1
|
Tobin ER, Arpin DJ, Schauder MB, Higgonbottham ML, Chen R, Lou X, Berry RB, Christou EA, Jaffee MS, Vaillancourt DE. Functional and free-water imaging in rapid eye movement behaviour disorder and Parkinson's disease. Brain Commun 2024; 6:fcae344. [PMID: 39411244 PMCID: PMC11474242 DOI: 10.1093/braincomms/fcae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
It is established that one of the best predictors of a future diagnosis of Parkinson's disease is a current diagnosis of rapid eye movement behaviour disorder (RBD). In such patients, this provides a unique opportunity to study brain physiology and behavioural motor features of RBD that may precede early-stage Parkinson's disease. Based on prior work in early-stage Parkinson's disease, we aim to determine if the function of corticostriatal and cerebellar regions are impaired in RBD using task-based functional MRI and if structural changes can be detected within the caudate, putamen and substantia nigra in RBD using free-water imaging. To assess motor function, we measured performance on the Purdue Pegboard Test, which is affected in patients with RBD and Parkinson's disease. A cohort of 24 RBD, 39 early-stage Parkinson's disease and 25 controls were investigated. All participants were imaged at 3 Telsa. Individuals performed a unimanual grip force task during functional imaging. Participants also completed scales to assess cognition, sleep and motor symptoms. We found decreased functional activity in both RBD and Parkinson's disease within the motor cortex, caudate, putamen and thalamus compared with controls. There was elevated free-water-corrected fractional anisotropy in the putamen in RBD and Parkinson's disease and elevated free-water in the putamen and posterior substantia nigra in Parkinson's disease compared with controls. Participants with RBD and Parkinson's disease performed significantly worse on all tasks of the Purdue Pegboard Test compared with controls. The both hands task of the Purdue Pegboard Test was most sensitive in distinguishing between groups. A subgroup analysis of early-stage RBD (<2 years diagnosis) confirmed similar findings as those in the larger RBD group. These findings provide new evidence that the putamen is affected in early-stage RBD using both functional and free-water imaging. We also found evidence that the striatum, thalamus and motor cortex have reduced functional activity in early-stage RBD and Parkinson's disease. While the substantia nigra shows elevated free-water in Parkinson's disease, we did not observe this effect in early-stage RBD. These findings point to the corticostriatal and thalamocortical circuits being impaired in RBD patients.
Collapse
Affiliation(s)
- Emily R Tobin
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - David J Arpin
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Marissa B Schauder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Mara L Higgonbottham
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Robin Chen
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32603, USA
| | - XiangYang Lou
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| | - Richard B Berry
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Florida, Gainesville, FL 32610, USA
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32603, USA
| | - Michael S Jaffee
- Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL 32608, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32603, USA
- Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
2
|
Tuominen RK, Renko JM. Biomarkers of Parkinson's disease in perspective of early diagnosis and translation of neurotrophic therapies. Basic Clin Pharmacol Toxicol 2024; 135:271-284. [PMID: 38973499 DOI: 10.1111/bcpt.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopamine neurons and aberrant deposits of alpha-synuclein (α-syn) in the brain. The symptomatic treatment is started after the onset of motor manifestations in a late stage of the disease. Preclinical studies with neurotrophic factors (NTFs) show promising results of disease-modifying neuroprotective or even neurorestorative effects. Four NTFs have entered phase I-II clinical trials with inconclusive outcomes. This is not surprising because the preclinical evidence is from acute early-stage disease models, but the clinical trials included advanced PD patients. To conclude the value of NTF therapies, clinical studies should be performed in early-stage patients with prodromal symptoms, that is, before motor manifestations. In this review, we summarize currently available diagnostic and prognostic biomarkers that could help identify at-risk patients benefiting from NTF therapies. Focus is on biochemical and imaging biomarkers, but also other modalities are discussed. Neuroimaging is the most important diagnostic tool today, but α-syn imaging is not yet viable. Modern techniques allow measuring various forms of α-syn in cerebrospinal fluid, blood, saliva, and skin. Digital biomarkers and artificial intelligence offer new means for early diagnosis and longitudinal follow-up of degenerative brain diseases.
Collapse
Affiliation(s)
- Raimo K Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Juho-Matti Renko
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Ariz M, Martínez M, Alvarez I, Fernández-Seara MA, Castellanos G, Pastor P, Pastor MA, Ortiz de Solórzano C. Automatic Segmentation and Quantification of Nigrosome-1 Neuromelanin and Iron in MRI: A Candidate Biomarker for Parkinson's Disease. J Magn Reson Imaging 2024; 60:534-547. [PMID: 37915245 DOI: 10.1002/jmri.29073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. PURPOSE Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. STUDY TYPE Prospective. SUBJECTS Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). FIELD STRENGTH/SEQUENCE 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). ASSESSMENT N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. STATISTICAL TESTS Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. RESULTS N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. DATA CONCLUSION This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Mikel Ariz
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Maria A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, and Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- Movement Disorders Unit, Neurology, University of Navarra, Pamplona, Spain
| | - Carlos Ortiz de Solórzano
- Ciberonc and Biomedical Engineering Program, CIMA University of Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Gao L, Gaurav R, Ziegner P, Ma J, Sun J, Chen J, Fang J, Fan Y, Bao Y, Zhang D, Chan P, Yang Q, Fan Z, Lehéricy S, Wu T. Regional nigral neuromelanin degeneration in asymptomatic leucine-rich repeat kinase 2 gene carrier using MRI. Sci Rep 2024; 14:10621. [PMID: 38729969 PMCID: PMC11087650 DOI: 10.1038/s41598-024-59074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Asymptomatic Leucine-Rich Repeat Kinase 2 Gene (LRRK2) carriers are at risk for developing Parkinson's disease (PD). We studied presymptomatic substantia nigra pars compacta (SNc) regional neurodegeneration in asymptomatic LRRK2 carriers compared to idiopathic PD patients using neuromelanin-sensitive MRI technique (NM-MRI). Fifteen asymptomatic LRRK2 carriers, 22 idiopathic PD patients, and 30 healthy controls (HCs) were scanned using NM-MRI. We computed volume and contrast-to-noise ratio (CNR) derived from the whole SNc and the sensorimotor, associative, and limbic SNc regions. An analysis of covariance was performed to explore the differences of whole and regional NM-MRI values among the groups while controlling the effect of age and sex. In whole SNc, LRRK2 had significantly lower CNR than HCs but non-significantly higher volume and CNR than PD patients, and PD patients significantly lower volume and CNR compared to HCs. Inside SNc regions, there were significant group effects for CNR in all regions and for volumes in the associative region, with a trend in the sensorimotor region but no significant changes in the limbic region. PD had reduced volume and CNR in all regions compared to HCs. Asymptomatic LRRK2 carriers showed globally decreased SNc volume and CNR suggesting early nigral neurodegeneration in these subjects at risk of developing PD.
Collapse
Affiliation(s)
- Linlin Gao
- Department of General Practice, Tianjin Union Medical Center, Tianjin, China
| | - Rahul Gaurav
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France.
- Movement Investigations and Therapeutics Team (MOV'IT), Paris Brain Institute - ICM, Paris, France.
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Pia Ziegner
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
- Department of Neurology (H.J.), University Hospital of Heidelberg, Heidelberg, Germany
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junyan Sun
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yangyang Fan
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongling Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stéphane Lehéricy
- Paris Brain Institute - ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France.
- Movement Investigations and Therapeutics Team (MOV'IT), Paris Brain Institute - ICM, Paris, France.
- Center for NeuroImaging Research (CENIR), Paris Brain Institute - ICM, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France.
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Tao Wu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
5
|
Yan Y, Zhang M, Ren W, Zheng X, Chang Y. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease. Eur J Neurosci 2024; 59:2616-2627. [PMID: 38441250 DOI: 10.1111/ejn.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.
Collapse
Affiliation(s)
- Yayun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wenhua Ren
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoqi Zheng
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
6
|
Liu P, Wang X, Zhang Y, Huang P, Jin Z, Cheng Z, Chen Y, Xu Q, Ghassaban K, Liu Y, Chen S, He N, Yan F, Haacke EM. PENCIL imaging: A novel approach for neuromelanin sensitive MRI in Parkinson's disease. Neuroimage 2024; 291:120588. [PMID: 38537765 DOI: 10.1016/j.neuroimage.2024.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN. METHODS This study included 30 PD subjects and 50 healthy controls (HCs) scanned at 3T. PENCIL and MTC images were acquired. NM volume in the SN pars compacta (SNpc), normalized image contrast (Cnorm), and contrast-to-noise ratio (CNR) were calculated. The change of NM volume in the SNpc with age was analyzed using the HC data. A group analysis compared differences between PD subjects and HCs. Receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculations were used to evaluate the diagnostic performance of NM volume and CNR in the SNpc. RESULTS PENCIL provided similar visualization and structural information of NM compared to MTC. In HCs, PENCIL showed higher NM volume in the SNpc than MTC, but this difference was not observed in PD subjects. PENCIL had higher CNR, while MTC had higher Cnorm. Both methods revealed a similar pattern of NM volume in SNpc changes with age. There were no significant differences in AUCs between NM volume in SNpc measured by PENCIL and MTC. Both methods exhibited comparable diagnostic performance in this regard. CONCLUSIONS PENCIL imaging provided improved CNR compared to MTC and showed similar diagnostic performance for differentiating PD subjects from HCs. The major advantage is PENCIL has rapid whole-brain coverage and, when using STAGE imaging, offers a one-stop quantitative assessment of tissue properties.
Collapse
Affiliation(s)
- Peng Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, 4201St. Antoine, Detroit, MI 48201, USA
| | - Qiuyun Xu
- SpinTech MRI, Bingham Farms, MI 48025, USA
| | | | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China; Department of Neurology, Wayne State University School of Medicine, 4201St. Antoine, Detroit, MI 48201, USA; Department of Radiology, Wayne State University School of Medicine, 3990 John R Street, MRI Concourse, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. The habenula in Parkinson's disease: Anatomy, function, and implications for mood disorders - A narrative review. J Chem Neuroanat 2024; 136:102392. [PMID: 38237746 DOI: 10.1016/j.jchemneu.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
8
|
Palermo G, Galgani A, Bellini G, Lombardo F, Martini N, Morganti R, Paoli D, De Cori S, Frijia F, Siciliano G, Ceravolo R, Giorgi FS. Neurogenic orthostatic hypotension in Parkinson's disease: is there a role for locus coeruleus magnetic resonance imaging? J Neural Transm (Vienna) 2024; 131:157-164. [PMID: 38032367 PMCID: PMC10791951 DOI: 10.1007/s00702-023-02721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and degenerates early in Parkinson's disease (PD). The objective of this study is to test whether degeneration of the LC is associated with orthostatic hypotension (OH) in PD. A total of 22 cognitively intact PD patients and 52 age-matched healthy volunteers underwent 3 T magnetic resonance (MRI) with neuromelanin-sensitive T1-weighted sequences (LC-MRI). For each subject, a template space-based LC-MRI was used to calculate LC signal intensity (LC contrast ratio-LCCR) and the estimated number of voxels (LCVOX) belonging to LC. Then, we compared the LC-MRI parameters in PD patients with OH (PDOH+) versus without OH (PDOH-) (matched for sex, age, and disease duration) using one-way analysis of variance followed by multiple comparison tests. We also tested for correlations between subject's LC-MRI features and orthostatic drop in systolic blood pressure (SBP). PDOH- and PDOH+ did not differ significantly (p > 0.05) based on demographics and clinical characteristics, except for blood pressure measurements and SCOPA-AUT cardiovascular domain (p < 0.05). LCCR and LCVOX measures were significantly lower in PD compared to HC, while no differences were observed between PDOH- and PDOH+. Additionally, no correlation was found between the LC-MRI parameters and the orthostatic drop in SBP or the clinical severity of autonomic symptoms (p > 0.05). Conversely, RBD symptom severity negatively correlated with several LC-MRI parameters. Our results failed to indicate a link between the LC-MRI features and the presence of OH in PD but confirmed a marked alteration of LC signal in PD patients.
