1
|
Paparella G, Angelini L, Cannizzo V, Aloisio S, Martini A, Birreci D, Costa D, De Riggi M, Cannavacciuolo A, Bologna M. Subtle bradykinesia features are easier to identify and more prevalent than questionable dystonia in essential tremor. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02861-4. [PMID: 39570420 DOI: 10.1007/s00702-024-02861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024]
Abstract
Essential tremor (ET) is characterized by upper limbs action tremor, sometimes extending to other body parts. However, ET can present with additional neurological features known as "soft signs." These signs of uncertain clinical significance are not sufficient to suggest an alternative neurological diagnosis, and include, among others, questionable dystonia and subtle voluntary movement alterations, i.e., bradykinesia and related features. This study aimed to explore the prevalence and relationship between questionable dystonia and subtle bradykinesia features in ET. Forty ET patients were video-recorded during clinical examination. Five movement disorder experts reviewed the videos to identify soft motor signs, i.e., dystonia and movement alterations during finger-tapping namely, (i) bradykinesia (reduced velocity), (ii) dysrhythmia, and (iii) sequence effect. Inter-rater agreement was quantified using the Fleiss' Kappa index. Data analysis was performed using nonparametric tests. We found a fair inter-rater agreement for upper limb dystonia (Fleiss' K = 0.27). Inter-rater agreement was higher (moderate) for head dystonia (Fleiss' K = 0.49) and finger-tapping assessment (Fleiss' K = 0.45). Upper limb dystonia was identified in 70% of patients, head dystonia in 35%, and finger-tapping alterations (in variable combinations) were observed in 95% of individuals (P < 0.001 by Fisher's exact test), including subtle bradykinesia and related features. No significant concordance or correlation was found between the soft signs. Subtle bradykinesia and related features are the most easily identifiable and frequent soft signs in ET, appearing in a higher percentage of patients than subtle dystonia. These findings provide insights into the clinical and pathophysiological understanding of ET.
Collapse
Affiliation(s)
- Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Valentina Cannizzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Simone Aloisio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Adriana Martini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | | | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | | | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
2
|
Yahya V, Baiata C, Monfrini E, Correia S, Brescia G, Di Fonzo A, Moro E. Dystonic Tremor as Main Clinical Manifestation of SCA21. Mov Disord Clin Pract 2024; 11:1445-1450. [PMID: 39340213 PMCID: PMC11542281 DOI: 10.1002/mdc3.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 21 (SCA21) is a rare inherited neurological disorder characterized by motor, cognitive, and behavioral disturbances, caused by autosomal dominant TMEM240 variants. OBJECTIVES To identify the genetic cause of a dystonic tremor with autosomal dominant inheritance. METHODS Six subjects of a multi-generational French family affected by tremor and dystonia were studied. Each patient underwent a comprehensive clinical assessment and a whole-exome sequencing analysis. RESULTS All six subjects presented with early-onset prominent hand dystonic tremor and multifocal/generalized dystonia, secondarily developing mild cerebellar ataxia. The younger generation showed more pronounced cognitive and behavioral impairment. The known pathogenic TMEM240 c.509C>T (p.P170L) variant was found in heterozygosis in all subjects. CONCLUSIONS Dystonic tremor can represent the core clinical feature of SCA21, even in absence of overt cerebellar ataxia. Therefore, TMEM240 pathogenic variants should be considered disease-causing in subjects displaying dystonic tremor, variably associated with ataxia, parkinsonism, neurodevelopmental disorders, and cognitive impairment.
Collapse
Affiliation(s)
- Vidal Yahya
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Dino Ferrari Center, Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Claudio Baiata
- Division of Neurology, CHU of GrenobleGrenoble Institute of Neurosciences, Grenoble Alpes UniversityGrenobleFrance
- Neurology Unit, Foundation IRCCS San Gerardo dei TintoriUniversity of Milano‐BicoccaMonzaItaly
| | - Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Dino Ferrari Center, Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Sandrine Correia
- Division of Neurology, CHU of GrenobleGrenoble Institute of Neurosciences, Grenoble Alpes UniversityGrenobleFrance
| | - Gloria Brescia
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Elena Moro
- Division of Neurology, CHU of GrenobleGrenoble Institute of Neurosciences, Grenoble Alpes UniversityGrenobleFrance
| |
Collapse
|
3
|
Cai N, Shi W, Chen R, Chen B, Li Y, Wang N. Cerebral-Cerebellar Cortical Activity and Connectivity Underlying Sensory Trick in Cervical Dystonia. Ann Clin Transl Neurol 2024; 11:2633-2644. [PMID: 39152615 PMCID: PMC11514925 DOI: 10.1002/acn3.52177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the activity and connectivity of cerebral and cerebellar cortices underlying the sensory trick (ST) effects in patients with cervical dystonia (CD), using electroencephalography (EEG). METHODS We recruited 15 CD patients who exhibited clinically effective ST and 15 healthy controls (HCs) who mimicked the ST maneuver. EEG signals and multiple-channel electromyography (EMG) were recorded simultaneously during resting and acting stages. EEG source analysis and functional connectivity were performed. To account for the effects of sensory processing, we calculated relative power changes as the difference in power spectral density between resting and the maneuver execution. RESULTS ST induced a decrease in low gamma (30-50 Hz) spectral power in the primary sensory and cerebellar cortices, which remained lower than in HCs during the maintenance period. Compared with HCs, patients exhibited consistently strengthened connectivity within the sensorimotor network during the maintenance period, particularly in the primary sensory-sensorimotor cerebellum connection. INTERPRETATION The application of ST resulted in altered cortical excitability and functional connectivity regulated by gamma oscillation in CD patients, suggesting that this effect cannot be solely attributed to motor components. The cerebellum may play important roles in mediating the ST effects.
Collapse
Affiliation(s)
- Nai‐Qing Cai
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Wu‐Xiang Shi
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ru‐Kai Chen
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Bo‐Li Chen
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Yu‐Rong Li
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ning Wang
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| |
Collapse
|
4
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
5
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
6
|
Mandigers PJJ, Santifort KM, Lowrie M, Garosi L. Canine paroxysmal dyskinesia-a review. Front Vet Sci 2024; 11:1441332. [PMID: 39119350 PMCID: PMC11308868 DOI: 10.3389/fvets.2024.1441332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Paroxysmal dyskinesias (PDs) are a group of involuntary, hyperkinetic movement disorders that recur episodically and may last seconds to hours. An important feature of PD is that there is no loss of consciousness during the episode. Using a clinical classification, three main types of PDs have been distinguished in canine PD: (1) paroxysmal kinesigenic dyskinesia (PKD) that commences after (sudden) movements, (2) paroxysmal non-kinesigenic dyskinesia (PNKD) not associated with exercise and can occur at rest, and (3) paroxysmal exertion-induced dyskinesia (PED) associated with fatigue. Canine PDs are diagnosed based on the clinical presentation, history, and phenomenology. For the latter, a video recording of the paroxysmal event is extremely useful. An etiological classification of canine PDs includes genetic (proven and suspected), reactive (drug-induced, toxic, metabolic, and dietary), structural (neoplasia, inflammatory, and other structural causes), and unknown causes. In this review, an overview of all reported canine PDs is provided with emphasis on phenotype, genotype, and, where possible, pathophysiology and treatment for each reported canine PD.
Collapse
Affiliation(s)
- Paul J. J. Mandigers
- Department of Clinical Sciences, Expertise Centre of Genetics, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
- Evidensia Referral Hospital Arnhem, Arnhem, Netherlands
| | - Koen M. Santifort
- Department of Clinical Sciences, Expertise Centre of Genetics, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
- Evidensia Referral Hospital Arnhem, Arnhem, Netherlands
- Evidensia Referral Hospital “Hart van Brabant”, Waalwijk, Netherlands
| | - Mark Lowrie
- Movement Referrals: Independent Veterinary Specialists, Preston Brook, United Kingdom
| | | |
Collapse
|
7
|
Matsuda T, Morigaki R, Hayasawa H, Koyama H, Oda T, Miyake K, Takagi Y. Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia. Dis Model Mech 2024; 17:dmm050338. [PMID: 38616770 PMCID: PMC11128288 DOI: 10.1242/dmm.050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.
