1
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Profeta V, McIntyre K, Wells M, Park C, Lynch DR. Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia. Expert Opin Investig Drugs 2023; 32:5-16. [PMID: 36708320 DOI: 10.1080/13543784.2023.2173063] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.
Collapse
Affiliation(s)
- Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - McKenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Jama M, Margraf RL, Yu P, Reading NS, Bayrak-Toydemir P. A Comprehensive Triple-Repeat Primed PCR and a Long-Range PCR Agarose-Based Assay for Improved Genotyping of Guanine-Adenine-Adenine Repeats in Friedreich Ataxia. J Mol Diagn 2022; 24:915-923. [PMID: 35595154 DOI: 10.1016/j.jmoldx.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Friedreich ataxia is a rare autosomal recessive, neuromuscular degenerative disease caused by an expansion of a trinucleotide [guanine-adenine-adenine (GAA)] repeat in intron 1 of the FXN gene. It is common in the White population, characterized by progressive gait and limb ataxia, lack of tendon reflexes in the legs, loss of position sense, and hypertrophic cardiomyopathy. Detection and genotyping of the trinucleotide repeat length is important for the diagnosis and prognosis of the disease. A two-tier genotyping assay with an improved triple-repeat primed PCR (TR-PCR) for alleles <200 GAA repeats (±1 to 5 repeats) and an agarose gel-based, long-range PCR (LR-PCR) assay to genotype expanded alleles >200 GAA repeats (±50 repeats) is described. Of the 1236 DNA samples tested using TR-PCR, 31 were identified to have expanded alleles >200 repeats and were reflexed to the LR-PCR procedure for confirmation and quantification. The TR-PCR assay described herein is a diagnostic genotyping assay that reduces the need for further testing. The LR-PCR component is a confirmatory test for true homozygous and heterozygous samples with normal and expanded alleles, as indicated by the TR-PCR assay. The use of this two-tier method offers a comprehensive evaluation to detect and genotype the smallest and largest number of GAA repeats, improving the classification of FXN alleles as normal, mutable normal, borderline, and expanded alleles.
Collapse
Affiliation(s)
- Mohamed Jama
- Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, Utah.
| | - Rebecca L Margraf
- Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, Utah
| | - Ping Yu
- ARUP Laboratories, University of Utah, Salt Lake City, Utah
| | - N Scott Reading
- Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, Utah; Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Pinar Bayrak-Toydemir
- Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, Utah; Department of Pathology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Nethisinghe S, Kesavan M, Ging H, Labrum R, Polke JM, Islam S, Garcia-Moreno H, Callaghan MF, Cavalcanti F, Pook MA, Giunti P. Interruptions of the FXN GAA Repeat Tract Delay the Age at Onset of Friedreich's Ataxia in a Location Dependent Manner. Int J Mol Sci 2021; 22:7507. [PMID: 34299126 PMCID: PMC8307455 DOI: 10.3390/ijms22147507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5' and 3' ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3' interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5' interruption, 3' interruption, both 5' and 3' interruptions or lacking interruption. Those patients with 3' interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3' interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5' and 3' interruptions. This highlights the key role of interruptions at the 3' end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.
Collapse
Affiliation(s)
- Suran Nethisinghe
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Maheswaran Kesavan
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Heather Ging
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Robyn Labrum
- Neurogenetics Service, Rare and Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3BH, UK; (R.L.); (J.M.P.)
| | - James M. Polke
- Neurogenetics Service, Rare and Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3BH, UK; (R.L.); (J.M.P.)
| | - Saiful Islam
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK;
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), 87050 Mangone, Italy;
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; (S.N.); (M.K.); (H.G.); (H.G.-M.)