Collapse
Affiliation(s)
- Giovanni Palermo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Gabriele Bellini
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Nicola Martini
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | | | - Davide Paoli
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara De Cori
- Department of Radiology, Fondazione Monasterio/CNR, Pisa, Italy
| | - Francesca Frijia
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
- Bioengineering Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | - Gabriele Siciliano
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|
9
|
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147:337-351. [PMID: 37669320 PMCID: PMC10834262 DOI: 10.1093/brain/awad300] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
10
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
11
|
Shaff N, Erhardt E, Nitschke S, Julio K, Wertz C, Vakhtin A, Caprihan A, Suarez‐Cedeno G, Deligtisch A, Richardson SP, Mayer AR, Ryman SG. Comparison of automated and manual quantification methods for neuromelanin-sensitive MRI in Parkinson's disease. Hum Brain Mapp 2024; 45:e26544. [PMID: 38041476 PMCID: PMC10789205 DOI: 10.1002/hbm.26544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.
Collapse
Affiliation(s)
| | - Erik Erhardt
- Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Kayla Julio
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
| | | | | | | | - Gerson Suarez‐Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- New Mexico VA Health Care SystemAlbuquerqueNew MexicoUSA
| | | | - Sephira G. Ryman
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
12
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
13
|
Chocarro J, Rico AJ, Ariznabarreta G, Roda E, Honrubia A, Collantes M, Peñuelas I, Vázquez A, Rodríguez-Pérez AI, Labandeira-García JL, Vila M, Lanciego JL. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates. Brain 2023; 146:5000-5014. [PMID: 37769648 PMCID: PMC10689915 DOI: 10.1093/brain/awad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alberto J Rico
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elvira Roda
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Adriana Honrubia
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - María Collantes
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Vázquez
- Department of Neurosurgery, Hospital Universitario de Navarra, Servicio Navarro de Salud, 31008 Pamplona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Vall d’Hebron Research Institute, Neurodegenerative Diseses Research Group, 08035 Barcelona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José L Lanciego
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
14
|
Oshima S, Fushimi Y, Miyake KK, Nakajima S, Sakata A, Okuchi S, Hinoda T, Otani S, Numamoto H, Fujimoto K, Shima A, Nambu M, Sawamoto N, Takahashi R, Ueno K, Saga T, Nakamoto Y. Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance. Jpn J Radiol 2023; 41:1216-1225. [PMID: 37256470 PMCID: PMC10613599 DOI: 10.1007/s11604-023-01452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson's disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR). MATERIALS AND METHODS We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR. RESULTS Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR. CONCLUSION Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.
Collapse
Affiliation(s)
- Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kanae Kawai Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hitomi Numamoto
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masahito Nambu
- MRI Systems Division, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara-Shi, Tochigi, 324-0036, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kentaro Ueno
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tsuneo Saga
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
15
|
Langley J, Hwang KS, Huddleston DE, Hu XP. Nigral volume loss in prodromal, early, and moderate Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.19.23294281. [PMID: 37645770 PMCID: PMC10462207 DOI: 10.1101/2023.08.19.23294281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The loss of melanized neurons in the substantia nigra pars compacta (SNc) is a hallmark pathology in Parkinson's disease (PD). Melanized neurons in SNc can be visualized in vivo using magnetization transfer (MT) effects. Nigral volume was extracted in data acquired with a MT-prepared gradient echo sequence in 33 controls, 83 non-manifest carriers (42 LRRK2 and 41 GBA nonmanifest carriers), 65 prodromal hyposmic participants, 105 de novo PD patients and 26 48-month PD patients from the Parkinson's Progressive Markers Initiative. No difference in nigral volume was seen between controls and LRRK2 and GBA non-manifest carriers (F=0.076; P=0.927). A significant main effect in group was observed between controls, prodromal hyposmic participants, and overt PD patients (F=5.192; P=0.002). Longer disease duration significantly correlated with lower nigral volume (r=-0.252; P=0.010). This study shows that nigral depigmentation can be robustly detected in prodromal hyposmic participants and overt PD patients.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
| | - Kristy S. Hwang
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | | | - Xiaoping P. Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
16
|
Liu Q, Wang P, Liu C, Xue F, Wang Q, Chen Y, Hou R, Chen T. An investigation of neuromelanin distribution in substantia nigra and locus coeruleus in patients with Parkinson's disease using neuromelanin-sensitive MRI. BMC Neurol 2023; 23:301. [PMID: 37580712 PMCID: PMC10424360 DOI: 10.1186/s12883-023-03350-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023] Open
Abstract
Loss of neuromelanin in the midbrain is known in Parkinson's disease(PD), which can now be directly detected by neuromelanin-sensitive MRI(NM-MRI). This case-control study was to investigate the distribution of neuromelanin in the substantia nigra(SN) and the locus coeruleus(LC) using NM-MRI technique and evaluate its potential as a diagnostic marker for PD. 10 early PD patients(H&Y stage I, II), 11 progressive PD patients(H&Y stage III-V), and 10 healthy controls matched in age and gender were recruited. All participants completed clinical and psychometric assessments as well as NM-MRI scans. Neuromelanin signal intensities in SN and LC were measured by contrast-to-noise ratios(CNRs) derived from NM-MRI scans. There were significant decreases of CNRs in SNpc(including anterior, central, and posterior) and LC in PD patients compared to controls. There were also significant differences of CNR between the left and right sides. CNR in LC had a negative correlation with the Non-Motor Symptoms Scale(NMSS) score in PD patients(|R|=0.49), whereas CNR in SNpc did not correlate with Unified Parkinson Disease Rating Scale(UPDRS) score(|R|<0.3). The receiver operating characteristic(ROC) curves revealed that the CNR in LC had a high diagnostic specificity of 90.1% in progressive patients. This study provides new evidence for the asymmetric distribution of neuromelanin in SN and the LC of patients with PD. The neuromelanin loss is bilateral and more predominately in LC than that in SN. This distinct neuromelanin distribution pattern may offer a potential diagnostic marker and a potential neuropharmacological intervention target for PD patients.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Pan Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Chenghe Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Feng Xue
- Department of Radiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Qian Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Yuqing Chen
- School of Clinical Medicine Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ruihua Hou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Teng Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
17
|
Wolters AF, Heijmans M, Priovoulos N, Jacobs HIL, Postma AA, Temel Y, Kuijf ML, Michielse S. Neuromelanin related ultra-high field signal intensity of the locus coeruleus differs between Parkinson's disease and controls. Neuroimage Clin 2023; 39:103479. [PMID: 37494758 PMCID: PMC10394012 DOI: 10.1016/j.nicl.2023.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Neuromelanin related signal changes in catecholaminergic nuclei are considered as a promising MRI biomarker in Parkinson's disease (PD). Until now, most studies have investigated the substantia nigra (SN), while signal changes might be more prominent in the locus coeruleus (LC). Ultra-high field MRI improves the visualisation of these small brainstem regions and might support the development of imaging biomarkers in PD. OBJECTIVES To compare signal intensity of the SN and LC on Magnetization Transfer MRI between PD patients and healthy controls (HC) and to explore its association with cognitive performance in PD. METHODS This study was conducted using data from the TRACK-PD study, a longitudinal 7T MRI study. A total of 78 early-stage PD patients and 36 HC were included. A mask for the SN and LC was automatically segmented and manually corrected. Neuromelanin related signal intensity of the SN and LC was compared between PD and HC. RESULTS PD participants showed a lower contrast-to-noise ratio (CNR) in the right SN (p = 0.029) and left LC (p = 0.027). After adding age as a confounder, the CNR of the right SN did not significantly differ anymore between PD and HC (p = 0.055). Additionally, a significant positive correlation was found between the SN CNR and memory function. DISCUSSION This study confirms that neuromelanin related signal intensity of the LC differs between early-stage PD patients and HC. No significant difference was found in the SN. This supports the theory of bottom-up disease progression in PD. Furthermore, loss of SN integrity might influence working memory or learning capabilities in PD patients.
Collapse
Affiliation(s)
- Amée F Wolters
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Margot Heijmans
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alida A Postma
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Pagliaccio D, Wengler K, Durham K, Fontaine M, Rueppel M, Becker H, Bilek E, Pieper S, Risdon C, Horga G, Fitzgerald KD, Marsh R. Probing midbrain dopamine function in pediatric obsessive-compulsive disorder via neuromelanin-sensitive magnetic resonance imaging. Mol Psychiatry 2023; 28:3075-3082. [PMID: 37198261 PMCID: PMC10189717 DOI: 10.1038/s41380-023-02105-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Obsessive-compulsive disorder (OCD) is an impairing psychiatric condition, which often onsets in childhood. Growing research highlights dopaminergic alterations in adult OCD, yet pediatric studies are limited by methodological constraints. This is the first study to utilize neuromelanin-sensitive MRI as a proxy for dopaminergic function among children with OCD. N = 135 youth (6-14-year-olds) completed high-resolution neuromelanin-sensitive MRI across two sites; n = 64 had an OCD diagnosis. N = 47 children with OCD completed a second scan after cognitive-behavioral therapy. Voxel-wise analyses identified that neuromelanin-MRI signal was higher among children with OCD compared to those without (483 voxels, permutation-corrected p = 0.018). Effects were significant within both the substania nigra pars compacta (p = 0.004, Cohen's d = 0.51) and ventral tegmental area (p = 0.006, d = 0.50). Follow-up analyses indicated that more severe lifetime symptoms (t = -2.72, p = 0.009) and longer illness duration (t = -2.22, p = 0.03) related to lower neuromelanin-MRI signal. Despite significant symptom reduction with therapy (p < 0.001, d = 1.44), neither baseline nor change in neuromelanin-MRI signal associated with symptom improvement. Current results provide the first demonstration of the utility of neuromelanin-MRI in pediatric psychiatry, specifically highlighting in vivo evidence for midbrain dopamine alterations in treatment-seeking youth with OCD. Neuromelanin-MRI likely indexes accumulating alterations over time, herein, implicating dopamine hyperactivity in OCD. Given evidence of increased neuromelanin signal in pediatric OCD but negative association with symptom severity, additional work is needed to parse potential longitudinal or compensatory mechanisms. Future studies should explore the utility of neuromelanin-MRI biomarkers to identify early risk prior to onset, parse OCD subtypes or symptom heterogeneity, and explore prediction of pharmacotherapy response.
