this difference in maturation might be confirmed at the gene expression level, we used a fluorescence-activated cell sorting technique on enzymatically dissociated cells of the OB. The cells were divided into two groups based on their level of fluorescence, possibly corresponding to immature ML cells and fully mature DA neurons from the GL. Semiquantitative real-time PCR was performed to detect the level of expression of genes linked to the degree of maturation of DA neurons. We showed that indeed the cells expressing low eGFP fluorescence are immature neurons. Our method can be further used to explore the differences between these two groups of DA neurons.
Collapse
|
19
|
Babatunde BR, Adeyeye TA, Johnson VF, Shallie PD. Rotenone induced olfactory deficit in Parkinson's disease rat model: The protective role of adenosine A 2A receptors antagonist. J Chem Neuroanat 2023; 127:102188. [PMID: 36375741 DOI: 10.1016/j.jchemneu.2022.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Parkinson's disease is both a motor and non-motor disorder. Despite the non-motor being an intrinsic feature of PD, it has been poorly researched and understood in clinical practices; olfactory deficit is one of the first established non motor symptom and nearly all ∼90 % of sporadic PD cases are associated with olfactory dysfunction and there is inconsistency in various pharmacological approaches. Hence this study aimed to evaluate the impact of caffeine at the A2A receptors of the olfactory bulb of a rotenone rat model of Parkinson's disease. MATERIALS AND METHODS About 50 male Adult Wistar Rats were used for this study. The rats were randomly divided into five groups of 10 rats each as follows: Group A (vehicle; ethanol), Group B (rotenone 3 mg/kg, i.p), Group C (caffeine 30 mg/kg, i.p + rotenone 3 mg/kg, i.p), Group D (rotenone 3 mg/kg, i.p + caffeine 30 mg/kg, i.p), Group E (caffeine 30 mg/kg, i.p). The animals were subjected to neurobehavioral assay and sacrificed, and brains were excised, weighed, and processed histologically; appropriate sections were taken and processed. The photomicrographs, Morphometric and Statistical analysis was done using Omax led digital Microscope, Image J Software and Graph Pad Prism 7, respectively. RESULTS The results showed a significant decrease in body weight (P < 0.05), relative brain weight, mitral/tufted cells count, and high latency in food-seeking test in Rotenone treated groups. Histopathological presentations include degenerated concentric layers of Olfactory bulb, neuronal degeneration, distorted appearance, degenerated neuropile and vacuolation, all of which were abrogated/reversed following caffeine treatment. CONCLUSION In conclusion, this study was able to establish the neuroprotective and therapeutic candidature of caffeine acting via the A2A receptor to ameliorate or reverse the various pathological insults caused by rotenone administration.
Collapse
|
20
|
Jiménez A, Herrera-González A, Organista-Juárez D, Estudillo E, Velasco I, Guerrero-Vargas NN, Guzmán-Ruíz MA, Guevara-Guzmán R. Diabetes Induces Permanent Deleterious Effects in the Olfactory Bulb Associated with Increased Tyrosine Hydroxylase Expression and ERK1/2 Phosphorylation. ACS Chem Neurosci 2022; 13:2821-2828. [PMID: 36122168 DOI: 10.1021/acschemneuro.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus type 2 (T2D) complications include brain damage which increases the risk of neurodegenerative diseases and dementia. An early manifestation of neurodegeneration is olfactory dysfunction (OD), which is also presented in diabetic patients. Previously, we demonstrated that OD correlates with IL-1β and miR-146a overexpression in the olfactory bulb (OB) on a T2D rodent model, suggesting the participation of inflammation on OD. Here, we found that OD persists on a long-term T2D condition after the downregulation of IL-1β. Remarkably, OD was associated with the increased expression of the dopaminergic neuronal marker tyrosine hydroxylase, ERK1/2 phosphorylation, and reduced neuronal activation on the OB of diabetic rats, suggesting the participation of the dopaminergic tone on the OD derived from T2D. Dopaminergic neurons are susceptible in neurodegenerative diseases such as Parkinson's disease; therefore further studies must be performed to completely elucidate the participation of these neurons and ERK1/2 signaling on olfactory impairment.
Collapse
Affiliation(s)
- Adriana Jiménez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.,División de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
| | - Amor Herrera-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Diana Organista-Juárez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, México
| | - Iván Velasco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, México.,Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Mara A Guzmán-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
21
|
Cukier HN, Kim H, Griswold AJ, Codreanu SG, Prince LM, Sherrod SD, McLean JA, Dykxhoorn DM, Ess KC, Hedera P, Bowman AB, Neely MD. Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. NPJ Parkinsons Dis 2022; 8:84. [PMID: 35768426 PMCID: PMC9243035 DOI: 10.1038/s41531-022-00346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simona G Codreanu
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin C Ess
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA.
| | - M Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Moon SH, Kwon Y, Huh YE, Choi HJ. Trehalose ameliorates prodromal non-motor deficits and aberrant protein accumulation in a rotenone-induced mouse model of Parkinson's disease. Arch Pharm Res 2022; 45:417-432. [PMID: 35618982 DOI: 10.1007/s12272-022-01386-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
Trehalose has been recently revealed as an attractive candidate to prevent and modify Parkinson's disease (PD) progression by regulating autophagy; however, studies have only focused on the reduction of motor symptoms rather than the modulation of disease course from prodromal stage. This study aimed to evaluate whether trehalose has a disease-modifying effect at the prodromal stage before the onset of a motor deficit in 8-week-old male C57BL/6 mice exposed to rotenone. We found significant decrease in tyrosine hydroxylase immunoreactivity in the substantia nigra and motor dysfunction after 2 weeks rotenone treatment. Mice exposed to rotenone for a week showed an accumulation of protein aggregates in the brain and prodromal non-motor deficits, such as depression and olfactory dysfunction, prior to motor deficits. Trehalose significantly improved olfactory dysfunction and depressive-like behaviors and markedly reduced α-synuclein and p62 deposition in the brain. Trehalose further ameliorated motor impairment and loss of nigral tyrosine hydroxylase-positive cells in rotenone-treated mice. We demonstrated that prodromal non-motor signs in a rotenone-induced PD mouse model are associated with protein aggregate accumulation in the brain and that an autophagy inducer could be valuable to prevent PD progression from prodromal stage by regulating abnormal protein accumulation.