| |
Collapse
|
6
|
Lynch DR, Schadt K, Kichula E, McCormack S, Lin KY. Friedreich Ataxia: Multidisciplinary Clinical Care. J Multidiscip Healthc 2021; 14:1645-1658. [PMID: 34234452 PMCID: PMC8253929 DOI: 10.2147/jmdh.s292945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem disorder affecting 1 in 50,000-100,000 person in the United States. Traditionally viewed as a neurodegenerative disease, FRDA patients also develop cardiomyopathy, scoliosis, diabetes and other manifestation. Although it usually presents in childhood, it continues throughout life, thus requiring expertise from both pediatric and adult subspecialist in order to provide optimal management. The phenotype of FRDA is unique, giving rise to specific loss of neuronal pathways, a unique form of cardiomyopathy with early hypertrophy and later fibrosis, and diabetes incorporating components of both type I and type II disease. Vision loss, hearing loss, urinary dysfunction and depression also occur in FRDA. Many agents are reaching Phase III trials; if successful, these will provide a variety of new treatments for FRDA that will require many specialists who are not familiar with FRDA to provide clinical therapy. This review provides a summary of the diverse manifestation of FRDA, existing symptomatic therapies, and approaches for integrative care for future therapy in FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kim Schadt
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Santoro M, Perna A, La Rosa P, Petrillo S, Piemonte F, Rossi S, Riso V, Nicoletti TF, Modoni A, Pomponi MG, Chiurazzi P, Silvestri G. Compound heterozygosity for an expanded (GAA) and a (GAAGGA) repeat at FXN locus: from a diagnostic pitfall to potential clues to the pathogenesis of Friedreich ataxia. Neurogenetics 2020; 21:279-287. [PMID: 32638185 DOI: 10.1007/s10048-020-00620-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
Abstract
Friedreich's ataxia (FRDA) is usually due to a homozygous GAA expansion in intron 1 of the frataxin (FXN) gene. Rarely, uncommon molecular rearrangements at the FXN locus can cause pitfalls in the molecular diagnosis of FRDA. Here we describe a family whose proband was affected by late-onset Friedreich's ataxia (LOFA); long-range PCR (LR-PCR) documented two small expanded GAA alleles both in the proband and in her unaffected younger sister, who therefore received a diagnosis of pre-symptomatic LOFA. Later studies, however, revealed that the proband's unaffected sister, as well as their healthy mother, were both carriers of an expanded GAA allele and an uncommon (GAAGGA)66-67 repeat mimicking a GAA expansion at the LR-PCR that was the cause of the wrong initial diagnosis of pre-symptomatic LOFA. Extensive studies in tissues from all the family members, including LR-PCR, assessment of methylation status of FXN locus, MboII restriction analysis and direct sequencing of LR-PCR products, analysis of FXN mRNA, and frataxin protein expression, support the virtual lack of pathogenicity of the rare (GAAGGA)66-67 repeat, also providing significant data about the modulation of epigenetic modifications at the FXN locus. Overall, this report highlights a rare but possible pitfall in FRDA molecular diagnosis, emphasizing the need of further analysis in case of discrepancy between clinical and molecular data.
Collapse
Affiliation(s)
- Massimo Santoro
- IRCCS Fondazione Don Carlo Gnocchi, Piazzale Morandi, 6, 20121, Milan, Italy
| | - Alessia Perna
- Dept of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Scaro Cuore, L.go F. Vito 1, 000168, Rome, Italy
| | - Piergiorgio La Rosa
- Unit of Muscular and Neurodegenerative Diseases, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale San Paolo, 15, 00146, Rome, Italy
| | - Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale San Paolo, 15, 00146, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale San Paolo, 15, 00146, Rome, Italy
| | - Salvatore Rossi
- Dept of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Scaro Cuore, L.go F. Vito 1, 000168, Rome, Italy
| | - Vittorio Riso
- Dept of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Scaro Cuore, L.go F. Vito 1, 000168, Rome, Italy
- Institute of Neurology, Neuroscience Area, Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Tommaso Filippo Nicoletti
- Dept of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Scaro Cuore, L.go F. Vito 1, 000168, Rome, Italy
- Institute of Neurology, Neuroscience Area, Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Anna Modoni
- Institute of Neurology, Neuroscience Area, Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Maria Grazia Pomponi
- Institute of Genomic Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Pietro Chiurazzi
- Institute of Genomic Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Gabriella Silvestri
- Dept of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Scaro Cuore, L.go F. Vito 1, 000168, Rome, Italy.