Collapse
Affiliation(s)
- David Pagliaccio
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Katherine Durham
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martine Fontaine
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Meryl Rueppel
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Becker
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Emily Bilek
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Pieper
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Caroline Risdon
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Rachel Marsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
19
|
Seong M, Park S, Sung YH, Kim EY. Diagnostic performance of a high-spatial-resolution voxelwise analysis of neuromelanin-sensitive imaging in early-stage idiopathic Parkinson's disease. BMC Med Imaging 2023; 23:64. [PMID: 37202720 DOI: 10.1186/s12880-023-01018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Quantitative assessments of neuromelanin (NM) of the substantia nigra pars compacta (SNpc) in neuromelanin-sensitive MRI (NM-MRI) to determine its abnormality have been conducted by measuring either the volume or contrast ratio (CR) of the SNpc. A recent study determined the regions in the SNpc that are significantly different between early-stage idiopathic Parkinson's disease (IPD) patients and healthy controls (HCs) using a high spatial-resolution NM-MRI template, which enables a template-based voxelwise analysis to overcome the susceptibility of CR measurement to inter-rater discrepancy. We aimed to assess the diagnostic performance, which has not been reported, of the CRs between early-stage IPD patients and HCs using a NM-MRI template. METHODS We retrospectively enrolled early-stage IPD patients (n = 50) and HCs (n = 50) who underwent 0.8-mm isovoxel NM-MRI and dopamine-transporter PET as the standard of reference. A template-based voxelwise analysis revealed two regions in nigrosomes 1 and 2 (N1 and N2, respectively), with significant differences in each substantia nigra (SNpc) between IPD and HCs. The mean CR values of N1, N2, volume-weighted mean of N1 and N2 (N1 + N2), and whole SNpc on each side were compared between IPD and HC using the independent t-test or the Mann-Whitney U test. The diagnostic performance was compared in each region using receiver operating characteristic curves. RESULTS The mean CR values in the right N1 (0.149459 vs. 0.194505), left N1 (0.133328 vs. 0.169160), right N2 (0.230245 vs. 0.278181), left N2 (0.235784 vs. 0.314169), right N1 + N2 (0.155322 vs. 0.278143), left N1 + N2 (0.140991 vs. 0.276755), right whole SNpc (0.131397 vs. 0.141422), and left whole SNpc (0.127099 vs. 0.137873) significantly differed between IPD patients and HCs (all p < 0.001). The areas under the curve of the left N1 + N2, right N1 + N2, left N1, right N1, left N2, right N2, left whole SNpc, and right whole SNpc were 0.994 (sensitivity, 98.0%; specificity, 94.0%), 0.985, 0.804, 0.802, 0.777, 0.766, 0.632, and 0.606, respectively. CONCLUSION Our NM-MRI template-based CR measurements revealed significant differences between early-stage IPD patients and HCs. The CR values of the left N1 + N2 demonstrated the highest diagnostic performance.
Collapse
Affiliation(s)
- Minjung Seong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | | | - Young Hee Sung
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
20
|
Outeiro TF, Alcalay RN, Antonini A, Attems J, Bonifati V, Cardoso F, Chesselet MF, Hardy J, Madeo G, McKeith I, Mollenhauer B, Moore DJ, Rascol O, Schlossmacher MG, Soreq H, Stefanis L, Ferreira JJ. Defining the Riddle in Order to Solve It: There Is More Than One "Parkinson's Disease". Mov Disord 2023. [PMID: 37156737 DOI: 10.1002/mds.29419] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Roy N Alcalay
- Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Angelo Antonini
- Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL Movement Disorders Centre, University College London, London, United Kingdom
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Olivier Rascol
- Department of Neurosciences, Clinical Investigation Center CIC 1436, Parkinson Toulouse Expert Centre, NS-Park/FCRIN Network and Neuro Toul COEN Centre, Toulouse University Hospital, INSERM, University of Toulouse 3, Toulouse, France
| | - Michael G Schlossmacher
- Program in Neuroscience and Division of Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Hermona Soreq
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonidas Stefanis
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CNS-Campus Neurológico, Torres Vedras, Portugal
| |
Collapse
|
21
|
Sibahi A, Gandhi R, Al-Haddad R, Therriault J, Pascoal T, Chamoun M, Boutin-Miller K, Tardif C, Rosa-Neto P, Cassidy CM. Characterization of an automated method to segment the human locus coeruleus. Hum Brain Mapp 2023; 44:3913-3925. [PMID: 37126580 DOI: 10.1002/hbm.26324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Following the development of magnetic resonance imaging (MRI) methods to assay the integrity of catecholamine nuclei, including the locus coeruleus (LC), there has been an effort to develop automated methods that can accurately segment this small structure in an automated manner to promote its widespread use and overcome limitations of manual segmentation. Here we characterize an automated LC segmentation approach (referred to as the funnel-tip [FT] method) in healthy individuals and individuals with LC degeneration in the context of Alzheimer's disease (AD, confirmed with tau-PET imaging using [18F]MK6240). The first sample included n = 190 individuals across the AD spectrum from cognitively normal to moderate AD. LC signal assayed with FT segmentation showed excellent agreement with manual segmentation (intraclass correlation coefficient [ICC] = 0.91). Compared to other methods, the FT method showed numerically higher correlation to AD status (defined by presence of tau: Cohen's d = 0.64) and AD severity (Braak stage: Pearson R = -.35, cognitive function: R = .25). In a separate sample of n = 12 control participants, the FT method showed excellent scan-rescan reliability (ICC = 0.82). In another sample of n = 30 control participants, we found that the structure of the LC defined by FT segmentation approximated its expected shape as a contiguous line: <5% of LC voxels strayed >1 voxel (0.69 mm) from this line. The FT LC segmentation shows high agreement with manual segmentation and captures LC degeneration in AD. This practical method may facilitate larger research studies of the human LC-norepinephrine system and has potential to support future use of neuromelanin-sensitive MRI as a clinical biomarker.
Collapse
Affiliation(s)
- Ahmad Sibahi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rushali Gandhi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rami Al-Haddad
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tharick Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Krysta Boutin-Miller
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Clifford M Cassidy
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Martínez M, Ariz M, Alvarez I, Castellanos G, Aguilar M, Hernández-Vara J, Caballol N, Garrido A, Bayés À, Vilas D, Marti MJ, Pastor P, de Solórzano CO, Pastor MA. Brainstem neuromelanin and iron MRI reveals a precise signature for idiopathic and LRRK2 Parkinson's disease. NPJ Parkinsons Dis 2023; 9:62. [PMID: 37061532 PMCID: PMC10105708 DOI: 10.1038/s41531-023-00503-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
Neuromelanin (NM) loss in substantia nigra pars compacta (SNc) and locus coeruleus (LC) reflects neuronal death in Parkinson's disease (PD). Since genetically-determined PD shows varied clinical expressivity, we wanted to accurately quantify and locate brainstem NM and iron, to discover whether specific MRI patterns are linked to Leucine-rich repeat kinase 2 G2019S PD (LRRK2-PD) or idiopathic Parkinson's disease (iPD). A 3D automated MRI atlas-based segmentation pipeline (3D-ABSP) for NM/iron-sensitive MRI images topographically characterized the SNc, LC, and red nucleus (RN) neuronal loss and calculated NM/iron contrast ratio (CR) and normalized volume (nVol). Left-side NM nVol was larger in all groups. PD had lower NM CR and nVol in ventral-caudal SNc, whereas iron increased in lateral, medial-rostral, and caudal SNc. The SNc NM CR reduction was associated with psychiatric symptoms. LC CR and nVol discriminated better among subgroups: LRRK2-PD had similar LC NM CR and nVol as that of controls, and larger LC NM nVol and RN iron CR than iPD. PD showed higher iron SNc nVol than controls, especially among LRRK2-PD. ROC analyses showed an AUC > 0.92 for most pairwise subgroup comparisons, with SNc NM being the best discriminator between HC and PD. NM measures maintained their discriminator power considering the subgroup of PD patients with less than 5 years of disease duration. The SNc iron CR and nVol increase was associated with longer disease duration in PD patients. The 3D-ABSP sensitively identified NM and iron MRI patterns strongly correlated with phenotypic PD features.
Collapse
Affiliation(s)
- Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Mikel Ariz
- Ciberonc and Solid Tumours and Biomarkers Program, CIMA University of Navarra, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miquel Aguilar
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jorge Hernández-Vara
- Neurology Department, Hospital Universitari Vall D´Hebron, Neurodegenerative Diseases Research Group, Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Núria Caballol
- Department of Neurology, Complex Hospitalari Moisès Broggi, Sant Joan Despí, Barcelona, Spain
- Parkinson and Movement disorders Unit, Hospital Quirón-Teknon, Barcelona, Spain
| | - Alicia Garrido
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas: CB06/05/0018-ISCIII), ERN-RND Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine & Institut de Neurociències of the University of Barcelona, Barcelona, Catalonia, Spain
| | - Àngels Bayés
- Parkinson and Movement disorders Unit, Hospital Quirón-Teknon, Barcelona, Spain
| | - Dolores Vilas
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Catalonia, Spain
| | - Maria Jose Marti
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas: CB06/05/0018-ISCIII), ERN-RND Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine & Institut de Neurociències of the University of Barcelona, Barcelona, Catalonia, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Spain.
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Catalonia, Spain.
| | | | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain.