Collapse
Affiliation(s)
- Soung Hee Moon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
23
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
24
|
Alberts T, Antipova V, Holzmann C, Hawlitschka A, Schmitt O, Kurth J, Stenzel J, Lindner T, Krause BJ, Wree A, Witt M. Olfactory Bulb D 2/D 3 Receptor Availability after Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2022; 14:94. [PMID: 35202123 PMCID: PMC8879205 DOI: 10.3390/toxins14020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Olfactory deficits occur as early non-motor symptoms of idiopathic Parkinson's disease (PD) in humans. The first central relay of the olfactory pathway, the olfactory bulb (OB), depends, among other things, on an intact, functional crosstalk between dopaminergic interneurons and dopamine receptors (D2/D3R). In rats, hemiparkinsonism (hemi-PD) can be induced by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB), disrupting dopaminergic neurons of the substantia nigra pars compacta (SNpc). In a previous study, we showed that subsequent injection of botulinum neurotoxin-A (BoNT-A) into the striatum can reverse most of the pathological motor symptoms and normalize the D2/D3R availability. To determine whether this rat model is suitable to explain olfactory deficits that occur in humans with PD, we examined the availability of D2/D3R by longitudinal [18F]fallypride-PET/CT, the density of tyrosine hydroxylase immunoreactivity in the OB, olfactory performance by an orienting odor identification test adapted for rats, and a connectome analysis. PET/CT and immunohistochemical data remained largely unchanged after 6-OHDA lesion in experimental animals, suggesting that outcomes of the 6-OHDA hemi-PD rat model do not completely explain olfactory deficits in humans. However, after subsequent ipsilateral BoNT-A injection into the striatum, a significant 8.5% increase of the D2/D3R availability in the ipsilateral OB and concomitant improvement of olfactory performance were detectable. Based on tract-tracing meta-analysis, we speculate that this may be due to indirect connections between the striatum and the OB.
Collapse
Affiliation(s)
- Teresa Alberts
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Veronica Antipova
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Carsten Holzmann
- Department of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| | | | - Oliver Schmitt
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Small Animal Imaging, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Small Animal Imaging, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Bernd J Krause
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
- Department of Nuclear Medicine, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| |
Collapse
|
25
|
Murray HC, Johnson K, Sedlock A, Highet B, Dieriks BV, Anekal PV, Faull RLM, Curtis MA, Koretsky A, Maric D. Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer's and Parkinson's disease patients. Commun Biol 2022; 5:88. [PMID: 35075270 PMCID: PMC8786934 DOI: 10.1038/s42003-022-03032-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Traditional neuroanatomy immunohistology studies involve low-content analyses of a few antibodies of interest, typically applied and compared across sequential tissue sections. The efficiency, consistency, and ultimate insights of these studies can be substantially improved using high-plex immunofluorescence labelling on a single tissue section to allow direct comparison of many markers. Here we present an expanded and efficient multiplexed fluorescence-based immunohistochemistry (MP-IHC) approach that improves throughput with sequential labelling of up to 10 antibodies per cycle, with no limitation on the number of cycles, and maintains versatility and accessibility by using readily available commercial reagents and standard epifluorescence microscopy imaging. We demonstrate this approach by cumulatively screening up to 100 markers on formalin-fixed paraffin-embedded sections of human olfactory bulb sourced from neurologically normal (no significant pathology), Alzheimer's (AD), and Parkinson's disease (PD) patients. This brain region is involved early in the symptomology and pathophysiology of AD and PD. We also developed a spatial pixel bin analysis approach for unsupervised analysis of the high-content anatomical information from large tissue sections. Here, we present a comprehensive immunohistological characterisation of human olfactory bulb anatomy and a summary of differentially expressed biomarkers in AD and PD using the MP-IHC labelling and spatial protein analysis pipeline.
Collapse
Affiliation(s)
- Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand.
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Praju Vikas Anekal
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Guekht AB, Kryukov AI, Kazakova AA, Akzhigitov RG, Gulyaeva NV, Druzhkova TA. [Olfactory disorders as a multidisciplinary problem]. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:32-38. [PMID: 36537628 DOI: 10.17116/jnevro202212212132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Olfactory dysfunction is a serious symptom that requires careful differential diagnosis. The article presents convincing evidence that dysosmia is not only a symptom of rinological pathology, but also a manifestation of various neurodegenerative diseases. Some patients with SARS-CoV-2 have neurological symptoms. Modern studies show that olfactory and gustatory dysfunctions are significant symptoms in the clinical presentation of the COVID-19 infection. The importance of olfactory diagnostics in relatives of patients with hereditary neurodegenerative diseases for the purpose of early detection of pathology is noted. We consider the possibility of introducing new methods for the diagnosis of olfactory dysfunction, which is a promising task both in the field of neurology and otorhinolaryngology, in order to prevent the development of neurodegenerative diseases at an early stage, improve the quality of life and social adaptation of patients.
