1
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
2
|
Louis ED, Martuscello RT, Gionco JT, Hartstone WG, Musacchio JB, Portenti M, McCreary M, Kuo SH, Vonsattel JPG, Faust PL. Histopathology of the cerebellar cortex in essential tremor and other neurodegenerative motor disorders: comparative analysis of 320 brains. Acta Neuropathol 2023; 145:265-283. [PMID: 36607423 PMCID: PMC10461794 DOI: 10.1007/s00401-022-02535-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
In recent years, numerous morphologic changes have been identified in the essential tremor (ET) cerebellar cortex, distinguishing ET from control brains. These findings have not been fully contextualized within a broader degenerative disease spectrum, thus limiting their interpretability. Building off our prior study and now doubling the sample size, we conducted comparative analyses in a postmortem series of 320 brains on the severity and patterning of cerebellar cortex degenerative changes in ET (n = 100), other neurodegenerative disorders of the cerebellum [spinocerebellar ataxias (SCAs, n = 47, including 13 SCA3 and 34 SCA1, 2, 6, 7, 8, 14); Friedreich's ataxia (FA, n = 13); multiple system atrophy (MSA), n = 29], and other disorders that may involve the cerebellum [Parkinson's disease (PD), n = 62; dystonia, n = 19] versus controls (n = 50). We generated data on 37 quantitative morphologic metrics, grouped into 8 broad categories: Purkinje cell (PC) loss, heterotopic PCs, PC dendritic changes, PC axonal changes (torpedoes), PC axonal changes (other than torpedoes), PC axonal changes (torpedo-associated), basket cell axonal hypertrophy, and climbing fiber-PC synaptic changes. Principal component analysis of z scored raw data across all diagnoses (11,651 data items) revealed that diagnostic groups were not uniform with respect to pathology. Dystonia and PD each differed from controls in only 4/37 and 5/37 metrics, respectively, whereas ET differed in 21, FA in 10, SCA3 in 10, MSA in 21, and SCA1/2/6/7/8/14 in 27. Pathological changes were generally on the milder end of the degenerative spectrum in ET, FA and SCA3, and on the more severe end of that spectrum in SCA1/2/6/7/8/14. Comparative analyses across morphologic categories demonstrated differences in relative expression, defining distinctive patterns of changes in these groups. In summary, we present a robust and reproducible method that identifies somewhat distinctive signatures of degenerative changes in the cerebellar cortex that mark each of these disorders.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA.
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - John T Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Whitney G Hartstone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jessica B Musacchio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Marisa Portenti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Morgan McCreary
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
3
|
Kuo SH, Louis ED. How important is the inferior olive in essential tremor? An evolving story. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:129-132. [PMID: 36172066 PMCID: PMC9512123 DOI: 10.1016/s0074-7742(22)00055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, United States
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Riboldi GM, Frucht SJ. Is essential tremor a family of diseases or a syndrome? A family of diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:7-29. [PMID: 35750371 DOI: 10.1016/bs.irn.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is now well-established that essential tremor (ET) can manifest with different clinical presentations and progressions (i.e., upper limb tremor, head tremor, voice tremor, lower limb tremor, task- or position-specific tremor, or a combination of those). Common traits and overlaps are identifiable across these different subtypes of ET, including a slow rate of progression, a response to alcohol and a positive family history. At the same time, each of these manifestations are associated with specific demographic, clinical and treatment-response characteristics suggesting a family of diseases rather than a spectrum of a syndrome. Here we summarize the most important clinical, demographic, neuropathological and imagingfeatures of ET and of its subtypes to support ET as a family of identifiable conditions. This classification has relevance for counseling of patients with regard to disease progression and treatment response, as well as for the design of therapeutic clinical trials.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, United States
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, United States.
| |
Collapse
|
5
|
Manto M. Is inferior olive central to the pathophysiology of essential tremor? No. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:167-187. [PMID: 35750362 DOI: 10.1016/bs.irn.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) represents one of the commonest movement disorder worldwide and is the most common tremor disorder. ET manifests with various combinations of motor and nonmotor symptoms. The clinical hallmark is a kinetic tremor of upper limbs. Historically, the pathogenesis of ET has been based on the hypothesis of an overactivity of the inferior olive (inferior olive hypothesis: IOH) where the inferior olive would act as the central pace-maker of ET, resulting in impaired electrophysiological discharges of the olivo-cerebellar tract. The absence of structural alterations in post-mortem studies of the inferior olive is a striking argument against the IOH. Furthermore, neuroimaging studies point towards the implication of the cerebello-thalamo-cerebral pathway rather than the IO, and the harmaline model which has been considered as an animal model of ET presents important weaknesses. By contrast, a series of experiments by Louis et al. have provided convincing evidence of impaired wiring of the Purkinje cell microcircuitry and progressive neurodegeneration of the cerebellar cortex. The Purkinje neuron appears as the primary culprit (Purkinjopathy). The cerebellar cortex hypothesis (CCH) has solid neuropathological signatures, unlike the purely physiological IOH. Rather than a dysregulatory electrophysiological disorder suggested by IOH, ET is a clinical-pathological entity similar to late onset neurodegenerative disorders such as Parkinson's disease or Alzheimer's disease. The CCH emphasizes the need to develop novel therapeutic strategies in order to maintain or promote the cerebellar reserve. The modern reconceptualization of ET in a genuine cerebellar disorder is cleaning the IOH to the light of histopathological studies. ET falls in the large basket of the neurodegenerative diseases and we have entered into a novel formulation of the disease pathogenesis with direct impacts on future therapies.
Collapse
Affiliation(s)
- Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Belgium; Service des Neurosciences, Université de Mons, Belgium.
| |
Collapse
|
6
|
Cho HJ. Is essential tremor a degenerative or an electrical disorder? Electrical disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:103-128. [PMID: 35750360 DOI: 10.1016/bs.irn.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is one of the most common movement disorders, yet we do not have a complete understanding of its pathophysiology. From a phenomenology standpoint, ET is an isolated tremor syndrome of bilateral upper limb action tremor with or without tremor in other body locations. ET is a pathological tremor that arises from excessive oscillation in the central motor network. The tremor network comprises of multiple brain regions including the inferior olive, cerebellum, thalamus, and motor cortex, and there is evidence that a dynamic oscillatory disturbance within this network leads to tremor. ET is a chronic disorder, and the natural history shows a slow progression of tremor intensity with age. There are reported data suggesting that ET follows the disease model of a neurodegenerative disorder, however whether ET is a degenerative or electrical disorder has been a subject of debate. In this chapter, we will review cumulative evidence that ET as a syndrome is a fundamentally electric disorder. The etiology is likely heterogenous and may not be primarily neurodegenerative.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
7
|
Bellows S, Jimenez-Shahed J. Is essential tremor a disorder of GABA dysfunction? No. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:285-310. [PMID: 35750366 DOI: 10.1016/bs.irn.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although essential tremor is common, its underlying pathophysiology remains uncertain, and several hypotheses seek to explain the tremor mechanism. The GABA hypothesis states that disinhibition of deep cerebellar neurons due to reduced GABAergic input from Purkinje cells results in increased pacemaker activity, leading to rhythmic output to the thalamo-cortical circuit and resulting in tremor. However, some neuroimaging, spectroscopy, and pathology studies have not shown a clear or consistent GABA deficiency in essential tremor, and animal models have indicated that large reductions of Purkinje cell inhibition may improve tremor. Instead, tremor is increasingly attributable to dysfunction in oscillating networks, where altered (but not necessarily reduced) inhibitory signaling can result in tremor. Hypersynchrony of Purkinje cell activity may account for excessive oscillatory cerebellar output, with potential contributions along multiple sites of the olivocerebellar loop. Although older animal tremor models, such as harmaline tremor, have explored contributions from the inferior olivary body, increasing evidence has pointed to the role of aberrant climbing fiber synaptic organization in oscillatory cerebellar activity and tremor generation. New animal models such as hotfoot17j mice, which exhibit abnormal climbing fiber organization due to mutations in Grid2, have recapitulated many features of ET. Similar abnormal climbing fiber architecture and excessive cerebellar oscillations as measured by EEG have been found in humans with essential tremor. Further understanding of hypersynchrony and excessive oscillatory activity in ET phenotypes may lead to more targeted and effective treatment options.