Collapse
Affiliation(s)
- Taku Matsuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Hiroaki Hayasawa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Koyama
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
8
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
9
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Krouma M, Soilhi AA, Desnous B, James S, Boulay C, Scavarda D. Intraventricular baclofen for palliative management of acquired generalized dystonia in pediatric patients: a case series and literature review. Childs Nerv Syst 2024; 40:895-903. [PMID: 37975904 DOI: 10.1007/s00381-023-06217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Dystonia represents a significant source of disability in children. Generalized dystonia, which involves multiple body regions, leads to impaired mobility and motor function, resulting in substantial challenges in daily activities. Surgical treatments are used when medical treatments fail. Intrathecal baclofen (ITB) or deep brain stimulations (DBS) are the most employed surgical therapies. When these options are not feasible or ineffective, some authors have explored the use of intraventricular baclofen (IVB). In this report, we present four cases of pediatric patients with generalized dystonia who underwent treatment with IVB, resulting in notable improvements. To further explore the potential of this treatment modality, we conducted a comprehensive literature review. The findings from our study provide a comprehensive overview that can guide palliative management in similar cases.
Collapse
Affiliation(s)
- M Krouma
- Division of Neurosurgery, Department of Pediatric Neurosurgery, La Timone Hospital, Aix-Marseille University, Marseille, France
| | - A Aboudou Soilhi
- Division of Neurosurgery, Department of Pediatric Neurosurgery, La Timone Hospital, Aix-Marseille University, Marseille, France
| | - B Desnous
- Department of Pediatric Neurology, La Timone Hospital, Aix Marseille University, Marseille, France
| | - S James
- Department of Pediatric Neurosurgery, Division of Neurosurgery, Necker Hospital, Paris, France
| | - C Boulay
- Department of Pediatric Neurology, La Timone Hospital, Aix Marseille University, Marseille, France
| | - D Scavarda
- Division of Neurosurgery, Department of Pediatric Neurosurgery, La Timone Hospital, Aix-Marseille University, Marseille, France.
| |
Collapse
|
11
|
Zhu L, Meng H, Zhang W, Xie W, Sun H, Hou S. The pathogenesis of blepharospasm. Front Neurol 2024; 14:1336348. [PMID: 38274886 PMCID: PMC10808626 DOI: 10.3389/fneur.2023.1336348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Blepharospasm is a focal dystonia characterized by involuntary tetanic contractions of the orbicularis oculi muscle, which can lead to functional blindness and loss of independent living ability in severe cases. It usually occurs in adults, with a higher incidence rate in women than in men. The etiology and pathogenesis of this disease have not been elucidated to date, but it is traditionally believed to be related to the basal ganglia. Studies have also shown that this is related to the decreased activity of inhibitory neurons in the cerebral cortex caused by environmental factors and genetic predisposition. Increasingly, studies have focused on the imbalance in the regulation of neurotransmitters, including dopamine, serotonin, and acetylcholine, in blepharospasm. The onset of the disease is insidious, and the misdiagnosis rate is high based on history and clinical manifestations. This article reviews the etiology, epidemiological features, and pathogenesis of blepharospasm, to improve understanding of the disease by neurologists and ophthalmologists.
Collapse
Affiliation(s)
- Lixia Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wenjing Xie
- Department of Neurology, The Second Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
van der Heijden ME, Sillitoe RV. Cerebellar dysfunction in rodent models with dystonia, tremor, and ataxia. DYSTONIA 2023; 2:11515. [PMID: 38105800 PMCID: PMC10722573 DOI: 10.3389/dyst.2023.11515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dystonia is a movement disorder characterized by involuntary co- or over-contractions of the muscles, which results in abnormal postures and movements. These symptoms arise from the pathophysiology of a brain-wide dystonia network. There is mounting evidence suggesting that the cerebellum is a central node in this network. For example, manipulations that target the cerebellum cause dystonic symptoms in mice, and cerebellar neuromodulation reduces these symptoms. Although numerous findings provide insight into dystonia pathophysiology, they also raise further questions. Namely, how does cerebellar pathophysiology cause the diverse motor abnormalities in dystonia, tremor, and ataxia? Here, we describe recent work in rodents showing that distinct cerebellar circuit abnormalities could define different disorders and we discuss potential mechanisms that determine the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
14
|
Hasani E, Schallner J, von der Hagen M, Falkenburger B, Sobottka SB, Eyüpoglu I, Schackert G, Polanski WH. Deep Brain Stimulation in a Patient with TSPOAP1-Biallelic Variant of Autosomal-Recessive Dystonia. Mov Disord 2023; 38:2139-2140. [PMID: 37850637 DOI: 10.1002/mds.29618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Affiliation(s)
- Elida Hasani
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jens Schallner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maja von der Hagen
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bjoern Falkenburger
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ilker Eyüpoglu
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Witold H Polanski
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Kumar A, Lin CC, Kuo SH, Pan MK. Physiological Recordings of the Cerebellum in Movement Disorders. CEREBELLUM (LONDON, ENGLAND) 2023; 22:985-1001. [PMID: 36070135 PMCID: PMC10354710 DOI: 10.1007/s12311-022-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum plays an important role in movement disorders, specifically in symptoms of ataxia, tremor, and dystonia. Understanding the physiological signals of the cerebellum contributes to insights into the pathophysiology of these movement disorders and holds promise in advancing therapeutic development. Non-invasive techniques such as electroencephalogram and magnetoencephalogram can record neural signals with high temporal resolution at the millisecond level, which is uniquely suitable to interrogate cerebellar physiology. These techniques have recently been implemented to study cerebellar physiology in healthy subjects as well as individuals with movement disorders. In the present review, we focus on the current understanding of cerebellar physiology using these techniques to study movement disorders.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan.
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 11529, Taiwan.
| |
Collapse
|
16
|
Wilkes BJ, Adury RZ, Berryman D, Concepcion LR, Liu Y, Yokoi F, Maugee C, Li Y, Vaillancourt DE. Cell-specific Dyt1 ∆GAG knock-in to basal ganglia and cerebellum reveal differential effects on motor behavior and sensorimotor network function. Exp Neurol 2023; 367:114471. [PMID: 37321386 PMCID: PMC10695146 DOI: 10.1016/j.expneurol.2023.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Dystonia is a neurological movement disorder characterized by repetitive, unintentional movements and disabling postures that result from sustained or intermittent muscle contractions. The basal ganglia and cerebellum have received substantial focus in studying DYT1 dystonia. It remains unclear how cell-specific ∆GAG mutation of torsinA within specific cells of the basal ganglia or cerebellum affects motor performance, somatosensory network connectivity, and microstructure. In order to achieve this goal, we generated two genetically modified mouse models: in model 1 we performed Dyt1 ∆GAG conditional knock-in (KI) in neurons that express dopamine-2 receptors (D2-KI), and in model 2 we performed Dyt1 ∆GAG conditional KI in Purkinje cells of the cerebellum (Pcp2-KI). In both of these models, we used functional magnetic resonance imaging (fMRI) to assess sensory-evoked brain activation and resting-state functional connectivity, and diffusion MRI to assess brain microstructure. We found that D2-KI mutant mice had motor deficits, abnormal sensory-evoked brain activation in the somatosensory cortex, as well as increased functional connectivity of the anterior medulla with cortex. In contrast, we found that Pcp2-KI mice had improved motor performance, reduced sensory-evoked brain activation in the striatum and midbrain, as well as reduced functional connectivity of the striatum with the anterior medulla. These findings suggest that (1) D2 cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the basal ganglia results in detrimental effects on the sensorimotor network and motor output, and (2) Purkinje cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the cerebellum results in compensatory changes in the sensorimotor network that protect against dystonia-like motor deficits.