Collapse
Affiliation(s)
- A B Guekht
- Solov'ev Scientific-Applied Psychoneurology Center, Moscow, Russia
| | - A I Kryukov
- Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow, Russia
| | - A A Kazakova
- Solov'ev Scientific-Applied Psychoneurology Center, Moscow, Russia
| | - R G Akzhigitov
- Solov'ev Scientific-Applied Psychoneurology Center, Moscow, Russia
| | - N V Gulyaeva
- Solov'ev Scientific-Applied Psychoneurology Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - T A Druzhkova
- Solov'ev Scientific-Applied Psychoneurology Center, Moscow, Russia
| |
Collapse
|
27
|
El Amine F, Heidinger BA, Cameron JD, Hafizi K, BaniFatemi S, Robaey P, Vaillancourt R, Goldfield GS, Doucet E. Two-Month administration of Methylphenidate improves olfactory sensitivity and suppresses appetite in individuals with obesity. Can J Physiol Pharmacol 2021; 100:432-440. [PMID: 34910595 DOI: 10.1139/cjpp-2021-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Olfaction contributes to feeding behaviour and is modulated by changes in dopamine levels. Methylphenidate (MPH) increases brain dopamine levels and has been shown to reduce appetite and promote weight loss in patients with attention deficit hyperactivity disorder. The objectives of this study were to test the effect of MPH on olfaction, appetite, energy intake and body weight on individuals with obesity. METHODS In a randomized, double-blind study, 12 participants (age 28.9±6.7 yrs) (BMI 36.1±4.5 kg/m2) were assigned to MPH (0.5mg/kg) (n=5) or Placebo (n=7) twice daily for 2 months. Appetite (Visual Analog Scale), odour threshold (Sniffin' Sticks®), energy intake (food menu), and body weight (DEXA scan) were measured at day 1 and day 60. RESULTS MPH intake significantly increased odour threshold scores (6.3±1.4 vs. 9.4±2.1 and 7.9±2.3 vs. 7.8±1.9, respectively; p=0.029) vs. Placebo. There was a significantly greater suppression of appetite sensations (desire to eat (p=0.001), hunger (p=0.008), and prospective food consumption (p=0.003)) and an increase in fullness (p=0.028) over time in the MPH vs. Placebo. CONCLUSIONS MPH suppressed appetite and improved olfactory sensitivity in individuals with obesity. These data provide novel findings on the favourable effects of MPH on appetite and weight regulation in individuals living with obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric Doucet
- University of Ottawa, 6363, Ottawa, Ontario, Canada, K1N 6N5;
| |
Collapse
|
28
|
Walter J, Bolognin S, Poovathingal SK, Magni S, Gérard D, Antony PMA, Nickels SL, Salamanca L, Berger E, Smits LM, Grzyb K, Perfeito R, Hoel F, Qing X, Ohnmacht J, Bertacchi M, Jarazo J, Ignac T, Monzel AS, Gonzalez-Cano L, Krüger R, Sauter T, Studer M, de Almeida LP, Tronstad KJ, Sinkkonen L, Skupin A, Schwamborn JC. The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Rep 2021; 37:109864. [PMID: 34686322 DOI: 10.1016/j.celrep.2021.109864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.
Collapse
Affiliation(s)
- Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Deborah Gérard
- Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Paul M A Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Emanuel Berger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Lisa M Smits
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Xiaobing Qing
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | | | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Tomasz Ignac
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg; Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Thomas Sauter
- Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, 06108 Nice, France
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Lasse Sinkkonen
- Department of Life Science and Medicine (DLSM), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Center for Research of Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg.
| |
Collapse
|
29
|
Borgonovo J, Ahumada-Galleguillos P, Oñate-Ponce A, Allende-Castro C, Henny P, Concha ML. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front Neuroanat 2021; 15:728720. [PMID: 34588961 PMCID: PMC8473916 DOI: 10.3389/fnana.2021.728720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
The catecholaminergic system has received much attention based on its regulatory role in a wide range of brain functions and its relevance in aging and neurodegenerative diseases. In the present study, we analyzed the neuroanatomical distribution of catecholaminergic neurons based on tyrosine hydroxylase (TH) immunoreactivity in the brain of adult Nothobranchius furzeri. In the telencephalon, numerous TH+ neurons were observed in the olfactory bulbs and the ventral telencephalic area, arranged as strips extending through the rostrocaudal axis. We found the largest TH+ groups in the diencephalon at the preoptic region level, the ventral thalamus, the pretectal region, the posterior tuberculum, and the caudal hypothalamus. In the dorsal mesencephalic tegmentum, we identified a particular catecholaminergic group. The rostral rhombencephalon housed TH+ cells in the locus coeruleus and the medulla oblongata, distributing in a region dorsal to the inferior reticular formation, the vagal lobe, and the area postrema. Finally, scattered TH+ neurons were present in the ventral spinal cord and the retina. From a comparative perspective, the overall organization of catecholaminergic neurons is consistent with the general pattern reported for other teleosts. However, N. furzeri shows some particular features, including the presence of catecholaminergic cells in the midbrain. This work provides a detailed neuroanatomical map of the catecholaminergic system of N. furzeri, a powerful aging model, also contributing to the phylogenetic understanding of one of the most ancient neurochemical systems.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Patricio Ahumada-Galleguillos
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Camilo Allende-Castro
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Pablo Henny
- Department of Anatomy and Interdisciplinary Center of Neurosciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
30
|
Adamson SXF, Zheng W, Agim ZS, Du S, Fleming S, Shannahan J, Cannon J. Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules 2021; 11:1315. [PMID: 34572528 PMCID: PMC8471899 DOI: 10.3390/biom11091315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.
Collapse
Affiliation(s)
- Sherleen Xue-Fu Adamson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sarah Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Walker IM, Fullard ME, Morley JF, Duda JE. Olfaction as an early marker of Parkinson's disease and Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:317-329. [PMID: 34266602 DOI: 10.1016/b978-0-12-819973-2.00030-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Olfactory impairment is a common and early sign of Parkinson's disease (PD) and Alzheimer's disease (AD), the two most prevalent neurodegenerative conditions in the elderly. This phenomenon corresponds to pathologic processes emerging in the olfactory system prior to the onset of typical clinical manifestations. Clinically available tests can establish hyposmia through odor identification assessment, discrimination, and odor detection threshold. There are significant efforts to develop preventative or disease-modifying therapies that slow down or halt the progression of PD and AD. Due to the convenience and low cost of its assessment, olfactory impairment could be used in these studies as a screening instrument. In the clinical setting, loss of smell may also help to differentiate PD and AD from alternative causes of Parkinsonism and cognitive impairment, respectively. Here, we discuss the pathophysiology of olfactory dysfunction in PD and AD and how it can be assessed in the clinical setting to aid in the early and differential diagnosis of these disorders.