- Institute of Neurology, Neuroscience Area, Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy.
| |
Collapse
|
8
|
Baizabal-Carvallo JF, Cardoso F. Chorea in children: etiology, diagnostic approach and management. J Neural Transm (Vienna) 2020; 127:1323-1342. [DOI: 10.1007/s00702-020-02238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023]
|
9
|
Flower M, Lomeikaite V, Holmans P, Jones L, Tabrizi SJ, Monckton DG. Reply: The repeat variant in MSH3 is not a genetic modifier for spinocerebellar ataxia type 3 and Friedreich's ataxia. Brain 2020; 143:e26. [PMID: 32154840 DOI: 10.1093/brain/awaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Michael Flower
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Vilija Lomeikaite
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| |
Collapse
|
10
|
Al-Mahdawi S, Ging H, Bayot A, Cavalcanti F, La Cognata V, Cavallaro S, Giunti P, Pook MA. Large Interruptions of GAA Repeat Expansion Mutations in Friedreich Ataxia Are Very Rare. Front Cell Neurosci 2018; 12:443. [PMID: 30519163 PMCID: PMC6258883 DOI: 10.3389/fncel.2018.00443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Friedreich ataxia is a multi-system autosomal recessive inherited disorder primarily caused by homozygous GAA repeat expansion mutations within intron 1 of the frataxin gene. The resulting deficiency of frataxin protein leads to progressive mitochondrial dysfunction, oxidative stress, and cell death, with the main affected sites being the large sensory neurons of the dorsal root ganglia and the dentate nucleus of the cerebellum. The GAA repeat expansions may be pure (GAA)n in sequence or may be interrupted with regions of non-GAA sequence. To our knowledge, there has been no large-scale study of FRDA patient DNA samples to determine the frequency of large interruptions in GAA repeat expansions. Therefore, we have investigated a panel of 245 Friedreich ataxia patient and carrier DNA samples using GAA repeat PCR amplification and MboII restriction enzyme digestion. We demonstrate that the vast majority (97.8%) of Friedreich ataxia GAA repeat expansion samples do not contain significant sequence changes that would result in abnormal MboII digestion profiles, indicating that they are primarily pure GAA repeats. These results show for the first time that large interruptions in the GAA repeats are very rare.
Collapse
Affiliation(s)
- Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Heather Ging
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Aurelien Bayot
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | - Paola Giunti
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Mark A Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
11
|
Alsina D, Purroy R, Ros J, Tamarit J. Iron in Friedreich Ataxia: A Central Role in the Pathophysiology or an Epiphenomenon? Pharmaceuticals (Basel) 2018; 11:E89. [PMID: 30235822 PMCID: PMC6161073 DOI: 10.3390/ph11030089] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia is a neurodegenerative disease with an autosomal recessive inheritance. In most patients, the disease is caused by the presence of trinucleotide GAA expansions in the first intron of the frataxin gene. These expansions cause the decreased expression of this mitochondrial protein. Many evidences indicate that frataxin deficiency causes the deregulation of cellular iron homeostasis. In this review, we will discuss several hypotheses proposed for frataxin function, their caveats, and how they could provide an explanation for the deregulation of iron homeostasis found in frataxin-deficient cells. We will also focus on the potential mechanisms causing cellular dysfunction in Friedreich Ataxia and on the potential use of the iron chelator deferiprone as a therapeutic agent for this disease.
Collapse
Affiliation(s)
- David Alsina
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - Rosa Purroy
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| |
Collapse
|
12
|
Santoro M, Masciullo M, Silvestri G, Novelli G, Botta A. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis. Clin Genet 2017; 92:355-364. [PMID: 27991661 DOI: 10.1111/cge.12954] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease caused by a CTG triplet expansion in the 3'-untranslated region (3'-UTR) of DMPK gene. This CTG array is usually uninterrupted in both healthy and DM1 patients, but recent studies identified pathological variant expansions containing unstable CCG, CTC and CGG interruptions with a prevalence of 3-5% of cases. In this review, we will describe the clinical, molecular and genetic issues related to the occurrence of variant expansions associated with DM1. Indeed, the identification of these complex DMPK alleles leads to practical consequences in DM1 genetic counseling and testing, because these exams can give false negative results. Moreover, DM1 patients carrying interrupted alleles can manifest either additional atypical neurological symptoms or, conversely, mild, late-onset forms. Therefore, the prognosis of the disease in these patients is difficult to determine because of the great uncertainty about the genotype-phenotype correlations. We will discuss the putative effects of the variant DM1 alleles on the pathogenic disease mechanisms, including mitotic and meiotic repeats instability and splicing alteration typical of DM1 tissues. Interruptions within the DMPK expanded alleles could also interfere with the chromatin structure, the transcriptional activity of the DM1 locus and the interaction with RNA CUG-binding proteins.