Collapse
|
8
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|
9
|
Woodward K, Apps R, Goodfellow M, Cerminara NL. Cerebello-Thalamo-Cortical Network Dynamics in the Harmaline Rodent Model of Essential Tremor. Front Syst Neurosci 2022; 16:899446. [PMID: 35965995 PMCID: PMC9365993 DOI: 10.3389/fnsys.2022.899446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Essential Tremor (ET) is a common movement disorder, characterised by a posture or movement-related tremor of the upper limbs. Abnormalities within cerebellar circuits are thought to underlie the pathogenesis of ET, resulting in aberrant synchronous oscillatory activity within the thalamo-cortical network leading to tremors. Harmaline produces pathological oscillations within the cerebellum, and a tremor that phenotypically resembles ET. However, the neural network dynamics in cerebellar-thalamo-cortical circuits in harmaline-induced tremor remains unclear, including the way circuit interactions may be influenced by behavioural state. Here, we examined the effect of harmaline on cerebello-thalamo-cortical oscillations during rest and movement. EEG recordings from the sensorimotor cortex and local field potentials (LFP) from thalamic and medial cerebellar nuclei were simultaneously recorded in awake behaving rats, alongside measures of tremor using EMG and accelerometery. Analyses compared neural oscillations before and after systemic administration of harmaline (10 mg/kg, I.P), and coherence across periods when rats were resting vs. moving. During movement, harmaline increased the 9-15 Hz behavioural tremor amplitude and increased thalamic LFP coherence with tremor. Medial cerebellar nuclei and cerebellar vermis LFP coherence with tremor however remained unchanged from rest. These findings suggest harmaline-induced cerebellar oscillations are independent of behavioural state and associated changes in tremor amplitude. By contrast, thalamic oscillations are dependent on behavioural state and related changes in tremor amplitude. This study provides new insights into the role of cerebello-thalamo-cortical network interactions in tremor, whereby neural oscillations in thalamocortical, but not cerebellar circuits can be influenced by movement and/or behavioural tremor amplitude in the harmaline model.
Collapse
Affiliation(s)
- Kathryn Woodward
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Marc Goodfellow
- Department of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nadia L. Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- *Correspondence: Nadia L. Cerminara
| |
Collapse
|
10
|
Is essential tremor a degenerative disorder or an electric disorder? Degenerative disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:65-101. [PMID: 35750370 PMCID: PMC9846862 DOI: 10.1016/bs.irn.2022.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Essential tremor (ET) is a highly prevalent neurologic disease and is the most common of the many tremor disorders. ET is a progressive condition with marked clinical heterogeneity, associated with a spectrum of both motor and non-motor features. However, its disease mechanisms remain poorly understood. Much debate has centered on whether ET should be considered a degenerative disorder, with underlying pathological changes in brain causing progressive disease manifestations, or an electric disorder, with overactivity of intrinsically oscillatory motor networks that occur without underlying structural brain abnormalities. Converging data from clinical, neuroimaging and pathological studies in ET now provide considerable evidence for the neurodegenerative hypothesis. A major turning point in this debate is that rigorous tissue-based studies have recently identified a series of structural changes in the ET cerebellum. Most of these pathological changes are centered on the Purkinje cell and connected neuronal populations, which can result in partial loss of Purkinje cells and circuitry reorganizations that would disturb cerebellar function. There is significant overlap in clinical and pathological features of ET with other disorders of cerebellar degeneration, and an increased risk of developing other degenerative diseases in ET. The combined implication of these studies is that ET could be degenerative. The evidence in support of the degenerative hypothesis is presented.
Collapse
|
11
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
12
|
Baumel Y, Yamin HG, Cohen D. Cerebellar nuclei neurons display aberrant oscillations during harmaline-induced tremor. Heliyon 2021; 7:e08119. [PMID: 34660929 PMCID: PMC8503592 DOI: 10.1016/j.heliyon.2021.e08119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Essential tremor, a common, debilitating motor disorder, is thought to be caused by cerebellar malfunction. It has been shown that rhythmic Purkinje cell firing is both necessary and sufficient to induce body tremor. During tremor, cerebellar nuclei (CN) cells also display oscillatory activity. This study examined whether rhythmic activity in the CN characterizes the occurrence of body tremor, or alternatively, whether aberrant bursting activity underlies body tremor. Cerebellar nuclei activity was chronically recorded and analyzed in freely moving and in harmaline treated rats. CN neurons displayed rhythmic activity in both conditions, but the number of oscillatory neurons and the relative oscillation time were significantly higher under harmaline. The dominant frequencies of the oscillations were broadly distributed under harmaline and the likelihood that two simultaneously recorded neurons would co-oscillate and their oscillation coherence were significantly lower. It is argued that these alterations rather than neuronal rhythmicity per se underlie harmaline-induced body tremor.
Collapse
Affiliation(s)
- Yuval Baumel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Hagar G Yamin
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
13
|
Louis ED, Faust PL. Essential Tremor Within the Broader Context of Other Forms of Cerebellar Degeneration. THE CEREBELLUM 2021; 19:879-896. [PMID: 32666285 DOI: 10.1007/s12311-020-01160-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Essential tremor (ET) has recently been reconceptualized by many as a degenerative disease of the cerebellum. Until now, though, there has been no attempt to frame it within the context of these diseases. Here, we compare the clinical and postmortem features of ET with other cerebellar degenerations, thereby placing it within the broader context of these diseases. Action tremor is the hallmark feature of ET. Although often underreported in the spinocerebellar ataxias (SCAs), action tremors occur, and it is noteworthy that in SCA12 and 15, they are highly prevalent, often severe, and can be the earliest disease manifestation, resulting in an initial diagnosis of ET in many cases. Intention tremor, sometimes referred to as "cerebellar tremor," is a common feature of ET and many SCAs. Other features of cerebellar dysfunction, gait ataxia and eye motion abnormalities, are seen to a mild degree in ET and more markedly in SCAs. Several SCAs (e.g., SCA5, 6, 14, and 15), like ET, follow a milder and more protracted disease course. In ET, numerous postmortem changes have been localized to the cerebellum and are largely confined to the cerebellar cortex, preserving the cerebellar nuclei. Purkinje cell loss is modest. Similarly, in SCA3, 12, and 15, Purkinje cell loss is limited, and in SCA12 and 15, there is preservation of cerebellar nuclei and relative sparing of other central nervous system regions. Both clinically and pathologically, there are numerous similarities and intersection points between ET and other disorders of cerebellar degeneration.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology and Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
14
|
Abstract
Tremor is the most commonly encountered movement disorder in clinical practice. A wide range of pathologies may manifest with tremor either as a presenting or predominant symptom. Considering the marked etiological and phenomenological heterogeneity, it would be desirable to develop a classification of tremors that reflects their underlying pathophysiology. The tremor task force of the International Parkinson Disease and Movement Disorders Society has worked toward this goal and proposed a new classification system. This system has remained a prime topic of scientific communications on tremor in recent times. The new classification is based on two axes: 1. based on the clinical features, history, and tremor characteristics and 2. based on the etiology of tremor. In this article, we discuss the key aspects of the new classification, review various tremor syndromes, highlight some of the controversies in the field of tremor, and share the potential future perspectives.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Neurology, Medstar Georgetown University Hospital, Washington, DC, United States
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Ibrahim MF, Beevis JC, Empson RM. Essential Tremor - A Cerebellar Driven Disorder? Neuroscience 2020; 462:262-273. [PMID: 33212218 DOI: 10.1016/j.neuroscience.2020.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal tremors are the most common of all movement disorders. In this review we focus on the role of the cerebellum in Essential Tremor, a highly debilitating but poorly treated movement disorder. We propose a variety of mechanisms driving abnormal burst firing of deep cerebellar nuclei neurons as a key initiator of tremorgenesis in Essential Tremor. Targetting these mechanisms may generate more effective treatments for Essential Tremor.