Collapse
Affiliation(s)
- B J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - R Z Adury
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - D Berryman
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - L R Concepcion
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Y Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - F Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - C Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Y Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - D E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
18
|
Lenka A, Pandey S. Dystonia and tremor: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:413-439. [PMID: 37482399 DOI: 10.1016/bs.irn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia and tremor are the two most commonly encountered hyperkinetic movement disorders encountered in clinical practice. While there has been substantial progress in the research on these two disorders, there also exists a lot of gray areas. Entities such as dystonic tremor and tremor associated with dystonia occupy a major portion of the "gray zone". In addition, there is a marked clinical heterogeneity and overlap of several clinical and epidemiological features among dystonia and tremor. These facts raise the possibility that dystonia and tremor could be having shared biology. In this chapter, we revisit critical aspects of this possibility that may have important clinical and research implications in the future. We comprehensively review the points in favor and against the theory that dystonia and tremor have shared biology from clinical, epidemiological, genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Sanjay Pandey
- Department of Neurology, Amrita Hospital, Faridabad, Delhi National Capital Region, India.
| |
Collapse
|
19
|
Odorfer TM, Yabe M, Hiew S, Volkmann J, Zeller D. Topological differences and confounders of mental rotation in cervical dystonia and blepharospasm. Sci Rep 2023; 13:6026. [PMID: 37055560 PMCID: PMC10102235 DOI: 10.1038/s41598-023-33262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia.
Collapse
Affiliation(s)
- Thorsten M Odorfer
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany.
| | - Marie Yabe
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Shawn Hiew
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
20
|
Listik C, Lapa JD, Casagrande SCB, Barbosa ER, Iglesio R, Godinho F, Duarte KP, Teixeira MJ, Cury RG. Exploring clinical outcomes in patients with idiopathic/inherited isolated generalized dystonia and stimulation of the subthalamic region. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:263-270. [PMID: 37059436 PMCID: PMC10104753 DOI: 10.1055/s-0043-1764416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is an established treatment option for refractory dystonia, but the improvement among the patients is variable. OBJECTIVE To describe the outcomes of DBS of the subthalamic region (STN) in dystonic patients and to determine whether the volume of tissue activated (VTA) inside the STN or the structural connectivity between the area stimulated and different regions of the brain are associated with dystonia improvement. METHODS The response to DBS was measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) before and 7 months after surgery in patients with generalized isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN volumes from both hemispheres was correlated with the change in BFM scores to assess whether the area stimulated inside the STN affects the clinical outcome. Structural connectivity estimates between the VTA (of each patient) and different brain regions were computed using a normative connectome taken from healthy subjects. RESULTS Five patients were included. The baseline BFM motor and disability subscores were 78.30 ± 13.55 (62.00-98.00) and 20.60 ± 7.80 (13.00-32.00), respectively. Patients improved dystonic symptoms, though differently. No relationships were found between the VTA inside the STN and the BFM improvement after surgery (p = 0.463). However, the connectivity between the VTA and the cerebellum structurally correlated with dystonia improvement (p = 0.003). CONCLUSIONS These data suggest that the volume of the stimulated STN does not explain the variance in outcomes in dystonia. Still, the connectivity pattern between the region stimulated and the cerebellum is linked to outcomes of patients.
Collapse
Affiliation(s)
- Clarice Listik
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Jorge Dornellys Lapa
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | | | - Egberto Reis Barbosa
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| | - Ricardo Iglesio
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Fabio Godinho
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Kleber Paiva Duarte
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Manoel Jacobsen Teixeira
- Universidade de São Paulo, Faculty of Medicine, Neurosurgery Division, Departament of de Neurology, São Paulo SP, Brazil
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Center for Movement Disorders, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
| |
Collapse
|
21
|
Jiang L, Zhang R, Tao L, Zhang Y, Zhou Y, Cai Q. Neural mechanisms of musical structure and tonality, and the effect of musicianship. Front Psychol 2023; 14:1092051. [PMID: 36844277 PMCID: PMC9948014 DOI: 10.3389/fpsyg.2023.1092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The neural basis for the processing of musical syntax has previously been examined almost exclusively in classical tonal music, which is characterized by a strictly organized hierarchical structure. Musical syntax may differ in different music genres caused by tonality varieties. Methods The present study investigated the neural mechanisms for processing musical syntax across genres varying in tonality - classical, impressionist, and atonal music - and, in addition, examined how musicianship modulates such processing. Results Results showed that, first, the dorsal stream, including the bilateral inferior frontal gyrus and superior temporal gyrus, plays a key role in the perception of tonality. Second, right frontotemporal regions were crucial in allowing musicians to outperform non-musicians in musical syntactic processing; musicians also benefit from a cortical-subcortical network including pallidum and cerebellum, suggesting more auditory-motor interaction in musicians than in non-musicians. Third, left pars triangularis carries out online computations independently of tonality and musicianship, whereas right pars triangularis is sensitive to tonality and partly dependent on musicianship. Finally, unlike tonal music, the processing of atonal music could not be differentiated from that of scrambled notes, both behaviorally and neurally, even among musicians. Discussion The present study highlights the importance of studying varying music genres and experience levels and provides a better understanding of musical syntax and tonality processing and how such processing is modulated by music experience.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,School of Music, East China Normal University, Shanghai, China
| | - Ruiqing Zhang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Lily Tao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuxin Zhang
- Shanghai High School International Division, Shanghai, China
| | - Yongdi Zhou
- School of Psychology, Shenzhen University, Shenzhen, China,Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States,Yongdi Zhou, ✉
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,Shanghai Changning Mental Health Center, Shanghai, China,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China,*Correspondence: Qing Cai, ✉
| |
Collapse
|
22
|
Beckinghausen J, Donofrio SG, Lin T, Miterko LN, White JJ, Lackey EP, Sillitoe RV. Deep Brain Stimulation of the Interposed Cerebellar Nuclei in a Conditional Genetic Mouse Model with Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:93-117. [PMID: 37338698 DOI: 10.1007/978-3-031-26220-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is a neurological disease that is currently ranked as the third most common motor disorder. Patients exhibit repetitive and sometimes sustained muscle contractions that cause limb and body twisting and abnormal postures that impair movement. Deep brain stimulation (DBS) of the basal ganglia and thalamus can be used to improve motor function when other treatment options fail. Recently, the cerebellum has garnered interest as a DBS target for treating dystonia and other motor disorders. Here, we describe a procedure for targeting DBS electrodes to the interposed cerebellar nuclei to correct motor dysfunction in a mouse model with dystonia. Targeting cerebellar outflow pathways with neuromodulation opens new possibilities for using the expansive connectivity of the cerebellum to treat motor and non-motor diseases.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Sarah G Donofrio
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Lauren N Miterko
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua J White
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio N. Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
24
|
Alpheis S, Altenmüller E, Scholz DS. Focal Dystonia and the Stress Network: The Role of Stress Vulnerability and Adverse Childhood Experiences in the Development of Musician's Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:23-44. [PMID: 37338694 DOI: 10.1007/978-3-031-26220-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Musician's dystonia is often described as a neurological disorder, resulting from reduced inhibition in the basal ganglia and the cerebellum and dysfunctional cortical plasticity. However, several studies over the last decades support the hypothesis that psychological factors play an important role in the aetiology of dystonia, contradicting its classification as "purely neurological". Especially adverse childhood experiences (ACEs) such as neglect, maltreatment, or household dysfunction may influence the sensorimotor system, additionally to the impact they have on psychological traits. They are known to alter limbic networks, such as the amygdala, the hippocampus, and the stress response via the hypothalamus-pituitary-adrenal (HPA) axis and might also affect the cortico-striatal-thalamo-cortical loop that is vital for correct motor movement learning. Especially a higher activity of the basolateral amygdala could be important by increasing the consolidation of dysfunctional motor memories in stressful situations.Therefore, this chapter explores how musician's dystonia might be a result of dysfunctional stress-coping mechanisms, additionally to the already established neurological alterations.
