1
|
Böing C, Di Fabrizio M, Burger D, Bol JGJM, Huisman E, Rozemuller AJM, van de Berg WDJ, Stahlberg H, Lewis AJ. Distinct ultrastructural phenotypes of glial and neuronal alpha-synuclein inclusions in multiple system atrophy. Brain 2024; 147:3727-3741. [PMID: 38696728 PMCID: PMC11531854 DOI: 10.1093/brain/awae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/17/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Multiple system atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.
Collapse
Affiliation(s)
- Carolin Böing
- C-CINA, Biozentrum, University of Basel, Basel 4058, Switzerland
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Domenic Burger
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - John G J M Bol
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Evelien Huisman
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Amanda J Lewis
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
2
|
Ivanov MV, Kopeykina AS, Gorshkov MV. Reanalysis of DIA Data Demonstrates the Capabilities of MS/MS-Free Proteomics to Reveal New Biological Insights in Disease-Related Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1775-1785. [PMID: 38938158 DOI: 10.1021/jasms.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Data-independent acquisition (DIA) at the shortened data acquisition time is becoming a method of choice for quantitative proteomic applications requiring high throughput analysis of large cohorts of samples. With the advent of the combination of high resolution mass spectrometry with an asymmetric track lossless analyzer, these DIA capabilities were further extended with the recent demonstration of quantitative analyses at the speed of up to hundreds of samples per day. In particular, the proteomic data for the brain samples related to multiple system atrophy disease were acquired using 7 and 28 min chromatography gradients (Guzman et al., Nat. Biotech. 2024). In this work, we applied the recently introduced DirectMS1 method to reanalysis of these data using only MS1 spectra. Both DirectMS1 and DIA results were matched against long gradient DDA analysis from the earlier study of the same sample cohort. While the quantitation efficiency of DirectMS1 was comparable with DIA on the same data sets, we found an additional five proteins of biological significance relevant to the analyzed tissue samples. Among the findings, DirectMS1 was able to detect decreased caspase activity for Vimentin protein in the multiple system atrophy samples missed by the MS/MS-based quantitation methods. Our study suggests that DirectMS1 can be an efficient MS1-only addition to the analysis of DIA data in high-throughput quantitative proteomic studies.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna S Kopeykina
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
3
|
Corbin-Stein NJ, Childers GM, Webster JM, Zane A, Yang YT, Ali MA, Sandoval IM, Manfredsson FP, Kordower JH, Tyrrell DJ, Harms AS. Tissue resident memory CD8+ T cells are present but not critical for demyelination and neurodegeneration in a mouse model of multiple system atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597035. [PMID: 38895456 PMCID: PMC11185520 DOI: 10.1101/2024.06.02.597035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.
Collapse
Affiliation(s)
- Nicole J. Corbin-Stein
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Gabrielle M. Childers
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Jhodi M. Webster
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Asta Zane
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Ya-Ting Yang
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| | - Md Akkas Ali
- University of Alabama at Birmingham, Department of Pathology and Division of Molecular and Cellular Pathology, Birmingham, AL
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Department of Translational Neuroscience, Phoenix, AZ
| | | | - Jeffrey H. Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ
| | - Daniel J. Tyrrell
- University of Alabama at Birmingham, Department of Pathology and Division of Molecular and Cellular Pathology, Birmingham, AL
| | - Ashley S. Harms
- University of Alabama at Birmingham, Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL
| |
Collapse
|
4
|
Laursen ALS, Olesen MV, Folke J, Brudek T, Knecht LH, Sotty F, Lambertsen KL, Fog K, Dalgaard LT, Aznar S. Systemic inflammation activates coagulation and immune cell infiltration pathways in brains with propagating α-synuclein fibril aggregates. Mol Cell Neurosci 2024; 129:103931. [PMID: 38508542 DOI: 10.1016/j.mcn.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1β, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.