- Neurosciences, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
23
|
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of Neuromelanin MR Imaging in Parkinson Disease. J Magn Reson Imaging 2023; 57:337-352. [PMID: 36017746 PMCID: PMC10086789 DOI: 10.1002/jmri.28414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intracellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping. An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed, the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly important roles for enhancing diagnostic capabilities in PD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Parkinson's Disease and Movement Disorders Program, Detroit, Michigan, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,SpinTech, Inc, Bingham Farms, Michigan, USA
| |
Collapse
|
24
|
Chen Y, Gong T, Sun C, Yang A, Gao F, Chen T, Chen W, Wang G. Regional age-related changes of neuromelanin and iron in the substantia nigra based on neuromelanin accumulation and iron deposition. Eur Radiol 2023; 33:3704-3714. [PMID: 36680605 DOI: 10.1007/s00330-023-09411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To investigate age-related neuromelanin signal variation and iron content changes in the subregions of substantia nigra (SN) using magnetization transfer contrast neuromelanin-sensitive multi-echo fast field echo sequence in a normal population. METHODS In this prospective study, 115 healthy volunteers between 20 and 86 years of age were recruited and scanned using 3.0-T MRI. We manually delineated neuromelanin accumulation and iron deposition regions in neuromelanin image and quantitative susceptibility mapping, respectively. We calculated the overlap region using the two measurements mentioned above. Partial correlation analysis was used to evaluate the correlations between volume, contrast ratio (CR), susceptibility of three subregions of SN, and age. Curve estimation models were used to find the best regression model. RESULTS CR increased with age (r = 0.379, p < 0.001; r = 0.371, p < 0.001), while volume showed an age-related decline (r = -0.559, p < 0.001; r = -0.410, p < 0.001) in the neuromelanin accumulation and overlap regions. Cubic polynomial regression analysis found a small increase in neuromelanin accumulation volume with age until 34, followed by a significant decrease until the 80 s (R2 = 0.358, p < 0.001). No significant correlations were found between susceptibility and age in any subregion. No correlation was found between CR and susceptibility in the overlap region. CONCLUSIONS Our results indicated that CR increased with age, while volume showed an age-related decline in the overlap region. We further found that the neuromelanin accumulation region volume increased until the 30 s and decreased into the 80 s. This study may provide a reference for future neurodegenerative elucidations of substantia nigra. KEY POINTS • Our results define the regional changes in neuromelanin and iron in the substantia nigra with age in the normal population, especially in the overlap region. • The contrast ratio increased with age in the neuromelanin accumulation and overlap regions, and volume showed an age-related decline, while contrast ratio and volume do not affect each other indirectly. • The contrast ratio of hyperintense neuromelanin in the overlap region was unaffected by iron content.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | | | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China. .,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
25
|
Hwang KS, Langley J, Tripathi R, Hu XP, Huddleston DE. In vivo detection of substantia nigra and locus coeruleus volume loss in Parkinson's disease using neuromelanin-sensitive MRI: Replication in two cohorts. PLoS One 2023; 18:e0282684. [PMID: 37053195 PMCID: PMC10101455 DOI: 10.1371/journal.pone.0282684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/20/2023] [Indexed: 04/14/2023] Open
Abstract
Patients with Parkinson's disease undergo a loss of melanized neurons in substantia nigra pars compacta and locus coeruleus. Very few studies have assessed substantia nigra pars compacta and locus coeruleus pathology in Parkinson's disease simultaneously with magnetic resonance imaging (MRI). Neuromelanin-sensitive MRI measures of substantia nigra pars compacta and locus coeruleus volume based on explicit magnetization transfer contrast have been shown to have high scan-rescan reproducibility in controls, but no study has replicated detection of Parkinson's disease-associated volume loss in substantia nigra pars compacta and locus coeruleus in multiple cohorts with the same methodology. Two separate cohorts of Parkinson's disease patients and controls were recruited from the Emory Movement Disorders Clinic and scanned on two different MRI scanners. In cohort 1, imaging data from 19 controls and 22 Parkinson's disease patients were acquired with a Siemens Trio 3 Tesla scanner using a 2D gradient echo sequence with magnetization transfer preparation pulse. Cohort 2 consisted of 33 controls and 39 Parkinson's disease patients who were scanned on a Siemens Prisma 3 Tesla scanner with a similar imaging protocol. Locus coeruleus and substantia nigra pars compacta volumes were segmented in both cohorts. Substantia nigra pars compacta volume (Cohort 1: p = 0.0148; Cohort 2: p = 0.0011) and locus coeruleus volume (Cohort 1: p = 0.0412; Cohort 2: p = 0.0056) were significantly reduced in the Parkinson's disease group as compared to controls in both cohorts. This imaging approach robustly detects Parkinson's disease effects on these structures, indicating that it is a promising marker for neurodegenerative neuromelanin loss.
Collapse
Affiliation(s)
- Kristy S Hwang
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California, United States of America
| | - Richa Tripathi
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California, United States of America
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Daniel E Huddleston
- Department of Neurology, Emory University,Atlanta, Georgia, United States of America
| |
Collapse
|
26
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
27
|
Tinaz S. Magnetic resonance imaging modalities aid in the differential diagnosis of atypical parkinsonian syndromes. Front Neurol 2023; 14:1082060. [PMID: 36816565 PMCID: PMC9932598 DOI: 10.3389/fneur.2023.1082060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Accurate and timely diagnosis of atypical parkinsonian syndromes (APS) remains a challenge. Especially early in the disease course, the clinical manifestations of the APS overlap with each other and with those of idiopathic Parkinson's disease (PD). Recent advances in magnetic resonance imaging (MRI) technology have introduced promising imaging modalities to aid in the diagnosis of APS. Some of these MRI modalities are also included in the updated diagnostic criteria of APS. Importantly, MRI is safe for repeated use and more affordable and accessible compared to nuclear imaging. These advantages make MRI tools more appealing for diagnostic purposes. As the MRI field continues to advance, the diagnostic use of these techniques in APS, alone or in combination, are expected to become commonplace in clinical practice.
Collapse
Affiliation(s)
- Sule Tinaz
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Department of Neurology, Clinical Neurosciences Imaging Center, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Sule Tinaz ✉
| |
Collapse
|
28
|
Langley J, Hwang KS, Hu XP, Huddleston DE. Nigral volumetric and microstructural measures in individuals with scans without evidence of dopaminergic deficit. Front Neurosci 2022; 16:1048945. [PMID: 36507343 PMCID: PMC9731284 DOI: 10.3389/fnins.2022.1048945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Striatal dopamine transporter (DAT) imaging using 123I-ioflupane single photon positron emitted computed tomography (SPECT) (DaTScan, GE) identifies 5-20% of newly diagnosed Parkinson's disease (PD) subjects enrolling in clinical studies to have scans without evidence of dopaminergic deficit (SWEDD). These individuals meet diagnostic criteria for PD, but do not clinically progress as expected, and they are not believed to have neurodegenerative Parkinsonism. Inclusion of SWEDD participants in PD biomarker studies or therapeutic trials may therefore cause them to fail. DaTScan can identify SWEDD individuals, but it is expensive and not widely available; an alternative imaging approach is needed. Here, we evaluate the use of neuromelanin-sensitive, iron-sensitive, and diffusion contrasts in substantia nigra pars compacta (SNpc) to differentiate SWEDD from PD individuals. Methods Neuromelanin-sensitive, iron-sensitive, and diffusion imaging data for SWEDD, PD, and control subjects were downloaded from the Parkinson's progression markers initiative (PPMI) database. SNpc volume, SNpc iron (R 2), and SNpc free water (FW) were measured for each participant. Results Significantly smaller SNpc volume was seen in PD as compared to SWEDD (P < 10-3) and control (P < 10-3) subjects. SNpc FW was elevated in the PD group relative to controls (P = 0.017). No group difference was observed in SNpc R 2. Conclusion In conclusion, nigral volume and FW in the SWEDD group were similar to that of controls, while a reduction in nigral volume and increased FW were observed in the PD group relative to SWEDD and control participants. These results suggest that these MRI measures should be explored as a cost-effective alternative to DaTScan for evaluation of the nigrostriatal system.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States
| | - Kristy S. Hwang
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Xiaoping P. Hu
- Center for Advanced Neuroimaging, University of California, Riverside, Riverside, CA, United States,Department of Bioengineering, University of California, Riverside, Riverside, CA, United States,*Correspondence: Xiaoping P. Hu,
| | - Daniel E. Huddleston
- Department of Neurology, Emory University, Atlanta, GA, United States,Daniel E. Huddleston,
| |
Collapse
|
29
|
Gaurav R, Valabrègue R, Yahia-Chérif L, Mangone G, Narayanan S, Arnulf I, Vidailhet M, Corvol JC, Lehéricy S. NigraNet: An automatic framework to assess nigral neuromelanin content in early Parkinson's disease using convolutional neural network. Neuroimage Clin 2022; 36:103250. [PMID: 36451356 PMCID: PMC9668659 DOI: 10.1016/j.nicl.2022.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parkinson's disease (PD) demonstrates neurodegenerative changes in the substantia nigra pars compacta (SNc) using neuromelanin-sensitive (NM)-MRI. As SNc manual segmentation is prone to substantial inter-individual variability across raters, development of a robust automatic segmentation framework is necessary to facilitate nigral neuromelanin quantification. Artificial intelligence (AI) is gaining traction in the neuroimaging community for automated brain region segmentation tasks using MRI. OBJECTIVE Developing and validating AI-based NigraNet, a fully automatic SNc segmentation framework allowing nigral neuromelanin quantification in patients with PD using NM-MRI. METHODS We prospectively included 199 participants comprising 144 early-stage idiopathic PD patients (disease duration = 1.5 ± 1.0 years) and 55 healthy volunteers (HV) scanned using a 3 Tesla MRI including whole brain T1-weighted anatomical imaging and NM-MRI. The regions of interest (ROI) were delineated in all participants automatically using NigraNet, a modified U-net, and compared to manual segmentations performed by two experienced raters. The SNc volumes (Vol), volumes corrected by total intracranial volume (Cvol), normalized signal intensity (NSI) and contrast-to-noise ratio (CNR) were computed. One-way GLM-ANCOVA was performed while adjusting for age and sex as covariates. Diagnostic performance measurement was assessed using the receiver operating characteristic (ROC) analysis. Inter and intra-observer variability were estimated using Dice similarity coefficient (DSC). The agreements between methods were tested using intraclass correlation coefficient (ICC) based on a mean-rating, two-way, mixed-effects model estimates for absolute agreement. Cronbach's alpha and Bland-Altman plots were estimated to assess inter-method consistency. RESULTS Using both methods, Vol, Cvol, NSI and CNR measurements differed between PD and HV with an effect of sex for Cvol and CNR. ICC values between the methods demonstrated optimal agreement for Cvol and CNR (ICC > 0.9) and high reproducibility (DSC: 0.80) was also obtained. The SNc measurements also showed good to excellent consistency values (Cronbach's alpha > 0.87). Bland-Altman plots of agreement demonstrated no association of SNc ROI measurement differences between the methods and ROI average measurements while confirming that 95 % of the data points were ranging between the limits of mean difference (d ± 1.96xSD). Percentage changes between PD and HV were -27.4 % and -17.7 % for Vol, -30.0 % and -22.2 % for Cvol, -15.8 % and -14.4 % for NSI, -17.1 % and -16.0 % for CNR for automatic and manual measurements respectively. Using automatic method, in the entire dataset, we obtained the areas under the ROC curve (AUC) of 0.83 for Vol, 0.85 for Cvol, 0.79 for NSI and 0.77 for CNR whereas in the training dataset of 0.96 for Vol, 0.95 for Cvol, 0.85 for NSI and 0.85 for CNR. Disease duration correlated negatively with NSI of the patients for both the automatic and manual measurements. CONCLUSIONS We presented an AI-based NigraNet framework that utilizes a small MRI training dataset to fully automatize the SNc segmentation procedure with an increased precision and more reproducible results. Considering the consistency, accuracy and speed of our approach, this study could be a crucial step towards the implementation of a time-saving non-rater dependent fully automatic method for studying neuromelanin changes in clinical settings and large-scale neuroimaging studies.
Collapse
Affiliation(s)
- Rahul Gaurav
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France.
| | - Romain Valabrègue
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France
| | - Lydia Yahia-Chérif
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France
| | - Graziella Mangone
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Isabelle Arnulf
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Sleep Disorders Unit, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Marie Vidailhet
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Jean-Christophe Corvol
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Stéphane Lehéricy
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France; Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
30
|
Ben Bashat D, Thaler A, Lerman Shacham H, Even-Sapir E, Hutchison M, Evans KC, Orr-Urterger A, Cedarbaum JM, Droby A, Giladi N, Mirelman A, Artzi M. Neuromelanin and T 2*-MRI for the assessment of genetically at-risk, prodromal, and symptomatic Parkinson's disease. NPJ Parkinsons Dis 2022; 8:139. [PMID: 36271084 PMCID: PMC9586960 DOI: 10.1038/s41531-022-00405-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
MRI was suggested as a promising method for the diagnosis and assessment of Parkinson's Disease (PD). We aimed to assess the sensitivity of neuromelanin-MRI and T2* with radiomics analysis for detecting PD, identifying individuals at risk, and evaluating genotype-related differences. Patients with PD and non-manifesting (NM) participants [NM-carriers (NMC) and NM-non-carriers (NMNC)], underwent MRI and DAT-SPECT. Imaging-based metrics included 48 neuromelanin and T2* radiomics features and DAT-SPECT specific-binding-ratios (SBR), were extracted from several brain regions. Imaging values were assessed for their correlations with age, differences between groups, and correlations with the MDS-likelihood-ratio (LR) score. Several machine learning classifiers were evaluated for group classification. A total of 127 participants were included: 46 patients with PD (62.3 ± 10.0 years) [15:LRRK2-PD, 16:GBA-PD, and 15:idiopathic-PD (iPD)], 47 NMC (51.5 ± 8.3 years) [24:LRRK2-NMC and 23:GBA-NMC], and 34 NMNC (53.5 ± 10.6 years). No significant correlations were detected between imaging parameters and age. Thirteen MRI-based parameters and radiomics features demonstrated significant differences between PD and NMNC groups. Support-Vector-Machine (SVM) classifier achieved the highest performance (AUC = 0.77). Significant correlations were detected between LR scores and two radiomic features. The classifier successfully identified two out of three NMC who converted to PD. Genotype-related differences were detected based on radiomic features. SBR values showed high sensitivity in all analyses. In conclusion, neuromelanin and T2* MRI demonstrated differences between groups and can be used for the assessment of individuals at-risk in cases when DAT-SPECT can't be performed. Combining neuromelanin and T2*-MRI provides insights into the pathophysiology underlying PD, and suggests that iron accumulation precedes neuromelanin depletion during the prodromal phase.
