1
|
Pilotto A, Ashton NJ, Lupini A, Battaglio B, Zatti C, Trasciatti C, Gipponi S, Cottini E, Grossi I, Salvi A, de Petro G, Pizzi M, Canale A, Blennow K, Zetterberg H, Padovani A. Plasma NfL, GFAP, amyloid, and p-tau species as Prognostic biomarkers in Parkinson's disease. J Neurol 2024; 271:7537-7546. [PMID: 39249107 PMCID: PMC11588809 DOI: 10.1007/s00415-024-12669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION The prognostic role of plasma neurofilament light chain (NfL), phospho-tau, beta-amyloid, and GFAP is still debated in Parkinson's disease (PD). METHODS Plasma p-tau181, p-tau231, Aβ1-40, Aβ1-42, GFAP, and NfL were measured by SIMOA in 136 PD with 2.9 + 1.7 years of follow-up and 76 controls. Differences in plasma levels between controls and PD and their correlation with clinical severity and progression rates were evaluated using linear regression analyses. RESULTS Patients exhibited similar distribution of plasma biomarkers but higher P-tau181, P-tau231 and lower Aβ1-42 compared with controls. NfL and GFAP correlated with baseline motor and non-motor severity measures. At follow-up, NfL emerged as the best predictor of progression with marginal effect of GFAP and p-tau181 adjusting for age, sex, disease duration, and baseline motor severity. CONCLUSION The present findings confirmed plasma NfL as best predictor of progression in PD, with a marginal role of p-tau181 and GFAP.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy.
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Beatrice Battaglio
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Chiara Trasciatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
| | - Stefano Gipponi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Elisabetta Cottini
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina de Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Canale
- Department of Statistical Sciences, University of Padova, Padua, Italy
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.Zzale Spedali Civili, 1, 25123, Brescia, Italy
- Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Liu Y, Wang J, Ning F, Wang G, Xie A. Longitudinal correlation of cerebrospinal fluid GFAP and the progression of cognition decline in different clinical subtypes of Parkinson's disease. Clin Transl Sci 2024; 17:e70111. [PMID: 39676304 DOI: 10.1111/cts.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed mainly in astrocytes of the central nervous system (CNS), a potential biomarker of cognitive decline in Parkinson's disease (PD). The central motor subtypes of PD include tremor-dominant (TD), postural instability and gait disorder (PIGD), and indeterminate subtypes, whose different course of disease requires the development of biomarkers that can predict progression based on motor subtypes. In this study, we aimed to assess the predictive value of cerebrospinal fluid (CSF) GFAP for PD motor subtypes in PD. Two hundred and sixteen PD patients were recruited in our study from the progression markers initiative. Patients were subgrouped into TD, PIGD, and indeterminate subtypes. Longitudinal relationships between baseline CSF GFAP and cognitive function and CSF biomarkers were assessed using linear mixed-effects models. Cox regression was used to detect cognitive progression in TD patients. The baseline and longitudinal increases in CSF GFAP were associated with a greater decline in episodic memory, CSF α-syn, and a greater increase of CSF NfL in TD and TD-male subtypes. Cox regression showed that higher baseline CSF GFAP levels were corrected with a higher risk of developing mild cognitive impairment (MCI) over a 4-year period in the PD with normal cognition (NC) group (adjusted HR = 1.607, 95% CI 1.907-2.354, p = 0.01). CSF GFAP might be a promising predictor of cognition decline in TD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangbo Ning
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Durmaz Celik N, Ozben S, Ozben T. Unveiling Parkinson's disease through biomarker research: current insights and future prospects. Crit Rev Clin Lab Sci 2024; 61:529-545. [PMID: 38529882 DOI: 10.1080/10408363.2024.2331471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by the gradual depletion of dopaminergic neurons in the substantia nigra. Despite substantial strides in comprehending potential causative mechanisms, the validation of biomarkers with unequivocal evidence for routine clinical application remains elusive. Consequently, the diagnosis heavily relies on patients' clinical assessments and medical backgrounds. The imperative need for diagnostic and prognostic biomarkers arises due to the prevailing limitations of treatments, which predominantly address symptoms without modifying the disease course. This comprehensive review aims to elucidate the existing landscape of diagnostic and prognostic biomarkers for PD, drawing insights from contemporary literature.