Collapse
Affiliation(s)
- Stine Alpheis
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music, Drama and Media, Hannover, Germany.
| | - Daniel S Scholz
- Department of Musicians' Health, University of Music Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Deep brain stimulation in animal models of dystonia. Neurobiol Dis 2022; 175:105912. [DOI: 10.1016/j.nbd.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
|
26
|
Pentony M, Featherstone M, Sheikh Y, Stroiescu A, Bruell H, Gill I, Gorman KM. Dystonia in children with acquired brain injury. Eur J Paediatr Neurol 2022; 41:41-47. [PMID: 36209658 DOI: 10.1016/j.ejpn.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/11/2023]
Abstract
AIM To quantify the proportion of children who develop dystonia after acquired brain injury (ABI) admitted to a tertiary paediatric intensive care unit (PICU) and analyse the trajectory of dystonia over a 6 month period. METHODS Children's Health Ireland at Temple Street PICU electronic database was searched for key terms related to ABI from January 1, 2016 to March 14, 2021. Individuals meeting inclusion criteria were analysed, and clinical data pertinent to ABI, dystonia, treatment and outcomes were reviewed. RESULTS Six-hundred and forty-three PICU episodes (580 patients) met search criteria for ABI, with 379 included in the final analysis. Twelve patients developed dystonia following ABI, giving an incidence of 3.2%. The incidence was higher in the hypoxia/anoxia and TBI cohort at 8.3% and 6.2%, respectively. All patients developed dystonia within the first month following ABI (50% by a week). Patients who developed dystonia compared to non-dystonia cohort had a median lower GCS on admission (4.5 versus 7.0, p value 0.032), longer median length of PICU stay (14.0 versus 3.0 days, p value < 0.001) and were older (median age 9.08 versus 4.68 years, p value 0.06). Dystonia persisted in the majority at 6 months (10/11), requiring on-going medical therapies. CONCLUSION In our retrospective study, the estimated incidence of dystonia following ABI admitted to the PICU was 3.2%, highest in the hypoxia/anoxia (8.3%) and TBI (6.2%) cohorts. Dystonia emerged early and persisted at 6 months in the majority. This is the first review of dystonia, clinical trajectory and outcomes conducted post-PICU admission for ABI. Future prospective studies are required to determine the true prevalence and burden of disease in the PICU setting.
Collapse
Affiliation(s)
- M Pentony
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Ireland
| | - M Featherstone
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Y Sheikh
- Department of Paediatric Radiology, Children's Health Ireland at Temple Street, Ireland
| | - A Stroiescu
- Department of Paediatric Radiology, Children's Health Ireland at Temple Street, Ireland
| | - H Bruell
- Department of Paediatric Intensive Care, Children's Health Ireland at Temple Street, Ireland
| | - I Gill
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Neurodisability, Children's Health Ireland at Temple Street, Ireland; Department of Paediatric Rehabilitation, National Rehabilitation Hospital, Dublin, Ireland
| | - K M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Qin Y, Qiu S, Liu X, Xu S, Wang X, Guo X, Tang Y, Li H. Lesions causing post-stroke spasticity localize to a common brain network. Front Aging Neurosci 2022; 14:1011812. [PMID: 36389077 PMCID: PMC9642815 DOI: 10.3389/fnagi.2022.1011812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The efficacy of clinical interventions for post-stroke spasticity (PSS) has been consistently unsatisfactory, probably because lesions causing PSS may occur at different locations in the brain, leaving the neuroanatomical substrates of spasticity unclear. Here, we investigated whether heterogeneous lesions causing PSS were localized to a common brain network and then identified the key nodes in this network. Methods We used 32 cases of PSS and the Human Connectome dataset (n = 1,000), using a lesion network mapping method to identify the brain regions that were associated with each lesion in patients with PSS. Functional connectivity maps of all lesions were overlaid to identify common connectivity. Furthermore, a split-half replication method was used to evaluate reproducibility. Then, the lesion network mapping results were compared with those of patients with post-stroke non-spastic motor dysfunction (n = 29) to assess the specificity. Next, both sensitive and specific regions associated with PSS were identified using conjunction analyses, and the correlation between these regions and PSS was further explored by correlation analysis. Results The lesions in all patients with PSS were located in different cortical and subcortical locations. However, at least 93% of these lesions (29/32) had functional connectivity with the bilateral putamen and globus pallidus. These connections were highly repeatable and specific, as compared to those in non-spastic patients. In addition, the functional connectivity between lesions and bilateral putamen and globus pallidus in patients with PSS was positively correlated with the degree of spasticity. Conclusion We identified that lesions causing PSS were localized to a common functional connectivity network defined by connectivity to the bilateral putamen and globus pallidus. This network may best cover the locations of lesions causing PSS. The putamen and globus pallidus may be potential key regions in PSS. Our findings complement previous neuroimaging studies on PSS, contributing to identifying patients with stroke at high risk for spasticity at an early stage, and may point to PSS-specific brain stimulation targets.
Collapse
Affiliation(s)
- Yin Qin
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- Department of Rehabilitation Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Yin Qin,
| | - Shuting Qiu
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoying Liu
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- Department of Rehabilitation Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shangwen Xu
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| | - Xiaoyang Wang
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| | - Xiaoping Guo
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- Department of Rehabilitation Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuting Tang
- Department of Rehabilitation Medicine, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Li
- Department of Radiology, The 900th Hospital of Joint Logistic Support Force, People’s Liberation Army (PLA), Fuzhou, China
| |
Collapse
|
28
|
Liu K, Hou Y, Ou R, Yang T, Yang J, Song W, Zhao B, Shang H. Cognitive impairment in Chinese patients with cervical dystonia. Front Neurol 2022; 13:961563. [PMID: 36188384 PMCID: PMC9523424 DOI: 10.3389/fneur.2022.961563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Cognitive impairment (CI) in patients with cervical dystonia (CD) has been reported in many studies but with inconsistent findings. We investigated the prevalence, characteristics, and clinical factors related to CI in Chinese patients with CD. Methods Sixty-eight patients with CD and 68 healthy controls (HCs) were included in the study. Demographic and clinical data were investigated. A logistic regression analysis was conducted to discriminate the clinical factors associated with CI in patients with CD. A cluster analysis was performed to explore the different characteristics within the group of CD patients with CI. Results We found that 42 (61.76%) patients with CD had CI. The most frequent CI domain was visuospatial function (39.71%), followed by memory (38.24%), attention/working memory (29.41%), language (25.00%), and executive function (23.53%). CD patients with CI were older, less educated, had an older age of onset, more severe motor symptoms and disability, and experienced more pain than CD patients without CI. The presence of CI in patients with CD was associated with less education (OR = 0.802, p = 0.034) and a higher Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) severity subscore (OR = 1.305, p = 0.001). The cluster analysis identified two different subgroups of patients, one with relatively mild cognitive impairment and the other with relatively severe cognitive impairment. Conclusion CI is relatively common in Chinese patients with CD, with the most common CI domain of the visuospatial function. In the present study, CI in patients with CD was associated with less education and more severe motor symptoms, and patients with CI may be further divided into two subgroups based on different extent and domain of cognitive decline.