Collapse
Affiliation(s)
- Dafna Ben Bashat
- grid.413449.f0000 0001 0518 6922Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hedva Lerman Shacham
- grid.413449.f0000 0001 0518 6922Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Einat Even-Sapir
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Avi Orr-Urterger
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jesse M. Cedarbaum
- Coeruleus Clinical Sciences LLC, Woodbridge, CT USA ,grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA
| | - Amgad Droby
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moran Artzi
- grid.413449.f0000 0001 0518 6922Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Furukawa K, Shima A, Kambe D, Nishida A, Wada I, Sakamaki H, Yoshimura K, Terada Y, Sakato Y, Mitsuhashi M, Sawamura M, Nakanishi E, Taruno Y, Yamakado H, Fushimi Y, Okada T, Nakamoto Y, Takahashi R, Sawamoto N. Motor progression and nigrostriatal neurodegeneration in Parkinson’s disease. Ann Neurol 2022; 92:110-121. [DOI: 10.1002/ana.26373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Koji Furukawa
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Atsushi Shima
- Human Brain Research Center Kyoto University Graduate School of Medicine Kyoto Japan
| | - Daisuke Kambe
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Akira Nishida
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Ikko Wada
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Haruhi Sakamaki
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kenji Yoshimura
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yuta Terada
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yusuke Sakato
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Masahiro Mitsuhashi
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Masanori Sawamura
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Etsuro Nakanishi
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yosuke Taruno
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Hodaka Yamakado
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tomohisa Okada
- Human Brain Research Center Kyoto University Graduate School of Medicine Kyoto Japan
- Department of Diagnostic Imaging and Nuclear Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Ryosuke Takahashi
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences Kyoto University Graduate School of Medicine Kyoto Japan
| |
Collapse
|
32
|
Xing Y, Sapuan AH, Martín-Bastida A, Naidu S, Tench C, Evans J, Sare G, Schwarz ST, Al-Bachari S, Parkes LM, Kanavou S, Raw J, Silverdale M, Bajaj N, Pavese N, Burn D, Piccini P, Grosset DG, Auer DP. Neuromelanin-MRI to Quantify and Track Nigral Depigmentation in Parkinson's Disease: A Multicenter Longitudinal Study Using Template-Based Standardized Analysis. Mov Disord 2022; 37:1028-1039. [PMID: 35165920 PMCID: PMC9303322 DOI: 10.1002/mds.28934] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/24/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Clinical diagnosis and monitoring of Parkinson's disease (PD) remain challenging because of the lack of an established biomarker. Neuromelanin‐magnetic resonance imaging (NM‐MRI) is an emerging biomarker of nigral depigmentation indexing the loss of melanized neurons but has unknown prospective diagnostic and tracking performance in multicenter settings. Objectives The aim was to investigate the diagnostic accuracy of NM‐MRI in early PD in a multiprotocol setting and to determine and compare serial NM‐MRI changes in PD and controls. Methods In this longitudinal case–control 3 T MRI study, 148 patients and 97 controls were included from six UK clinical centers, of whom 140 underwent a second scan after 1.5 to 3 years. An automated template‐based analysis was applied for subregional substantia nigra NM‐MRI contrast and volume assessment. A point estimate of the period of prediagnostic depigmentation was computed. Results All NM metrics performed well to discriminate patients from controls, with receiver operating characteristic showing 85% accuracy for ventral NM contrast and 83% for volume. Generalizability using a priori volume cutoff was good (79% accuracy). Serial MRI demonstrated accelerated NM loss in patients compared to controls. Ventral NM contrast loss was point estimated to start 5 to 6 years before clinical diagnosis. Ventral nigral depigmentation was greater in the most affected side, more severe cases, and nigral NM volume change correlated with change in motor severity. Conclusions We demonstrate that NM‐MRI provides clinically useful diagnostic information in early PD across protocols, platforms, and sites. It provides methods and estimated depigmentation rates that highlight the potential to detect preclinical PD and track progression for biomarker‐enabled clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Yue Xing
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Abdul Halim Sapuan
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Antonio Martín-Bastida
- Division of Neurology, Imperial College London, London, United Kingdom.,Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona-Madrid, Spain
| | - Saadnah Naidu
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,Neurology, Nottingham University Hospital Trust, Nottingham, United Kingdom
| | - Christopher Tench
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Jonathan Evans
- Neurology, Nottingham University Hospital Trust, Nottingham, United Kingdom
| | - Gillian Sare
- Neurology, Nottingham University Hospital Trust, Nottingham, United Kingdom
| | - Stefan T Schwarz
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,Department of Radiology, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Sarah Al-Bachari
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.,Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sofia Kanavou
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jason Raw
- Pennine Acute Hospitals NHS Trust, Oldham, United Kingdom
| | - Monty Silverdale
- Division of Neurology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nin Bajaj
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Spire Nottingham Hospital, Nottingham, United Kingdom
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre and Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Burn
- Faculty of Medical Sciences, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paola Piccini
- Division of Neurology, Imperial College London, London, United Kingdom.,Department of Brain Science, Imperial College London, London, United Kingdom
| | - Donald G Grosset
- Institute for Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Dorothee P Auer
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| |
Collapse
|
33
|
Madelung CF, Meder D, Fuglsang SA, Marques MM, Boer VO, Madsen KH, Petersen ET, Hejl AM, Løkkegaard A, Siebner HR. Locus Coeruleus Shows a Spatial Pattern of Structural Disintegration in Parkinson's Disease. Mov Disord 2022; 37:479-489. [PMID: 35114035 PMCID: PMC9303353 DOI: 10.1002/mds.28945] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) causes a loss of neuromelanin-positive, noradrenergic neurons in the locus coeruleus (LC), which has been implicated in nonmotor dysfunction. OBJECTIVES We used "neuromelanin sensitive" magnetic resonance imaging (MRI) to localize structural disintegration in the LC and its association with nonmotor dysfunction in PD. METHODS A total of 42 patients with PD and 24 age-matched healthy volunteers underwent magnetization transfer weighted (MTw) MRI of the LC. The contrast-to-noise ratio of the MTw signal (CNRMTw ) was used as an index of structural LC integrity. We performed slicewise and voxelwise analyses to map spatial patterns of structural disintegration, complemented by principal component analysis (PCA). We also tested for correlations between regional CNRMTw and severity of nonmotor symptoms. RESULTS Mean CNRMTw of the right LC was reduced in patients relative to controls. Voxelwise and slicewise analyses showed that the attenuation of CNRMTw was confined to the right mid-caudal LC and linked regional CNRMTw to nonmotor symptoms. CNRMTw attenuation in the left mid-caudal LC was associated with the orthostatic drop in systolic blood pressure, whereas CNRMTw attenuation in the caudal most portion of right LC correlated with apathy ratings. PCA identified a bilateral component that was more weakly expressed in patients. This component was characterized by a gradient in CNRMTw along the rostro-caudal and dorso-ventral axes of the nucleus. The individual expression score of this component reflected the overall severity of nonmotor symptoms. CONCLUSION A spatially heterogeneous disintegration of LC in PD may determine the individual expression of specific nonmotor symptoms such as orthostatic dysregulation or apathy. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Søren A Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marta M Marques
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Gaurav R, Pyatigorskaya N, Biondetti E, Valabrègue R, Yahia-Cherif L, Mangone G, Leu-Semenescu S, Corvol JC, Vidailhet M, Arnulf I, Lehéricy S. Deep Learning-Based Neuromelanin MRI Changes of Isolated REM Sleep Behavior Disorder. Mov Disord 2022; 37:1064-1069. [PMID: 35102604 PMCID: PMC9302679 DOI: 10.1002/mds.28933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Isolated REM sleep behavior disorder (iRBD) is considered a prodromal stage of parkinsonism. Neurodegenerative changes in the substantia nigra pars compacta (SNc) in parkinsonism can be detected using neuromelanin‐sensitive MRI. Objective To investigate SNc neuromelanin changes in iRBD patients using fully automatic segmentation. Methods We included 47 iRBD patients, 134 early Parkinson's disease (PD) patients and 55 healthy volunteers (HVs) scanned at 3 Tesla. SNc regions‐of‐interest were delineated automatically using convolutional neural network. SNc volumes, volumes corrected by total intracranial volume, signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio were computed. One‐way general linear models (GLM) analysis of covariance (ANCOVA) was conducted while adjusting for age and sex. Results All SNc measurements differed significantly between the three groups (except SNR in iRBD). Changes in iRBD were intermediate between those in PD and HVs. Conclusions Using fully automated SNc segmentation method and neuromelanin‐sensitive imaging, iRBD patients showed neurodegenerative changes in the SNc at a lower level than in PD patients. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Rahul Gaurav
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Movement Investigations and Therapeutics - MOV'IT Team, Paris Brain Institute-ICM, Paris, France
| | - Nadya Pyatigorskaya
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Movement Investigations and Therapeutics - MOV'IT Team, Paris Brain Institute-ICM, Paris, France.,Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Emma Biondetti
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Movement Investigations and Therapeutics - MOV'IT Team, Paris Brain Institute-ICM, Paris, France
| | - Romain Valabrègue
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Lydia Yahia-Cherif
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France
| | | | - Jean-Christophe Corvol
- Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Movement Investigations and Therapeutics - MOV'IT Team, Paris Brain Institute-ICM, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Isabelle Arnulf
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Movement Investigations and Therapeutics - MOV'IT Team, Paris Brain Institute-ICM, Paris, France.,Sleep Disorders Unit, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Stéphane Lehéricy
- Center for NeuroImaging Research (CENIR), Paris Brain Institute-ICM, Paris, France.,Sorbonne Université, Paris Brain Institute-ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Movement Investigations and Therapeutics - MOV'IT Team, Paris Brain Institute-ICM, Paris, France.,INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
35
|
Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 2022; 27:180-191. [PMID: 34404915 PMCID: PMC8850529 DOI: 10.1038/s41380-021-01265-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.