Collapse
Affiliation(s)
- Ian M Walker
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michelle E Fullard
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - James F Morley
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz, VA Medical Center, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
32
|
Deng I, Corrigan F, Garg S, Zhou XF, Bobrovskaya L. Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson's Disease in C57BL/6 Mice. Int J Mol Sci 2021; 22:7380. [PMID: 34299000 PMCID: PMC8304722 DOI: 10.3390/ijms22147380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model could be suitable for understanding clinical PD and testing neuroprotective strategies.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Frances Corrigan
- Medical Sciences, University of Adelaide, Adelaide 5000, Australia;
| | - Sanjay Garg
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| |
Collapse
|
33
|
The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136976. [PMID: 34209997 PMCID: PMC8297221 DOI: 10.3390/ijerph18136976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
Collapse
|
34
|
Bang Y, Lim J, Choi HJ. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson's disease: clues to early diagnosis and effective treatment. Arch Pharm Res 2021; 44:588-604. [PMID: 34145553 PMCID: PMC8254697 DOI: 10.1007/s12272-021-01337-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by movement dysfunction due to selective degeneration of dopaminergic neurons in the substantia nigra pars compacta. Non-motor symptoms of PD (e.g., sensory dysfunction, sleep disturbance, constipation, neuropsychiatric symptoms) precede motor symptoms, appear at all stages, and impact the quality of life, but they frequently go unrecognized and remain untreated. Even when identified, traditional dopamine replacement therapies have little effect. We discuss here the pathology of two PD-associated non-motor symptoms: olfactory dysfunction and depression. Olfactory dysfunction is one of the earliest non-motor symptoms in PD and predates the onset of motor symptoms. It is accompanied by early deposition of Lewy pathology and neurotransmitter alterations. Because of the correlation between olfactory dysfunction and an increased risk of progression to PD, olfactory testing can potentially be a specific diagnostic marker of PD in the prodromal stage. Depression is a prevalent PD-associated symptom and is often associated with reduced quality of life. Although the pathophysiology of depression in PD is unclear, studies suggest a causal relationship with abnormal neurotransmission and abnormal adult neurogenesis. Here, we summarize recent progress in the pathology of the non-motor symptoms of PD, aiming to provide better guidance for its effective management.
Collapse
Affiliation(s)
- Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Juhee Lim
- College of Pharmacy, Woosuk University, Wanju, Jeollabuk-do, 55338, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
35
|
Deng I, Wiese MD, Zhou XF, Bobrovskaya L. The efficacy of systemic administration of lipopolysaccharide in modelling pre-motor Parkinson's disease in C57BL/6 mice. Neurotoxicology 2021; 85:254-264. [PMID: 34097939 DOI: 10.1016/j.neuro.2021.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/28/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterised by the loss of dopaminergic neurons in the substantia nigra. Mounting evidence indicates a crucial role of inflammation and concomitant oxidative stress in the disease progression. Therefore, the aim of this study was to investigate the ability of systemically administered lipopolysaccharide (LPS) to induce motor and non-motor symptoms of PD, inflammation, oxidative stress and major neuropathological hallmarks of the disease in regions postulated to be affected, including the olfactory bulb, hippocampus, midbrain and cerebellum. Twenty-one male C57BL/6 mice, approximately 20 weeks old, received a dose of 0.3 mg/kg/day of LPS systemically on 4 consecutive days and behavioural testing was conducted on days 14-18 post-treatment, followed by tissue collection. Systemically administered LPS increased latency time in the buried food seeking test (indicative of olfactory impairment), and decreased time spent in central zone of the open field (anxiety-like behaviour). However, there was no change in latency time in the rotarod test or the expression of tyrosine hydroxylase (TH) in the midbrain. Systemically administered LPS induced increased glial markers GFAP and Iba-1 and oxidative stress marker 3-nitrotyrosine (3-NT) in the olfactory bulb, hippocampus, midbrain and cerebellum, and there were region specific changes in the expression of NFκB, IL-1β, α-synuclein, TH and BDNF proteins. The model could be useful to further elucidate early non-motor aspects of PD and the possible mechanisms contributing to the non-motor deficits.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
36
|
Hyposmia may predict development of freezing of gait in Parkinson's disease. J Neural Transm (Vienna) 2021; 128:763-770. [PMID: 34014391 DOI: 10.1007/s00702-021-02347-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
To explore the effect of olfactory dysfunction on treatment of motor manifestations in Parkinson's disease (PD). The current longitudinal retrospective cohort study consecutively recruited 108 de novo PD patients. Of whom 29 were normosmia and 79 were hyposmia, respectively, which was determined by the Korean Version of Sniffin' Sticks Test II at the time of diagnosis. All the participants underwent serial clinical examinations including Unified Parkinson's Disease Rating Scale (UPDRS), Mini-Mental State Examination, and Montreal Cognitive Assessment. The normosmic group demonstrated a significantly greater reduction of the UPDRS III score (30.3 ± 5.9 to 21.9 ± 5.1) than that of the hyposmic group (34.5 ± 9.3 to 28.5 ± 8.1) from baseline to 1-year later (p, 0.003; Bonferroni correction for p < 0.0045). Of subdomains in UPDRS III, the axial domain revealed a remarkable decrease in the normosmic group. Further, the hyposmic group exhibited a higher development rate of freezing of gait (FOG) compared to the normosmic group (29/79 (36.7%) vs 2/29 (6.9%); p, 0.002) during 33.9 ± 7.7 months of the mean follow-up period. A Cox proportional hazards model demonstrated the hyposmia to be a significant risk factor for the future development of FOG (HR, 4.23; 95% CI 1.180-17.801; p, 0.05). Our data demonstrated the olfactory dysfunction to be a significant risk factor for the development of the FOG in PD. Hyposmic PD patients should be paid more careful attention to the occurrence of FOG in the clinical practice.