Collapse
|
29
|
da Silva Lapa JD, Godinho FLF, Teixeira MJ, Listik C, Iglesio RF, Duarte KP, Cury RG. Should the Globus Pallidus Targeting Be Refined in Dystonia? J Neurol Surg A Cent Eur Neurosurg 2021; 83:361-367. [PMID: 34808675 DOI: 10.1055/s-0041-1735856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective therapy for primary generalized and focal dystonias, but therapeutic success is compromised by a nonresponder rate of up to 20%. Variability in electrode placement and in tissue stimulated inside the GPi may explain in part different outcomes among patients. Refinement of the target within the pallidal area could be helpful for surgery planning and clinical outcomes. The objective of this study was to discuss current and potential methodological (somatotopy, neuroimaging, and neurophysiology) aspects that might assist neurosurgical targeting of the GPi, aiming to treat generalized or focal dystonia. METHODS We selected published studies by searching electronic databases and scanning the reference lists for articles that examined the anatomical and electrophysiologic aspects of the GPi in patients with idiopathic/inherited dystonia who underwent functional neurosurgical procedures. RESULTS The sensorimotor sector of the GPi was the best target to treat dystonic symptoms, and was localized at its lateral posteroventral portion. The effective volume of tissue activated (VTA) to treat dystonia had a mean volume of 153 mm3 in the posterior GPi area. Initial tractography studies evaluated the close relation between the electrode localization and pallidothalamic tract to control dystonic symptoms.Regarding the somatotopy, the more ventral, lateral, and posterior areas of the GPi are associated with orofacial and cervical representation. In contrast, the more dorsal, medial, and anterior areas are associated with the lower limbs; between those areas, there is the representation of the upper limb. Excessive pallidal synchronization has a peak at the theta band of 3 to 8 Hz, which might be responsible for generating dystonic symptoms. CONCLUSIONS Somatotopy assessment of posteroventral GPi contributes to target-specific GPi sectors related to segmental body symptoms. Tractography delineates GPi output pathways that might guide electrode implants, and electrophysiology might assist in pointing out areas of excessive theta synchronization. Finally, the identification of oscillatory electrophysiologic features that correlate with symptoms might enable closed-loop approaches in the future.
Collapse
Affiliation(s)
- Jorge Dornellys da Silva Lapa
- Neurosurgery Unit, Fundação de Beneficiência Hospital de Cirurgia, Cirurgia, Aracaju, Sergipe, Brazil.,Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Fábio Luiz Franceschi Godinho
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | | | - Clarice Listik
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Behavioral and neurochemical studies of inherited manganese-induced dystonia-parkinsonism in Slc39a14-knockout mice. Neurobiol Dis 2021; 158:105467. [PMID: 34358615 DOI: 10.1016/j.nbd.2021.105467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Inherited autosomal recessive mutations of the manganese (Mn) transporter gene SLC39A14 in humans, results in elevated blood and brain Mn concentrations and childhood-onset dystonia-parkinsonism. The pathophysiology of this disease is unknown, but the nigrostriatal dopaminergic system of the basal ganglia has been implicated. Here, we describe pathophysiological studies in Slc39a14-knockout (KO) mice as a preclinical model of dystonia-parkinsonism in SLC39A14 mutation carriers. Blood and brain metal concentrations in Slc39a14-KO mice exhibited a pattern similar to the human disease with highly elevated Mn concentrations. We observed an early-onset backward-walking behavior at postnatal day (PN) 21 which was also noted in PN60 Slc39a14-KO mice as well as dystonia-like movements. Locomotor activity and motor coordination were also impaired in Slc39a14-KO relative to wildtype (WT) mice. From a neurochemical perspective, striatal dopamine (DA) and metabolite concentrations and their ratio in Slc39a14-KO mice did not differ from WT. Striatal tyrosine hydroxylase (TH) immunohistochemistry did not change in Slc39a14-KO mice relative to WT. Unbiased stereological cell quantification of TH-positive and Nissl-stained estimated neuron number, neuron density, and soma volume in the substantia nigra pars compacta (SNc) was the same in Slc39a14-KO mice as in WT. However, we measured a marked inhibition (85-90%) of potassium-stimulated DA release in the striatum of Slc39a14-KO mice relative to WT. Our findings indicate that the dystonia-parkinsonism observed in this genetic animal model of the human disease is associated with a dysfunctional but structurally intact nigrostriatal dopaminergic system. The presynaptic deficit in DA release is unlikely to explain the totality of the behavioral phenotype and points to the involvement of other neuronal systems and brain regions in the pathophysiology of the disease.
Collapse
|
31
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
32
|
Cazurro-Gutiérrez A, Marcé-Grau A, Correa-Vela M, Salazar A, Vanegas MI, Macaya A, Bayés À, Pérez-Dueñas B. ε-Sarcoglycan: Unraveling the Myoclonus-Dystonia Gene. Mol Neurobiol 2021; 58:3938-3952. [PMID: 33886091 DOI: 10.1007/s12035-021-02391-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
Myoclonus-dystonia (MD) is a rare childhood-onset movement disorder, with an estimated prevalence of about 2 per 1,000,.000 in Europe, characterized by myoclonic jerks in combination with focal or segmental dystonia. Pathogenic variants in the gene encoding ε-sarcoglycan (SGCE), a maternally imprinted gene, are the most frequent genetic cause of MD. To date, the exact role of ε-sarcoglycan and the pathogenic mechanisms that lead to MD are still unknown. However, there are more than 40 reported isoforms of human ε-sarcoglycan, pointing to a complex biology of this protein. Additionally, some of these are brain-specific isoforms, which may suggest an important role within the central nervous system. In the present review, we aim to provide an overview of the current state of knowledge of ε-sarcoglycan. We will focus on the genetic landscape of SGCE and the presence and plausible role of ε-sarcoglycan in the brain. Finally, we discuss the importance of the brain-specific isoforms and hypothesize that SGCE may play essential roles in normal synaptic functioning and their alteration will be strongly related to MD.
Collapse
Affiliation(s)
- Ana Cazurro-Gutiérrez
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Marcé-Grau
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
| | - Marta Correa-Vela
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ainara Salazar
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Paediatric Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - María I Vanegas
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Paediatric Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Àlex Bayés
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Belén Pérez-Dueñas
- Paediatric Neurology Research Group, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Research Institute, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Barcelona, Spain.
- Paediatric Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
33
|
Liu J, Shuai G, Fang W, Zhu Y, Chen H, Wang Y, Li Q, Han Y, Zou D, Cheng O. Altered regional homogeneity and connectivity in cerebellum and visual-motor relevant cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Sleep Med 2021; 82:125-133. [PMID: 33915428 DOI: 10.1016/j.sleep.2021.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) frequently occurs in Parkinson's disease (PD), however, the exact pathophysiological mechanism underlying its occurrence is not clear. In this study, we explored whether there is abnormal spontaneous neuronal activities and connectivity maps in some brain areas under resting-state in PD patients with RBD. METHODS We recruited 38 PD patients (19 PD with RBD and 19 PD without RBD), and 20 age- and gender-matched normal controls. We used resting-state functional magnetic resonance imaging (RS-fMRI) to analyze regional homogeneity (ReHo) and functional connectivity (FC), and further to reveal the neuronal activity in all subjects. RESULTS Compared with the PD without RBD patients, the PD with RBD patients showed a significant increase in regional homogeneity in the left cerebellum, the right middle occipital region and the left middle temporal region, and decreased regional homogeneity in the left middle frontal region. The REM sleep behavioral disorders questionnaire scores were significantly positively correlated with the ReHo values of the left cerebellum. The functional connectivity analysis in which the four regions described above were used as regions of interest revealed increased functional activity between the left cerebellum and bilateral occipital regions, bilateral temporal regions and bilateral supplementary motor area. CONCLUSION The pathophysiological mechanism of PD with RBD may be related to abnormal spontaneous neuronal activity patterns with strong synchronization of cerebellar and visual-motor relevant cortex, and the increased connectivity of the cerebellum with the occipital and motor regions.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guangying Shuai
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Weidong Fang
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingcheng Zhu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Huiyue Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qun Li
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
34
|
The Substantia Nigra Pars Reticulata Modulates Error-Based Saccadic Learning in Monkeys. eNeuro 2021; 8:ENEURO.0519-20.2021. [PMID: 33707204 PMCID: PMC8114898 DOI: 10.1523/eneuro.0519-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia have long been considered crucial for associative learning, but whether they also are involved in another type of learning, error-based motor learning, is not clear. Error-based learning has been considered the province of the cerebellum. However, learning to use a robotic arm and saccade adaptation, which use error-based learning, are facilitated by motivation, which is a function of the basal ganglia. Additionally, patients with Parkinson’s disease, a basal ganglia deficit, show slower saccade adaptation than age matched controls. To further investigate whether the basal ganglia actually influence error-based learning, we reversibly inactivated the oculomotor portion of the substantia nigra pars reticulata (SNr) in two monkeys and tested saccade adaptation. Here, we show that nigral inactivation affected saccade adaptation. In particular, the inactivation facilitated the amplitude decrease adaptation of ipsiversive saccades. Consistent with previous studies, no effect was seen on the amplitude of the ipsiversive saccades when we did not induce adaptation. Therefore, the facilitated adaptation was not caused by inactivation directly modulating ipsiversive saccades. On the other hand, the kinematics of corrective saccades, which represent error processing, were changed after the inactivation. Thus, our data suggest that the oculomotor SNr assists saccade adaptation by strengthening the error signal. This effect indicates the basal ganglia influence error-based motor learning, a previously unrecognized function.