Collapse
Affiliation(s)
- Mohamed Fasil Ibrahim
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand.
| | - Jessica C Beevis
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Ruth M Empson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
16
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
17
|
Louis ED, Faust PL. Essential tremor: the most common form of cerebellar degeneration? CEREBELLUM & ATAXIAS 2020; 7:12. [PMID: 32922824 PMCID: PMC7427947 DOI: 10.1186/s40673-020-00121-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Background The degenerative cerebellar ataxias comprise a large and heterogeneous group of neurological diseases whose hallmark clinical feature is ataxia, and which are accompanied, to variable degrees, by other features that are attributable to cerebellar dysfunction. Essential tremor (ET) is an exceptionally common neurological disease whose primary motor feature is action tremor, although patients often manifest intention tremor, mild gait ataxia and several other features of cerebellar dysfunction. Main Body In this paper, we review the abundant evidence derived from clinical, neuroimaging and postmortem studies, linking ET to cerebellar dysfunction. Furthermore, we review the combination of clinical, natural history and postmortem features suggesting that ET is neurodegenerative. We then compare the prevalence of ET (400 – 900 cases per 100,000) to that of the other cerebellar degenerations (ranging from <0.5 – 9 cases per 100,000, and in composite likely to be on the order of 20 cases per 100,000) and conclude that ET is 20 to 45 times more prevalent than all other forms of cerebellar degeneration combined. Conclusion Given the data we present, it is logical to conclude that ET is, by far, the most common form of cerebellar degeneration.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology and Therapeutics, University of Texas Southwestern, Dallas, TX USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY USA
| |
Collapse
|
18
|
Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020; 16:69-83. [PMID: 31959938 DOI: 10.1038/s41582-019-0302-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
Essential tremor (ET) is the most common tremor disorder globally and is characterized by kinetic tremor of the upper limbs, although other clinical features can also occur. Postmortem studies are a particularly important avenue for advancing our understanding of the pathogenesis of ET; however, until recently, the number of such studies has been limited. Several recent postmortem studies have made important contributions to our understanding of the pathological changes that take place in ET. These studies identified abnormalities in the cerebellum, which primarily affected Purkinje cells (PCs), basket cells and climbing fibres, in individuals with ET. We suggest that some of these pathological changes (for example, focal PC axonal swellings, swellings in and regression of the PC dendritic arbor and PC death) are likely to be primary and degenerative. By contrast, other changes, such as an increase in PC recurrent axonal collateral formation and hypertrophy of GABAergic basket cell axonal processes, could be compensatory responses to restore cerebellar GABAergic tone and cerebellar cortical inhibitory efficacy. Such compensatory responses are likely to be insufficient, enabling the disease to progress. Here, we review the results of recent postmortem studies of ET and attempt to place these findings into an anatomical-physiological disease model.
Collapse
|
19
|
Lenka A, Louis ED. Revisiting the Clinical Phenomenology of "Cerebellar Tremor": Beyond the Intention Tremor. THE CEREBELLUM 2019; 18:565-574. [PMID: 30565088 DOI: 10.1007/s12311-018-0994-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tremor is an involuntary, rhythmic, oscillatory movement of a body part. It is a central feature of a range of diseases resulting from pathological changes in the cerebellum. Interestingly, in modern times, the terms "cerebellar tremor" and "intention tremor" are often used synonymously and interchangeably. However, "cerebellar tremor" (i.e., tremors of cerebellar origin) do not always present exclusively as intention tremor. In this article, we comprehensively revisit the clinical phenomenology of tremors observed in various diseases that are based in the cerebellum. By this, we mean diseases for which the cerebellum and its various connections are often seen as playing a central and defining role. These include spinocerebellar ataxias, essential tremor, orthostatic tremor, dystonia, acute cerebellitis, cerebellar tumors, paraneoplastic cerebellar degeneration, and cerebellar strokes. The theme of this article is to highlight, through published data available in the current literature, that the clinical phenomenology of tremor of cerebellar origin is heterogeneous, and it extends beyond that of intention tremor to include postural tremors, kinetic tremor, rest tremor, and orthostatic tremor. This heterogeneity is consistent with the seminal work of Gordon Holmes, in which he described a variety of tremors aside from intention tremor in the setting of cerebellar lesions. In the end, it would seem that the notion that intention tremor is the sole signature of cerebellar lesions is an over-simplification and is not correct. Future studies are warranted to identify and further characterize the heterogeneity of tremors arising from the various cerebellar etiologies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA. .,Department of Neurology, Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT, 06520-8018, USA.
| |
Collapse
|
20
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
21
|
Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M. Functional Antagonism of Sphingosine-1-Phosphate Receptor 1 Prevents Harmaline-Induced Ultrastructural Alterations and Caspase-3 Mediated Apoptosis. Malays J Med Sci 2019; 26:28-38. [PMID: 31496891 PMCID: PMC6719891 DOI: 10.21315/mjms2019.26.4.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated. Methods The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques. Results Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons. Conclusion These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Taj Pari Kalantaripour
- Department of Physiology, School of Medicine, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Role of cerebellar GABAergic dysfunctions in the origins of essential tremor. Proc Natl Acad Sci U S A 2019; 116:13592-13601. [PMID: 31209041 DOI: 10.1073/pnas.1817689116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Essential tremor (ET) is among the most prevalent movement disorders, but its origins are elusive. The inferior olivary nucleus (ION) has been hypothesized as the prime generator of tremor because of the pacemaker properties of ION neurons, but structural and functional changes in ION are unlikely under ET. Abnormalities have instead been reported in the cerebello-thalamo-cortical network, including dysfunctions of the GABAergic projections from the cerebellar cortex to the dentate nucleus. It remains unclear, though, how tremor would relate to a dysfunction of cerebellar connectivity. To address this question, we built a computational model of the cortico-cerebello-thalamo-cortical loop. We simulated the effects of a progressive loss of GABAA α1-receptor subunits and up-regulation of α2/3-receptor subunits in the dentate nucleus, and correspondingly, we studied the evolution of the firing patterns along the loop. The model closely reproduced experimental evidence for each structure in the loop. It showed that an alteration of amplitudes and decay times of the GABAergic currents to the dentate nucleus can facilitate sustained oscillatory activity at tremor frequency throughout the network as well as a robust bursting activity in the thalamus, which is consistent with observations of thalamic tremor cells in ET patients. Tremor-related oscillations initiated in small neural populations and spread to a larger network as the synaptic dysfunction increased, while thalamic high-frequency stimulation suppressed tremor-related activity in thalamus but increased the oscillation frequency in the olivocerebellar loop. These results suggest a mechanism for tremor generation under cerebellar dysfunction, which may explain the origin of ET.
