1
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Tang LW, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Hitchens TK, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. Potentiation of cortico-spinal output via targeted electrical stimulation of the motor thalamus. Nat Commun 2024; 15:8461. [PMID: 39353911 PMCID: PMC11445460 DOI: 10.1038/s41467-024-52477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output. To test this hypothesis, we identify optimal thalamic targets and stimulation parameters that enhance upper-limb motor-evoked potentials and grip forces in anesthetized monkeys. This potentiation persists after white matter lesions. We replicate these results in humans during intra-operative testing. We then design a stimulation protocol that immediately improves strength and force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly W Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Adams
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- University of Pittsburgh Clinical and Translational Science Institute (CTSI), Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Fanning A, Kuo SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. CEREBELLUM (LONDON, ENGLAND) 2023:10.1007/s12311-023-01551-3. [PMID: 37022657 PMCID: PMC10556200 DOI: 10.1007/s12311-023-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
The Perturbational Map of Low Frequency Repetitive Transcranial Magnetic Stimulation of Primary Motor Cortex in Movement Disorders. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2023.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
4
|
Romero MC, Merken L, Janssen P, Davare M. Neural effects of continuous theta-burst stimulation in macaque parietal neurons. eLife 2022; 11:e65536. [PMID: 36097816 PMCID: PMC9470151 DOI: 10.7554/elife.65536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Theta-burst transcranial magnetic stimulation (TBS) has become a standard non-invasive technique to induce offline changes in cortical excitability in human volunteers. Yet, TBS suffers from a high variability across subjects. A better knowledge about how TBS affects neural activity in vivo could uncover its mechanisms of action and ultimately allow its mainstream use in basic science and clinical applications. To address this issue, we applied continuous TBS (cTBS, 300 pulses) in awake behaving rhesus monkeys and quantified its after-effects on neuronal activity. Overall, we observed a pronounced, long-lasting, and highly reproducible reduction in neuronal excitability after cTBS in individual parietal neurons, with some neurons also exhibiting periods of hyperexcitability during the recovery phase. These results provide the first experimental evidence of the effects of cTBS on single neurons in awake behaving monkeys, shedding new light on the reasons underlying cTBS variability.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, The Leuven Brain InstituteLeuvenBelgium
| | - Lara Merken
- Laboratorium voor Neuro- en Psychofysiologie, The Leuven Brain InstituteLeuvenBelgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, The Leuven Brain InstituteLeuvenBelgium
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Somaa FA, de Graaf TA, Sack AT. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front Neurol 2022; 13:793253. [PMID: 35669870 PMCID: PMC9163300 DOI: 10.3389/fneur.2022.793253] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment. This may soon change. New clinical studies testing the potential of rTMS in various other neurological conditions appear at a rapid pace. This can prove challenging for both practitioners and clinical researchers. Although most of these neurological applications have not yet received the same level of scientific/empirical scrutiny as motor stroke and neuropathic pain, the results are encouraging, opening new doors for TMS in neurology. We here review the latest clinical evidence for rTMS in pioneering neurological applications including movement disorders, Alzheimer's disease/mild cognitive impairment, epilepsy, multiple sclerosis, and disorders of consciousness.
Collapse
Affiliation(s)
- Fahad A. Somaa
- Department of Occupational Therapy, Faculty of Medical Rehabilitation, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tom A. de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
6
|
Cho HJ. Is essential tremor a degenerative or an electrical disorder? Electrical disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:103-128. [PMID: 35750360 DOI: 10.1016/bs.irn.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor (ET) is one of the most common movement disorders, yet we do not have a complete understanding of its pathophysiology. From a phenomenology standpoint, ET is an isolated tremor syndrome of bilateral upper limb action tremor with or without tremor in other body locations. ET is a pathological tremor that arises from excessive oscillation in the central motor network. The tremor network comprises of multiple brain regions including the inferior olive, cerebellum, thalamus, and motor cortex, and there is evidence that a dynamic oscillatory disturbance within this network leads to tremor. ET is a chronic disorder, and the natural history shows a slow progression of tremor intensity with age. There are reported data suggesting that ET follows the disease model of a neurodegenerative disorder, however whether ET is a degenerative or electrical disorder has been a subject of debate. In this chapter, we will review cumulative evidence that ET as a syndrome is a fundamentally electric disorder. The etiology is likely heterogenous and may not be primarily neurodegenerative.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
7
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
|
8
|
Gironell A. Is essential tremor a disorder of primary GABA dysfunction? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:259-284. [PMID: 35750365 PMCID: PMC9446196 DOI: 10.1016/bs.irn.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysfunction in gamma-aminobutyric acid (GABA) neurotransmission has emerged as a prime suspect for the underlying neurochemical dysfunction in essential tremor (ET). This dysfunction has been termed the GABA hypothesis. We review findings to date supporting the 4 steps in this hypothesis in studies of cerebrospinal fluid, pathology, genetics, animal models, imaging, computational models, and human drugs, while not overlooking the evidence of negative studies and controversies. It remains to be elucidated whether reduced GABAergic tone is a primary contributing factor to ET pathophysiology, a consequence of altered Purkinje cell function, or even a result of Purkinje cell death. More studies are clearly needed to confirm both the neurodegenerative nature of ET and the reduction in GABA activity in the cerebellum. Also necessary is to test further therapies to enhance GABA transmission specifically focused on the cerebellar area.