Collapse
|
35
|
Mencacci NE, Brockmann MM, Dai J, Pajusalu S, Atasu B, Campos J, Pino G, Gonzalez-Latapi P, Patzke C, Schwake M, Tucci A, Pittman A, Simon-Sanchez J, Carvill GL, Balint B, Wiethoff S, Warner TT, Papandreou A, Soo A, Rein R, Kadastik-Eerme L, Puusepp S, Reinson K, Tomberg T, Hanagasi H, Gasser T, Bhatia KP, Kurian MA, Lohmann E, Õunap K, Rosenmund C, Südhof TC, Wood NW, Krainc D, Acuna C. Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. J Clin Invest 2021; 131:140625. [PMID: 33539324 DOI: 10.1172/jci140625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jinye Dai
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher Patzke
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Schwake
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arianna Tucci
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Wiethoff
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, Münster, Germany
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Audrey Soo
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Tiiu Tomberg
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Manju A Kurian
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom.,Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | - Thomas C Südhof
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.,Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| |
Collapse
|
36
|
Cerda-Gonzalez S, Packer RA, Garosi L, Lowrie M, Mandigers PJJ, O'Brien DP, Volk HA. International veterinary canine dyskinesia task force ECVN consensus statement: Terminology and classification. J Vet Intern Med 2021; 35:1218-1230. [PMID: 33769611 PMCID: PMC8162615 DOI: 10.1111/jvim.16108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Movement disorders are a heterogeneous group of clinical syndromes in humans and animals characterized by involuntary movements without changes in consciousness. Canine movement disorders broadly include tremors, peripheral nerve hyperexcitability disorders, paroxysmal dyskinesia, and dystonia. Of these, canine paroxysmal dyskinesias remain one of the more difficult to identify and characterize in dogs. Canine paroxysmal dyskinesias include an array of movement disorders in which there is a recurrent episode of abnormal, involuntary, movement. In this consensus statement, we recommend standard terminology for describing the various movement disorders with an emphasis on paroxysmal dyskinesia, as well as a preliminary classification and clinical approach to reporting cases. In the clinical approach to movement disorders, we recommend categorizing movements into hyperkinetic vs hypokinetic, paroxysmal vs persistent, exercise‐induced vs not related to exercise, using a detailed description of movements using the recommended terminology presented here, differentiating movement disorders vs other differential diagnoses, and then finally, determining whether the paroxysmal dyskinesia is due to either inherited or acquired etiologies. This consensus statement represents a starting point for consistent reporting of clinical descriptions and terminology associated with canine movement disorders, with additional focus on paroxysmal dyskinesia. With consistent reporting and identification of additional genetic mutations responsible for these disorders, our understanding of the phenotype, genotype, and pathophysiology will continue to develop and inform further modification of these recommendations.
Collapse
Affiliation(s)
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Mark Lowrie
- Dovecote Veterinary Hospital, Derby, United Kingdom
| | - Paul J J Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
37
|
Sedov A, Usova S, Semenova U, Gamaleya A, Tomskiy A, Beylergil SB, Jinnah HA, Shaikh AG. Pallidal Activity in Cervical Dystonia with and Without Head Tremor. THE CEREBELLUM 2021; 19:409-418. [PMID: 32095996 DOI: 10.1007/s12311-020-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The relationship between two common movement disorders, dystonia and tremor, is controversial. Both deficits have correlates in the network that includes connections between the cerebellum and the basal ganglia. In order to assess the physiological relationship between tremor and dystonia, we measured the activity of 727 pallidal single-neurons during deep brain stimulation surgery in patients with cervical dystonia without head oscillations, cervical dystonia plus jerky oscillations, and cervical dystonia with sinusoidal oscillations. Cluster analyses of spike-train recordings allowed classification of the pallidal activity into burst, pause, and tonic. Burst neurons were more common, and number of spikes within spike and inter-burst intervals was shorter in pure dystonia and jerky oscillation groups compared to the sinusoidal oscillation group. Pause neurons were more common and irregular in pure tremor group compared to pure dystonia and jerky oscillation groups. There was bihemispheric asymmetry in spontaneous firing discharge in pure dystonia and jerky oscillation groups, but not in sinusoidal oscillation group. These results demonstrate that the physiology of pallidal neurons in patients with pure cervical dystonia is similar to those who have cervical dystonia combined with jerky oscillations, but different from those who have cervical dystonia combined with sinusoidal oscillations. These results imply distinct mechanistic underpinnings for different types of head oscillations in cervical dystonia.
Collapse
Affiliation(s)
- Alexey Sedov
- Semenov Institute of chemical physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of physics and technology, Moscow, Dolgoprudny, Russia
| | - Svetlana Usova
- Semenov Institute of chemical physics, Russian Academy of Sciences, Moscow, Russia
| | - Ulia Semenova
- Semenov Institute of chemical physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna Gamaleya
- N .N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- N .N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Sinem B Beylergil
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - H A Jinnah
- Department of Neurology, Pediatrics, and Genetics, Emory University, Atlanta, GA, USA
| | - Aasef G Shaikh
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Neurological Institute, University Hospitals, Cleveland, OH, USA. .,Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
38
|
Ding B, Tang Y, Ma S, Akter M, Liu ML, Zang T, Zhang CL. Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. J Neurosci 2021; 41:2024-2038. [PMID: 33468570 PMCID: PMC7939088 DOI: 10.1523/jneurosci.2507-20.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A (TOR1A), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear "blebs" that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregulated in DYT1 cells and exhibits abnormal subcellular distribution in a cholinergic MNs-specific manner. Such dysregulation of LMNB1 can be recapitulated by either ectopic expression of the mutant TOR1A gene or shRNA-mediated downregulation of endogenous TOR1A in healthy control MNs. Interestingly, downregulation of LMNB1 can largely ameliorate all the cellular defects in DYT1 MNs. These results reveal the value of disease modeling with human patient-specific neurons and indicate that dysregulation of LMNB1, a crucial component of the nuclear lamina, may constitute a major molecular mechanism underlying DYT1 pathology.SIGNIFICANCE STATEMENT Inaccessibility to patient neurons greatly impedes our understanding of the pathologic mechanisms for dystonia. In this study, we employ reprogrammed human patient-specific motor neurons (MNs) to model DYT1, the most severe hereditary form of dystonia. Our results reveal disease-dependent deficits in nuclear morphology and nucleocytoplasmic transport (NCT). Most importantly, we further identify LMNB1 dysregulation as a major contributor to these deficits, uncovering a new pathologic mechanism for DYT1 dystonia.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Yu Tang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masuma Akter
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tong Zang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
39
|
Contemporary functional neuroanatomy and pathophysiology of dystonia. J Neural Transm (Vienna) 2021; 128:499-508. [PMID: 33486625 PMCID: PMC8099808 DOI: 10.1007/s00702-021-02299-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022]
Abstract
Dystonia is a disabling movement disorder characterized by abnormal postures or patterned and repetitive movements due to co-contraction of muscles in proximity to muscles desired for a certain movement. Important and well-established pathophysiological concepts are the impairment of sensorimotor integration, a loss of inhibitory control on several levels of the central nervous system and changes in synaptic plasticity. These mechanisms collectively contribute to an impairment of the gating function of the basal ganglia which results in an insufficient suppression of noisy activity and an excessive activation of cortical areas. In addition to this traditional view, a plethora of animal, genetic, imaging and electrophysiological studies highlight the role of the (1) cerebellum, (2) the cerebello-thalamic connection and (3) the functional interplay between basal ganglia and the cerebellum in the pathophysiology of dystonia. Another emerging topic is the better understanding of the microarchitecture of the striatum and its implications for dystonia. The striosomes are of particular interest as they likely control the dopamine release via inhibitory striato-nigral projections. Striosomal dysfunction has been implicated in hyperkinetic movement disorders including dystonia. This review will provide a comprehensive overview about the current understanding of the functional neuroanatomy and pathophysiology of dystonia and aims to move the traditional view of a ‘basal ganglia disorder’ to a network perspective with a dynamic interplay between cortex, basal ganglia, thalamus, brainstem and cerebellum.