Collapse
Affiliation(s)
- M Santoro
- Department of Neuroscience, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Masciullo
- SPInal REhabilitation Lab, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - G Silvestri
- Institute of Neurology, Fondazione Policlinico 'Gemelli', Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - A Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Anjomani Virmouni S, Ezzatizadeh V, Sandi C, Sandi M, Al-Mahdawi S, Chutake Y, Pook MA. A novel GAA-repeat-expansion-based mouse model of Friedreich's ataxia. Dis Model Mech 2015; 8:225-35. [PMID: 25681319 PMCID: PMC4348561 DOI: 10.1242/dmm.018952] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced levels of frataxin protein. We have previously reported the generation of human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing 90-190 GAA repeats, but the presence of multiple GAA repeats within these mice is considered suboptimal. We now describe the cellular, molecular and behavioural characterisation of a newly developed YAC transgenic FRDA mouse model, designated YG8sR, which we have shown by DNA sequencing to contain a single pure GAA repeat expansion. The founder YG8sR mouse contained 120 GAA repeats but, due to intergenerational expansion, we have now established a colony of YG8sR mice that contain ~200 GAA repeats. We show that YG8sR mice have a single copy of the FXN transgene, which is integrated at a single site as confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We have identified significant behavioural deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8sR FRDA mice compared with control Y47R and wild-type (WT) mice. We have also detected increased somatic GAA repeat instability in the brain and cerebellum of YG8sR mice, together with significantly reduced expression of FXN, FAST-1 and frataxin, and reduced aconitase activity, compared with Y47R mice. Furthermore, we have confirmed the presence of pathological vacuoles within neurons of the dorsal root ganglia (DRG) of YG8sR mice. These novel GAA-repeat-expansion-based YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology, represent an excellent model for the investigation of FRDA disease mechanisms and therapy.
Collapse
Affiliation(s)
- Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Vahid Ezzatizadeh
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Chiranjeevi Sandi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Madhavi Sandi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Yogesh Chutake
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark A Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK Synthetic Biology Theme, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
14
|
Salehi MH, Houshmand M, Aryani O, Kamalidehghan B, Khalili E. Molecular and clinical investigation of Iranian patients with Friedreich ataxia. IRANIAN BIOMEDICAL JOURNAL 2014; 18:28-33. [PMID: 24375160 PMCID: PMC3892137 DOI: 10.6091/ibj.1235.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by guanine-adenine-adenine (GAA) triplet expansions in the FXN gene. Its product, frataxin, which severely reduces in FRDA patients, leads to oxidative damage in mitochondria. The purpose of this study was to evaluate the triple nucleotide repeated expansions in Iranian FRDA patients and to elucidate distinguishable FRDA clinical differences in these patients. METHODS A number of 22 Iranian patients (8 females and 14 males) from 16 unrelated families were studied. DNA was extracted from the peripheral blood of patients. The frequency and length of (GAA)n repeats in intron 1 of the FXN gene were analyzed using long-range PCR. In this study, the clinical criteria of FRDA in our patients and the variability in their clinical signs were also demonstrated. RESULTS An inverse relationship was observed between GAA repeat size and the age of onset. Although some distinguishable clinical features (such as limb ataxia and lower limb areflexia) were found in our patients, 90-95% of them had extensor plantar response and dysarthria. The results showed only one positive diabetes patient and also different effects on eye movement abnormality among our patients. CONCLUSION The onset age of symptoms showed a significant inverse correlation with allele size in our patients (P>0.05). Based on comparisons of the clinical data of all patients, clinical presentation of FRDA in Iranian patients did not differ significantly from other FRDA patients previously reported.