Collapse
Affiliation(s)
- Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Sant Pau Hospital, Autonomous University of Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Batra D, Kamble N, Bhattacharya A, Sahoo L, Yadav R, Pal PK. Modulatory effect of continuous theta burst stimulation in patients with essential tremor. Parkinsonism Relat Disord 2021; 94:62-66. [PMID: 34890877 DOI: 10.1016/j.parkreldis.2021.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION We aimed to study the cortical and intracortical functions in patients of ET using transcranial magnetic stimulation (TMS) and to evaluate the effect of continuous theta burst stimulation (cTBS) on the tremor characteristics. METHODS Ten ET and 20 healthy controls were included in the study. All the participants were evaluated with TMS with recording of resting motor threshold (RMT), central motor conduction time, contralateral silent period (cSP), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Subsequently only ET patients underwent cTBS of the motor cortex (M1) followed by repeat TMS. RESULTS The mean age of the patients (46.5 ± 17.2 years) was comparable to healthy controls (55.4 ± 9.2 years; p = 0.16). There was a non-significant increase in RMT in ET patients (44 ± 12.5%) when compared to healthy controls (40.9 ± 6.9%; p = 0.48). There was a significant reduction of cSP in the ET group (102.03 ± 15.26 msec) compared to healthy controls (116.1 ± 15.2, p = 0.03). In addition, a significant reduction in ICF was observed in ET patients (0.9 ± 0.7) compared to healthy controls (1.8 ± 0.8, p = 0.01). Following cTBS there was a significant reduction in the tremor scores [FTMRS (Pre-cTBS: 29.3 ± 18.7, Post-cTBS: 25.3 ± 16.8; p < 0.001) and TETRAS (pre-cTBS: 34.4 ± 16.2, post-cTBS: 29.8 ± 12.1; p = 0.01)] and improvement (increase) of the duration of cSP (pre-cTBS: 102.03 ± 15.3 msec., post-cTBS: 119.4 ± 12.03 msec; p = 0.05). CONCLUSIONS Patients with ET have GABAergic and glutaminergic dysfunction as demonstrated by reduced cSP and ICF. However, only the cSP improved following cTBS of M1 region, with a corresponding improvement of tremor severity suggesting the effect of cTBS on the cerebello-thalamo-cortical network.
Collapse
Affiliation(s)
- Dhruv Batra
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Lulup Sahoo
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
10
|
Frey J, Hess CW, Kugler L, Wajid M, Wagle Shukla A. Transcranial Magnetic Stimulation in Tremor Syndromes: Pathophysiologic Insights and Therapeutic Role. Front Neurol 2021; 12:700026. [PMID: 34512517 PMCID: PMC8426899 DOI: 10.3389/fneur.2021.700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Christopher W Hess
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Liam Kugler
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Manahil Wajid
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Godeiro C, França C, Carra RB, Saba F, Saba R, Maia D, Brandão P, Allam N, Rieder CRM, Freitas FC, Capato T, Spitz M, Faria DDD, Cordellini M, Veiga BAAG, Rocha MSG, Maciel R, Melo LBD, Möller PDS, R R Júnior M, Fornari LHT, Mantese CE, Barbosa ER, Munhoz RP, Coletta MVD, Cury RG. Use of non-invasive stimulation in movement disorders: a critical review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:630-646. [PMID: 34468499 DOI: 10.1590/0004-282x-anp-2020-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noninvasive stimulation has been widely used in the past 30 years to study and treat a large number of neurological diseases, including movement disorders. OBJECTIVE In this critical review, we illustrate the rationale for use of these techniques in movement disorders and summarize the best medical evidence based on the main clinical trials performed to date. METHODS A nationally representative group of experts performed a comprehensive review of the literature in order to analyze the key clinical decision-making factors driving transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in movement disorders. Classes of evidence and recommendations were described for each disease. RESULTS Despite unavoidable heterogeneities and low effect size, TMS is likely to be effective for treating motor symptoms and depression in Parkinson's disease (PD). The efficacy in other movement disorders is unclear. TMS is possibly effective for focal hand dystonia, essential tremor and cerebellar ataxia. Additionally, it is likely to be ineffective in reducing tics in Tourette syndrome. Lastly, tDCS is likely to be effective in improving gait in PD. CONCLUSIONS There is encouraging evidence for the use of noninvasive stimulation on a subset of symptoms in selected movement disorders, although the means to optimize protocols for improving positive outcomes in routine clinical practice remain undetermined. Similarly, the best stimulation paradigms and responder profile need to be investigated in large clinical trials with established therapeutic and assessment paradigms that could also allow genuine long-term benefits to be determined.
Collapse
Affiliation(s)
- Clecio Godeiro
- Universidade Federal do Rio Grande do Norte, Departamento de Medicina Integrada, Natal RN, Brazil
| | - Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Felipe Saba
- Universidade Estadual de Campinas, São Paulo SP, Brazil
| | - Roberta Saba
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Débora Maia
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Pedro Brandão
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Nasser Allam
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Carlos R M Rieder
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Tamine Capato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Nijmegen, Netherlands
| | - Mariana Spitz
- Universidade do Estado do Rio de Janeiro, Unidade de Distúrbios do Movimento, Rio de Janeiro RJ, Brazil
| | - Danilo Donizete de Faria
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | | | | | - Maria Sheila G Rocha
- Hospital Santa Marcelina, Departamento de Neurologia e Neurocirurgia Funcional, São Paulo SP, Brazil
| | - Ricardo Maciel
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Lucio B De Melo
- Universidade Estadual de Londrina, Serviço de Neurologia, Londrina PR, Brazil
| | - Patricia D S Möller
- Hospital da Criança de Brasília José Alencar, Unidade Pediátrica de Distúrbios do Movimento, Brasília DF, Brazil
| | - Magno R R Júnior
- Universidade Federal do Maranhão, Hospital Universitário, São Luís MA, Brazil
| | - Luís H T Fornari
- Santa Casa de Misericórdia de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Carlos E Mantese