Collapse
|
40
|
Bocci T, Baloscio D, Ferrucci R, Sartucci F, Priori A. Cerebellar Direct Current Stimulation (ctDCS) in the Treatment of Huntington's Disease: A Pilot Study and a Short Review of the Literature. Front Neurol 2020; 11:614717. [PMID: 33343504 PMCID: PMC7744723 DOI: 10.3389/fneur.2020.614717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: In recent years, a growing body of literature has investigated the use of non-invasive brain stimulation (NIBS) techniques as a putative treatment in Huntington's Disease (HD). Our aim was to evaluate the effects of cerebellar transcranial Direct Current Simulation (ctDCS) on the motor outcome in patients affected by HD, encompassing at the same time the current knowledge about the effects of NIBS both on motor and non-motor dysfunctions in HD. Materials and Methods: Four patients (two females) were enrolled and underwent ctDCS (both anodal or sham, elapsed by at least 3 months: 2.0 mA, 20 min per day, 5 days a week). Clinical scores were assessed by using the Unified Huntington's Disease Rating Scale - part I (UHDRS-I), immediately before ctDCS (T0), at the end of the 5-days treatment (T1) and 4 weeks later (T2). Results: Anodal ctDCS improved motor scores compared to baseline (p = 0.0046), whereas sham stimulation left them unchanged (p = 0.33, Friedman test). In particular, following anodal ctDCS, UHDRS-I score significantly improved, especially regarding the subitem "dystonia," both at T1 and T2 compared to sham condition (p < 0.05; Wilcoxon matched-pairs signed test). Conclusions: ctDCS improved motor scores in HD, with effects lasting for about 4 weeks after tDCS completion. This is the first study discussing the putative role of cerebellar non-invasive simulation for the treatment of HD.
Collapse
Affiliation(s)
- Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Davide Baloscio
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
41
|
Little Brain, Big Expectations. Brain Sci 2020; 10:brainsci10120944. [PMID: 33297358 PMCID: PMC7762222 DOI: 10.3390/brainsci10120944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 01/17/2023] Open
Abstract
The cerebellum has been implicated in the mechanisms of several movement disorders. With the recent reports of successful modulation of its functioning, this highly connected structure has emerged as a promising way to provide symptomatic relief not yet obtained by usual treatments. Here we review the most relevant papers published to date, the limitations and gaps in literature, discuss why several papers have failed in showing efficacy, and present a new way of stimulating the cerebellum. References for this critique review were identified by searches on PubMed for the terms “Parkinson’s disease”, “ataxia”, “dystonia”, “tremor”, and “dyskinesias” in combination with the type of stimulation and the stimulation site. Studies conducted thus far have shed light on the potential of cerebellar neuromodulation for attenuating symptoms in patients with some forms of isolated and combined dystonia, dyskinesia in Parkinson’s disease, and neurodegenerative ataxia. However, there is still a high heterogeneity of results and uncertainty about the possibility of maintaining long-term benefits. Because of the complicated architecture of the cerebellum, the modulation techniques employed may have to focus on targeting the activity of the cerebellar nuclei rather than the cerebellar cortex. Measures of cerebellar activity may reduce the variability in outcomes.
Collapse
|
42
|
Liu Y, Xing H, Wilkes BJ, Yokoi F, Chen H, Vaillancourt DE, Li Y. The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia. Brain Res Bull 2020; 165:14-22. [PMID: 32976982 PMCID: PMC7674218 DOI: 10.1016/j.brainresbull.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022]
Abstract
DYT1 dystonia is an inherited movement disorder caused by a heterozygous trinucleotide (GAG) deletion in DYT1/TOR1A, coding for torsinA. Growing evidence suggests that the cerebellum plays a role in the pathogenesis of dystonia. Brain imaging of both DYT1 dystonia patients and animal models show abnormal activity in the cerebellum. The cerebellum-specific knockdown of torsinA in adult mice leads to dystonia-like behavior. Dyt1 ΔGAG heterozygous knock-in mouse model exhibits impaired corticostriatal long-term depression, abnormal muscle co-contraction, and motor deficits. We and others previously reported altered dendritic structures in Purkinje cells in Dyt1 knock-in mouse models. However, whether there are any electrophysiological alterations of the Purkinje cells in Dyt1 knock-in mice is not known. We used the patch-clamp recording in brain slices and in acutely dissociated Purkinje cells to identify specific alterations of Purkinje cells firing. We found abnormal firing of non-tonic type of Purkinje cells in the Dyt1 knock-in mice. Furthermore, the large-conductance calcium-activated potassium (BK) current and the BK channel protein levels were significantly increased in the Dyt1 knock-in mice. Our results support a role of the cerebellum in the pathogenesis of DYT1 dystonia. Manipulating the Purkinje cell firing and cerebellar output may show great promise for treating DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Huanxin Chen
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Early Onset Ataxia with Comorbid Dystonia: Clinical, Anatomical and Biological Pathway Analysis Expose Shared Pathophysiology. Diagnostics (Basel) 2020; 10:diagnostics10120997. [PMID: 33255407 PMCID: PMC7760948 DOI: 10.3390/diagnostics10120997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/01/2023] Open
Abstract
In degenerative adult onset ataxia (AOA), dystonic comorbidity is attributed to one disease continuum. However, in early adult onset ataxia (EOA), the prevalence and pathogenesis of dystonic comorbidity (EOAD+), are still unclear. In 80 EOA-patients, we determined the EOAD+-prevalence in association with MRI-abnormalities. Subsequently, we explored underlying biological pathways by genetic network and functional enrichment analysis. We checked pathway-outcomes in specific EOAD+-genotypes by comparing results with non-specifically (in-silico-determined) shared genes in up-to-date EOA, AOA and dystonia gene panels (that could concurrently cause ataxia and dystonia). In the majority (65%) of EOA-patients, mild EOAD+-features concurred with extra-cerebellar MRI abnormalities (at pons and/or basal-ganglia and/or thalamus (p = 0.001)). Genetic network and functional enrichment analysis in EOAD+-genotypes indicated an association with organelle- and cellular-component organization (important for energy production and signal transduction). In non-specifically, in-silico-determined shared EOA, AOA and dystonia genes, pathways were enriched for Krebs-cycle and fatty acid/lipid-metabolic processes. In frequently occurring EOAD+-phenotypes, clinical, anatomical and biological pathway analyses reveal shared pathophysiology between ataxia and dystonia, associated with cellular energy metabolism and network signal transduction. Insight in the underlying pathophysiology of heterogeneous EOAD+-phenotype-genotype relationships supports the rationale for testing with complete, up-to-date movement disorder gene lists, instead of single EOA gene-panels.
Collapse
|
44
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
45
|
High Frequency Deep Brain Stimulation of Superior Cerebellar Peduncles in a Patient with Cerebral Palsy. Tremor Other Hyperkinet Mov (N Y) 2020; 10:38. [PMID: 33101764 PMCID: PMC7546102 DOI: 10.5334/tohm.551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Globus pallidus internus (GPi) deep brain stimulation (DBS) is widely used in patients with isolated dystonia; however, its use remains controversial in patients with acquired dystonia and cerebral palsy. Case presentation We report the first case of a cerebral palsy patient, who failed to recover 2 years after GPi DBS; DBS was administered on both superior cerebellar peduncles (SCPs) and dentate nuclei (DNs). The monopolar stimulation results suggested that DBS was better administered via the SCPs than via the DNs. At six months follow-up, the patient exhibited a significant improvement of dystonia and spasticity, as well as in her quality of life. Discussion SCP DBS may be a potential treatment for cerebral palsy patients with dystonia and spasticity who do not respond well to GPi DBS.