Collapse
|
37
|
Melis M, Haehner A, Mastinu M, Hummel T, Tomassini Barbarossa I. Molecular and Genetic Factors Involved in Olfactory and Gustatory Deficits and Associations with Microbiota in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22084286. [PMID: 33924222 PMCID: PMC8074606 DOI: 10.3390/ijms22084286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Deficits in olfaction and taste are among the most frequent non-motor manifestations in Parkinson’s disease (PD) that start very early and frequently precede the PD motor symptoms. The limited data available suggest that the basis of the olfactory and gustatory dysfunction related to PD are likely multifactorial and may include the same determinants responsible for other non-motor symptoms of PD. This review describes the most relevant molecular and genetic factors involved in the PD-related smell and taste impairments, and their associations with the microbiota, which also may represent risk factors associated with the disease.
Collapse
Affiliation(s)
- Melania Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, 01307 Dresden, Germany; (A.H.); (T.H.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, 01307 Dresden, Germany; (A.H.); (T.H.)
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
- Correspondence: ; Tel.: +39-070-675-4144
| |
Collapse
|
38
|
Carmona-Abellan M, Martinez-Valbuena I, Marcilla I, DiCaudo C, Gil I, Nuñez J, Luquin MR. Microglia is associated with p-Tau aggregates in the olfactory bulb of patients with neurodegenerative diseases. Neurol Sci 2021; 42:1473-1482. [PMID: 32816165 DOI: 10.1007/s10072-020-04686-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 11/27/2022]
Abstract
The olfactory bulb (OB) seems to be the first affected structure in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Lewy body dementia (LBD). Deposits of protein aggregates, increased dopaminergic neurons, and decreased cholinergic inputs have all been described in the OB of these diseases. We investigated here the contribution of the activated microglial cells to the increased deposits of protein aggregates. We quantified the number of activated microglial cells and astrocytes in the OB of patients with histological diagnosis of PD (n = 5), AD (n = 13), and LBD (n = 7) and aged-matched controls (n = 8). Specific consensus diagnostic criteria were applied for AD, LBD, and PD. Protein aggregates were scored in the OB as grade 0, none; grade 1, mild; grade 2, moderate; and grade 3, severe. OB sections from the 33 subjects were stained with specific antibodies markers for reactive astrocytes (GFAP) and microglial cells (Iba1 and HLA-DR). The total number of Iba1-ir (Iba-immunoreactive) and HLAD-DR cells was estimated by stereological analysis, while quantification of astrocytes was performed by GFAP optical density. Statistical analysis was done using the Stata 12.0 software. The number of microglia and activated microglia cells (HLA-RD-ir) was increased in patients with neurodegenerative diseases (p < 0.05). Moreover, the density of GFAP-ir cells was higher in the OB of patients. Neither the number of microglia cells nor the density of astrocytes correlated with the number of b-amyloid and alpha-synuclein deposits, but the density of Iba1-ir cells correlated with the number of p-Tau aggregates. Activated microglial cells and reactive astrocytes are present in the OB of patients with neurodegenerative diseases. The lack of correlation between the number of activated microglia cells and protein deposits indicate that they might independently contribute to the degenerative process. The presence of microglia is related to phosphorylated Tau deposits in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ivan Martinez-Valbuena
- Centro de Investigación Médica Aplicada, CIMA, Pamplona, Navarra, Spain
- HRI Navarra, IdisNA, Pamplona, Navarra, Spain
| | - Irene Marcilla
- Centro de Investigación Médica Aplicada, CIMA, Pamplona, Navarra, Spain
- HRI Navarra, IdisNA, Pamplona, Navarra, Spain
| | | | - Isabel Gil
- HRI Navarra, IdisNA, Pamplona, Navarra, Spain
- Navarrabiomed, Pamplona, Navarra, Spain
| | - Jorge Nuñez
- Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria-Rosario Luquin
- HRI Navarra, IdisNA, Pamplona, Navarra, Spain
- Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
39
|
Flores-Cuadrado A, Saiz-Sanchez D, Mohedano-Moriano A, Lamas-Cenjor E, Leon-Olmo V, Martinez-Marcos A, Ubeda-Bañon I. Astrogliosis and sexually dimorphic neurodegeneration and microgliosis in the olfactory bulb in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:11. [PMID: 33479244 PMCID: PMC7820595 DOI: 10.1038/s41531-020-00154-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Hyposmia is prodromal, and male sex is a risk marker for an enhanced likelihood ratio of Parkinson’s disease. The literature regarding olfactory bulb volume reduction is controversial, although the olfactory bulb has been largely reported as an early and preferential site for α-synucleinopathy. These pathological deposits have been correlated with neural loss in Nissl-stained material. However, microgliosis has rarely been studied, and astrogliosis has been virtually neglected. In the present report, α-synucleinopathy (α-synuclein), neurodegeneration (Neu-N), astrogliosis (GFAP), and microgliosis (Iba-1) were quantified, using specific markers and stereological methods. Disease, sex, age, disease duration, and post-mortem interval were considered variables for statistical analysis. No volumetric changes have been identified regarding disease or sex. α-Synucleinopathy was present throughout the OB, mainly concentrated on anterior olfactory nucleus. Neurodegeneration (reduction in Neu-N-positive cells) was statistically significant in the diseased group. Astrogliosis (increased GFAP labeling) and microgliosis (increased Iba-1 labeling) were significantly enhanced in the Parkinson’s disease group. When analyzed per sex, neurodegeneration and microgliosis differences are only present in men. These data constitute the demonstration of sex differences in neurodegeneration using specific neural markers, enhanced astrogliosis and increased microgliosis, also linked to male sex, in the human olfactory bulb in Parkinson’s disease.