Collapse
Affiliation(s)
- Mohammad Hossein Salehi
- Dept. of Molecular Genetics, Tarbiat Modares University, Tehran, Iran;
- Dept. of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran;
| | - Massoud Houshmand
- Dept. of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran;
- Dept. of Medical Genetics, Special Medical Center, Tehran, Iran;
| | - Omid Aryani
- Dept. of Medical Genetics, Special Medical Center, Tehran, Iran;
| | | | - Elham Khalili
- Dept. of Medical Genetics, Special Medical Center, Tehran, Iran;
| |
Collapse
|
15
|
Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, Condò I, Bei R, Rea SL, Braeckman BP, Tavernarakis N, Testi R, Ventura N. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 2013; 48:191-201. [PMID: 23247094 PMCID: PMC3572394 DOI: 10.1016/j.exger.2012.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2012] [Indexed: 02/02/2023]
Abstract
Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreich's ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner. In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression. In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreich's ataxia and possibly other human mitochondria-associated disorders.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alessandro Torgovnick
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alison Kell
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Evgenia Megalou
- IMBB, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | | | - Ilaria Guccini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Laura Marzocchella
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sara Gelino
- Sanford-Burnham Medical Research Institute, Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Malene Hansen
- Sanford-Burnham Medical Research Institute, Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Bei
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Shane L. Rea
- Sam and Ann Barshop Institute for Longevity and Aging Studies and the Department of Physiology, UTHSCSA, San Antonio, TX, USA
| | | | | | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Natascia Ventura
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| |
Collapse
|
16
|
The ataxias. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Sequeiros J, Martins S, Silveira I. Epidemiology and population genetics of degenerative ataxias. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:227-51. [PMID: 21827892 DOI: 10.1016/b978-0-444-51892-7.00014-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jorge Sequeiros
- Institute of Molecular and Cell Biology, University of Porto, Portugal.
| | | | | |
Collapse
|
18
|
Holloway TP, Rowley SM, Delatycki MB, Sarsero JP. Detection of interruptions in the GAA trinucleotide repeat expansion in the FXN gene of Friedreich ataxia. Biotechniques 2011; 50:182-6. [PMID: 21486239 DOI: 10.2144/000113615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/06/2011] [Indexed: 11/23/2022] Open
Abstract
Friedreich ataxia is a neurodegenerative disorder caused by the expansion of a GAA trinucleotide repeat sequence within the first intron of the FXN gene. Interruptions in the GAA repeat may serve to alleviate the inhibitory effects of the GAA expansion on FXN gene expression and to decrease pathogenicity. We have developed a simple and rapid PCR- and restriction enzyme-based assay to assess the purity of GAA repeat sequences.
Collapse
Affiliation(s)
- Timothy P Holloway
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
Dimitriadis K, Heck S, Schubert M, Klopstock T. [Retained reflexes, proprioception, SNAPs: still Friedreich's ataxia]. DER NERVENARZT 2010; 81:442-3. [PMID: 20396985 DOI: 10.1007/s00115-010-2946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- K Dimitriadis
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, Klinikum der Universität München - Innenstadt, 80336 München
| | | | | | | |
Collapse
|
20
|
Shahed J, Jankovic J. An elderly lady with ataxia and neuropathy. Mov Disord 2008. [DOI: 10.3109/9780203008454-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Stolle CA, Frackelton EC, McCallum J, Farmer JM, Tsou A, Wilson RB, Lynch DR. Novel, complex interruptions of the GAA repeat in small, expanded alleles of two affected siblings with late-onset Friedreich ataxia. Mov Disord 2008; 23:1303-6. [PMID: 18464277 DOI: 10.1002/mds.22012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Friedreich ataxia (FA) is an autosomal recessive disorder associated with expanded GAA repeats in intron 1 of the FRDA gene. Two siblings presented with a mild form of FA at >60 years of age. Both had a large expansion (>600 repeats) and a small expansion (120 repeats) by long-range PCR. Sequence analysis of the small allele revealed multiple, complex interruptions in the GAA repeat. These 2 patients presented later than predicted from their allele size alone, when compared with a large cohort of FA patients. Accounting for the interruptions in the GAA repeat, though, did not make the age of onset consistent with that noted in other patients. Three additional patients with late onset FA and small expanded alleles also exhibited interrupted GAA repeats that were not associated with inappropriately late onset. Our observations suggest that interrupted GAA repeats do not clearly impact the age of onset in FA.