Collapse
|
23
|
Eye movement abnormalities in essential tremor versus tremor dominant Parkinson’s disease. Clin Neurophysiol 2019; 130:683-691. [DOI: 10.1016/j.clinph.2019.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/21/2022]
|
24
|
Pan MK, Ni CL, Wu YC, Li YS, Kuo SH. Animal Models of Tremor: Relevance to Human Tremor Disorders. Tremor Other Hyperkinet Mov (N Y) 2018; 8:587. [PMID: 30402338 PMCID: PMC6214818 DOI: 10.7916/d89s37mv] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tremor is the most common movement disorder; however, the pathophysiology of tremor remains elusive. While several neuropathological alterations in tremor disorders have been observed in post-mortem studies of human brains, a full understanding of the relationship between brain circuitry alterations and tremor requires testing in animal models. Additionally, tremor animal models are critical for our understanding of tremor pathophysiology, and/or to serve as a platform for therapy development. Methods A PubMed search was conducted in May 2018 to identify published papers for review. Results The methodology used in most studies on animal models of tremor lacks standardized measurement of tremor frequency and amplitude; instead, these studies are based on the visual inspection of phenotypes, which may fail to delineate tremor from other movement disorders such as ataxia. Of the animal models with extensive tremor characterization, harmaline-induced rodent tremor models provide an important framework showing that rhythmic and synchronous neuronal activities within the olivocerebellar circuit can drive action tremor. In addition, dopamine-depleted monkey and mouse models may develop rest tremor, highlighting the role of dopamine in rest tremor generation. Finally, other animal models of tremor have involvement of the cerebellar circuitry, leading to altered Purkinje cell physiology. Discussion Both the cerebellum and the basal ganglia are likely to play a role in tremor generation. While the cerebellar circuitry can generate rhythmic movements, the nigrostriatal system is likely to modulate the tremor circuit. Tremor disorders are heterogeneous in nature. Therefore, each animal model may represent a subset of tremor disorders, which collectively can advance our understanding of tremor.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department of Medical Research, National Taiwan University, Taipei, TW
| | - Chun-Lun Ni
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeuh-Chi Wu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yong-Shi Li
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Tuleasca C, Najdenovska E, Régis J, Witjas T, Girard N, Champoudry J, Faouzi M, Thiran JP, Bach Cuadra M, Levivier M, Van De Ville D. Pretherapeutic functional neuroimaging predicts tremor arrest after thalamotomy. Acta Neurol Scand 2018; 137:500-508. [PMID: 29315459 DOI: 10.1111/ane.12891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Essential tremor (ET) represents the most common movement disorder. Drug-resistant ET can benefit from standard stereotactic procedures (deep brain stimulation or radiofrequency thalamotomy) or alternatively minimally invasive high-focused ultrasound or radiosurgery. All aim at same target, thalamic ventro-intermediate nucleus (Vim). METHODS The study included a cohort of 17 consecutive patients, with ET, treated only with left unilateral stereotactic radiosurgical thalamotomy (SRS-T) between September 2014 and August 2015. The mean time to tremor improvement was 3.32 months (SD 2.7, 0.5-10). Neuroimaging data were collected at baseline (n = 17). Standard tremor scores, including activities of daily living (ADL) and tremor score on treated hand (TSTH), were completed pretherapeutically and 1 year later. We further correlate these scores with baseline inter-connectivity in twenty major large-scale brain networks. RESULTS We report as predictive three networks, with the interconnected statistically significant clusters: primary motor cortex interconnected with inferior olivary nucleus, bilateral thalamus interconnected with motor cerebellum lobule V2 (ADL), and anterior default-mode network interconnected with Brodmann area 103 (TSTH). For all, more positive pretherapeutic interconnectivity correlated with higher drop in points on the respective scores. Age, disease duration, or time-to-response after SRS-T were not statistically correlated with pretherapeutic brain connectivity measures (P > .05). The same applied to pretherapeutic tremor scores, after using the same methodology described above. CONCLUSIONS Our findings have clinical implications for predicting clinical response after SRS-T. Here, using pretherapeutic magnetic resonance imaging and data processing without prior hypothesis, we show that pretherapeutic network(s) interconnectivity strength predicts tremor arrest in drug-naïve ET, following stereotactic radiosurgical thalamotomy.
Collapse
Affiliation(s)
- C. Tuleasca
- Neurosurgery Service and Gamma Knife Center; Centre Hospitalier Universitaire Vaudois (CHUV); Lausanne Switzerland
- Medical Image Analysis Laboratory (MIAL) and Department of Radiology-Center of Biomedical Imaging (CIBM); Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
- Signal Processing Laboratory (LTS 5); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| | - E. Najdenovska
- Medical Image Analysis Laboratory (MIAL) and Department of Radiology-Center of Biomedical Imaging (CIBM); Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - J. Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit; CHU Timone; Marseille France
| | - T. Witjas
- Neurology Department; CHU Timone; Marseille France
| | - N. Girard
- AMU, CRMBM UMR CNRS 7339; Faculté de Médecine et APHM; Department of Diagnostic and Interventionnal Neuroradiology; Hopital Timone; Marseille France
| | - J. Champoudry
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit; CHU Timone; Marseille France
| | - M. Faouzi
- Center for Clinical Epidemiology; Institute of Social and Preventive Medicine; Lausanne Switzerland
| | - J.-P. Thiran
- Signal Processing Laboratory (LTS 5); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
- Department of Radiology; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - M. Bach Cuadra
- Medical Image Analysis Laboratory (MIAL) and Department of Radiology-Center of Biomedical Imaging (CIBM); Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
- Signal Processing Laboratory (LTS 5); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - M. Levivier
- Neurosurgery Service and Gamma Knife Center; Centre Hospitalier Universitaire Vaudois (CHUV); Lausanne Switzerland
- Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| | - D. Van De Ville
- Faculty of Medicine; University of Geneva; Geneva Switzerland
- Medical Image Processing Laboratory; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| |
Collapse
|
26
|
Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord 2018; 51:24-29. [PMID: 29482925 DOI: 10.1016/j.parkreldis.2018.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/10/2018] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Essential tremor (ET) is heterogeneous in nature and cases may be subdivided based on clinical features. ET patients may thus be subdivided by age of onset, family history of tremor, and presence of head tremor. We recently described climbing fiber-Purkinje cell (CF-PC) synaptic abnormalities in ET; however, these CF pathological features have not been studied across different ET subtypes. OBJECTIVES To explore whether these CF-PC synaptic abnormalities differ across ET subtypes. METHODS We studied two climbing fiber (CF-PC) synaptic pathologies (CF synaptic density and percentage of CFs in the parallel fiber [PF] territory) in the cerebella of 60 ET cases with a range of clinical presentations and 30 age-matched controls. RESULTS Compared to controls, ET cases had lower CF synaptic density and a higher percentage of CFs in the PF territory. ET cases with tremor onset <50 years and tremor onset ≥ 50 years did not differ significantly with respect to CF synaptic density and percentage of CFs in the PF territory. Similar results were found when comparing familial vs. sporadic ET cases, and ET cases with head tremor vs. those without head tremor. Among all ET cases, lower CF synaptic density was associated with lower PC counts and higher torpedo counts. In addition, higher percentage of CFs in the PF territory was associated with lower PC counts and higher torpedo counts. CONCLUSIONS These findings support the notion that changes in the distribution of CF-PC synapses are broadly part of the neurodegenerative process in the ET cerebellum.