Collapse
Affiliation(s)
- Nazlı Durmaz Celik
- Department of Neurology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Serkan Ozben
- Department of Neurology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024; 11:2891-2903. [PMID: 39291779 PMCID: PMC11572749 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Huihui Cai
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wenyi Kou
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chen Yang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Siming Li
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Bingxu Zhu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jiayi Wu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical PsychologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Tao Feng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohong Li
- Department of NeurologyAffiliated Dalian Municipal Friendship Hospital of Dalian Medical UniversityDalianChina
| | - Fulong Xiao
- Division of Sleep MedicinePeking University People's HospitalBeijingChina
| | - Zhenwei Yu
- Department of PathophysiologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Malaty GR, Decourt B, Shill HA, Sabbagh MN. Biomarker Assessment in Parkinson's Disease Dementia and Dementia with Lewy Bodies by the Immunomagnetic Reduction Assay and Clinical Measures. J Alzheimers Dis Rep 2024; 8:1361-1371. [PMID: 39493956 PMCID: PMC11530035 DOI: 10.3233/adr-240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 11/05/2024] Open
Abstract
Background Plasma biomarker assays provide an opportunity to reassess whether Alzheimer's disease, Parkinson's disease dementia (PDD), and dementia with Lewy bodies (DLB) plasma biomarkers are diagnostically useful. Objective We hypothesized that immunomagnetic reduction (IMR) of plasma biomarkers could differentiate between patients with PDD and DLB and healthy patients when combined with established clinical testing measures. Methods Plasma samples from 61 participants (12 PDD, 12 DLB, 37 controls) were analyzed using IMR to quantify amyloid-β 42 (Aβ42), total tau (t-tau), phosphorylated tau at threonine 181 (p-tau181), and α-synuclein (α-syn). Receiver operating characteristic curve (ROC) analysis was used to obtain sensitivity, specificity, and area under the ROC curve. Biomarker results were combined with clinical measures from the Unified Parkinson's Disease Rating Scale (UPDRS), Montreal Cognitive Assessment, and Hoehn-Yahr stage to optimize diagnostic test performance. Results Participants with PDD had higher α-syn than those with DLB and healthy participants and were distinguishable by their biomarker products Aβ42×p-tau181 and Aβ42×α-syn. Patients with DLB had higher p-tau181 than those with PDD and healthy participants and were distinguishable by their concentrations of α-syn×p-tau181. Plasma α-syn plus UPDRS versus either test alone increased sensitivity, specificity, and AUC when healthy patients were compared with those with PDD and DLB. Combined clinical examination scores and plasma biomarker products demonstrated utility in differentiating PDD from DLB when p-tau181 was combined with UPDRS, α-syn was combined with UPDRS, and α-syn×p-tau181 was combined with UPDRS. Conclusions In this pilot study, IMR plasma p-tau181 and α-syn may discriminate between PDD and DLB when used in conjunction with clinical testing.
Collapse
Affiliation(s)
- Giovanni R. Malaty
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neurosciences, Health Sciences Center, Texas Tech University, Lubbock, TX, USA
| | - Holly A. Shill
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
6
|
Wang AY, Hu HY, Sun Y, Ou YN, Ma YH, Li M, Li QY, Tan L. Association between air pollution and cerebrospinal fluid alpha-synuclein in urban elders: the CABLE study. Front Aging Neurosci 2024; 16:1422772. [PMID: 39280698 PMCID: PMC11392785 DOI: 10.3389/fnagi.2024.1422772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Increasing evidence suggests that air pollution has a significant impact on the development of synucleinopathies, but the potential neurobiological mechanisms are unknown. We aimed to explore the associations of air pollution (including ozone [O3], nitrogen dioxide [NO2], and particulate matter [PM2.5]) with CSF α-syn levels in urban older adults. Methods We included 933 urban participants from the Chinese Alzheimer's Biomarker and LifestylE study. The 5-year average levels of air pollution exposure were estimated in the areas of residence. Multivariate linear regression was conducted to detect the correlation of air pollution with CSF α-syn levels. Subgroup analyses by age, gender, season, and history of coronary heart disease (CHD) were performed. Moreover, restricted cubic spline (RCS) models were applied to explore the potential nonlinear relationships. Results We found a significant correlation of CSF α-syn level with PM2.5 in urban participants. Specifically, multiple linear regression showed a significant negative association between PM2.5 and CSF α-syn level (p = 0.029), which was more significant in female, midlife, non-CHD, and cold season subgroups. Besides, RCS models showed that O3 had an inverse J-shaped association with CSF α-syn levels in urban participants (p for nonlinearity = 0.040), and the harmful effect possibly appeared when O3 was above 37.9 ppb. Discussion Long-term exposure to air pollution was associated with lower CSF α-syn levels, which may offer a new direction for exploring and preventing synucleinopathies.