Collapse
Affiliation(s)
- Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Mikkel Vestergaard Olesen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Jonas Folke
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Luisa Harriet Knecht
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 21-25, DK-5000, Odense, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, Odense, Denmark; BRIDGE - Brain-Research-Inter-Disciplinary Guided Excellence, Department of Clinical Institute, University of Southern Denmark, Winsløwparken 19, Odense, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark.
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| |
Collapse
|
5
|
Stoll AC, Kemp CJ, Patterson JR, Howe JW, Steece-Collier K, Luk KC, Sortwell CE, Benskey MJ. Neuroinflammatory gene expression profiles of reactive glia in the substantia nigra suggest a multidimensional immune response to alpha synuclein inclusions. Neurobiol Dis 2024; 191:106411. [PMID: 38228253 PMCID: PMC10869642 DOI: 10.1016/j.nbd.2024.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets. Here we characterized the neuroinflammatory gene expression profile of reactive microglia and astrocytes in the SNpc during early synucleinopathy in the rat α-syn pre-formed fibril (PFF) model. Rats received intrastriatal injection of α-syn PFFs and expression of immune genes was quantified with droplet digital PCR (ddPCR), after which fluorescent in situ hybridization (FISH) was used to localize gene expression to microglia or astrocytes in the SNpc. Genes previously associated with reactive microglia (Cd74, C1qa, Stat1, Axl, Casp1, Il18, Lyz2) and reactive astrocytes (C3, Gbp2, Serping1) were significantly upregulated in the SN of PFF injected rats. Localization of gene expression to SNpc microglia near α-syn aggregates identified a unique α-syn aggregate microglial gene expression profile characterized by upregulation of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 and Fcer1g. Importantly, significant microglial upregulation of Cd74 and C3 were only observed following injection of α-syn PFFs, not α-syn monomer, confirming specificity to α-syn aggregation. Serping1 expression also localized to astrocytes in the SNpc. Interestingly, C3 expression in the SNpc localized to microglia at 2- and 4-months post-PFF, but to astrocytes at 6-months post-PFF. We also observed expression of Rt1-a2 and Cxcl10 in SNpc dopamine neurons. Cumulatively our results identify a dynamic, yet reproducible gene expression profile of reactive microglia and astrocytes associated with early synucleinopathy in the rat SNpc.
Collapse
Affiliation(s)
- Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Jacob W Howe
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Matthew J Benskey
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Andersen AM, Kaalund SS, Marner L, Salvesen L, Pakkenberg B, Olesen MV. Quantitative cellular changes in multiple system atrophy brains. Neuropathol Appl Neurobiol 2023; 49:e12941. [PMID: 37812040 DOI: 10.1111/nan.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.
Collapse
Affiliation(s)
- Alberte M Andersen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Sanne S Kaalund
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel V Olesen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Schoenberg PLA, Song AK, Mohr EM, Rogers BP, Peterson TE, Murphy BA. Increased microglia activation in late non-central nervous system cancer survivors links to chronic systemic symptomatology. Hum Brain Mapp 2023; 44:6001-6019. [PMID: 37751068 PMCID: PMC10619383 DOI: 10.1002/hbm.26491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
Prolonged inflammatory expression within the central nervous system (CNS) is recognized by the brain as a molecular signal of "sickness", that has knock-on effects to the blood-brain barrier, brain-spinal barrier, blood-cerebrospinal fluid barrier, neuro-axonal structures, neurotransmitter activity, synaptic plasticity, neuroendocrine function, and resultant systemic symptomatology. It is concurred that the inflammatory process associated with cancer and cancer treatments underline systemic symptoms present in a large portion of survivors, although this concept is largely theoretical from disparate and indirect evidence and/or clinical anecdotal reports. We conducted a proof-of-concept study to link for the first time late non-CNS cancer survivors presenting chronic systemic symptoms and the presence of centralized inflammation, or neuroinflammation, using TSPO-binding PET tracer [11 C]-PBR28 to visualize microglial activation. We compared PBR28 SUVR in 10 non-CNS cancer survivors and 10 matched healthy controls. Our data revealed (1) microglial activation was significantly higher in caudate, temporal, and occipital regions in late non-central nervous system/CNS cancer survivors compared to healthy controls; (2) increased neuroinflammation in cancer survivors was not accompanied by significant differences in plasma cytokine markers of peripheral inflammation; (3) increased neuroinflammation was not accompanied by reduced fractional anisotropy, suggesting intact white matter microstructural integrity, a marker of neurovascular fiber tract organization; and (4) the presentation of chronic systemic symptoms in cancer survivors was significantly connected with microglial activation. We present the first data empirically supporting the concept of a peripheral-to-centralized inflammatory response in non-CNS cancer survivors, specifically those previously afflicted with head and neck cancer. Following resolution of the initial peripheral inflammation from the cancer/its treatments, in some cases damage/toxification to the central nervous system occurs, ensuing chronic systemic symptoms.