- Hospital Mãe de Deus, Serviço de Neurologia, Porto Alegre RS, Brazil
| | - Egberto Reis Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Renato P Munhoz
- University of Toronto, Toronto Western Hospital - UHN, Division of Neurology, Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's Disease, Toronto ON, Canada.,Krembil Brain Institute, Toronto ON, Canada
| | | | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| |
Collapse
|
12
|
Chen YH, Chen CL, Huang YZ, Chen HC, Chen CY, Wu CY, Lin KC. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. J Neuroeng Rehabil 2021; 18:91. [PMID: 34059090 PMCID: PMC8166006 DOI: 10.1186/s12984-021-00885-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Background Virtual reality and arm cycling have been reported as effective treatments for improving upper limb motor recovery in patients with stroke. Intermittent theta burst stimulation (iTBS) can increase ipsilesional cortical excitability, and has been increasingly used in patients with stroke. However, few studies examined the augmented effect of iTBS on neurorehabilitation program. In this study, we investigated the augmented effect of iTBS on virtual reality-based cycling training (VCT) for upper limb function in patients with stroke. Methods In this randomized controlled trial, 23 patients with stroke were recruited. Each patient received either 15 sessions of iTBS or sham stimulation in addition to VCT on the same day. Outcome measures were assessed before and after the intervention. Primary outcome measures for the improvement of upper limb motor function and spasticity were Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Modified Ashworth Scale Upper-Extremity (MAS-UE). Secondary outcome measures for activity and participation were Action Research Arm Test (ARAT), Nine Hole Peg Test (NHPT), Box and Block Test (BBT) and Motor Activity Log (MAL), and Stroke Impact Scale (SIS). Wilcoxon signed-rank tests were performed to evaluate the effectiveness after the intervention and Mann–Whitney U tests were conducted to compare the therapeutic effects between two groups. Results At post-treatment, both groups showed significant improvement in FMA-UE and ARAT, while only the iTBS + VCT group demonstrated significant improvement in MAS-UE, BBT, NHPT, MAL and SIS. The Mann–Whitney U tests revealed that the iTBS + VCT group has presented greater improvement than the sham group significantly in MAS-UE, MAL-AOU and SIS. However, there were no significant differences in the changes of the FMA-UE, ARAT, BBT, NHPT and MAL-QOM between groups. Conclusions Intermittent TBS showed augmented efficacy on VCT for reducing spasticity, increasing actual use of the affected upper limb, and improving participation in daily life in stroke patients. This study provided an integrated innovative intervention, which may be a promising therapy to improve upper limb function recovery in stroke rehabilitation. However, this study has a small sample size, and thus a further larger-scale study is warranted to confirm the treatment efficacy. Trial registration This trial was registered under ClinicalTrials.gov ID No. NCT03350087, retrospectively registered, on November 22, 2017
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Graduate Institute of Early Intervention, Chang Gung University, Taoyuan, Taiwan.
| | - Ying-Zu Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Hsieh-Ching Chen
- Department of Industrial and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-Yao Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Merken L, Davare M, Janssen P, Romero MC. Behavioral effects of continuous theta-burst stimulation in macaque parietal cortex. Sci Rep 2021; 11:4511. [PMID: 33627702 PMCID: PMC7904760 DOI: 10.1038/s41598-021-83904-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The neural mechanisms underlying the effects of continuous Theta-Burst Stimulation (cTBS) in humans are poorly understood. Animal studies can clarify the effects of cTBS on individual neurons, but behavioral evidence is necessary to demonstrate the validity of the animal model. We investigated the behavioral effect of cTBS applied over parietal cortex in rhesus monkeys performing a visually-guided grasping task with two differently sized objects, which required either a power grip or a pad-to-side grip. We used Fitts' law, predicting shorter grasping times (GT) for large compared to small objects, to investigate cTBS effects on two different grip types. cTBS induced long-lasting object-specific and dose-dependent changes in GT that remained present for up to two hours. High-intensity cTBS increased GTs for a power grip, but shortened GTs for a pad-to-side grip. Thus, high-intensity stimulation strongly reduced the natural GT difference between objects (i.e. the Fitts' law effect). In contrast, low-intensity cTBS induced the opposite effects on GT. Modifying the coil orientation from the standard 45-degree to a 30-degree angle induced opposite cTBS effects on GT. These findings represent behavioral evidence for the validity of the nonhuman primate model to study the neural underpinnings of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Lara Merken
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Marco Davare
- College of Health and Life Sciences and Centre for Cognitive Neuroscience, Brunel University London, UxBridge, UB8 3PN, UK
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Maria C Romero
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Handforth A, Lang EJ. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. THE CEREBELLUM 2020; 20:266-281. [PMID: 33048308 DOI: 10.1007/s12311-020-01197-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. An Update on the Neurochemistry of Essential Tremor. Curr Med Chem 2020; 27:1690-1710. [DOI: 10.2174/0929867325666181112094330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Background:
The pathophysiology and neurochemical mechanisms of essential
tremor (ET) are not fully understood, because only a few post-mortem studies have been reported,
and there is a lack of good experimental model for this disease.
Objective:
The main aim of this review is to update data regarding the neurochemical features
of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic,
GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of
this revision.
Methods:
For this purpose, we performed a literature review on alterations of the neurotransmitter
or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA,
excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem
or in vivo) or in experimental models resembling ET.