Collapse
Affiliation(s)
- Catherine A Stolle
- The Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Galimanis A, Glutz L, Burgunder JM, Spiegel R, Kaelin-Lang A. Very-late-onset Friedreich ataxia with disturbing head tremor and without spinal atrophy--a case report. Mov Disord 2008; 23:1058-1059. [PMID: 18361475 DOI: 10.1002/mds.21946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Aekaterini Galimanis
- Movement Disorders Center, Department of Neurology, Inselpital Bern University Hospital and University of Bern, Switzerland
| | | | - Jean-Marc Burgunder
- Movement Disorders Center, Department of Neurology, Inselpital Bern University Hospital and University of Bern, Switzerland
- Division of Neurology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Roland Spiegel
- Human Genetics Laboratory, Genetica, Zurich, Switzerland
| | - Alain Kaelin-Lang
- Movement Disorders Center, Department of Neurology, Inselpital Bern University Hospital and University of Bern, Switzerland
| |
Collapse
|
23
|
Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S, Webster Z, Blake J, Cooper JM, King R, Pook MA. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics 2006; 88:580-90. [PMID: 16919418 PMCID: PMC2842930 DOI: 10.1016/j.ygeno.2006.06.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies.
Collapse
Affiliation(s)
- Sahar Al-Mahdawi
- Biosciences, School of Health Sciences & Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | - Ricardo Mouro Pinto
- Biosciences, School of Health Sciences & Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | - Dhaval Varshney
- Biosciences, School of Health Sciences & Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | | - Sian Hughes
- Rockefeller Building, University College London, London, UK
| | - Zoe Webster
- Embryonic Stem Cell Facility, MRC CSC, Hammersmith Hospital, DuCane Road, London, UK
| | - Julian Blake
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - J. Mark Cooper
- Department of Clinical Neurosciences, Royal Free & University College Medical School, Rowland Hill Street, London, UK
| | - Rosalind King
- Department of Clinical Neurosciences, Royal Free & University College Medical School, Rowland Hill Street, London, UK
| | - Mark A. Pook
- Biosciences, School of Health Sciences & Social Care, Brunel University, Uxbridge UB8 3PH, UK
| |
Collapse
|
24
|
Berciano J, Infante J, García A, Polo JM, Volpini V, Combarros O. Very late-onset Friedreich's ataxia with minimal GAA1 expansion mimicking multiple system atrophy of cerebellar type. Mov Disord 2006; 20:1643-5. [PMID: 16092110 DOI: 10.1002/mds.20644] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Very late-onset Friedreich's ataxia (VLOFA) is characterized by symptomatic onset after 40 years of age and, usually, a benign phenotype. We describe a sporadic case with onset at 53 years of age and a novel VLOFA phenotype mimicking multiple system atrophy (MSA) of cerebellar type associated with minimal GAA1 expansion. We detected several atypical features for a diagnosis of MSA, which should alert to the possibility of an inherited ataxia.