Collapse
Affiliation(s)
- Poppy L. A. Schoenberg
- Department of Physical Medicine and RehabilitationVanderbilt University Medical CenterNashvilleTennesseeUSA
- Osher Center for Integrative HealthVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alexander K. Song
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
| | - Emily M. Mohr
- Osher Center for Integrative HealthVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Baxter P. Rogers
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Todd E. Peterson
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Barbara A. Murphy
- Division of Hematology and OncologyVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| |
Collapse
|
9
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
10
|
Zhang S, Dauer K, Strohäker T, Tatenhorst L, Caldi Gomes L, Mayer S, Jung BC, Kim WS, Lee S, Becker S, Liesche‐Starnecker F, Zweckstetter M, Lingor P. Alpha-synuclein fibrils amplified from multiple system atrophy and Parkinson's disease patient brain spread after intracerebral injection into mouse brain. Brain Pathol 2023; 33:e13196. [PMID: 37485772 PMCID: PMC10467043 DOI: 10.1111/bpa.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB) are neurodegenerative disorders with alpha-synuclein (α-syn) aggregation pathology. Different strains of α-syn with unique properties are suggested to cause distinct clinical and pathological manifestations resulting in PD, MSA, or DLB. To study individual α-syn spreading patterns, we injected α-syn fibrils amplified from brain homogenates of two MSA patients and two PD patients into the brains of C57BI6/J mice. Antibody staining against pS129-α-syn showed that α-syn fibrils amplified from the brain homogenates of the four different patients caused different levels of α-syn spreading. The strongest α-syn pathology was triggered by α-syn fibrils of one of the two MSA patients, followed by comparable pS129-α-syn induction by the second MSA and one PD patient material. Histological analysis using an antibody against Iba1 further showed that the formation of pS129-α-syn is associated with increased microglia activation. In contrast, no differences in dopaminergic neuron numbers or co-localization of α-syn in oligodendrocytes were observed between the different groups. Our data support the spreading of α-syn pathology in MSA, while at the same time pointing to spreading heterogeneity between different patients potentially driven by individual patient immanent factors.