Collapse
|
36
|
Ueno F, Iwata Y, Nakajima S, Caravaggio F, Rubio JM, Horga G, Cassidy CM, Torres-Carmona E, de Luca V, Tsugawa S, Honda S, Moriguchi S, Noda Y, Gerretsen P, Graff-Guerrero A. Neuromelanin accumulation in patients with schizophrenia: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 132:1205-1213. [PMID: 34718049 PMCID: PMC9059704 DOI: 10.1016/j.neubiorev.2021.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/25/2022]
Abstract
Although schizophrenia is associated with increased presynaptic dopamine function in the striatum, it remains unclear if neuromelanin levels, which are thought to serve as a biomarker for midbrain dopamine neuron function, are increased in patients with schizophrenia. We conducted a systematic review and meta-analysis of magnetic resonance imaging (MRI) and postmortem studies comparing neuromelanin (NM) levels between patients with schizophrenia and healthy controls (HCs). Standard mean differences were calculated to assess group differences in NM accumulation levels between patients with schizophrenia and HCs. This study included 7 articles in total. Five studies employed NM-sensitive MRI (NM-MRI) and two were postmortem brain studies. The patient group (n = 163) showed higher NM levels in the substantia nigra (SN) than HCs (n = 228) in both the analysis of the seven studies and the subgroup analysis of the 5 NM-MRI studies. This analysis suggest increased NM levels in the SN may be a potential biomarker for stratifying schizophrenia, warranting further research that accounts for the heterogeneity of this disorder.
Collapse
Affiliation(s)
- Fumihiko Ueno
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi, Faculty of Medicine, Yamanashi, Japan
| | - Shinichiro Nakajima
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Fernando Caravaggio
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jose M Rubio
- Barbara and Donald Zucker School of Medicine at Hofstra University - Northwell Health, Hempstead, NY, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Translational Imaging, New York State Psychiatric Institute, New York, NY, USA
| | - Clifford M Cassidy
- The Royal's Institute of Mental Health Research Affiliated with the University of Ottawa, Ottawa, Ontario, Canada
| | - Edgardo Torres-Carmona
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo de Luca
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Liebe T, Kaufmann J, Hämmerer D, Betts M, Walter M. In vivo tractography of human locus coeruleus-relation to 7T resting state fMRI, psychological measures and single subject validity. Mol Psychiatry 2022; 27:4984-4993. [PMID: 36117208 PMCID: PMC9763100 DOI: 10.1038/s41380-022-01761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
The locus coeruleus (LC) in the brainstem as the main regulator of brain noradrenaline gains increasing attention because of its involvement in neurologic and psychiatric diseases and its relevance in general to brain function. In this study, we created a structural connectome of the LC nerve fibers based on in vivo MRI tractography to gain an understanding into LC connectivity and its impact on LC-related psychological measures. We combined our structural results with ultra-high field resting-state functional MRI to learn about the relationship between in vivo LC structural and functional connections. Importantly, we reveal that LC brain fibers are strongly associated with psychological measures of anxiety and alertness indicating that LC-noradrenergic connectivity may have an important role on brain function. Lastly, since we analyzed all our data in subject-specific space, we point out the potential of structural LC connectivity to reveal individual characteristics of LC-noradrenergic function on the single-subject level.
Collapse
Affiliation(s)
- Thomas Liebe
- grid.9613.d0000 0001 1939 2794Department of Psychiatry and Psychotherapy, University of Jena, D-07743 Jena, Germany ,grid.9613.d0000 0001 1939 2794Department of Radiology, University of Jena, D-07743 Jena, Germany ,Clinical Affective Neuroimaging Laboratory (CANLAB), D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | - Jörn Kaufmann
- grid.5807.a0000 0001 1018 4307Department of Neurology, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Dorothea Hämmerer
- grid.5771.40000 0001 2151 8122Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria ,grid.83440.3b0000000121901201Institute of Cognitive Neuroscience, University College London, London, UK-WC1E 6BT UK ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265CBBS Center for Behavioral Brain Sciences, D-39120 Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany
| | - Matthew Betts
- grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265CBBS Center for Behavioral Brain Sciences, D-39120 Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Jena, D-07743, Jena, Germany. .,Clinical Affective Neuroimaging Laboratory (CANLAB), D-39120, Magdeburg, Germany. .,Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany. .,Department of Psychiatry and Psychotherapy, University Tuebingen, D-72076, Tuebingen, Germany. .,Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), D-07743 Jena, Germany. .,German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, D-07743 Jena, Germany.
| |
Collapse
|
38
|
Chen JH, Chan L, Chung CC, Bamodu OA, Hong CT. Blood Neurofilament Light Chain in Parkinson's Disease: Comparability between Parkinson's Progression Markers Initiative (PPMI) and Asian Cohorts. J Clin Med 2021; 10:jcm10215085. [PMID: 34768602 PMCID: PMC8584818 DOI: 10.3390/jcm10215085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Elevated blood neurofilament light chain (NfL), which indicates the loss of neuronal integrity, is increasingly implicated as a diagnostic and outcome-predicting biomarker for neurological diseases. However, its diagnostic implication for Parkinson’s disease (PD) remains unclear, with conflicting data reported by several studies. This may result from the demographic heterogeneity of the studied cohorts. The present study investigated the comparability of blood NfL between a domestic, single-centered PD cohort from Shuang Ho Hospital (SHH) in Taiwan, with the large international, multi-center cohort, Parkinson’s Progression Markers Initiative (PPMI). In the SHH PD cohort, with 61 people with PD (PwP) and 25 healthy non-PD controls, plasma NfL unexpectedly was significantly higher in the control group than PwP (14.42 ± 13.84 vs. 9.39 ± 6.91 pg/mL, p = 0.05). Interestingly, subgroup analysis revealed a non-significant difference of plasma NfL levels in male PwP compared with controls (8.58 ± 6.21 vs. 7.25 ± 4.43 pg/mL, p =0.575), whereas NfL levels were significantly lower in the female PwP group than in their healthy control peers (10.29 ± 7.62 vs. 17.79 ± 15.52 pg/mL, p = 0.033). Comparative analysis of the SHH and PPMI cohorts revealed a comparable gender-stratified distribution of blood NfL based on approximate theoretical quantiles. After adjusting for age and gender, no apparent difference in NfL value distribution was observed between the SHH and PPMI cohorts’ control or PD groups. Significant downregulation of blood NfL levels were positively correlated with a reduced probability of having a PD diagnosis in both cohorts. These results demonstrated that the adjustment for demographic background enhances comparability between cohorts, and may be required to eliminate covariate/confounder-associated conflict in blood NfL results between different PD studies. This experience may be beneficial to other researchers around the world who are saddled with limited study participants, especially as data from small cohort sizes are often at greater risk of being skewed by specific variables.
Collapse
Affiliation(s)
- Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (J.-H.C.); (L.C.); (C.-C.C.)
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (J.-H.C.); (L.C.); (C.-C.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (J.-H.C.); (L.C.); (C.-C.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Hematology and Oncology, Cancer Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Correspondence: (O.A.B.); (C.-T.H.)
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (J.-H.C.); (L.C.); (C.-C.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Correspondence: (O.A.B.); (C.-T.H.)
| |
Collapse
|
39
|
Ishikuro K, Hattori N, Imanishi R, Furuya K, Nakata T, Dougu N, Yamamoto M, Konishi H, Nukui T, Hayashi T, Anada R, Matsuda N, Hirosawa H, Tanaka R, Shibata T, Mori K, Noguchi K, Kuroda S, Nakatsuji Y, Nishijo H. A Parkinson's disease patient displaying increased neuromelanin-sensitive areas in the substantia nigra after rehabilitation with tDCS: a case report. Neurocase 2021; 27:407-414. [PMID: 34503372 DOI: 10.1080/13554794.2021.1975768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have reported that transcranial direct current stimulation (tDCS) of the frontal polar area (FPA) ameliorated motor disability in patients with Parkinson's disease (PD). Here we report changes in neuromelanin (NM) imaging of dopaminergic neurons before and after rehabilitation combined with anodal tDCS over the FPA for 2 weeks in a PD patient. After the intervention, the patient showed clinically meaningful improvements while the NM-sensitive area in the SN increased by 18.8%. This case study is the first report of NM imaging of the SN in a PD patient who received tDCS.Abbreviations FPA: front polar area; PD: Parkinson's disease; NM: neuromelanin; DCI: DOPA decarboxylase inhibitor; STEF: simple test for evaluating hand function; TUG: timed up and go test; TMT: trail-making test; SN: substantia nigra; NM-MRI: neuromelanin magnetic resonance imaging; MCID: the minimal clinically important difference; SNpc: substantia nigra pars compacta; VTA: ventral tegmental area; LC: locus coeruleus; PFC: prefrontal cortex; M1: primary motor cortex; MDS: Movement Disorder Society; MIBG: 123I-metaiodobenzylguanidine; SBR: specific binding ratio; SPECT: single-photon emission computed tomography; DAT: dopamine transporter; NIBS: noninvasive brain stimulation; tDCS: transcranial direct current stimulation; MAOB: monoamine oxidase B; DCI: decarboxylase inhibitor; repetitive transcranial magnetic stimulation: rTMS; diffusion tensor imaging: DTI; arterial spin labeling: ASL.
Collapse
Affiliation(s)
- Koji Ishikuro
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Rieko Imanishi
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Kohta Furuya
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Takeshi Nakata
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Nobuhiro Dougu
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mamoru Yamamoto
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hirofumi Konishi
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takamasa Nukui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomohiro Hayashi
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryoko Anada
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Noriyuki Matsuda
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroaki Hirosawa
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryo Tanaka
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Shibata
- Department of Neurosurgery, Faculty of Medicine, Toyama, Japan
| | - Koichi Mori
- Department of Radiology, Faculty of Medicine, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, Faculty of Medicine, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Faculty of Medicine, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
40
|
Chen Q, Boeve BF, Forghanian-Arani A, Senjem ML, Jack CR, Przybelski SA, Lesnick TG, Kremers WK, Fields JA, Schwarz CG, Gunter JL, Trzasko JD, Graff-Radford J, Savica R, Knopman DS, Dickson DW, Ferman TJ, Graff-Radford N, Petersen RC, Kantarci K. MRI quantitative susceptibility mapping of the substantia nigra as an early biomarker for Lewy body disease. J Neuroimaging 2021; 31:1020-1027. [PMID: 34033185 PMCID: PMC8440493 DOI: 10.1111/jon.12878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Neurodegeneration of the substantia nigra in Lewy body disease is associated with iron deposition, which increases the magnetic susceptibility of the substantia nigra on MRI. Our objective was to measure iron deposition in the substantia nigra in patients with probable dementia with Lewy bodies (pDLB) and patients who are at risk for pDLB by quantitative susceptibility mapping (QSM). METHODS Participants included pDLB (n = 36), mild cognitive impairment with at least one core feature of DLB (MCI-LB; n = 15), idiopathic rapid eye movement sleep behavior disorder (iRBD; n = 11), and an age-and gender-matched clinically unimpaired control group (n = 102). QSM was derived from multi-echo 3D gradient recalled echo MRI at 3T, and groups were compared on mean susceptibility values of the substantia nigra and its relation to parkinsonism severity. RESULTS Patients with pDLB had higher susceptibility in the substantia nigra compared to controls (p< 0.001) and MCI-LB (p = 0.043). The susceptibility of substantia nigra showed an increasing trend from controls to iRBD and MCI-LB, and to pDLB (p< 0.001). Parkinsonism severity was not associated with the mean susceptibility in the substantia nigra in the patient groups. CONCLUSIONS Our data suggested that QSM is sensitive to the increased magnetic susceptibility due to higher iron content in the substantia nigra in pDLB. The trend of increasing susceptibility from controls to iRBD and MCI-LB, and to pDLB suggests that iron deposition in the substantia nigra starts to increase as early as the prodromal stage in DLB and continues to increase as the disease progresses, independent of parkinsonism severity.