Collapse
Affiliation(s)
- An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Ying C, Zhang H, Wang T, Li Y, Mao W, Hu S, Zhao L, Cai Y. Plasma level of alpha-synuclein oligomers as a biomarker for isolated rapid eye movement sleep behavior disorder diagnosis and progression: a prospective cohort study. Front Neurol 2024; 15:1442173. [PMID: 39246606 PMCID: PMC11377258 DOI: 10.3389/fneur.2024.1442173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alpha-synuclein oligomers (o-α-syn) are pivotal in the pathogenesis of α-synucleinopathy. Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) serves as an early indicator of the disease, offering insights into disease mechanisms and early intervention. Nevertheless, the diagnostic and predictive potential of o-α-syn in iRBD remains largely unexplored. This study aimed to evaluate the plasma levels of o-α-syn in patients and investigate their utility as biomarkers for diagnosis of and predicting phenoconversion in iRBD. Methods A total of 143 participants, including 77 polysomnography-confirmed iRBD patients and 66 normal controls (NC), were recruited for this longitudinal observational study. Baseline clinical assessments and plasma collection were conducted for all iRBD patients, with 72 of them undergoing regularly prospective follow-up assessments for parkinsonism or dementia. Plasma levels of o-α-syn were quantified using enzyme-linked immunosorbent assay, and were compared between groups using a general linear model adjusted for age and sex. The diagnostic performance of plasma o-α-syn in iRBD was evaluated by area under the receiver operating characteristic curve (AUC) with 95% CI. Cox regression analysis and Kaplan-Meier survival curves were employed to assess the predictive value of plasma o-α-syn for phenoconversion in iRBD. Results Plasma o-α-syn levels did not exhibit statistically significant differences among iRBD converter patients, iRBD nonconverter patients, and NC. The AUC for distinguishing NC from iRBD was 0.52 (95% CI: 0.42-0.62, p = 0.682). Spearman correlation analysis revealed a significant positive correlation between plasma o-α-syn levels and MOCA scores in the iRBD group (p < 0.001). Subgroup analyses indicated that iRBD patients with cognitive decline (p = 0.058) and depressive symptoms (p = 0.017) had notably lower o-α-syn levels compared to those without such symptoms. Over a median follow-up period of 5.83 years, 26 iRBD patients developed neurodegenerative synucleinopathies. Cox regression and Kaplan-Meier survival curve analyses indicated that plasma level of o-α-syn lacked a predictive value for disease conversion in iRBD patients. Conclusion Despite a potential role in the pathophysiology of iRBD, o-α-syn are not appropriate biomarkers for diagnosing or predicting disease progression. While this study offers insights into the pathogenesis of iRBD and neurodegenerative synucleinopathies, further large-scale longitudinal studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lifang Zhao
- Beijing Geriatric Medical Research Center, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Bartl M, Nilsson J, Dakna M, Weber S, Schade S, Xylaki M, Fernandes Gomes B, Ernst M, Muntean ML, Sixel-Döring F, Trenkwalder C, Zetterberg H, Brinkmalm A, Mollenhauer B. Lysosomal and synaptic dysfunction markers in longitudinal cerebrospinal fluid of de novo Parkinson's disease. NPJ Parkinsons Dis 2024; 10:102. [PMID: 38760408 PMCID: PMC11101466 DOI: 10.1038/s41531-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Lysosomal and synaptic dysfunctions are hallmarks in neurodegeneration and potentially relevant as biomarkers, but data on early Parkinson's disease (PD) is lacking. We performed targeted mass spectrometry with an established protein panel, assessing autophagy and synaptic function in cerebrospinal fluid (CSF) of drug-naïve de novo PD, and sex-/age-matched healthy controls (HC) cross-sectionally (88 PD, 46 HC) and longitudinally (104 PD, 58 HC) over 10 years. Multiple markers of autophagy, synaptic plasticity, and secretory pathways were reduced in PD. We added samples from prodromal subjects (9 cross-sectional, 12 longitudinal) with isolated REM sleep behavior disorder, revealing secretogranin-2 already decreased compared to controls. Machine learning identified neuronal pentraxin receptor and neurosecretory protein VGF as most relevant for discriminating between groups. CSF levels of LAMP2, neuronal pentraxins, and syntaxins in PD correlated with clinical progression, showing predictive potential for motor- and non-motor symptoms as a valid basis for future drug trials.