Collapse
Affiliation(s)
- Shuyu Zhang
- Clinical Department of Neurology, School of Medicine, University Hospital rechts der IsarTechnical University of MunichMunichGermany
| | - Karina Dauer
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Lars Tatenhorst
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
| | - Lucas Caldi Gomes
- Clinical Department of Neurology, School of Medicine, University Hospital rechts der IsarTechnical University of MunichMunichGermany
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
| | - Simon Mayer
- Clinical Department of Neurology, School of Medicine, University Hospital rechts der IsarTechnical University of MunichMunichGermany
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Woojin S. Kim
- Faculty of Medicine and Health, Brain and Mind Centre and School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South Wales and Neuroscience Research AustraliaRandwickNew South WalesAustralia
| | - Seung‐Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Stefan Becker
- Department of NMR Based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Friederike Liesche‐Starnecker
- Department of Neuropathology, Institute of Pathology, School of MedicineTechnical University MunichMunichGermany
- Department of Pathology and Molecular Diagnostics, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department of NMR Based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Paul Lingor
- Clinical Department of Neurology, School of Medicine, University Hospital rechts der IsarTechnical University of MunichMunichGermany
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
11
|
Leńska-Mieciek M, Madetko-Alster N, Alster P, Królicki L, Fiszer U, Koziorowski D. Inflammation in multiple system atrophy. Front Immunol 2023; 14:1214677. [PMID: 37426656 PMCID: PMC10327640 DOI: 10.3389/fimmu.2023.1214677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolding protein aggregation inside or outside cells is the major pathological hallmark of several neurodegenerative diseases. Among proteinopathies are neurodegenerative diseases with atypical Parkinsonism and an accumulation of insoluble fibrillary alpha-synuclein (synucleinopathies) or hyperphosphorylated tau protein fragments (tauopathies). As there are no therapies available to slow or halt the progression of these disea ses, targeting the inflammatory process is a promising approach. The inflammatory biomarkers could also help in the differential diagnosis of Parkinsonian syndromes. Here, we review inflammation's role in multiple systems atrophy pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Marta Leńska-Mieciek
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Fiszer
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
12
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Battis K, Florio JB, Mante M, Lana A, Naumann I, Gauer C, Lambrecht V, Müller SJ, Cobo I, Fixsen B, Kim HY, Masliah E, Glass CK, Schlachetzki JCM, Rissman RA, Winkler J, Hoffmann A. CSF1R-Mediated Myeloid Cell Depletion Prolongs Lifespan But Aggravates Distinct Motor Symptoms in a Model of Multiple System Atrophy. J Neurosci 2022; 42:7673-7688. [PMID: 36333098 PMCID: PMC9546481 DOI: 10.1523/jneurosci.0417-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Battis
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Jazmin B Florio
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Michael Mante
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Addison Lana
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Isabel Naumann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Carina Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Vera Lambrecht
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Simon Julian Müller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Bethany Fixsen
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Ha Yeon Kim
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| |
Collapse
|
14
|
Zhang P, Chen J, Cai T, He C, Li Y, Li X, Chen Z, Wang L, Zhang Y. Quantitative susceptibility mapping and blood neurofilament light chain differentiate between parkinsonian disorders. Front Aging Neurosci 2022; 14:909552. [PMID: 35992605 PMCID: PMC9389149 DOI: 10.3389/fnagi.2022.909552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We employed quantitative susceptibility mapping (QSM) to assess iron deposition in parkinsonian disorders and explored whether combining QSM values and neurofilament light (NfL) chain levels can improve the accuracy of distinguishing Parkinson’s disease (PD) from multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Materials and methods Forty-seven patients with PD, 28 patients with MSA, 18 patients with PSP, and 28 healthy controls (HC) were enrolled, and QSM data were reconstructed. Susceptibility values in the bilateral globus pallidus (GP), putamen (PUT), caudate nucleus (CN), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN) were obtained. Plasma NfL levels of 47 PD, 18 MSA, and 14 PSP patients and 22 HC were measured by ultrasensitive Simoa technology. Results The highest diagnostic accuracy distinguishing MSA from PD patients was observed with increased susceptibility values in CN (AUC: 0.740). The susceptibility values in RN yielded the highest diagnostic performance for distinguishing PSP from PD patients (AUC: 0.829). Plasma NfL levels were significantly higher in the MSA and PSP groups than in PD and HC groups. Combining the susceptibility values in the RN and plasma NfL levels improved the diagnostic performance for PSP vs. PD (AUC: 0.904), whereas plasma NfL levels had higher diagnostic accuracy for MSA vs. PD (AUC: 0.877). Conclusion The exploratory study indicates different patterns of iron accumulation in deep gray matter nuclei in Parkinsonian disorders. Combining QSM values with NfL levels may be a promising biomarker for distinguishing PSP from PD, whereas plasma NfL may be a reliable biomarker for differentiating MSA from PD. QSM and NfL measures appeared to have low accuracy for separating PD from controls.