Results and Conclusion:
The most consistent data regarding neurochemistry of ET are related
with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine
and dopaminergic and adrenergic systems, while there is not enough evidence of a definite
role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor
in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor,
sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential
role of these structures in the pathogenesis of ET.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| | - José A.G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| |
Collapse
|
16
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
17
|
Revuelta G, McGill C, Jensen JH, Bonilha L. Characterizing Thalamo-Cortical Structural Connectivity in Essential Tremor with Diffusional Kurtosis Imaging Tractography. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-690. [PMID: 31534829 PMCID: PMC6727860 DOI: 10.7916/tohm.v0.690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Background Neuromodulation of the cerebello-thalamo-cortical (CTC) circuit via thalamic stimulation is an effective therapy for essential tremor (ET). In order to develop non-invasive neuromodulation approaches, clinically relevant thalamo-cortical connections must be elucidated. Methods Twenty-eight subjects (18 ET patients and 10 controls) underwent MRI diffusional kurtosis imaging (DKI). A deterministic fiber-tracking algorithm based on DKI was used, with a seeding region placed at the ventral intermediate nucleus (Vim—located based on intraoperative physiology) to the ending regions at the supplementary motor area (SMA), pre-SMA, or primary motor cortex. One-tailed t-tests were performed to compare groups, and associations with tremor severity were determined by Pearson correlations. All p-values were adjusted for multiple comparisons using Bonferroni correction. Results There was a decrease in the mean diffusivity (MD) in patients compared to controls in all three tracts: Vim-M1 (ET 0.87, control 0.96, p < 0.01), Vim-SMA (ET 0.86, control 0.96, p < 0.05), and Vim-pre-SMA (ET 0.87, control 0.95, p < 0.05). There was a significant positive correlation between Tremor Rating Scale score and MK (r = 0.471, p = 0.033) and mean FA (r = 0.438, p = 0.045) for the Vim-SMA tract, and no significant correlation for the Vim-pre-SMA or Vim-M1 tracts was found. Discussion Patients with ET demonstrated a reinforcement of Vim-cortical connectivity, with higher Vim-SMA connectivity being associated with greater tremor severity. This finding suggests that the Vim-SMA connection is relevant to the underlying pathophysiology of ET, and inhibition of the SMA may be an effective therapeutic approach.
Collapse
Affiliation(s)
- Gonzalo Revuelta
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Corinne McGill
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Khedr EM, El Fawal B, Abdelwarith A, Nasreldein A, Rothwell JC, Saber M. TMS excitability study in essential tremor: Absence of gabaergic changes assessed by silent period recordings. Neurophysiol Clin 2019; 49:309-315. [DOI: 10.1016/j.neucli.2019.05.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022] Open
|
19
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
20
|
Jannati A, Fried PJ, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Test-Retest Reliability of the Effects of Continuous Theta-Burst Stimulation. Front Neurosci 2019; 13:447. [PMID: 31156361 PMCID: PMC6533847 DOI: 10.3389/fnins.2019.00447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The utility of continuous theta-burst stimulation (cTBS) as index of cortical plasticity is limited by inadequate characterization of its test-retest reliability. We thus evaluated the reliability of cTBS aftereffects, and explored the roles of age and common single-nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) genes. METHODS Twenty-eight healthy adults (age range 21-65) underwent two identical cTBS sessions (median interval = 9.5 days) targeting the motor cortex. Intraclass correlation coefficients (ICCs) of the log-transformed, baseline-corrected amplitude of motor evoked potentials (ΔMEP) at 5-60 min post-cTBS (T5-T60) were calculated. Adjusted effect sizes for cTBS aftereffects were then calculated by taking into account the reliability of each cTBS measure. RESULTS ΔMEP at T50 was the most-reliable cTBS measure in the whole sample (ICC = 0.53). Area under-the-curve (AUC) of ΔMEPs was most reliable when calculated over the full 60 min post-cTBS (ICC = 0.40). cTBS measures were substantially more reliable in younger participants (< 35 years) and in those with BDNF Val66Val and APOE ε4- genotypes. CONCLUSION cTBS aftereffects are most reliable when assessed 50 min post-cTBS, or when cumulative ΔMEP measures are calculated over 30-60 min post-cTBS. Reliability of cTBS aftereffects is influenced by age, and BDNF and APOE polymorphisms. Reliability coefficients are used to adjust effect-size calculations for interpretation and planning of cTBS studies.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lindsay M. Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warren Alpert Medical School, Brown University, East Providence, RI, United States
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Chen YJ, Huang YZ, Chen CY, Chen CL, Chen HC, Wu CY, Lin KC, Chang TL. Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a pilot randomized controlled trial. BMC Neurol 2019; 19:69. [PMID: 31023258 PMCID: PMC6485156 DOI: 10.1186/s12883-019-1302-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/11/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial stimulation that has been used to enhance upper limb (UL) motor recovery. However, only limited studies have examined its efficacy in patients with chronic stroke and therefore it remains controversial. METHODS This was a randomized controlled trial that enrolled patients from a rehabilitation department. Twenty-two patients with first-ever chronic and unilateral cerebral stroke, aged 30-70 years, were randomly assigned to the iTBS or control group. All patients received 1 session per day for 10 days of either iTBS or sham stimulation over the ipsilesional primary motor cortex in addition to conventional neurorehabilitation. Outcome measures were assessed before and immediately after the intervention period: Modified Ashworth Scale (MAS), Fugl-Meyer Assessment Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), Box and Block test (BBT), and Motor Activity Log (MAL). Analysis of covariance was adopted to compare the treatment effects between groups. RESULTS The iTBS group had greater improvement in the MAS and FMA than the control group (η2 = 0.151-0.233; p < 0.05), as well as in the ARAT and BBT (η2 = 0.161-0.460; p < 0.05) with large effect size. Both groups showed an improvement in the BBT, and there were no significant between-group differences in MAL changes. CONCLUSIONS The iTBS induced greater gains in spasticity decrease and UL function improvement, especially in fine motor function, than sham TBS. This is a promising finding because patients with chronic stroke have a relatively low potential for fine motor function recovery. Overall, iTBS may be a beneficial adjunct therapy to neurorehabilitation for enhancing UL function. Further larger-scale study is warranted to confirm the findings and its long-term effect. TRIAL REGISTRATION This trial was registered under ClinicalTrials.gov ID No. NCT01947413 on September 20, 2013.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Yao Chen
- Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan. .,Graduate Institute of Early Intervention, Chang Gung University, Taoyuan, Taiwan.