Collapse
Affiliation(s)
- Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Goettingen, Germany.
| | - Johanna Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Bárbara Fernandes Gomes
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Ann Brinkmalm
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
9
|
Jin R, Yoshioka H, Sato H, Hisaka A. Data-driven disease progression model of Parkinson's disease and effect of sex and genetic variants. CPT Pharmacometrics Syst Pharmacol 2024; 13:649-659. [PMID: 38369942 PMCID: PMC11015075 DOI: 10.1002/psp4.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
As Parkinson's disease (PD) progresses, there are multiple biomarker changes, and sex and genetic variants may influence the rate of progression. Data-driven, long-term disease progression model analysis may provide precise knowledge of the relationships between these risk factors and progression and would allow for the selection of appropriate diagnosis and treatment according to disease progression. To construct a long-term disease progression model of PD based on multiple biomarkers and evaluate the effects of sex and leucine-rich repeat kinase 2 (LRRK2) mutations, a technique derived from the nonlinear mixed-effects model (Statistical Restoration of Fragmented Time course [SReFT]) was applied to datasets of patients provided by the Parkinson's Progression Markers Initiative. Four biomarkers, including the Unified PD Rating Scale, were used, and a covariate analysis was performed to investigate the effects of sex and LRRK2-related mutations. A model of disease progression over ~30 years was successfully developed using patient data with a median of 6 years. Covariate analysis suggested that female sex and LRRK2 G2019S mutations were associated with 21.6% and 25.4% significantly slower progression, respectively. LRRK2 rs76904798 mutation also tended to delay disease progression by 10.4% but the difference was not significant. In conclusion, a long-term PD progression model was successfully constructed using SReFT from relatively short-term individual patient observations and depicted nonlinear changes in relevant biomarkers and their covariates, including sex and genetic variants.