Collapse
Affiliation(s)
- Piao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junling Chen
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Tongtong Cai
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenzhen Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yuhu Zhang,
| |
Collapse
|
15
|
Liu FT, Li XY, Lu JY, Wu P, Li L, Liang XN, Ju ZZ, Jiao FY, Chen MJ, Ge JJ, Sun YM, Wu JJ, Yen TC, Luo JF, Zuo C, Wang J. 18 F-Florzolotau Tau Positron Emission Tomography Imaging in Patients with Multiple System Atrophy-Parkinsonian Subtype. Mov Disord 2022; 37:1915-1923. [PMID: 35861378 DOI: 10.1002/mds.29159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anecdotal evidence suggests that patients diagnosed with the parkinsonian subtype of multiple system atrophy (MSA-P) may show uptake of the second-generation tau positron emission tomography (PET) tracer 18 F-Florzolotau (previously known as 18 F-APN-1607) in the putamen. OBJECTIVES This study systematically investigated the localization and magnitude of 18 F-Florzolotau uptake in a relatively large cohort of patients with MSA-P. METHODS 18 F-Florzolotau PET imaging was performed in 31 patients with MSA-P, 24 patients with Parkinson's disease (PD), and 20 age-matched healthy controls. 18 F-Florzolotau signal in the striatum was analyzed by visual inspection and classified as either positive or negative. Regional 18 F-Florzolotau binding was also expressed as standardized uptake value ratio (SUVR) to assess whether it was associated with core symptoms of MSA-P after adjustment for potential confounders. RESULTS By visual inspection and semiquantitative SUVR comparisons, patients with MSA-P showed elevated 18 F-Florzolotau uptake in the putamen, globus pallidus, and dentate-a finding that was not observed in PD. This increased signal was significantly associated with the core symptoms of MSA-P. In addition, patients with MSA-P with cerebellar ataxia showed an elevated 18 F-Florzolotau uptake in the cerebellar dentate. CONCLUSIONS 18 F-Florzolotau tau PET imaging findings may reflect the clinical severity of MSA-P and can potentially discriminate between this condition and PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Feng-Tao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Niu Liang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurology, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang-Yang Jiao
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Jia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Jian-Feng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
16
|
Neilson LE, Hollen C, Hiller A, Wooliscroft L. Oligoclonal Bands in Multiple System Atrophy: Case Report and Proposed Mechanisms of Immunogenicity. Front Neurosci 2022; 16:852939. [PMID: 35295090 PMCID: PMC8919426 DOI: 10.3389/fnins.2022.852939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple System Atrophy (MSA) is a neurodegenerative disease with heterogeneous manifestations and is therefore difficult to diagnose definitively. Because of this, oftentimes an extensive workup for mimickers is undertaken. We herein report a case where the history and cerebrospinal fluid (CSF) findings of oligoclonal bands suggested an inflammatory disorder. Immunomodulatory therapy failed to ameliorate symptoms or alter the trajectory of continued physical decline, prompting re-visitation of the diagnosis. Oligoclonal bands, while generally viewed as specific to multiple sclerosis or other inflammatory conditions, may be seen in other disease processes. Therefore, this finding should not exclude consideration of neurodegenerative disease.
Collapse
Affiliation(s)
- Lee E Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Amie Hiller
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lindsey Wooliscroft
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
17
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
18
|
Krey L, Huber MK, Höglinger GU, Wegner F. Can SARS-CoV-2 Infection Lead to Neurodegeneration and Parkinson's Disease? Brain Sci 2021; 11:1654. [PMID: 34942956 PMCID: PMC8699589 DOI: 10.3390/brainsci11121654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV-2 pandemic has affected the daily life of the worldwide population since 2020. Links between the newly discovered viral infection and the pathogenesis of neurodegenerative diseases have been investigated in different studies. This review aims to summarize the literature concerning COVID-19 and Parkinson's disease (PD) to give an overview on the interface between viral infection and neurodegeneration with regard to this current topic. We will highlight SARS-CoV-2 neurotropism, neuropathology and the suspected pathophysiological links between the infection and neurodegeneration as well as the psychosocial impact of the pandemic on patients with PD. Some evidence discussed in this review suggests that the SARS-CoV-2 pandemic might be followed by a higher incidence of neurodegenerative diseases in the future. However, the data generated so far are not sufficient to confirm that COVID-19 can trigger or accelerate neurodegenerative diseases.