Collapse
Affiliation(s)
- José Berciano
- Department of Neurology, University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Kraft S, Furtado S, Ranawaya R, Parboosingh J, Bleoo S, McElligott K, Bridge P, Spacey S, Das S, Suchowersky O. Adult onset spinocerebellar ataxia in a Canadian movement disorders clinic. Can J Neurol Sci 2006; 32:450-8. [PMID: 16408574 DOI: 10.1017/s0317167100004431] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The spinocerebellar ataxias (SCAs) are a genetically and clinically heterogeneous group of neurodegenerative disorders. Relative frequencies vary within different ethnic groups and geographical locations. OBJECTIVES 1) To determine the frequencies of hereditary and sporadic adult onset SCAs in the Movement Disorders population; 2) to assess if the fragile X mental retardation gene 1 (FMR1) premutation is found in this population. METHODS A retrospective chart review of individuals with a diagnosis of adult onset SCA was carried out. Testing for SCA types 1, 2, 3, 6, 7, and 8, Dentatorubral-pallidoluysian atrophy (DRPLA), Friedreich ataxia and the FMR1 expansion was performed. RESULTS A total of 69 patients in 60 families were identified. Twenty-one (35%) of the families displayed autosomal dominant and two (3.3%) showed autosomal recessive (AR) pattern of inheritance. A positive but undefined family history was noted in nine (15%). The disorder appeared sporadic in 26 patients (43.3%). In the AD families, the most common mutation was SCA3 (23.8%) followed by SCA2 (14.3%) and SCA6 (14.3%). The SCA1 and SCA8 were each identified in 4.8%. FA was found in a pseudodominant pedigree, and one autosomal recessive pedigree. One sporadic patient had a positive test (SCA3).Dentatorubral-pallidoluysian atrophy and FMR1 testing was negative. CONCLUSION A positive family history was present in 53.3% of our adult onset SCA patients. A specific genetic diagnosis could be given in 61.9% of dominant pedigrees with SCA3 being the most common mutation, followed by SCA2 and SCA6. The yield in sporadic cases was low. The fragile X premutation was not found to be responsible for SCA.
Collapse
Affiliation(s)
- Scott Kraft
- Movement Disorsders program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Badhwar A, Jansen A, Andermann F, Pandolfo M, Andermann E. Striking intrafamilial phenotypic variability and spastic paraplegia in the presence of similar homozygous expansions of the FRDA1 gene. Mov Disord 2004; 19:1424-31. [PMID: 15514925 DOI: 10.1002/mds.20264] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report on a Friedreich's ataxia (FA) family with 3 affected siblings with markedly different phenotypic presentations, including one with spastic paraplegia. Molecular analysis showed midsize GAA repeat expansion sizes in all 3 individuals. Gait spasticity in FA, although rare, has been described in a few patients who are compound heterozygotes for a point mutation, or who had GAA expansions of less than 200 repeats. The occurrence of spastic paraplegia in our family, in the presence of homozygous midsize GAA repeat expansions, is an unusual finding. Spasticity can be the main feature in both sporadic and familial patients with FA, either as an isolated finding, or in addition to other neurological abnormalities, and should be included as a rare feature in the clinical spectrum of FA. This family also demonstrates that in FA, marked intrafamilial phenotypic variability can arise in the presence of similar GAA expansion sizes. Therefore, in familial FA, the disease course in relatives therefore cannot be predicted solely from repeat length. Factors such as somatic mosaicism, repeat interruptions, modifying mutations and environmental factors must also be considered.
Collapse
Affiliation(s)
- Amanpreet Badhwar
- Neurogenetics Unit, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
27
|
Greene E, Handa V, Kumari D, Usdin K. Transcription defects induced by repeat expansion: fragile X syndrome, FRAXE mental retardation, progressive myoclonus epilepsy type 1, and Friedreich ataxia. Cytogenet Genome Res 2003; 100:65-76. [PMID: 14526165 DOI: 10.1159/000072839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 02/06/2003] [Indexed: 11/19/2022] Open
Abstract
Fragile X mental retardation syndrome, FRAXE mental retardation, Progressive myoclonus epilepsy Type I, and Friedreich ataxia are members of a larger group of genetic disorders known as the Repeat Expansion Diseases. Unlike other members of this group, these four disorders all result from a primary defect in the initiation or elongation of transcription. In this review, we discuss current models for the relationship between the expanded repeat and the disease symptoms.
Collapse
Affiliation(s)
- E Greene
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Over the past decade, the spinocerebellar degenerations have gone from a diverse group of loosely defined phenotypes to a family of diseases with many identifiable genotypes and the promise of gene-specific treatments. The evaluation of the spinocerebellar ataxias has been simplified, and the counseling of patients and families has been enhanced by the growing number of molecular diagnostic tests now available. Management strategies remain symptomatic and focused on rehabilitation, with empirical use of antioxidants based on research in other neurogenetic diseases.
Collapse
Affiliation(s)
- Susan L Perlman
- Department of Neurology, UCLA School of Medicine, 300 UCLA Medical Plaza, Suite B200, Los Angeles, CA 90095, USA.
| |
Collapse
|