Collapse
|
27
|
Louis ED, Kuo SH, Wang J, Tate WJ, Pan MK, Kelly GC, Gutierrez J, Cortes EP, Vonsattel JPG, Faust PL. Cerebellar Pathology in Familial vs. Sporadic Essential Tremor. THE CEREBELLUM 2018; 16:786-791. [PMID: 28364185 DOI: 10.1007/s12311-017-0853-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Familial and sporadic essential tremor (ET) cases differ in several respects. Whether they differ with respect to cerebellar pathologic changes has yet to be studied. We quantified a broad range of postmortem features (Purkinje cell (PC) counts, PC axonal torpedoes, a host of associated axonal changes, heterotopic PCs, and hairy basket ratings) in 60 ET cases and 30 controls. Familial ET was defined using both liberal criteria (n = 27) and conservative criteria (n = 20). When compared with controls, ET cases had lower PC counts, more torpedoes, more heterotopic PCs, a higher hairy basket rating, an increase in PC axonal collaterals, an increase in PC thickened axonal profiles, and an increase in PC axonal branching. Familial and sporadic ET had similar postmortem changes, with few exceptions, regardless of the definition criteria. The PC counts were marginally lower in familial than sporadic ET (respective p values = 0.059 [using liberal criteria] and 0.047 [using conservative criteria]). The PC thickened axonal profile count was marginally lower in familial ET than sporadic ET (respective p values = 0.037 [using liberal criteria] and 0.17 [using conservative criteria]), and the PC axonal branching count was marginally lower in familial than sporadic ET (respective p values = 0.045 [using liberal criteria] and 0.079 [using conservative criteria]). After correction for multiple comparisons, however, there were no significant differences. Overall, familial and sporadic ET cases share very similar cerebellar postmortem features. These data indicate that pathological changes in the cerebellum are a part of the pathophysiological cascade of events in both forms of ET.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT, 06520-8018, USA. .,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA. .,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - William J Tate
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Ming-Kai Pan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Medical Research, National Taiwan University, Taipei, Taiwan
| | - Geoffrey C Kelly
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jesus Gutierrez
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT, 06520-8018, USA
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
28
|
Louis ED, Diaz DT, Kuo SH, Gan SR, Cortes EP, Vonsattel JPG, Faust PL. Inferior Olivary nucleus degeneration does not lessen tremor in essential tremor. CEREBELLUM & ATAXIAS 2018; 5:1. [PMID: 29372062 PMCID: PMC5769208 DOI: 10.1186/s40673-018-0080-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND In traditional models of essential tremor, the inferior olivary nucleus was posited to play a central role as the pacemaker for the tremor. However, recent data call this disease model into question. CASE PRESENTATION Our patient had progressive, long-standing, familial essential tremor. Upper limb tremor began at age 10 and worsened over time. It continued to worsen during the nine-year period he was enrolled in our brain donation program (age 85 - 94 years), during which time the tremor moved from the moderate to severe range on examination. On postmortem examination at age 94, there were degenerative changes in the cerebellar cortex, as have been described in the essential tremor literature. Additionally, there was marked degeneration of the inferior olivary nucleus, which was presumed to be of more recent onset. Such degeneration has not been previously described in essential tremor postmortems. Despite the presence of this degeneration, the patient's tremor not only persisted but it continued to worsen during the final decade of his life. CONCLUSIONS Although the pathophysiology of essential tremor is not completely understood, evidence such as this suggests that the inferior olivary nucleus does not play a critical role in the generation of tremor in these patients.
Collapse
Affiliation(s)
- Elan D. Louis
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT 06520-8018 USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT USA
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Daniel Trujillo Diaz
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, PO Box 208018, New Haven, CT 06520-8018 USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Shi-Rui Gan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY USA
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Etty P. Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA
| | - Jean Paul G. Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY USA
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY USA
| |
Collapse
|
29
|
Abstract
Essential tremor (ET) is a progressive and highly prevalent neurologic disease. Along with the tremors, mild to moderate gait ataxia and other signs of cerebellar dysfunction may occur (i.e., subtle saccadic eye movement abnormalities and abnormalities of motor timing) as well as cognitive features, some of which may be due to cerebellar dysfunction. Numerous neuroimaging studies indicate the presence of functional, metabolic, and structural abnormalities in the cerebellum of a patient with ET. In tandem with these clinical and imaging studies, which were gathering increasing support for the notion that the cerebellum and/or cerebellar systems seemed to be at the root of ET, a growing postmortem literature is for the first time beginning to identify microscopic abnormalities in the ET brain, most of which are centered on the Purkinje cells and connected neuronal populations, and are likely to be degenerative. In terms of treatment, most of these pharmacotherapeutic agents serve to enhance GABAergic neurotransmission, further bolstering the notion that ET may very well be a disorder with a primary Purkinje cell dysfunction resulting in reduced cerebellar cortical inhibition. Similarly, the interruption of presumably abnormal cerebellar outflow pathways to the thalamus is the mechanism of deep-brain stimulation surgery, which is highly effective in treating ET.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, United States; Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States.
| |
Collapse
|
30
|
Hopfner F, Deuschl G. Is essential tremor a single entity? Eur J Neurol 2017; 25:71-82. [DOI: 10.1111/ene.13454] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Affiliation(s)
- F. Hopfner
- Department of Neurology; Universitätsklinikum Schleswig-Holstein; Kiel Campus Germany
- Christian-Albrechts Universität; Kiel Germany
| | - G. Deuschl
- Department of Neurology; Universitätsklinikum Schleswig-Holstein; Kiel Campus Germany
- Christian-Albrechts Universität; Kiel Germany
| |
Collapse
|
31
|
Gan SR, Wang J, Figueroa KP, Pulst SM, Tomishon D, Lee D, Perlman S, Wilmot G, Gomez CM, Schmahmann J, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind MD, Xia G, Subramony SH, Ashizawa T, Kuo SH. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias. Tremor Other Hyperkinet Mov (N Y) 2017; 7:492. [PMID: 29057148 PMCID: PMC5647398 DOI: 10.7916/d8gm8krh] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. METHODS We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. RESULTS Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). DISCUSSION Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.