Collapse
Affiliation(s)
- Lea Krey
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (M.K.H.); (G.U.H.); (F.W.)
| | | | | | | |
Collapse
|
19
|
Malfertheiner K, Stefanova N, Heras-Garvin A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front Neurol 2021; 12:737195. [PMID: 34675870 PMCID: PMC8523670 DOI: 10.3389/fneur.2021.737195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.
Collapse
Affiliation(s)
- Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Jucaite A, Cselényi Z, Kreisl WC, Rabiner EA, Varrone A, Carson RE, Rinne JO, Savage A, Schou M, Johnström P, Svenningsson P, Rascol O, Meissner WG, Barone P, Seppi K, Kaufmann H, Wenning GK, Poewe W, Farde L. Glia Imaging Differentiates Multiple System Atrophy from Parkinson's Disease: A Positron Emission Tomography Study with [ 11 C]PBR28 and Machine Learning Analysis. Mov Disord 2021; 37:119-129. [PMID: 34609758 DOI: 10.1002/mds.28814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The clinical diagnosis of multiple system atrophy (MSA) is challenged by overlapping features with Parkinson's disease (PD) and late-onset ataxias. Additional biomarkers are needed to confirm MSA and to advance the understanding of pathophysiology. Positron emission tomography (PET) imaging of the translocator protein (TSPO), expressed by glia cells, has shown elevations in MSA. OBJECTIVE In this multicenter PET study, we assess the performance of TSPO imaging as a diagnostic marker for MSA. METHODS We analyzed [11 C]PBR28 binding to TSPO using imaging data of 66 patients with MSA and 24 patients with PD. Group comparisons were based on regional analysis of parametric images. The diagnostic readout included visual reading of PET images against clinical diagnosis and machine learning analyses. Sensitivity, specificity, and receiver operating curves were used to discriminate MSA from PD and cerebellar from parkinsonian variant MSA. RESULTS We observed a conspicuous pattern of elevated regional [11 C]PBR28 binding to TSPO in MSA as compared with PD, with "hotspots" in the lentiform nucleus and cerebellar white matter. Visual reading discriminated MSA from PD with 100% specificity and 83% sensitivity. The machine learning approach improved sensitivity to 96%. We identified MSA subtype-specific TSPO binding patterns. CONCLUSIONS We found a pattern of significantly increased regional glial TSPO binding in patients with MSA. Intriguingly, our data are in line with severe neuroinflammation in MSA. Glia imaging may have potential to support clinical MSA diagnosis and patient stratification in clinical trials on novel drug therapies for an α-synucleinopathy that remains strikingly incurable. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aurelija Jucaite
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Zsolt Cselényi
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - William C Kreisl
- Taub Institute, Department of Neurology, Columbia University Irving Medical Centre, New York, New York, USA
| | - Eugenii A Rabiner
- Invicro, London, UK.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Magnus Schou
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Peter Johnström
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Olivier Rascol
- French MSA Reference Centre, Clinical Investigation Centre CIC1436, Department of Neurosciences and Clinical Pharmacology, NeuroToul COEN Centre, UMR 1 214-ToNIC and University Hospital of Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| | - Wassilios G Meissner
- CRMR AMS, Service de Neurologie-Maladies Neurodégénératives, CHU Bordeaux, Bordeaux, France.,University Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Department of Medicine, University of Otago, Christchurch, New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Paolo Barone
- Neurodegenerative Disease Centre, University of Salerno, Salerno, Italy
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Horacio Kaufmann
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Division of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Current experimental disease-modifying therapeutics for multiple system atrophy. J Neural Transm (Vienna) 2021; 128:1529-1543. [PMID: 34398313 PMCID: PMC8528757 DOI: 10.1007/s00702-021-02406-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Multiple system atrophy (MSA) is a challenging neurodegenerative disorder with a difficult and often inaccurate early diagnosis, still lacking effective treatment. It is characterized by a highly variable clinical presentation with parkinsonism, cerebellar ataxia, autonomic dysfunction, and pyramidal signs, with a rapid progression and an aggressive clinical course. The definite MSA diagnosis is only possible post-mortem, when the presence of distinctive oligodendroglial cytoplasmic inclusions (GCIs), mainly composed of misfolded and aggregated α-Synuclein (α-Syn) is demonstrated. The process of α-Syn accumulation and aggregation within oligodendrocytes is accepted one of the main pathological events underlying MSA. However, MSA is considered a multifactorial disorder with multiple pathogenic events acting together including neuroinflammation, oxidative stress, and disrupted neurotrophic support, among others. The discussed here treatment approaches are based on our current understanding of the pathogenesis of MSA and the results of preclinical and clinical therapeutic studies conducted over the last 2 decades. We summarize leading disease-modifying approaches for MSA including targeting α-Syn pathology, modulation of neuroinflammation, and enhancement of neuroprotection. In conclusion, we outline some challenges related to the need to overcome the gap in translation between preclinical and clinical studies towards a successful disease modification in MSA.