Collapse
Affiliation(s)
- Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Walter K. Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Tanis J. Ferman
- Department of Psychology and Psychiatry, Mayo Clinic, Jacksonville, Florida
| | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI. NPJ Parkinsons Dis 2021; 7:57. [PMID: 34238927 PMCID: PMC8266835 DOI: 10.1038/s41531-021-00199-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative synucleinopathy characterized by the degeneration of neuromelanin (NM)-containing dopaminergic neurons and deposition of iron in the substantia nigra (SN). How regional NM loss and iron accumulation within specific areas of SN relate to nigro-striatal dysfunction needs to be clarified. We measured dopaminergic function in pre- and postcommissural putamen by [18F]DOPA PET in 23 Parkinson's disease patients and 23 healthy control (HC) participants in whom NM content and iron load were assessed in medial and lateral SN, respectively, by NM-sensitive and quantitative R2* MRI. Data analysis consisted of voxelwise regressions testing the group effect and its interaction with NM or iron signals. In PD patients, R2* was selectively increased in left lateral SN as compared to healthy participants, suggesting a local accumulation of iron in Parkinson's disease. By contrast, NM signal differed between PD and HC, without specific regional specificity within SN. Dopaminergic function in posterior putamen decreased as R2* increased in lateral SN, indicating that dopaminergic function impairment progresses with iron accumulation in the SN. Dopaminergic function was also positively correlated with NM signal in lateral SN, indicating that dopaminergic function impairment progresses with depigmentation in the SN. A complex relationship was detected between R2* in the lateral SN and NM signal in the medial SN. In conclusion, multimodal imaging reveals regionally specific relationships between iron accumulation and depigmentation within the SN of Parkinson's disease and provides in vivo insights in its neuropathology.
Collapse
|
42
|
Gaurav R, Yahia‐Cherif L, Pyatigorskaya N, Mangone G, Biondetti E, Valabrègue R, Ewenczyk C, Hutchison RM, Cedarbaum JM, Corvol J, Vidailhet M, Lehéricy S. Longitudinal Changes in Neuromelanin MRI Signal in Parkinson's Disease: A Progression Marker. Mov Disord 2021; 36:1592-1602. [PMID: 33751655 PMCID: PMC8359265 DOI: 10.1002/mds.28531] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Development of reliable and accurate imaging biomarkers of dopaminergic cell neurodegeneration is necessary to facilitate therapeutic drug trials in Parkinson's disease (PD). Neuromelanin-sensitive MRI techniques have been effective in detecting neurodegeneration in the substantia nigra pars compacta (SNpc). The objective of the current study was to investigate longitudinal neuromelanin signal changes in the SNpc in PD patients. METHODS In this prospective, longitudinal, observational case-control study, we included 140 PD patients and 64 healthy volunteers divided into 2 cohorts. Cohort I included 99 early PD patients (disease duration, 1.5 ± 1.0 years) and 41 healthy volunteers analyzed at baseline (V1), where 79 PD patients and 32 healthy volunteers were rescanned after 2.0 ± 0.2 years of follow-up (V2). Cohort II included 41 progressing PD patients (disease duration, 9.3 ± 3.7 years) and 23 healthy volunteers at V1, where 30 PD patients were rescanned after 2.4 ± 0.5 years of follow-up. Subjects were scanned at 3 T MRI using 3-dimensional T1-weighted and neuromelanin-sensitive imaging. Regions of interest were delineated manually to calculate SN volumes, volumes corrected by total intracranial volume, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS Results showed (1) significant reduction in volume and volume corrected by total intracranial volume between visits, greater in progressing PD than nonsignificant changes in healthy volunteers; (2) no significant effects of visit for signal intensity (signal-to-noise ratio); (3) significant interaction in volume between group and visit; (4) greater volume corrected by total intracranial volume at baseline in female patients and greater decrease in volume and increase in the contrast-to-noise ratio in progressing female PD patients compared with male patients; and (5) correlations between neuromelanin SN changes and disease severity and duration. CONCLUSIONS We observed a progressive and measurable decrease in neuromelanin-based SN signal and volume in PD, which might allow a direct noninvasive assessment of progression of SN loss and could represent a target biomarker for disease-modifying treatments. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rahul Gaurav
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
| | - Lydia Yahia‐Cherif
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
| | - Nadya Pyatigorskaya
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeuroradiologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | - Graziella Mangone
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- INSERM, Clinical Investigation Center for Neurosciences, Pitié‐Salpêtrière HospitalParisFrance
| | - Emma Biondetti
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
| | - Romain Valabrègue
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
| | - Claire Ewenczyk
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeurologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | | | | | - Jean‐Christophe Corvol
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- INSERM, Clinical Investigation Center for Neurosciences, Pitié‐Salpêtrière HospitalParisFrance
- Department of NeurologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | - Marie Vidailhet
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeurologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | - Stéphane Lehéricy
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeuroradiologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| |
Collapse
|
43
|
Prasuhn J, Prasuhn M, Fellbrich A, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Münte TF, Hanssen H, Heldmann M, Brüggemann N. Association of Locus Coeruleus and Substantia Nigra Pathology With Cognitive and Motor Functions in Patients With Parkinson Disease. Neurology 2021; 97:e1007-e1016. [PMID: 34187859 DOI: 10.1212/wnl.0000000000012444] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the contribution of substantia nigra (SN) and locus coeruleus (LC) pathology to clinical signs and symptoms in Parkinson's disease (PD) by applying neuromelanin-weighted imaging. METHODS Forty-seven patients with PD and 53 matched controls underwent motor assessment, a neuropsychological test battery and neuromelanin-weighted MRI. Patients with PD have been enrolled after fulfilling the criteria for 'clinically established PD' as defined by the Movement Disorders Society Clinical Diagnostic Criteria. Two independent raters identified SN and LC and calculated the contrast-to-noise ratio (CNR). RESULTS The intra-rater reliability demonstrated a good reliability between raters with an intraclass correlation coefficient of .88 (p<.001) and an inter-rater reliability of .80 (p<.001). Both, SN and LC CNRs were lower in patients with PD (p≤.001) compared to controls. The CNR of SN but not of LC was strongly correlated with disease duration (p≤.001). Neuromelanin pathology of the pars compacta-containing dorso-lateral SN correlated with MDS-UPDRS I, II and III but not cognitive functions. In contrast, neuromelanin pathology of LC was associated with cognitive functions in all tested domains but not with motor impairment or activities of daily living. No such associations were present in controls. CONCLUSIONS Neuromelanin imaging of the SN and LC is well-suited to map neurodegeneration in PD. Neuromelanin pathology of the SN correlates with motor dysfunction whereas LC pathology is related to cognitive impairment. Neuromelanin-weighted imaging of the LC could thus serve as an imaging marker of executive and other cognitive dysfunctions in PD. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that neuromelanin-weighted imaging was associated with the severity of various signs and symptoms in patients with PD.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Michelle Prasuhn
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Laboratory for Angiogenesis and Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| | - Anja Fellbrich
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Robert Strautz
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany .,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
44
|
Feraco P, Gagliardo C, La Tona G, Bruno E, D’angelo C, Marrale M, Del Poggio A, Malaguti MC, Geraci L, Baschi R, Petralia B, Midiri M, Monastero R. Imaging of Substantia Nigra in Parkinson's Disease: A Narrative Review. Brain Sci 2021; 11:brainsci11060769. [PMID: 34207681 PMCID: PMC8230134 DOI: 10.3390/brainsci11060769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by motor and non-motor symptoms due to the degeneration of the pars compacta of the substantia nigra (SNc) with dopaminergic denervation of the striatum. Although the diagnosis of PD is principally based on a clinical assessment, great efforts have been expended over the past two decades to evaluate reliable biomarkers for PD. Among these biomarkers, magnetic resonance imaging (MRI)-based biomarkers may play a key role. Conventional MRI sequences are considered by many in the field to have low sensitivity, while advanced pulse sequences and ultra-high-field MRI techniques have brought many advantages, particularly regarding the study of brainstem and subcortical structures. Nowadays, nigrosome imaging, neuromelanine-sensitive sequences, iron-sensitive sequences, and advanced diffusion weighted imaging techniques afford new insights to the non-invasive study of the SNc. The use of these imaging methods, alone or in combination, may also help to discriminate PD patients from control patients, in addition to discriminating atypical parkinsonian syndromes (PS). A total of 92 articles were identified from an extensive review of the literature on PubMed in order to ascertain the-state-of-the-art of MRI techniques, as applied to the study of SNc in PD patients, as well as their potential future applications as imaging biomarkers of disease. Whilst none of these MRI-imaging biomarkers could be successfully validated for routine clinical practice, in achieving high levels of accuracy and reproducibility in the diagnosis of PD, a multimodal MRI-PD protocol may assist neuroradiologists and clinicians in the early and differential diagnosis of a wide spectrum of neurodegenerative disorders.
Collapse
Affiliation(s)
- Paola Feraco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo 14, 40138 Bologna, Italy;
- Neuroradiology Unit, S. Chiara Hospital, 38122 Trento, Italy;
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
- Correspondence:
| | - Giuseppe La Tona
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Eleonora Bruno
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Costanza D’angelo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Maurizio Marrale
- Department of Physics and Chemistry, University of Palermo, 90128 Palermo, Italy;
| | - Anna Del Poggio
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, 20132 Milan, Italy;
| | | | - Laura Geraci
- Diagnostic and Interventional Neuroradiology Unit, A.R.N.A.S. Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy;
| | - Roberta Baschi
- Section of Neurology, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.B.); (R.M.)
| | | | - Massimo Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.L.T.); (E.B.); (C.D.); (M.M.)
| | - Roberto Monastero
- Section of Neurology, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.B.); (R.M.)
| |
Collapse
|
45
|
Imaging of the dopamine system with focus on pharmacological MRI and neuromelanin imaging. Eur J Radiol 2021; 140:109752. [PMID: 34004428 DOI: 10.1016/j.ejrad.2021.109752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The dopamine system in the brain is involved in a variety of neurologic and psychiatric disorders, such as Parkinson's disease, attention-deficit/hyperactivity disorder and psychosis. Different aspects of the dopamine system can be visualized and measured with positron emission tomography (PET) and single photon emission computed tomography (SPECT), including dopamine receptors, dopamine transporters, and dopamine release. New developments in MR imaging also provide proxy measures of the dopamine system in the brain, offering alternatives with the advantages MR imaging, i.e. no radiation, lower costs, usually less invasive and time consuming. This review will give an overview of these developments with a focus on the most developed techniques: pharmacological MRI (phMRI) and neuromelanin sensitive MRI (NM-MRI). PhMRI is a collective term for functional MRI techniques that administer a pharmacological challenge to assess its effects on brain hemodynamics. By doing so, it indirectly assesses brain neurotransmitter function such as dopamine function. NM-MRI is an upcoming MRI technique that enables in vivo visualization and semi-quantification of neuromelanin in the substantia nigra. Neuromelanin is located in the cell bodies of dopaminergic neurons of the nigrostriatal pathway and can be used as a proxy measure for long term dopamine function or degeneration of dopaminergic neurons. Both techniques are still primarily used in clinical research, but there is promise for clinical application, in particular for NM-MRI in dopaminergic neurodegenerative diseases like Parkinson's disease.