Collapse
Affiliation(s)
- Alicia Flores-Cuadrado
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alicia Mohedano-Moriano
- Faculty of Health Sciences, University of Castilla-La Mancha, 45600, Talavera de la Reina, Spain
| | - Elena Lamas-Cenjor
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Victor Leon-Olmo
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Isabel Ubeda-Bañon
- Neuroplasticity & Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
40
|
He R, Zhao Y, He Y, Zhou Y, Yang J, Zhou X, Zhu L, Zhou X, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Tang B, Guo J. Olfactory Dysfunction Predicts Disease Progression in Parkinson's Disease: A Longitudinal Study. Front Neurosci 2020; 14:569777. [PMID: 33381006 PMCID: PMC7768001 DOI: 10.3389/fnins.2020.569777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Objective Olfactory dysfunction (hyposmia) is an important non-motor symptom of Parkinson's disease (PD). To investigate the potential prognostic value of hyposmia as a marker for disease progression, we prospectively assessed clinical manifestations and longitudinal changes of hyposmic PD patients and normosmic ones. Methods Olfactory function was evaluated with the Sniffin' Sticks in PD patients at baseline. One hundred five hyposmic PD patients and 59 normosmic PD patients were enrolled and followed up for 2 years. They were subsequently evaluated at baseline and during follow-up periods with neurological and neuropsychological assessments. Clinical manifestations and disease progressions were compared between hyposmic and normosmic patients. In addition, the relationship between disease progressions and olfactory function was analyzed. Results Our study suggested that hyposmic PD patients and normosmic ones were similar in gender, age, education levels, age of onset, disease duration, and clinical features at baseline. Hyposmic PD patients exhibited more severe Unified Parkinson's Disease Rating Scale Part II-III (UPDRS II-III) scores, higher levodopa equivalent dose (LED) needs, and poorer Mini-Mental State Examination (MMSE) score at follow-up visits compared to those in normosmic PD patients. Hyposmia also showed greater rates in the increase of LED needs, improvement of UPDRS III score, and deterioration of MMSE score. Both improvement of UPDRS III score and decline of MMSE score were associated with poorer odor identification. Conclusion Our prospective study demonstrated that hyposmic PD patients showed a relatively worse clinical course compared with normosmic patients. Olfactory dysfunction is a useful predictor of disease progression.
Collapse
Affiliation(s)
- Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinxia Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
41
|
Rebholz H, Braun RJ, Ladage D, Knoll W, Kleber C, Hassel AW. Loss of Olfactory Function-Early Indicator for Covid-19, Other Viral Infections and Neurodegenerative Disorders. Front Neurol 2020; 11:569333. [PMID: 33193009 PMCID: PMC7649754 DOI: 10.3389/fneur.2020.569333] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
The loss of the senses of smell (anosmia) and taste (ageusia) are rather common disorders, affecting up to 20% of the adult population. Yet, this condition has not received the attention it deserves, most probably because per se such a disorder is not life threatening. However, loss of olfactory function significantly reduces the quality of life of the affected patients, leading to dislike in food and insufficient, exaggerated or unbalanced food intake, unintentional exposure to toxins such as household gas, social isolation, depression, and an overall insecurity. Not only is olfactory dysfunction rather prevalent in the healthy population, it is, in many instances, also a correlate or an early indicator of a panoply of diseases. Importantly, olfactory dysfunction is linked to the two most prominent neurodegenerative disorders, Parkinson's disease and Alzheimer's disease. Anosmia and hyposmia (reduced sense of smell) affect a majority of patients years before the onset of cognitive or motor symptoms, establishing olfactory dysfunction as early biomarker that can enable earlier diagnosis and preventative treatments. In the current health crisis caused by SARS-CoV2, anosmia and dysgeusia as early-onset symptoms in virus-positive patients may prove to be highly relevant and crucial for pre-symptomatic Covid-19 detection from a public health perspective, preceding by days the more classical respiratory tract symptoms such as cough, tightness of the chest or fever. Thus, the olfactory system seems to be at the frontline of pathologic assault, be it through pathogens or insults that can lead to or at least associate with neurodegeneration. The aim of this review is to assemble current knowledge from different medical fields that all share a common denominator, olfactory/gustatory dysfunction, and to distill overarching etiologies and disease progression mechanisms.
Collapse
Affiliation(s)
- Heike Rebholz
- Center of Neurodegeneration, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
- GHU Psychiatrie et Neurosciences, Paris, France
| | - Ralf J. Braun
- Center of Neurodegeneration, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
| | - Dennis Ladage
- Center of Chemistry and Physics of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
- Universitaetsklinikum Köln, Cologne, Germany
| | | | - Christoph Kleber
- Center of Chemistry and Physics of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
- Institute of Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Linz, Austria
| | - Achim W. Hassel
- Institute of Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
42
|
Jiang Y, Gu L, Zhang Z, Zhao J, Wan C. Severe Zinc Deficiency Causes the Loss and Apoptosis of Olfactory Ensheathing Cells (OECs) and Olfactory Deficit. J Mol Neurosci 2020; 71:869-878. [PMID: 32940875 DOI: 10.1007/s12031-020-01709-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Dietary zinc deficiency may lead to olfactory deficits, whose mechanism remains largely elusive. Olfactory ensheathing cells (OECs), a type of glial cells that support the function and neurogenesis in the olfactory bulb (OB), may play a pivotal role in the maintenance of the olfactory system. In the present study, we established a rat model of dietary zinc deficiency and found that severe zinc deficiency, but not marginal zinc deficiency, caused significantly reduced food intake, growth retardation, and apparent olfactory deficit in growing rats. We showed that severe zinc deficiency resulted in the loss of OECs in the olfactory nerve layer (ONL) of the olfactory bulb. In addition, we revealed that the number of TUNEL-positive cells increased markedly in the region, suggesting an involvement of apoptotic cell death in zinc deficiency-induced loss of OECs. Moreover, we found that treatment with zinc chelator N,N,N'N',-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) triggered the apoptosis of in vitro-cultured primary OECs. The apoptosis of OECs was correlated with significantly elevated expression of p53. Importantly, TUNEL and CCK-8 assays both demonstrated that treatment with p53 antagonist pifithrin-α (PFT-α) markedly attenuated TPEN-induced OEC apoptosis. These findings implicated that p53-triggered apoptosis of OECs might play an integral role in zinc deficiency-induced olfactory malfunction.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Lingqi Gu
- Department of Pharmacy, Nantong Maternal and Child Health Hospital, 399 Century Avenue, Nantong, 226018, Jiangsu, China
| | - Zilin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
43
|
Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2020; 529:1273-1292. [PMID: 32869307 DOI: 10.1002/cne.25020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreen-positive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.