Collapse
|
22
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
23
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
24
|
Heras-Garvin A, Stefanova N. From Synaptic Protein to Prion: The Long and Controversial Journey of α-Synuclein. Front Synaptic Neurosci 2020; 12:584536. [PMID: 33071772 PMCID: PMC7536368 DOI: 10.3389/fnsyn.2020.584536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since its discovery 30 years ago, α-synuclein (α-syn) has been one of the most studied proteins in the field of neuroscience. Dozens of groups worldwide have tried to reveal not only its role in the CNS but also in other organs. α-syn has been linked to several processes essential in brain homeostasis such as neurotransmitter release, synaptic function, and plasticity. However, despite the efforts made in this direction, the main function of α-syn is still unknown. Moreover, α-syn became a protein of interest for neurologists and neuroscientists when mutations in its gene were found associated with Parkinson's disease (PD) and even more when α-syn protein deposits were observed in the brain of PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) patients. At present, the abnormal accumulation of α-syn constitutes one of the pathological hallmarks of these disorders, also referred to as α-synucleinopathies, and it is used for post-mortem diagnostic criteria. Whether α-syn aggregation is cause or consequence of the pathogenic events underlying α-synucleinopathies remains unclear and under discussion. Recently, different in vitro and in vivo studies have shown the ability of pathogenic α-syn to spread between cells, not only within the CNS but also from peripheral locations such as the gut, salivary glands, and through the olfactory network into the CNS, inducing abnormal misfolding of endogenous α-syn and leading to neurodegeneration and motor and cognitive impairment in animal models. Thus, it has been suggested that α-syn should be considered a prion protein. Here we present an update of what we know about α-syn function, aggregation and spreading, and its role in neurodegeneration. We also discuss the rationale and findings supporting the hypothetical prion nature of α-syn, its weaknesses, and future perspectives for research and the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol 2020; 139:855-874. [PMID: 31993745 PMCID: PMC7181566 DOI: 10.1007/s00401-020-02126-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by abnormal accumulation of alpha-synuclein (α-syn) in oligodendrocytes accompanied by inflammation, demyelination, and subsequent synapse and neuronal loss. Little is known about the mechanisms of neurodegeneration in MSA. However, recent work has highlighted the important role of the immune system to the pathophysiology of other synuclein-related diseases such as Parkinson’s disease. In this study, we investigated postmortem brain tissue from MSA patients and control subjects for evidence of immune activation in the brain. We found a significant increase of HLA-DR+ microglia in the putamen and substantia nigra of MSA patient tissue compared to controls, as well as significant increases in CD3+, CD4+, and CD8+ T cells in these same brain regions. To model MSA in vivo, we utilized a viral vector that selectively overexpresses α-syn in oligodendrocytes (Olig001-SYN) with > 95% tropism in the dorsal striatum of mice, resulting in demyelination and neuroinflammation similar to that observed in human MSA. Oligodendrocyte transduction with this vector resulted in a robust inflammatory response, which included increased MHCII expression on central nervous system (CNS) resident microglia, and infiltration of pro-inflammatory monocytes into the CNS. We also observed robust infiltration of CD4 T cells into the CNS and antigen-experienced CD4 T cells in the draining cervical lymph nodes. Importantly, genetic deletion of TCR-β or CD4 T cells attenuated α-syn-induced inflammation and demyelination in vivo. These results suggest that T cell priming and infiltration into the CNS are key mechanisms of disease pathogenesis in MSA, and therapeutics targeting T cells may be disease modifying.