Collapse
|
46
|
Matsuura K, Ii Y, Maeda M, Tabei KI, Satoh M, Umino M, Miyashita K, Ishikawa H, Shindo A, Tomimoto H. Neuromelanin-sensitive magnetic resonance imaging in disease differentiation for parkinsonism or neurodegenerative disease affecting the basal ganglia. Parkinsonism Relat Disord 2021; 87:75-81. [PMID: 34000497 DOI: 10.1016/j.parkreldis.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Several reports have shown that neuromelanin-sensitive magnetic resonance imaging (NMI) using 3T magnetic resonance imaging is useful for the differential diagnosis of Parkinson's disease (PD), progressive supranuclear palsy (PSP), and other neurological diseases. However, the number of cases in previous studies has been insufficient. We aimed to determine the relationship between NMI and severity of PD and related disorders, and thereby establish the diagnostic utility of NMI for diagnosing neurological diseases. METHODS We enrolled 591 patients (531 subjects after removal of duplicates) with parkinsonism who underwent NMI. The contrast ratio of the locus coeruleus (LC-CR) and the area of the substantia nigra pars compacta (SNc) were analyzed in each patient. RESULTS The patients' clinical diagnoses were as follows: 11 patients in the disease control group (DCG), 244 patients with PD, 49 patients with PSP, and 19 patients with multiple system atrophy with predominant parkinsonism. Additionally, some patients were diagnosed with dementia with Lewy bodies, vascular parkinsonism, and drug-induced parkinsonism. SNc in the patients with PD and PSP was significantly smaller than that in DCG. LC-CR in the patients with PD was lower than that in DCG; furthermore, LC-CR in the patients with PD was significantly lower than that in the patients with PSP. We found that an area under the receiver-operating characteristic curve, indicating diagnostic efficacy, of 0.85 for LC-CR is a promising biomarker for differentiating PD from PSP. CONCLUSION NMI effectively contributes to differentiating neurodegenerative diseases, such as PD and PSP.
Collapse
Affiliation(s)
- Keita Matsuura
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan.
| | - Yuichiro Ii
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| | - Ken-Ichi Tabei
- Master Program of Industrial Technology, Advanced Institute of Industrial Technology, Tokyo Metropolitan Public University Corporation, Tokyo, 140-0011, Japan
| | - Masayuki Satoh
- Dementia Prevention and Therapeutics, Mie University, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| | - Koichi Miyashita
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, Mie, 514-8507, Japan
| |
Collapse
|
47
|
Is Chelation Therapy a Potential Treatment for Parkinson's Disease? Int J Mol Sci 2021; 22:ijms22073338. [PMID: 33805195 PMCID: PMC8036775 DOI: 10.3390/ijms22073338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Iron loading in some brain regions occurs in Parkinson’s Disease (PD), and it has been considered that its removal by iron chelators could be an appropriate therapeutic approach. Since neuroinflammation with microgliosis is also a common feature of PD, it is possible that iron is sequestered within cells as a result of the “anaemia of chronic disease” and remains unavailable to the chelator. In this review, the extent of neuroinflammation in PD is discussed together with the role played by glia cells, specifically microglia and astrocytes, in controlling iron metabolism during inflammation, together with the results of MRI studies. The current use of chelators in clinical medicine is presented together with a discussion of two clinical trials of PD patients where an iron chelator was administered and showed encouraging results. It is proposed that the use of anti-inflammatory drugs combined with an iron chelator might be a better approach to increase chelator efficacy.
Collapse
|
48
|
Sung YH, Noh Y, Kim EY. Early-stage Parkinson's disease: Abnormal nigrosome 1 and 2 revealed by a voxelwise analysis of neuromelanin-sensitive MRI. Hum Brain Mapp 2021; 42:2823-2832. [PMID: 33751680 PMCID: PMC8127157 DOI: 10.1002/hbm.25406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Previous pathologic studies evaluated the substantia nigra pars compacta (SNpc) of a limited number of idiopathic Parkinson's disease (IPD) patients with relatively longer disease durations. Therefore, it remains unknown which region of the SNpc is most significantly affected in early‐stage IPD. We hypothesized that a voxelwise analysis of thin‐section neuromelanin‐sensitive MRI (NM‐MRI) may help determine the significantly affected regions of the SNpc in early‐stage IPD and localize these areas in each nigrosome on high‐spatial‐resolution susceptibility map‐weighted imaging (SMwI). Ninety‐six healthy subjects and 50 early‐stage IPD patients underwent both a 0.8 × 0.8 × 0.8 mm3 NM‐MRI and a 0.5 × 0.5 × 1.0 mm3 multi‐echo gradient‐recalled echo imaging for SMwI. Both NM‐MRI and SMwI templates were created by using image data from the 96 healthy subjects. Permutation‐based nonparametric tests were conducted to investigate spatial differences between the two groups in NM‐MRI, and the results were displayed on both NM‐MRI and SMwI templates. The posterolateral and anteromedial regions of the SNpc in NM‐MRI were significantly different between the two groups, corresponding to the nigrosome 1 and nigrosome 2 regions, respectively, on the SMwI template. There were the areas of significant spatial difference in the hypointense SN on SMwI between early‐stage IPD patients and healthy subjects. These areas on SMwI were slightly greater than those on NM‐MRI, including the areas showing group difference on NM‐MRI. Our voxelwise analysis of NM‐MRI suggests that two regions (nigrosome 1 and nigrosome 2) of the SNpc are separately affected in early‐stage IPD.
Collapse
Affiliation(s)
- Young Hee Sung
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
49
|
He N, Ghassaban K, Huang P, Jokar M, Wang Y, Cheng Z, Jin Z, Li Y, Sethi SK, He Y, Chen Y, Gharabaghi S, Chen S, Yan F, Haacke EM. Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: Combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson's disease. Neuroimage 2021; 230:117810. [PMID: 33524572 DOI: 10.1016/j.neuroimage.2021.117810] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022] Open
Abstract
Diagnosing early stage Parkinson's disease (PD) is still a clinical challenge. Previous studies using iron, neuromelanin (NM) or the Nigrosome-1 (N1) sign in the substantia nigra (SN) by themselves have been unable to provide sufficiently high diagnostic performance for these methods to be adopted clinically. Our goal in this study was to extract the NM complex volume, iron content and volume representing the entire SN, and the N1 sign as potential complementary imaging biomarkers using a single 3D magnetization transfer contrast (MTC) gradient echo sequence and to evaluate their diagnostic performance and clinical correlations in early stage PD. A total of 40 early stage idiopathic PD subjects and 40 age- and sex-matched healthy controls (HCs) were imaged at 3T. NM boundaries (representing the SN pars compacta (SNpc) and parabrachial pigmented nucleus) and iron boundaries representing the total SN (SNpc and SN pars reticulata) were determined semi-automatically using a dynamic programming (DP) boundary detection algorithm. Receiver operating characteristic analyses were performed to evaluate the utility of these imaging biomarkers in diagnosing early stage PD. A correlation analysis was used to study the relationship between these imaging measures and the clinical scales. We also introduced the concept of NM and total iron overlap volumes to demonstrate the loss of NM relative to the iron containing SN. Furthermore, all 80 cases were evaluated for the N1 sign independently. The NM and SN volumes were lower while the iron content was higher in the SN for PD subjects compared to HCs. Interestingly, the PD subjects with bilateral loss of the N1 sign had the highest iron content. The area under the curve (AUC) values for the average of both hemispheres for single measures were: .960 for NM complex volume; .788 for total SN volume; .740 for SN iron content and .891 for the N1 sign. Combining NM complex volume with each of the following measures through binary logistic regression led to AUC values for the averaged right and left sides of: .976 for total iron content; .969 for total SN volume, .965 for overlap volume and .983 for the N1 sign. We found a negative correlation between SN volume and UPDRS-III (R2 = .22, p = .002). While the N1 sign performed well, it does not contain any information about iron content or NM quantitatively, therefore, marrying this sign with the NM and iron measures provides a better physiological explanation of what is happening when the N1 sign disappears in PD subjects. In summary, the combination of NM complex volume, SN volume, iron content and the N1 sign as derived from a single MTC sequence provides complementary information for understanding and diagnosing early stage PD.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Kiarash Ghassaban
- Department of Radiology, Wayne State University, 3990 John R, Detroit, Michigan 48201, USA; Department of Biomedical Engineering, Wayne State University, 3990 John R, Detroit, Michigan 48201, USA
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ying Wang
- Department of Radiology, Wayne State University, 3990 John R, Detroit, Michigan 48201, USA; SpinTech, Inc., Bingham Farms, Michigan 48025, USA
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Sean K Sethi
- Department of Radiology, Wayne State University, 3990 John R, Detroit, Michigan 48201, USA; SpinTech, Inc., Bingham Farms, Michigan 48025, USA
| | - Yixi He
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, 4201 St. Antoine, Detroit, Michigan 48201, USA
| | | | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China; Department of Radiology, Wayne State University, 3990 John R, Detroit, Michigan 48201, USA; Department of Biomedical Engineering, Wayne State University, 3990 John R, Detroit, Michigan 48201, USA; SpinTech, Inc., Bingham Farms, Michigan 48025, USA; Department of Neurology, Wayne State University, 4201 St. Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
50
|
Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The Locus Coeruleus in Aging and Alzheimer's Disease: A Postmortem and Brain Imaging Review. J Alzheimers Dis 2021; 83:5-22. [PMID: 34219717 PMCID: PMC8461706 DOI: 10.3233/jad-210191] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
The locus coeruleus (LC), a tiny nucleus in the brainstem and the principal site of noradrenaline synthesis, has a major role in regulating autonomic function, arousal, attention, and neuroinflammation. LC dysfunction has been linked to a range of disorders; however particular interest is given to the role it plays in Alzheimer's disease (AD). The LC undergoes significant neuronal loss in AD, thought to occur early in the disease process. While neuronal loss in the LC has also been suggested to occur in aging, this relationship is less clear as the findings have been contradictory. LC density has been suggested to be indicative of cognitive reserve and the evidence for these claims will be discussed. Recent imaging techniques allowing visualization of the LC in vivo using neuromelanin-sensitive MRI are developing our understanding of the role of LC in aging and AD. Tau pathology within the LC is evident at an early age in most individuals; however, the relationship between tau accumulation and neuronal loss and why some individuals then develop AD is not understood. Neuromelanin pigment accumulates within LC cells with age and is proposed to be toxic and inflammatory when released into the extracellular environment. This review will explore our current knowledge of the LC changes in both aging and AD from postmortem, imaging, and experimental studies. We will discuss the reasons behind the susceptibility of the LC to neuronal loss, with a focus on the role of extracellular neuromelanin and neuroinflammation caused by the dysfunction of the LC-noradrenaline pathway.
Collapse
Affiliation(s)
- Rebecca Beardmore
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Ruihua Hou
- Clinical and Experimental Sciences, Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clive Holmes
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|