Collapse
|
46
|
De Mase A, Saracino D, Andreone V. Hyperkinetic manifestations in superficial siderosis: evidence for pathogenic network disruption. Neurol Sci 2020; 42:719-722. [PMID: 33001408 DOI: 10.1007/s10072-020-04771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022]
Abstract
Superficial siderosis (SS) of central nervous system is a rare condition characterized by hemosiderin deposition diffusely involving supratentorial and infratentorial compartments. SS usually manifests with ataxia and sensorineural hearing loss. Basal ganglia are almost always spared by the degenerative process, and movement disorders are only rarely reported. We describe the case of an aged woman with apparently idiopathic SS presenting with cerebellar ataxia, hearing loss, and orofacial dyskinesias. Together with some previously reported patients affected by SS and presenting with dystonic manifestations, our case reinforces the current hypothesis supporting a wide network disruption, rather than a direct basal ganglia damage, as the likely underlying cause of some dystonic syndromes.
Collapse
Affiliation(s)
- Antonio De Mase
- Acute Neurovascular Treatment Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Dario Saracino
- Paris Brain Institute (ICM), Inserm U1127, CNRS UMR 7225, AP-HP - Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Vincenzo Andreone
- Neurology and Stroke Unit, Department of Medical Sciences, AORN Sant'Anna e San Sebastiano Hospital, Via Ferdinando Palasciano, Caserta, Italy.
| |
Collapse
|
47
|
Reduced Interhemispheric Coherence after Cerebellar Vermis Output Perturbation. Brain Sci 2020; 10:brainsci10090621. [PMID: 32911623 PMCID: PMC7563959 DOI: 10.3390/brainsci10090621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Motor coordination and motor learning are well-known roles of the cerebellum. Recent evidence also supports the contribution of the cerebellum to the oscillatory activity of brain networks involved in a wide range of disorders. Kainate, a potent analog of the excitatory neurotransmitter glutamate, can be used to induce dystonia, a neurological movement disorder syndrome consisting of sustained or repetitive involuntary muscle contractions, when applied on the surface of the cerebellum. This research aims to study the interhemispheric cortical communication between the primary motor cortices after repeated kainate application on cerebellar vermis for five consecutive days, in mice. We recorded left and right primary motor cortices electrocorticograms and neck muscle electromyograms, and quantified the motor behavior abnormalities. The results indicated a reduced coherence between left and right motor cortices in low-frequency bands. In addition, we observed a phenomenon of long-lasting adaptation with a modification of the baseline interhemispheric coherence. Our research provides evidence that the cerebellum can control the flow of information along the cerebello-thalamo-cortical neural pathways and can influence interhemispheric communication. This phenomenon could function as a compensatory mechanism for impaired regional networks.
Collapse
|
48
|
Sedov A, Usova S, Popov V, Tomskiy A, Jinnah HA, Shaikh AG. Feedback-dependent neuronal properties make focal dystonias so focal. Eur J Neurosci 2020; 53:2388-2397. [PMID: 32757424 DOI: 10.1111/ejn.14933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Focal dystonia, by definition, affects a specific body part; however, it may have a widespread neural substrate. We tested this hypothesis by examining the intrinsic behaviour and the neuronal properties that are modulated by changes in the physiological behaviour of their connections, that is feedback dependence, of the isolated pallidal neurons. During deep brain stimulation surgery in 12 patients with isolated cervical dystonia (without hand involvement), we measured spontaneous as well as evoked single-unit properties in response to fist making (hand movement) or shoulder shrug (neck movements). We measured the activity of isolated neurons that were only sensitive to the neck movements, hand movement, or not responsive to hand or neck movements. The spontaneous firing behaviour, such as the instantaneous firing rate and its regularity, was comparable in all three types of neurons. The neck movement-sensitive neurons had prominent bursting behaviour in comparison with the hand neurons. The feedback dependence of the neck movement-sensitive neurons was also significantly impaired when compared to hand movement-sensitive neurons. Motor-evoked change in firing rate of neck movement-sensitive neurons rapidly declined; the decay time constant was much shorter compared to hand movement-sensitive neurons. These results suggest that in isolated cervical dystonia, at the resolution of single neurons, the deficits are much widespread, affecting the neurons that drive the neck movement as well as the hand movements. We speculate that clinically discernable dystonia occurs when additional abnormality is added to baseline dysfunctional network, and one source of such abnormality may involve feedback.
Collapse
Affiliation(s)
- Alexey Sedov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Svetlana Usova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Valentin Popov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,N. N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- N. N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Hyder A Jinnah
- Department of Neurology, Pediatrics, and Genetics, Emory University, Atlanta, GA, USA
| | - Aasef G Shaikh
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Neurological Institute, University Hospitals, Cleveland, OH, USA.,Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
49
|
Valsky D, Heiman Grosberg S, Israel Z, Boraud T, Bergman H, Deffains M. What is the true discharge rate and pattern of the striatal projection neurons in Parkinson's disease and Dystonia? eLife 2020; 9:e57445. [PMID: 32812870 PMCID: PMC7462612 DOI: 10.7554/elife.57445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dopamine and striatal dysfunctions play a key role in the pathophysiology of Parkinson's disease (PD) and Dystonia, but our understanding of the changes in the discharge rate and pattern of striatal projection neurons (SPNs) remains limited. Here, we recorded and examined multi-unit signals from the striatum of PD and dystonic patients undergoing deep brain stimulation surgeries. Contrary to earlier human findings, we found no drastic changes in the spontaneous discharge of the well-isolated and stationary SPNs of the PD patients compared to the dystonic patients or to the normal levels of striatal activity reported in healthy animals. Moreover, cluster analysis using SPN discharge properties did not characterize two well-separated SPN subpopulations, indicating no SPN subpopulation-specific (D1 or D2 SPNs) discharge alterations in the pathological state. Our results imply that small to moderate changes in spontaneous SPN discharge related to PD and Dystonia are likely amplified by basal ganglia downstream structures.
Collapse
Affiliation(s)
- Dan Valsky
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
| | - Shai Heiman Grosberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Thomas Boraud
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
- CHU de Bordeaux, IMN CliniqueBordeauxFrance
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Marc Deffains
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
| |
Collapse
|
50
|
Affective and cognitive theory of mind in patients with cervical dystonia with and without tremor. J Neural Transm (Vienna) 2020; 128:199-206. [PMID: 32770275 DOI: 10.1007/s00702-020-02237-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Theory of mind (ToM) refers to an individual's ability to attribute mental states to predict and explain another person's behavior. It has been shown that patients with cervical dystonia (CD) present impaired ToM ability supporting the idea that CD is a network disorder. An emerging hypothesis is that different phenotypes of CD reflect distinct key nodes in the malfunctioning cerebral network. The aim of the present study was to investigate whether the presence of tremor as additional phenotypic feature of CD influences the ability to attribute a cognitive or emotional state to another person. We enrolled 35 patients with CD, 21 with tremor (CD-T) and 14 without tremor (CD-NT) and 47 age-matched healthy subjects (HS). The Emotion Attribution Task (EAT) was adopted to assess the affective ToM ability while the Advanced Test (AT) was used to investigate the cognitive ToM ability. Results showed that CD patients' performance was worse than HS in recognizing the emotional feelings expressed in the EAT situations, with no difference between CD-T and CD-NT. Regarding cognitive ToM, both CD-T and CD-NT performed worse than HS in the AT task. However, it also emerged that CD-T were more impaired in AT task than CD-NT. Our results indicate that both affective and cognitive aspects of ToM are impaired in CD and that cognitive ToM is more impaired in patients presenting tremor respect to those without. These findings support the hypothesis that the cerebral network responsible of motor and non-motor impairments is more widespread in CD-T than CD-NT.
Collapse
|