| | - Hsieh-Ching Chen
- Department of Industrial and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan.,Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Ling Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 5, Fushing Street, Kuei-Shan District, Taoyuan City, 33305, Taiwan
| |
Collapse
|
22
|
Avecillas-Chasin JM, Poologaindran A, Morrison MD, Rammage LA, Honey CR. Unilateral Thalamic Deep Brain Stimulation for Voice Tremor. Stereotact Funct Neurosurg 2019; 96:392-399. [PMID: 30625492 DOI: 10.1159/000495413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Voice tremor (VT) is the involuntary and rhythmical phonatory instability of the voice. Recent findings suggest that unilateral deep brain stimulation of the ventral intermediate nucleus (Vim-DBS) can sometimes be effective for VT. In this exploratory analysis, we investigated the effect of Vim-DBS on VT and tested the hypothesis that unilateral thalamic stimulation is effective for patients with VT. METHODS Seven patients with VT and previously implanted bilateral Vim-DBS were enrolled in the study. Each patient was randomized and recorded performing sustained phonation during the following conditions: left thalamic stimulation, right thalamic stimulation, bilateral thalamic stimulation (Bil-ON), and no stimulation (Bil-OFF). Perceptual VT ratings and an acoustic analysis to find the rate of variation of the fundamental frequency measured by the standard deviation of the pitch (f0SD) were performed in a blinded manner. For the purposes of this study, a "dominant" side was defined as one with more than twice as much reduction in VT following Vim-DBS compared to the contralateral side. The Wilcoxon signed-rank test was performed to compare the effect of the dominant side stimulation in the reduction of VT scores and f0SD. The volume of activated tissue (VAT) of the dominant stimulation side was modelled against the degree of improvement in VT to correlate the significant stimulation cluster with thalamic anatomy. Finally, tractography analysis was performed to analyze the connectivity of the significant stimulation cluster. RESULTS Unilateral stimulation was beneficial in all 7 patients. Five patients clearly had a "dominant" side with either benefit only seen following stimulation of one side or more than twice as much benefit from one side compared to the other. Two patients had similar benefit with unilateral stimulation from either side. The Wilcoxon paired test showed significant differences between unilateral dominant and unilateral nondominant stimulation for VT scores (p = 0.04), between unilateral dominant and Bil-OFF (p = 0.04), and between Bil-ON and unilateral nondominant stimulation (p = 0.04). No significant differences were found between Bil-ON and unilateral dominant condition (p = 0.27), or between Bil-OFF and unilateral nondominant (p = 0.23). The dominant VAT showed that the significant voxels associated with the best VT control were located in the most ventral and medial part of the Vim nucleus and the ventralis caudalis anterior internus nucleus. The connectivity analysis showed significant connectivity with the cortical areas of the speech circuit. CONCLUSIONS Unilateral dominant-side thalamic stimulation and bilateral thalamic stimulation were equally effective in reducing VT. Nondominant unilateral stimulation alone did not significantly improve VT.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Department of Surgery, Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anujan Poologaindran
- Department of Surgery, Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray D Morrison
- Department of Surgery, Division of Otolaryngology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda A Rammage
- Department of Surgery, Division of Otolaryngology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, The University of British Columbia, Vancouver, British Columbia, Canada,
| |
Collapse
|
23
|
Does non-invasive brain stimulation reduce essential tremor? A systematic review and meta-analysis. PLoS One 2017; 12:e0185462. [PMID: 28957367 PMCID: PMC5619788 DOI: 10.1371/journal.pone.0185462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
Essential tremor (ET) is the most common age-related disease leading to abnormal tremulous behaviors in the upper and lower extremities. Non-invasive brain stimulation (NIBS) may be an effective ET therapy by modulating the oscillating network of the brain. The current systematic review and meta-analysis examined the effects of NIBS interventions on tremor symptoms in ET patients. Our comprehensive search identified eight studies that used 1 Hz of rTMS, cTBS, or ctDCS protocols. Twenty total comparisons from the eight qualified studies were statistically synthesized, and the meta-analytic findings revealed that NIBS techniques reduced tremulous behaviors in individuals with ET. Moreover, the four moderator variable analyses demonstrated that the positive therapeutic effects of NIBS appeared across the following subgroups: (a) tremor assessment (clinical test vs. quantitative tremor assessment), (b) stimulation site (cerebellum vs. motor cortex), (c) session number (single session vs. multiple sessions), and (d) sustained positive treatment effect (posttest vs. retention test). This comprehensive systematic review and meta-analysis provided evidence that support positive treatment effects of NIBS techniques on ET motor therapy.
Collapse
|
24
|
Jannati A, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clin Neurophysiol 2017; 128:2268-2278. [PMID: 29028501 DOI: 10.1016/j.clinph.2017.08.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/10/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We used complete-linkage cluster analysis to identify healthy subpopulations with distinct responses to continuous theta-burst stimulation (cTBS). METHODS 21 healthy adults (age±SD, 36.9±15.2years) underwent cTBS of left motor cortex. Natural log-transformed motor evoked potentials (LnMEPs) at 5-50min post-cTBS (T5-T50) were calculated. RESULTS Two clusters were found; Group 1 (n=12) that showed significant MEP facilitation at T15, T20, and T50 (p's<0.006), and Group 2 (n=9) that showed significant suppression at T5-T15 (p's<0.022). LnMEPs at T10 and T40 were best predictors of, and together accounted for 80% of, cluster assignment. In an exploratory analysis, we examined the roles of brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) polymorphisms in the cTBS response. Val66Met participants showed greater facilitation at T10 than Val66Val participants (p=0.025). BDNF and cTBS intensity predicted 59% of interindividual variability in LnMEP at T10. APOE did not significantly affect LnMEPs at any time point (p's>0.32). CONCLUSIONS Data-driven cluster analysis can identify healthy subpopulations with distinct cTBS responses. T10 and T40 LnMEPs were best predictors of cluster assignment. T10 LnMEP was influenced by BDNF polymorphism and cTBS intensity. SIGNIFICANCE Healthy adults can be sorted into subpopulations with distinct cTBS responses that are influenced by genetics.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warrent Alpert Medical School of Brown University, East Providence, RI, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