Collapse
|
26
|
Insights into the pathogenesis of multiple system atrophy: focus on glial cytoplasmic inclusions. Transl Neurodegener 2020; 9:7. [PMID: 32095235 PMCID: PMC7025408 DOI: 10.1186/s40035-020-0185-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a debilitating and fatal neurodegenerative disorder. The disease severity warrants urgent development of disease-modifying therapy, but the disease pathogenesis is still enigmatic. Neurodegeneration in MSA brains is preceded by the emergence of glial cytoplasmic inclusions (GCIs), which are insoluble α-synuclein accumulations within oligodendrocytes (OLGs). Thus, preventive strategies against GCI formation may suppress disease progression. However, although numerous studies have tried to elucidate the molecular pathogenesis of GCI formation, difficulty remains in understanding the pathological interaction between the two pivotal aspects of GCIs; α-synuclein and OLGs. The difficulty originates from several enigmas: 1) what triggers the initial generation and possible propagation of pathogenic α-synuclein species? 2) what contributes to OLG-specific accumulation of α-synuclein, which is abundantly expressed in neurons but not in OLGs? and 3) how are OLGs and other glial cells affected and contribute to neurodegeneration? The primary pathogenesis of GCIs may involve myelin dysfunction and dyshomeostasis of the oligodendroglial cellular environment such as autophagy and iron metabolism. We have previously reported that oligodendrocyte precursor cells are more prone to develop intracellular inclusions in the presence of extracellular fibrillary α-synuclein. This finding implies a possibility that the propagation of GCI pathology in MSA brains is mediated through the internalization of pathological α-synuclein into oligodendrocyte precursor cells. In this review, in order to discuss the pathogenesis of GCIs, we will focus on the composition of neuronal and oligodendroglial inclusions in synucleinopathies. Furthermore, we will introduce some hypotheses on how α-synuclein pathology spreads among OLGs in MSA brains, in the light of our data from the experiments with primary oligodendrocyte lineage cell culture. While various reports have focused on the mysterious source of α-synuclein in GCIs, insights into the mechanism which regulates the uptake of pathological α-synuclein into oligodendroglial cells may yield the development of the disease-modifying therapy for MSA. The interaction between glial cells and α-synuclein is also highlighted with previous studies of post-mortem human brains, cultured cells, and animal models, which provide comprehensive insight into GCIs and the MSA pathomechanisms.
Collapse
|
27
|
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, Yamamuro K, Sneeboer M, Tan IL, Flanigan ME, Rose SA, Chang C, Leader A, Le Bourhis H, Sweet ES, Tung N, Wroblewska A, Lavin Y, See P, Baccarini A, Ginhoux F, Chitu V, Stanley ER, Russo SJ, Yue Z, Brown BD, Joyner AL, De Witte LD, Morishita H, Schaefer A, Merad M. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med 2019; 216:2265-2281. [PMID: 31350310 PMCID: PMC6781012 DOI: 10.1084/jem.20182037] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.
Collapse
Affiliation(s)
- Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fiona A Desland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pinar Ayata
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Badimon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elisa Nabel
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kazuhiko Yamamuro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marjolein Sneeboer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - I-Li Tan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christie Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hortense Le Bourhis
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric S Sweet
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aleksandra Wroblewska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Alessia Baccarini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhenyu Yue
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandra L Joyner
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hirofumi Morishita
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY .,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|