Collapse
Affiliation(s)
- Shi-Rui Gan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Darya Tomishon
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Danielle Lee
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - George Wilmot
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Jeremy Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah H. Ying
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Guangbin Xia
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - S. H. Subramony
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | | | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Louis ED, Kuo SH, Tate WJ, Kelly GC, Faust PL. Cerebellar pathology in childhood-onset vs. adult-onset essential tremor. Neurosci Lett 2017; 659:69-74. [PMID: 28867587 DOI: 10.1016/j.neulet.2017.08.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
Abstract
Although the incidence of ET increases with advancing age, the disease may begin at any age, including childhood. The question arises as to whether childhood-onset ET cases manifest the same sets of pathological changes in the cerebellum as those whose onset is during adult life. We quantified a broad range of postmortem features (Purkinje cell [PC] counts, PC axonal torpedoes, a host of associated axonal changes [PC axonal recurrent collateral count, PC thickened axonal profile count, PC axonal branching count], heterotopic PCs, and basket cell rating) in 60 ET cases (11 childhood-onset and 49 adult-onset) and 30 controls. Compared to controls, childhood-onset ET cases had lower PC counts, higher torpedo counts, higher heterotopic PC counts, higher basket cell plexus rating, and marginally higher PC axonal recurrent collateral counts. The median PC thickened axonal profile count and median PC axonal branching count were two to five times higher in childhood-onset ET than controls, but the differences did not reach statistical significance. Childhood-onset and adult-onset ET had similar PC counts, torpedo counts, heterotopic PC counts, basket cell plexus rating, PC axonal recurrent collateral counts, PC thickened axonal profile count and PC axonal branching count. In conclusion, we found that childhood-onset and adult-onset ET shared similar pathological changes in the cerebellum. The data suggest that pathological changes we have observed in the cerebellum in ET are a part of the pathophysiological cascade of events in both forms of the disease and that both groups seem to reach the same pathological endpoints at a similar age of death.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - William J Tate
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Geoffrey C Kelly
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
33
|
Louis ED, Lenka A. The Olivary Hypothesis of Essential Tremor: Time to Lay this Model to Rest? Tremor Other Hyperkinet Mov (N Y) 2017; 7:473. [PMID: 28966877 PMCID: PMC5618117 DOI: 10.7916/d8ff40rx] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although essential tremor (ET) is the most common tremor disorder, its pathogenesis is not fully understood. The traditional model of ET, proposed in the early 1970s, posited that the inferior olivary nucleus (ION) was the prime generator of tremor in ET and that ET is a disorder of electrophysiological derangement, much like epilepsy. This article comprehensively reviews the origin and basis of this model, its merits and problems, and discusses whether it is time to lay this model to rest. METHODS A PubMed search was performed in March 2017 to identify articles for this review. RESULTS The olivary model gains support from the recognition of neurons with pacemaker property in the ION and the harmaline-induced tremor models (as the ION is the prime target of harmaline). However, the olivary model is problematic, as neurons with pacemaker property are not specific to the ION and the harmaline model does not completely represent the human disease ET. In addition, a large number of neuroimaging studies in ET have not detected structural or functional changes in the ION; rather, abnormalities have been reported in structures related to the cerebello-thalamo-cortical network. Moreover, a post-mortem study of microscopic changes in the ION did not detect any differences between ET cases and controls. DISCUSSION The olivary model largely remains a physiological construct. Numerous observations have cast considerable doubt as to the validity of this model in ET. Given the limitations of the model, we conclude that it is time now to lay this model to rest.
Collapse
Affiliation(s)
- Elan D. Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
34
|
Kuo SH, Wang J, Tate WJ, Pan MK, Kelly GC, Gutierrez J, Cortes EP, Vonsattel JPG, Louis ED, Faust PL. Cerebellar Pathology in Early Onset and Late Onset Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2017; 16:473-482. [PMID: 27726094 PMCID: PMC5336493 DOI: 10.1007/s12311-016-0826-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early onset and late onset essential tremor (ET) cases differ in several respects. Whether they differ with respect to cerebellar pathologic changes remains to be determined. We quantified a broad range of postmortem features (Purkinje cell (PC) counts, PC axonal torpedoes and associated axonal changes, heterotopic PCs, and hairy basket ratings) in 30 ET cases with age of tremor onset <50 years, 30 ET cases with age of tremor onset ≥50 years, and 30 controls (total n = 90). We also used two alternative age of onset cut-points (<40 vs. ≥40 years, and <60 vs. ≥60 years) to define early onset vs. late onset ET. We found that ET cases with tremor onset <50 years and tremor onset ≥50 years had similar PC counts (8.78 ± 1.70 vs. 8.86 ± 1.24, p = 0.839), PC axonal torpedo counts (17.87 ± 18.27 [median =13.00] vs. 12.90 ± 10.60 [median =9.0], p = 0.486) and associated axonal pathology (all p values >0.05), heterotopic PC counts (9.90 ± 11.55 [median =6.00] vs. 5.40 ± 5.10 [median =3.50], p = 0.092), and hairy basket ratings (1.95 ± 0.62 [median =2.00] vs. 2.05 ± 0.92 [median =2.00], p = 0.314). When using the age of onset cut-points of 40 or 60 years, results were similar. Early onset and late onset ET cases share similar cerebellar postmortem features. These data do not support the notion that these age-of-onset related forms of ET represent distinct clinical-pathological entities.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Neurological Institute, Columbia University, New York, NY, 10032, USA.
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - William J Tate
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Ming-Kai Pan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University, Taipei, Taiwan
| | - Geoffrey C Kelly
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jesus Gutierrez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
35
|
Kuo SH, Lin CY, Wang J, Sims PA, Pan MK, Liou JY, Lee D, Tate WJ, Kelly GC, Louis ED, Faust PL. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol 2017; 133:121-138. [PMID: 27704282 DOI: 10.1007/s00401-016-1626-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022]
Abstract
Changes in climbing fiber-Purkinje cell (CF-PC) synaptic connections have been found in the essential tremor (ET) cerebellum, and these changes are correlated with tremor severity. Whether these postmortem changes are specific to ET remains to be investigated. We assessed CF-PC synaptic pathology in the postmortem cerebellum across a range of degenerative movement disorders [10 Parkinson's disease (PD) cases, 10 multiple system atrophy (MSA) cases, 10 spinocerebellar ataxia type 1 (SCA1) cases, and 20 ET cases] and 25 controls. We observed differences in terms of CF pathological features across these disorders. Specifically, PD cases and ET cases both had more CFs extending into the parallel fiber (PF) territory, but ET cases had more complex branching and increased length of CFs in the PF territory along with decreased CF synaptic density compared to PD cases. MSA cases and SCA1 cases had the most severely reduced CF synaptic density and a marked paucity of CFs extending into the PF territory. Furthermore, CFs in a subset of MSA cases formed collateral branches parallel to the PC layer, a feature not seen in other diagnostic groups. Using unsupervised cluster analysis, the cases and controls could all be categorized into four clusters based on the CF pathology and features of PC pathology, including counts of PCs and their axonal torpedoes. ET cases and PD cases co-segregated into two clusters, whereas SCA1 cases and MSA cases formed another cluster, separate from the control cluster. Interestingly, the presence of resting tremor seemed to be the clinical feature that separated the cases into the two ET-PD clusters. In conclusion, our study demonstrates that these degenerative movement disorders seem to differ with respect to the pattern of CF synaptic pathology they exhibit. It remains to be determined how these differences contribute to the clinical presentations of these diseases.