25
|
Ni HC, Hung J, Wu CT, Wu YY, Chang CJ, Chen RS, Huang YZ. The Impact of Single Session Intermittent Theta-Burst Stimulation over the Dorsolateral Prefrontal Cortex and Posterior Superior Temporal Sulcus on Adults with Autism Spectrum Disorder. Front Neurosci 2017; 11:255. [PMID: 28536500 PMCID: PMC5423353 DOI: 10.3389/fnins.2017.00255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
Intermittent theta burst stimulation (iTBS), a patterned repetitive transcranial magnetic stimulation, was applied over the posterior superior temporal sulcus (pSTS) or dorsolateral prefrontal cortex (DLPFC) to explore its impact in adults with autism spectrum disorder (ASD). Among 25 adults with ASD, 19 (mean age: 20.8 years) completed the randomized, sham-controlled, crossover trial. Every participant received iTBS over the bilateral DLPFC, bilateral pSTS and inion (as a sham control stimulation) in a randomized order with a 1-week interval. Neuropsychological functions were assessed using the Conners' Continuous Performance Test (CCPT) and the Wisconsin Card Sorting Test (WCST). Behavioral outcomes were measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Social Responsiveness Scale (SRS). In comparison to that in the sham stimulation, the reaction time in the CCPT significantly decreased following single DLPFC session (p = 0.04, effect size = 0.71) while there were no significant differences in the CCPT and WCST following single pSTS session. Besides, the results in behavioral outcomes were inconsistent and had discrepancy between reports of parents and patients. In conclusion, a single session of iTBS over the bilateral DLPFC may alter the neuropsychological function in adults with ASD. The impacts of multiple-sessions iTBS over the DLPFC or pSTS deserve further investigations.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at LinkouLinkou, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of MedicineTaipei, Taiwan
| | - June Hung
- Department of Neurology, Neuroscience Research Center, Chang Gung Memorial Hospital at LinkouTaipei, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at LinkouTaipei, Taiwan
| | - Yu-Yu Wu
- Department of Psychiatry, Chang Gung Memorial Hospital at LinkouLinkou, Taiwan
| | - Chee-Jen Chang
- Graduate Institute of Clinical Medical Science, Chang Gung UniversityTaoyuan, Taiwan.,Clinical Informatics and Medical Statistics Research Center, Chang Gung UniversityTaoyuan, Taiwan.,Research Services Center for Health Information, Chang Gung UniversityTaoyuan, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Neuroscience Research Center, Chang Gung Memorial Hospital at LinkouTaipei, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Neuroscience Research Center, Chang Gung Memorial Hospital at LinkouTaipei, Taiwan.,Medical School, Chang Gung UniversityTaoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central UniversityTaoyuan, Taiwan
| |
Collapse
|
26
|
Shih LC, Pascual-Leone A. Non-invasive Brain Stimulation for Essential Tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2017; 7:458. [PMID: 28373927 PMCID: PMC5374545 DOI: 10.7916/d8g44w01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/03/2022]
Abstract
Background There is increasing interest in the use of non-invasive brain stimulation to characterize and potentially treat essential tremor (ET). Studies have used a variety of stimulation coils, paradigms, and target locations to make these observations. We reviewed the literature to compare prior studies and to evaluate the rationale and the methods used in these studies. Methods We performed a systematic literature search of the PubMed database using the terms “transcranial,” “noninvasive,” “brain stimulation,” “transcranial magnetic stimulation (TMS),” “transcranial direct current stimulation (tDCS),” “transcranial alternating current stimulation (tACS),” and “essential tremor.” Results Single pulses of TMS to the primary motor cortex have long been known to reset tremor. Although there are relatively few studies showing alterations in motor cortical physiology, such as motor threshold, short and long intracortical inhibition, and cortical silent period, there may be some evidence of altered intracortical facilitation and cerebello-brain inhibition in ET. Repetitive TMS, theta burst stimulation, tDCS, and tACS have been applied to human subjects with tremor with some preliminary signs of tremor reduction, particularly in those studies that employed consecutive daily sessions. Discussion A variety of stimulation paradigms and targets have been explored, with the increasing rationale an interest in targeting the cerebellum. Rigorous assessment of coil geometry, stimulation paradigm, rationale for selection of the specific anatomic target, and careful phenotypic and physiologic characterization of the subjects with ET undergoing these interventions may be critical in extending these preliminary findings into effective stimulation therapies.
Collapse
Affiliation(s)
- Ludy C Shih
- Division of Movement Disorders, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Harvard Medical School, Boston, MA, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
27
|
Lu MK, Chen CM, Duann JR, Ziemann U, Chen JC, Chiou SM, Tsai CH. Investigation of Motor Cortical Plasticity and Corticospinal Tract Diffusion Tensor Imaging in Patients with Parkinsons Disease and Essential Tremor. PLoS One 2016; 11:e0162265. [PMID: 27603204 PMCID: PMC5014415 DOI: 10.1371/journal.pone.0162265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/21/2016] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) and essential tremor (ET) are characterized with motor dysfunctions. Motor circuit dysfunctions can be complementarily investigated by paired associative stimulation (PAS)-induced long-term potentiation (LTP)-like plasticity and diffusion tensor imaging (DTI) of the corticospinal tract (CST). Three groups of twelve subjects with moderate severity PD, ET with intention tremor and healthy controls (HC) were studied. The primary motor cortex (M1) excitability, measured by motor evoked potential (MEP) amplitude and by short-interval and long-interval intracortical inhibition (SICI and LICI) was compared between the three groups before and after PAS. The DTI measures of fractional anisotropy (FA) and mean diffusivity (MD) were acquired. PAS effects and DTI data were simultaneously examined between groups. PAS increased MEP amplitude in HC but not in PD and ET. SICI and LICI were significantly reduced after PAS irrespective of groups. No significant differences of the mean FA and MD were found between groups. There was no significant correlation between the PAS effects and the DTI measures. Findings suggest that both PD and ET with intention tremor have impairment of the associative LTP-like corticospinal excitability change in M1. The microstructure of the CST is not relevant to the deficiency of M1 associative plasticity in PD and ET.