Collapse
Affiliation(s)
- Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
44
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
45
|
Shiga H, Wakabayashi H, Washiyama K, Noguchi T, Hiromasa T, Miyazono S, Kumai M, Ogawa K, Taki J, Kinuya S, Miwa T. Thallium-201 Imaging in Intact Olfactory Sensory Neurons with Reduced Pre-Synaptic Inhibition In Vivo. Mol Neurobiol 2020; 57:4989-4999. [PMID: 32820461 PMCID: PMC7541386 DOI: 10.1007/s12035-020-02078-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022]
Abstract
In this study, we determined whether the 201Tl (thallium-201)-based olfactory imaging is affected if olfactory sensory neurons received reduced pre-synaptic inhibition signals from dopaminergic interneurons in the olfactory bulb in vivo. The thallium-201 migration rate to the olfactory bulb and the number of action potentials of olfactory sensory neurons were assessed 3 h following left side nasal administration of rotenone, a mitochondrial respiratory chain complex I inhibitor that decreases the number of dopaminergic interneurons without damaging the olfactory sensory neurons in the olfactory bulb, in mice (6–7 animals per group). The migration rate of thallium-201 to the olfactory bulb was significantly increased following intranasal administration of thallium-201 and rotenone (10 μg rotenone, p = 0.0012; 20 μg rotenone, p = 0.0012), compared with that in control mice. The number of action potentials was significantly reduced in the olfactory sensory neurons in the rotenone treated side of 20 μg rotenone-treated mice, compared with that in control mice (p = 0.0029). The migration rate of thallium-201 to the olfactory bulb assessed with SPECT-CT was significantly increased in rats 24 h after the left intranasal administration of thallium-201 and 100 μg rotenone, compared with that in control rats (p = 0.008, 5 rats per group). Our results suggest that thallium-201 migration to the olfactory bulb is increased in intact olfactory sensory neurons with reduced pre-synaptic inhibition from dopaminergic interneurons in olfactory bulb glomeruli.
Collapse
Affiliation(s)
- Hideaki Shiga
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinadamachi, Kahokugun, Ishikawa, 920-0293, Japan.
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Masami Kumai
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinadamachi, Kahokugun, Ishikawa, 920-0293, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Junichi Taki
- Department of Nuclear Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, Uchinadamachi, Kahokugun, Ishikawa, 920-0293, Japan
| |
Collapse
|
46
|
Tavitian A, Cressatti M, Song W, Turk AZ, Galindez C, Smart A, Liberman A, Schipper HM. Strategic Timing of Glial HMOX1 Expression Results in Either Schizophrenia-Like or Parkinsonian Behavior in Mice. Antioxid Redox Signal 2020; 32:1259-1272. [PMID: 31847534 DOI: 10.1089/ars.2019.7937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: In this original research communication, we assess the impact of shifting the window of glial HMOX1 overexpression in mice from early-to-midlife to mid-to-late life, resulting in two disparate conditions modeling schizophrenia (SCZ) and Parkinson's disease (PD). Mesolimbic hyperdopaminergia is a widely accepted feature of SCZ, while nigrostriatal hypodopaminergia is the sine qua non of idiopathic PD. Although the advent of parkinsonian features in SCZ patients after treatment with antidopaminergic agents is intuitive, subtle features of parkinsonism commonly observed in young, drug-naïve schizophrenics are not. Similarly, emergent psychosis in PD subjects receiving levodopa replacement is not unusual, whereas spontaneous hallucinosis in nonmedicated persons with idiopathic PD is enigmatic. Investigations using GFAP.HMOX1 mice may shed light on these clinical paradoxes. Results: Astroglial heme oxygenase-1 (HO-1) overexpression in mice throughout embryogenesis until 6 or 12 months of age resulted in hyperdopaminergia, hyperkinesia/stereotypy ameliorated with clozapine, deficient prepulse inhibition of the acoustic startle response, reduced preference for social novelty, impaired nest building, and cognitive dysfunction reminiscent of SCZ. On the contrary, astroglial HO-1 overexpression between 8.5 and 19 months of age yielded a PD-like behavioral phenotype with hypodopaminergia, altered gait, locomotor incoordination, and reduced olfaction. Innovation: We conjecture that region-specific disparities in the susceptibility of dopaminergic and other circuitry to the trophic and degenerative influences of glial HMOX1 induction may permit the concomitant expression of mixed SCZ and PD traits within affected individuals. Conclusion: Elucidation of these converging mechanisms may (i) help better understand disease pathogenesis and (ii) identify HO-1 as a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Marisa Cressatti
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Ariana Z Turk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Carmela Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Adam Smart
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Hyman M Schipper
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
47
|
Ubeda-Bañon I, Saiz-Sanchez D, Flores-Cuadrado A, Rioja-Corroto E, Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Cabello-de la Rosa JP, Gallardo-Alcañiz MJ, Vaamonde-Gamo J, Relea-Calatayud F, Gonzalez-Lopez L, Mohedano-Moriano A, Rabano A, Martinez-Marcos A. The human olfactory system in two proteinopathies: Alzheimer's and Parkinson's diseases. Transl Neurodegener 2020; 9:22. [PMID: 32493457 PMCID: PMC7271529 DOI: 10.1186/s40035-020-00200-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative disorders. Their etiologies are idiopathic, and treatments are symptomatic and orientated towards cognitive or motor deficits. Neuropathologically, both are proteinopathies with pathological aggregates (plaques of amyloid-β peptide and neurofibrillary tangles of tau protein in Alzheimer's disease, and Lewy bodies mostly composed of α-synuclein in Parkinson's disease). These deposits appear in the nervous system in a predictable and accumulative sequence with six neuropathological stages. Both disorders present a long prodromal