Collapse
|
36
|
The phase difference between neural drives to antagonist muscles in essential tremor is associated with the relative strength of supraspinal and afferent input. J Neurosci 2015; 35:8925-37. [PMID: 26063924 DOI: 10.1523/jneurosci.0106-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathophysiology of essential tremor (ET), the most common movement disorder, is not fully understood. We investigated which factors determine the variability in the phase difference between neural drives to antagonist muscles, a long-standing observation yet unexplained. We used a computational model to simulate the effects of different levels of voluntary and tremulous synaptic input to antagonistic motoneuron pools on the tremor. We compared these simulations to data from 11 human ET patients. In both analyses, the neural drive to muscle was represented as the pooled spike trains of several motor units, which provides an accurate representation of the common synaptic input to motoneurons. The simulations showed that, for each voluntary input level, the phase difference between neural drives to antagonist muscles is determined by the relative strength of the supraspinal tremor input to the motoneuron pools. In addition, when the supraspinal tremor input to one muscle was weak or absent, Ia afferents provided significant common tremor input due to passive stretch. The simulations predicted that without a voluntary drive (rest tremor) the neural drives would be more likely in phase, while a concurrent voluntary input (postural tremor) would lead more frequently to an out-of-phase pattern. The experimental results matched these predictions, showing a significant change in phase difference between postural and rest tremor. They also indicated that the common tremor input is always shared by the antagonistic motoneuron pools, in agreement with the simulations. Our results highlight that the interplay between supraspinal input and spinal afferents is relevant for tremor generation.
Collapse
|
37
|
Dideriksen JL, Gallego JA, Holobar A, Rocon E, Pons JL, Farina D. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor. J Neural Eng 2015; 12:046019. [DOI: 10.1088/1741-2560/12/4/046019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Abstract
Essential tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the United States. Postmortem studies in the past few years have resulted in new knowledge as well as a new formulation of disease pathophysiology. This new formulation centers on the notion that ET might be a disease of the cerebellum and, more specifically, the Purkinje cell (PC) population. Indeed, several investigators have proposed that ET may be a "Purkinjopathy." Supporting this formulation are data from controlled postmortem studies demonstrating (1) a range of morphological changes in the PC axon, (2) abnormalities in the position and orientation of PC bodies, (3) reduction in the number of PCs in some studies, (4) morphological changes in and pruning of the PC dendritic arbor with loss of dendritic spines, and (5) alterations in both the PC-basket cell interface and the PC-climbing fiber interface in ET cases. This new formulation has engendered some controversy and raised additional questions. Whether the constellation of changes observed in ET differs from that seen in other degenerative disorders of the cerebellum remains to be determined, although initial studies suggest the likely presence of a distinct profile of changes in ET.
Collapse
Affiliation(s)
- Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Parkinsonism Relat Disord 2015; 21:383-8. [DOI: 10.1016/j.parkreldis.2015.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 12/20/2022]
|
40
|
Baizabal-Carvallo JF, Cardoso F, Jankovic J. Myorhythmia: Phenomenology, etiology, and treatment. Mov Disord 2014; 30:171-9. [DOI: 10.1002/mds.26093] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic; Department of Neurology; Baylor College of Medicine; Houston Texas USA
| | - Francisco Cardoso
- Movement Disorders Clinic; Neurology Service; Department of Internal Medicine; The Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic; Department of Neurology; Baylor College of Medicine; Houston Texas USA
| |
Collapse
|
41
|
Gallego JA, Dideriksen JL, Holobar A, Ibáñez J, Pons JL, Louis ED, Rocon E, Farina D. Influence of common synaptic input to motor neurons on the neural drive to muscle in essential tremor. J Neurophysiol 2014; 113:182-91. [PMID: 25274343 DOI: 10.1152/jn.00531.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tremor in essential tremor (ET) is generated by pathological oscillations at 4-12 Hz, likely originating at cerebello-thalamo-cortical pathways. However, the way in which tremor is represented in the output of the spinal cord circuitries is largely unknown because of the difficulties in identifying the behavior of individual motor units from tremulous muscles. By using novel methods for the decomposition of multichannel surface EMG, we provide a systematic analysis of the discharge properties of motor units in nine ET patients, with concurrent recordings of EEG activity. This analysis allowed us to infer the contribution of common synaptic inputs to motor neurons in ET. Motor unit short-term synchronization was significantly greater in ET patients than in healthy subjects. Furthermore, the strong association between the degree of synchronization and the peak in coherence between motor unit spike trains at the tremor frequency indicated that the high synchronization levels were generated mainly by common synaptic inputs specifically at the tremor frequency. The coherence between EEG and motor unit spike trains demonstrated the presence of common cortical input to the motor neurons at the tremor frequency. Nonetheless, the strength of this input was uncorrelated to the net common synaptic input at the tremor frequency, suggesting a contribution of spinal afferents or secondary supraspinal pathways in projecting common input at the tremor frequency. These results provide the first systematic analysis of the neural drive to the muscle in ET and elucidate some of its characteristics that determine pathological tremulous muscle activity.
Collapse
Affiliation(s)
- Juan A Gallego
- Neuroengineering and Cognitive Science Group, Centre for Automation and Robotics, Consejo Superior de Investigaciones Científicas, Arganda del Rey, Spain
| | - Jakob L Dideriksen
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jaime Ibáñez
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L Pons
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Elan D Louis
- Department of Neurology, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York; and
| | - Eduardo Rocon
- Neuroengineering and Cognitive Science Group, Centre for Automation and Robotics, Consejo Superior de Investigaciones Científicas, Arganda del Rey, Spain; Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany;
| |
Collapse
|
42
|
Louis ED. From neurons to neuron neighborhoods: the rewiring of the cerebellar cortex in essential tremor. CEREBELLUM (LONDON, ENGLAND) 2014; 13:501-12. [PMID: 24435423 PMCID: PMC4077904 DOI: 10.1007/s12311-013-0545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Remarkably little has been written on the biology of essential tremor (ET), despite its high prevalence. The olivary model, first proposed in the 1970s, is the traditional disease model for ET; however, the model is problematic for a number of reasons. Recently, intensive tissue-based studies have identified a series of structural changes in the brains of most ET cases, and nearly all of the observed changes are located in the cerebellar cortex. These studies suggest that Purkinje cells are central to the pathogenesis of ET and may thus provide a focus for the development of novel therapeutic strategies. Arising from these studies, a new model of ET proposes that the population of Purkinje cells represents the site of the initial molecular/cellular events leading to ET. Furthermore, a number of secondary changes/remodeling observed in the molecular and granular layers (i.e., in the Purkinje cell "neighborhood") are likely to be of additional mechanistic importance. On a physiological level, the presence of remodeling indicates the likely formation of aberrant synapses and the creation of new/abnormal cortical circuits in ET. Specific efforts need to be devoted to understanding the cascade of biochemical and cellular events occurring in the Purkinje cell layer in ET and its neuron neighborhood, as well as the physiological effects of secondary remodeling/rewiring that are likely to be occurring in this brain region in ET.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA,
| |
Collapse
|
43
|
Abstract
The precise way that tremors emerge is not well known, but there is some good information and hypotheses. This review will focus on the classic ("rest") tremor of Parkinson disease and essential tremor. Both have their genesis in central oscillators, which appear to be malfunctioning networks. With classic Parkinson tremor, there appears to be dysfunction of the basal ganglia network and the cerebello-thalamo-cortical network. There is evidence that the basal ganglia network triggers the onset of tremor and the cerebellar network is responsible for the amplitude. Since it is a tremor of stability, the beta activity of the basal ganglia may be the trigger. With essential tremor, the cerebello-thalamo-cortical network itself is dysfunctional and perhaps the inferior olive-cerebellar network as well. This is a tremor of action, and the associated ataxia suggests that delays in motor control processing may set up the oscillation.