Collapse
Affiliation(s)
- Ryota Jin
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Hideki Yoshioka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Hiromi Sato
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Akihiro Hisaka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| |
Collapse
|
10
|
Hutchison RM, Fraser K, Yang M, Fox T, Hirschhorn E, Njingti E, Scott D, Bedell BJ, Kistner KM, Cedarbaum JM, Evans KC, Graham D, Martarello L, Mollenhauer B, Lang AE, Dam T, Beaver J. Cinpanemab in Early Parkinson Disease: Evaluation of Biomarker Results From the Phase 2 SPARK Clinical Trial. Neurology 2024; 102:e209137. [PMID: 38315945 DOI: 10.1212/wnl.0000000000209137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Sensitive, reliable, and scalable biomarkers are needed to accelerate the development of therapies for Parkinson disease (PD). In this study, we evaluate the biomarkers of early PD diagnosis, disease progression, and treatment effect collected in the SPARK. METHODS Cinpanemab is a human-derived monoclonal antibody binding preferentially to aggregated forms of extracellular α-synuclein. SPARK was a randomized, double-blind, placebo-controlled, phase 2 multicenter trial evaluating 3 cinpanemab doses administered intravenously every 4 weeks for 52 weeks with an active treatment dose-blind extension period for up to 112 weeks. SPARK enrolled 357 participants diagnosed with PD within 3 years, aged 40-80 years, ≤2.5 on the modified Hoehn and Yahr scale, and with evidence of striatal dopaminergic deficit. The primary outcome was change from baseline in the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale total score. Secondary and exploratory biomarker outcomes evaluated change from baseline at week 52 relative to placebo. Dopamine transporter SPECT and MRI were used to quantify changes in the nigrostriatal dopamine pathway and regional atrophy. CSF and plasma samples were used to assess change in total α-synuclein levels, α-synuclein seeding, and neurofilament light chain levels. SPARK was conducted from January 2018 to April 2021 and terminated due to lack of efficacy. RESULTS Approximately 3.8% (15/398) of SPECT-imaged participants did not have evidence of dopaminergic deficit and were screen-failed. Binary classification of α-synuclein seeding designated 93% (110/118) of the enrolled CSF subgroup as positive for α-synuclein seeds at baseline. Clinical disease progression was observed, with no statistically significant difference in cinpanemab groups compared with that in placebo. Ninety-nine percent of participants with positive α-synuclein seeding remained positive through week 52. No statistically significant changes from baseline were observed between treatment groups and placebo across biomarker measures. Broadly, there was minimal annual change with high interindividual variability across biomarkers-with striatal binding ratios of the ipsilateral putamen showing the greatest mean change/SD over time. DISCUSSION Biomarker results indicated enrollment of the intended population with early PD, but there was no significant correlation with disease progression or clear evidence of a cinpanemab treatment effect on biomarker measures. Suitable biomarkers for evaluating disease severity and progression in early PD trials are still needed. TRIAL REGISTRATION INFORMATION NCT03318523 (clinicaltrials.gov/ct2/show/NCT03318523); Submitted October 24, 2017; First patient enrolled January 2018.
Collapse
Affiliation(s)
- R Matthew Hutchison
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Kyle Fraser
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Minhua Yang
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Tara Fox
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Elizabeth Hirschhorn
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Edwin Njingti
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - David Scott
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Barry J Bedell
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Kristi M Kistner
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Jesse M Cedarbaum
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Karleyton C Evans
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Danielle Graham
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Laurent Martarello
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Brit Mollenhauer
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Anthony E Lang
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - Tien Dam
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| | - John Beaver
- From Biogen Inc. (R.M.H., K.F., M.Y., E.H., K.C.E., D.G., L.M., J.B.), Cambridge, MA; Biogen Inc. (T.F.), Maidenhead, United Kingdom; Formerly Biogen Inc. at time of study (E.N., J.M.C., T.D.); Clario (D.S.), Princeton, NJ; Biospective Inc. (B.J.B.), Montreal, Quebec, Canada; Nucleus Global (K.M.K.), Atlanta, GA; Coeruleus Clinical Sciences LLC (J.M.C.), Woodbridge, CT; Department of Neurology (B.M.), University Medical Center, Göttingen and Paracelsus-Elena-Klinik, Kassel, and Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Germany; Morton and Gloria Shulman Movement Disorders Clinic (A.E.L.); and Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Toronto, Ontario, Canada
| |
Collapse
|
11
|
Leitner C, D'Este G, Verga L, Rahayel S, Mombelli S, Sforza M, Casoni F, Zucconi M, Ferini-Strambi L, Galbiati A. Neuropsychological Changes in Isolated REM Sleep Behavior Disorder: A Systematic Review and Meta-analysis of Cross-sectional and Longitudinal Studies. Neuropsychol Rev 2024; 34:41-66. [PMID: 36588140 DOI: 10.1007/s11065-022-09572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 01/03/2023]
Abstract
The aim of this meta-analysis is twofold: (a) to assess cognitive impairments in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) patients compared to healthy controls (HC); (b) to quantitatively estimate the risk of developing a neurodegenerative disease in iRBD patients according to baseline cognitive assessment. To address the first aim, cross-sectional studies including polysomnography-confirmed iRBD patients, HC, and reporting neuropsychological testing were included. To address the second aim, longitudinal studies including polysomnography-confirmed iRBD patients, reporting baseline neuropsychological testing for converted and still isolated patients separately were included. The literature search was conducted based on PRISMA guidelines and the protocol was registered at PROSPERO (CRD42021253427). Cross-sectional and longitudinal studies were searched from PubMed, Web of Science, Scopus, and Embase databases. Publication bias and statistical heterogeneity were assessed respectively by funnel plot asymmetry and using I2. Finally, a random-effect model was performed to pool the included studies. 75 cross-sectional (2,398 HC and 2,460 iRBD patients) and 11 longitudinal (495 iRBD patients) studies were selected. Cross-sectional studies showed that iRBD patients performed significantly worse in cognitive screening scores (random-effects (RE) model = -0.69), memory (RE model = -0.64), and executive function (RE model = -0.50) domains compared to HC. The survival analyses conducted for longitudinal studies revealed that lower executive function and language performance, as well as the presence of mild cognitive impairment (MCI), at baseline were associated with an increased risk of conversion at follow-up. Our study underlines the importance of a comprehensive neuropsychological assessment in the context of iRBD.