period, characterized by preclinical signs including hyposmia. Interestingly, the olfactory system, particularly the anterior olfactory nucleus, is initially and preferentially affected by the pathology. Cerebral atrophy revealed by magnetic resonance imaging must be complemented by histological analyses to ascertain whether neuronal and/or glial loss or neuropil remodeling are responsible for volumetric changes. It has been proposed that these proteinopathies could act in a prion-like manner in which a misfolded protein would be able to force native proteins into pathogenic folding (seeding), which then propagates through neurons and glia (spreading). Existing data have been examined to establish why some neuronal populations are vulnerable while others are resistant to pathology and to what extent glia prevent and/or facilitate proteinopathy spreading. Connectomic approaches reveal a number of hubs in the olfactory system (anterior olfactory nucleus, olfactory entorhinal cortex and cortical amygdala) that are key interconnectors with the main hubs (the entorhinal-hippocampal-cortical and amygdala-dorsal motor vagal nucleus) of network dysfunction in Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Isabel Ubeda-Bañon
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Ernesto Rioja-Corroto
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Melania Gonzalez-Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Sandra Villar-Conde
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Veronica Astillero-Lopez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | | | | | - Julia Vaamonde-Gamo
- Neurology Service, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
| | | | - Lucia Gonzalez-Lopez
- Pathology Service, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
| | | | - Alberto Rabano
- Neuropathology Department and Tissue Bank, CIEN Foundation, Carlos III Health Institute, Madrid, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| |
Collapse
|
48
|
Diederich NJ, Uchihara T, Grillner S, Goetz CG. The Evolution-Driven Signature of Parkinson's Disease. Trends Neurosci 2020; 43:475-492. [PMID: 32499047 DOI: 10.1016/j.tins.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
In this review, we approach Parkinson's disease (PD) in the context of an evolutionary mismatch of central nervous system functions. The neurons at risk have hyperbranched axons, extensive transmitter release sites, display spontaneous spiking, and elevated mitochondrial stress. They function in networks largely unchanged throughout vertebrate evolution, but now connecting to the expanded human cortex. Their breakdown is favoured by longevity. At the cellular level, mitochondrial dysfunction starts at the synapses, then involves axons and cell bodies. At the behavioural level, network dysfunctions provoke the core motor syndrome of parkinsonism including freezing and failed gait automatization, and non-motor deficits including inactive blindsight and autonomic dysregulation. The proposed evolutionary re-interpretation of PD-prone cellular phenotypes and of prototypical clinical symptoms allows a new conceptual framework for future research.
Collapse
Affiliation(s)
- Nico J Diederich
- Department of Neurosciences, Centre Hospitalier de Luxembourg, L-1210 Luxembourg City, Luxembourg.
| | - Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo 164-8607, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
49
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
Korshunov KS, Blakemore LJ, Bertram R, Trombley PQ. Spiking and Membrane Properties of Rat Olfactory Bulb Dopamine Neurons. Front Cell Neurosci 2020; 14:60. [PMID: 32265662 PMCID: PMC7100387 DOI: 10.3389/fncel.2020.00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
The mammalian olfactory bulb (OB) has a vast population of dopamine (DA) neurons, whose function is to increase odor discrimination through mostly inhibitory synaptic mechanisms. However, it is not well understood whether there is more than one neuronal type of OB DA neuron, how these neurons respond to different stimuli, and the ionic mechanisms behind those responses. In this study, we used a transgenic rat line (hTH-GFP) to identify fluorescent OB DA neurons for recording via whole-cell electrophysiology. These neurons were grouped based on their localization in the glomerular layer ("Top" vs. "Bottom") with these largest and smallest neurons grouped by neuronal area ("Large" vs. "Small," in μm2). We found that some membrane properties could be distinguished based on a neuron's area, but not by its glomerular localization. All OB DA neurons produced a single action potential when receiving a sufficiently depolarizing stimulus, while some could also spike multiple times when receiving weaker stimuli, an activity that was more likely in Large than Small neurons. This single spiking activity is likely driven by the Na+ current, which showed a sensitivity to inactivation by depolarization and a relatively long time constant for the removal of inactivation. These recordings showed that Small neurons were more sensitive to inactivation of Na+ current at membrane potentials of -70 and -60 mV than Large neurons. The hyperpolarization-activated H-current (identified by voltage sags) was more pronounced in Small than Large DA neurons across hyperpolarized membrane potentials. Lastly, to mimic a more physiological stimulus, these neurons received ramp stimuli of various durations and current amplitudes. When stimulated with weaker/shallow ramps, the neurons needed less current to begin and end firing and they produced more action potentials at a slower frequency. These spiking properties were further analyzed between the four groups of neurons, and these analyses support the difference in spiking induced with current step stimuli. Thus, there may be more than one type of OB DA neuron, and these neurons' activities may support a possible role of being high-pass filters in the OB by allowing the transmission of stronger odor signals while inhibiting weaker ones.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Richard Bertram
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Mathematics, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|