Collapse
Affiliation(s)
- Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, USA.
| |
Collapse
|
44
|
Abstract
Remarkably little has been written on the biology of essential tremor (ET), despite its high prevalence. The traditional pathophysiological model for ET, the olivary model, states that ET is a primary electrical//electrophysiological entity, the result of pacemaking neurons in the inferior olivary nucleus that begin firing in a coupled and rhythmic manner, and thus, through an abnormal olivo-cerebellar output, produce tremor. Though this model is based on several sound neurophysiological observations, there are major problems as well. Despite its shortcomings, however, the model persists. With the traditional focus in ET on clinical neurophysiology, there has been little research on pathological anatomy, cell biology, and molecular mechanisms, and over the years, there have been few alternatives to the olivary model. However, rigorous tissue-based studies have recently identified a series of structural changes in the ET brain, most of which are centered on the Purkinje cell and connected neuronal populations, and which may involve a partial loss of Purkinje cells. An implication of these newer studies is that ET could be degenerative. This shift in paradigm opens the door for research that aims to identify the primary set of molecular triggers and the cascade of molecular/cellular events that accompany this disease.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Abstract
For many years, little was written about the underlying biology of ET, despite its high prevalence. Discussions of disease mechanisms were dominated by a focus on tremor physiology. The traditional model of ET, the olivary model, was proposed in the 1970s. The model suffers from several critical problems, and its relevance to ET has been questioned. Recent mechanistic research has focused on the cerebellum. Clinical and neuroimaging studies strongly implicate the importance of this brain region in ET. Recent mechanistic research has been grounded more in tissue-based changes (i.e., postmortem studies of the brain). These studies have collectively and systematically identified a sizable number of changes in the ET cerebellum, and have led to a new model of ET, referred to as the cerebellar degenerative model. Hence, there is a renewed interest in the science behind the biology of ET. How the new understanding of ET will translate into treatment changes is an open question.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA,
| |
Collapse
|
46
|
Sharifi S, Nederveen AJ, Booij J, van Rootselaar AF. Neuroimaging essentials in essential tremor: a systematic review. NEUROIMAGE-CLINICAL 2014; 5:217-31. [PMID: 25068111 PMCID: PMC4110352 DOI: 10.1016/j.nicl.2014.05.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/04/2023]
Abstract
Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily clinical practice is limited. We conducted a systematic review of neuroimaging studies in essential tremor. Cerebellar involvement is the most consistent finding. GABAergic dysfunction is worthwhile investigating more intensively. We encourage multimodal neuroimaging focussing on brain networks.
Collapse
Affiliation(s)
- Sarvi Sharifi
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands ; Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands ; Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands ; Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands ; Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Effects of alprazolam on cortical activity and tremors in patients with essential tremor. PLoS One 2014; 9:e93159. [PMID: 24667763 PMCID: PMC3965529 DOI: 10.1371/journal.pone.0093159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/01/2014] [Indexed: 11/19/2022] Open
Abstract
Background Essential tremor (ET) is characterised by postural and action tremors with a frequency of 4–12 Hz. Previous studies suggest that the tremor activity originates in the cerebello-thalamocortical pathways. Alprazolam is a short-acting benzodiazepine that attenuates tremors in ET. The mechanisms that mediate the therapeutic action of alprazolam are unknown; however, in healthy subjects, benzodiazepines increase cortical beta activity. In this study, we investigated the effect of alprazolam both on beta and tremor-related cortical activity and on alterations in tremor presentation in ET patients. Therefore, we characterised the dynamics of tremor and cortical activity in ET patients after alprazolam intake. Methods We recorded hand tremors and contralateral cortical activity in four recordings before and after a single dose of alprazolam. We then computed the changes in tremors, cortico-muscular coherence, and cortical activity at the tremor frequency and in the beta band. Results Alprazolam significantly attenuated tremors (EMG: 76.2±22.68%), decreased cortical activity in the tremor frequency range and increased cortical beta activity in all patients (P<0.05). At the same time, the cortico-muscular coherence at the tremor frequency became non-significant (P<0.05). We also found a significant correlation (r = 0.757, P<0.001) between the reduction in tremor severity and the increased ratio of cortical activity in the beta band to the activity observed in the tremor frequency range. Conclusions This study provides the first quantitative analysis of tremor reduction following alprazolam intake. We observed that the tremor severity decreased in association with an increased ratio of beta to tremor-related cortical activity. We hypothesise that the increase in cortical beta activity may act as a blocking mechanism and may dampen the pathological oscillatory activity, which in turn attenuates the observed tremor.
Collapse
|
48
|
Bhalsing KS, Saini J, Pal PK. Understanding the pathophysiology of essential tremor through advanced neuroimaging: A review. J Neurol Sci 2013; 335:9-13. [DOI: 10.1016/j.jns.2013.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/02/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
|
49
|
Microarray analysis of transcriptome of medulla identifies potential biomarkers for Parkinson's disease. Int J Genomics 2013; 2013:606919. [PMID: 24350239 PMCID: PMC3853924 DOI: 10.1155/2013/606919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/30/2013] [Indexed: 02/05/2023] Open
Abstract
To complement the molecular pathways contributing to Parkinson's disease (PD) and identify potential biomarkers, gene expression profiles of two regions of the medulla were compared between PD patients and control. GSE19587 containing two groups of gene expression profiles [6 dorsal motor nucleus of the vagus (DMNV) samples from PD patients and 5 from controls, 6 inferior olivary nucleus (ION) samples from PD patients and 5 from controls] was downloaded from Gene Expression Omnibus. As a result, a total of 1569 and 1647 differentially expressed genes (DEGs) were, respectively, screened in DMNV and ION with limma package of R. The functional enrichment analysis by DAVID server (the Database for Annotation, Visualization and Integrated Discovery) indicated that the above DEGs may be involved in the following processes, such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, and regulation of apoptosis. Further analysis showed that there were 365 common DEGs presented in both regions (DMNV and ION), which may be further regulated by eight clusters of microRNAs retrieved with WebGestalt. The genes in the common DEGs-miRNAs regulatory network were enriched in regulation of apoptosis process via DAVID analysis. These findings could not only advance the understandings about the pathogenesis of PD, but also suggest potential biomarkers for this disease.
Collapse
|
50
|
Elevated brain harmane (1-methyl-9H-pyrido[3,4-b]indole) in essential tremor cases vs. controls. Neurotoxicology 2013; 38:131-5. [PMID: 23911942 DOI: 10.1016/j.neuro.2013.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Harmane (1-methyl-9H-pyrido[3,4-β]indole), a potent neurotoxin that has tremor-producing properties in animal models, is present in many foods; although we have demonstrated a difference in tissue harmane concentrations in ET cases vs. controls, all work to date has involved blood samples. OBJECTIVES We quantified harmane concentrations in human cerebellum, a brain region of particular pathogenic interest in essential tremor (ET), comparing ET to control brains. METHODS Cerebellar cortex was snap frozen and stored at -80°C in aliquots for biochemical analyses. Harmane concentration was assessed using high performance liquid chromatography. RESULTS Geometric mean brain harmane concentrations (adjusted for postmortem interval [PMI] and freezer time) were higher in ET cases than controls: 1.0824 (95% confidence interval=0.9405-1.2457) vs. 0.8037 (0.6967-0.9272), p=0.004. Geometric mean of brain harmane concentrations (adjusting for PMI and freezer time) was highest in ET cases who reported other relatives with tremor (1.2005 [0.8712-1.6541]), intermediate in ET cases without family history (1.0312 ([0.8879-1.1976]), and both were significantly higher than controls (p=0.02). CONCLUSIONS This study provides additional evidence of a possible etiological importance of this toxin in some cases of the human disease ET.
Collapse
|