Collapse
Affiliation(s)
- Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan
- Graduate Institute of Neural and Cognitive Sciences, Medical College, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Graduate Institute of Neural and Cognitive Sciences, Medical College, China Medical University, Taichung, Taiwan
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Zhongli, Taiwan
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan
- Graduate Institute of Neural and Cognitive Sciences, Medical College, China Medical University, Taichung, Taiwan
| | - Shang-Ming Chiou
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan
- Graduate Institute of Neural and Cognitive Sciences, Medical College, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 63:43-64. [PMID: 26850210 DOI: 10.1016/j.neubiorev.2016.01.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/30/2015] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Noninvasive brain stimulation has been demonstrated to modulate cortical activity in humans. In particular, theta burst stimulation (TBS) has gained notable attention due to its ability to induce lasting physiological changes after short stimulation durations. The present study aimed to provide a comprehensive meta-analytic review of the efficacy of two TBS paradigms; intermittent (iTBS) and continuous (cTBS), on corticospinal excitability in healthy individuals. Literature searches yielded a total of 87 studies adhering to the inclusion criteria. iTBS yielded moderately large MEP increases lasting up to 30 min with a pooled SMD of 0.71 (p<0.00001). cTBS produced a reduction in MEP amplitudes lasting up to 60 min, with the largest effect size seen at 5 min post stimulation (SMD=-0.9, P<0.00001). The collected studies were of heterogeneous nature, and a series of tests conducted indicated a degree of publication bias. No significant change in SICI and ICF was observed, with exception to decrease in SICI with cTBS at the early time point (SMD=0.42, P=0.00036). The results also highlight several factors contributing to TBS efficacy, including the number of pulses, frequency of stimulation and BDNF polymorphisms. Further research investigating optimal TBS stimulation parameters, particularly for iTBS, is needed in order for these paradigms to be successfully translated into clinical settings.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia.
| | - Aron T Hill
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Obeso I, Cerasa A, Quattrone A. The Effectiveness of Transcranial Brain Stimulation in Improving Clinical Signs of Hyperkinetic Movement Disorders. Front Neurosci 2016; 9:486. [PMID: 26778947 PMCID: PMC4703824 DOI: 10.3389/fnins.2015.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a safe and painless method for stimulating cortical neurons. In neurological realm, rTMS has prevalently been applied to understand pathophysiological mechanisms underlying movement disorders. However, this tool has also the potential to be translated into a clinically applicable therapeutic use. Several available studies supported this hypothesis, but differences in protocols, clinical enrollment, and variability of rTMS effects across individuals complicate better understanding of efficient clinical protocols. The aim of this present review is to discuss to what extent the evidence provided by the therapeutic use of rTMS may be generalized. In particular, we attempted to define optimal cortical regions and stimulation protocols that have been demonstrated to maximize the effectiveness seen in the actual literature for the three most prevalent hyperkinetic movement disorders: Parkinson's disease (PD) with levodopa-induced dyskinesias (LIDs), essential tremor (ET) and dystonia. A total of 28 rTMS studies met our search criteria. Despite clinical and methodological differences, overall these studies demonstrated that therapeutic applications of rTMS to "normalize" pathologically decreased or increased levels of cortical activity have given moderate progress in patient's quality of life. Moreover, the present literature suggests that altered pathophysiology in hyperkinetic movement disorders establishes motor, premotor or cerebellar structures as candidate regions to reset cortico-subcortical pathways back to normal. Although rTMS has the potential to become a powerful tool for ameliorating the clinical outcome of hyperkinetic neurological patients, until now there is not a clear consensus on optimal protocols for these motor disorders. Well-controlled multicenter randomized clinical trials with high numbers of patients are urgently required.
Collapse
Affiliation(s)
- Ignacio Obeso
- Centro Integral en Neurociencias A. C. (CINAC), HM Hospitales – Puerta del Sur. MóstolesMadrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative DiseasesMadrid, Spain
| | - Antonio Cerasa
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology - National Research CouncilGermaneto, Italy
| | - Aldo Quattrone
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology - National Research CouncilGermaneto, Italy
- Neurology Unit, Institute of Neurology, University “Magna Graecia”Catanzaro, Italy
| |
Collapse
|
30
|
Picillo M, Fasano A. Recent advances in Essential Tremor: Surgical treatment. Parkinsonism Relat Disord 2016; 22 Suppl 1:S171-5. [DOI: 10.1016/j.parkreldis.2015.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
|
31
|
Chalah MA, Lefaucheur JP, Ayache SS. Non-invasive Central and Peripheral Stimulation: New Hope for Essential Tremor? Front Neurosci 2015; 9:440. [PMID: 26635516 PMCID: PMC4649015 DOI: 10.3389/fnins.2015.00440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022] Open
Abstract
Essential tremor (ET) is among the most frequent movement disorders. It usually manifests as a postural and kinematic tremor of the arms, but may also involve the head, voice, lower limbs, and trunk. An oscillatory network has been proposed as a neural correlate of ET, and is mainly composed of the olivocerebellar system, thalamus, and motor cortex. Since pharmacological agents have limited benefits, surgical interventions like deep brain stimulation are the last-line treatment options for the most severe cases. Non-invasive brain stimulation techniques, particularly transcranial magnetic or direct current stimulation, are used to ameliorate ET. Their non-invasiveness, along with their side effects profile, makes them an appealing treatment option. In addition, peripheral stimulation has been applied in the same perspective. Hence, the aim of the present review is to shed light on the emergent use of non-invasive central and peripheral stimulation techniques in this interesting context.
Collapse
Affiliation(s)
- Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France ; Neurology Division, University Medical Center Rizk Hospital Beirut, Lebanon
| |
Collapse
|
32
|
Fasano A, Deuschl G. Therapeutic advances in tremor. Mov Disord 2015; 30:1557-65. [DOI: 10.1002/mds.26383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital-UHN, Division of Neurology, University of Toronto; Toronto Ontario Canada
| | - Günther Deuschl
- Department of Neurology; Christian-Albrechts-University Kiel; Germany
| |
Collapse
|
33
|
Buijink AWG, van der Stouwe AMM, Broersma M, Sharifi S, Groot PFC, Speelman JD, Maurits NM, van Rootselaar AF. Motor network disruption in essential tremor: a functional and effective connectivity study. Brain 2015; 138:2934-47. [PMID: 26248468 DOI: 10.1093/brain/awv225] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/19/2015] [Indexed: 11/14/2022] Open
Abstract
Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor.
Collapse
Affiliation(s)
- Arthur W G Buijink
- 1 Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands 2 Brain Imaging Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A M Madelein van der Stouwe
- 3 Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands 4 Neuroimaging Center, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marja Broersma
- 3 Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands 4 Neuroimaging Center, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sarvi Sharifi
- 1 Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands 2 Brain Imaging Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul F C Groot
- 2 Brain Imaging Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands 5 Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes D Speelman
- 1 Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Natasha M Maurits
- 3 Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands 4 Neuroimaging Center, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anne-Fleur van Rootselaar
- 1 Department of Neurology and Clinical Neurophysiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands 2 Brain Imaging Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Subdural Continuous Theta Burst Stimulation of the Motor Cortex in Essential Tremor. Brain Stimul 2015; 8:840-2. [PMID: 26038179 DOI: 10.1016/j.brs.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
|
35
|
Wischnewski M, Schutter DJLG. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul 2015; 8:685-92. [PMID: 26014214 DOI: 10.1016/j.brs.2015.03.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the past decade research has shown that continuous (cTBS) and intermittent theta burst stimulation (iTBS) alter neuronal excitability levels in the primary motor cortex. OBJECTIVE Quantitatively review the magnitude and time course on cortical excitability of cTBS and iTBS. METHODS Sixty-four TBS studies published between January 2005 and October 2014 were retrieved from the scientific search engine PubMED and included for analyses. The main inclusion criteria involved stimulation of the primary motor cortex in healthy volunteers with no motor practice prior to intervention and motor evoked potentials as primary outcome measure. RESULTS ITBS applied for 190 s significantly increases cortical excitability up to 60 min with a mean maximum potentiation of 35.54 ± 3.32%. CTBS applied for 40 s decreases cortical excitability up to 50 min with a mean maximum depression of -22.81 ± 2.86%, while cTBS applied for 20 s decreases cortical excitability (mean maximum -27.84 ± 4.15%) for 20 min. CONCLUSION The present findings offer normative insights into the magnitude and time course of TBS-induced changes in cortical excitability levels.
Collapse
Affiliation(s)
- Miles Wischnewski
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands.
| | - Dennis J L G Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
36
|
Lu MK, Chiou SM, Ziemann U, Huang HC, Yang YW, Tsai CH. Resetting tremor by single and paired transcranial magnetic stimulation in Parkinson's disease and essential tremor. Clin Neurophysiol 2015; 126:2330-6. [PMID: 25792076 DOI: 10.1016/j.clinph.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The pathogenesis of tremor in Parkinson's disease (PD) and essential tremor (ET) is not fully understood. This study tested the role of primary motor cortex (M1), supplementary motor area (SMA) and cerebellar cortex on PD and ET tremor by single- and paired-pulse transcranial magnetic stimulation (TMS). METHODS Ten PD patients with resting tremor, six of them also with postural tremor, and ten ET patients with postural tremor were studied. Randomized single- and paired-pulse TMS with an interstimulus interval of 100 ms were delivered over M1, SMA and cerebellum. TMS effects were evaluated by calculating a tremor-resetting index (RI). RESULTS Single- vs. paired-pulse TMS showed no difference. M1-TMS and SMA-TMS but not by cerebellar TMS induced a significant RI in PD and ET. M1-TMS resulted in a significantly higher RI in PD than ET. Furthermore, M1-TMS in PD but not in ET resulted in a significantly higher RI than SMA-TMS. CONCLUSIONS Findings suggest a stronger involvement of M1 in resting and postural tremor in PD than postural tremor in ET. SIGNIFICANCE RI provides a useful marker to explore the differential functional role of M1, SMA and cerebellum in PD vs. ET tremor.
Collapse
Affiliation(s)
- Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan; Graduate Institute of Neural and Cognitive Science, China Medical University, Taichung, Taiwan.
| | - Shang-Ming Chiou
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Hui-Chun Huang
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Yu-Wan Yang
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan; Graduate Institute of Neural and Cognitive Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
37
|
Cerebellar Continuous Theta Burst Stimulation in Essential Tremor. THE CEREBELLUM 2014; 14:133-41. [DOI: 10.1007/s12311-014-0621-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125:2150-2206. [PMID: 25034472 DOI: 10.1016/j.clinph.2014.05.021] [Citation(s) in RCA: 1287] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.
| | - Nathalie André-Obadia
- Neurophysiology and Epilepsy Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France; Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
| | - Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roberto M Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Portugal
| | - Dirk De Ridder
- Brai(2)n, Tinnitus Research Initiative Clinic Antwerp, Belgium; Department of Neurosurgery, University Hospital Antwerp, Belgium
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Hospital, Lille, France; ULCO, Lille-Nord de France University, Lille, France
| | - Vincenzo Di Lazzaro
- Department of Neurosciences, Institute of Neurology, Campus Bio-Medico University, Rome, Italy
| | - Saša R Filipović
- Department of Neurophysiology, Institute for Medical Research, University of Belgrade, Beograd, Serbia
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Emmanuel Poulet
- Department of Emergency Psychiatry, CHU Lyon, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; EAM 4615, Lyon-1 University, Bron, France
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy; Institute of Neurology, Catholic University, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hartwig R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Josep Valls-Sole
- EMG Unit, Neurology Service, Hospital Clinic, Department of Medicine, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France; Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|