Collapse
Affiliation(s)
- Caterina Leitner
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Giada D'Este
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Laura Verga
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Faculty of Psychology and Neuroscience, Department NP&PP, Maastricht University, Maastricht, The Netherlands
| | - Shady Rahayel
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal - Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Samantha Mombelli
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Marco Sforza
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Marco Zucconi
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Luigi Ferini-Strambi
- "Vita-Salute" San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Andrea Galbiati
- "Vita-Salute" San Raffaele University, Milan, Italy.
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy.
| |
Collapse
|
12
|
Cousins KAQ, Irwin DJ, Tropea TF, Rhodes E, Phillips J, Chen-Plotkin AS, Brumm MC, Coffey CS, Kang JH, Simuni T, Foroud TM, Toga AW, Tanner CM, Kieburtz KD, Mollenhauer B, Galasko D, Hutten S, Weintraub D, Siderowf AD, Marek K, Poston KL, Shaw LM. Evaluation of ATN PD Framework and Biofluid Markers to Predict Cognitive Decline in Early Parkinson Disease. Neurology 2024; 102:e208033. [PMID: 38306599 PMCID: PMC11383879 DOI: 10.1212/wnl.0000000000208033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In Parkinson disease (PD), Alzheimer disease (AD) copathology is common and clinically relevant. However, the longitudinal progression of AD CSF biomarkers-β-amyloid 1-42 (Aβ42), phosphorylated tau 181 (p-tau181), and total tau (t-tau)-in PD is poorly understood and may be distinct from clinical AD. Moreover, it is unclear whether CSF p-tau181 and serum neurofilament light (NfL) have added prognostic utility in PD, when combined with CSF Aβ42. First, we describe longitudinal trajectories of biofluid markers in PD. Second, we modified the AD β-amyloid/tau/neurodegeneration (ATN) framework for application in PD (ATNPD) using CSF Aβ42 (A), p-tau181 (T), and serum NfL (N) and tested ATNPD prediction of longitudinal cognitive decline in PD. METHODS Participants were selected from the Parkinson's Progression Markers Initiative cohort, clinically diagnosed with sporadic PD or as controls, and followed up annually for 5 years. Linear mixed-effects models (LMEMs) tested the interaction of diagnosis with longitudinal trajectories of analytes (log transformed, false discovery rate [FDR] corrected). In patients with PD, LMEMs tested how baseline ATNPD status (AD [A+T+N±] vs not) predicted clinical outcomes, including Montreal Cognitive Assessment (MoCA; rank transformed, FDR corrected). RESULTS Participants were 364 patients with PD and 168 controls, with comparable baseline mean (±SD) age (patients with PD = 62 ± 10 years; controls = 61 ± 11 years]; Mann-Whitney Wilcoxon: p = 0.4) and sex distribution (patients with PD = 231 male individuals [63%]; controls = 107 male individuals [64%]; χ2: p = 1). Patients with PD had overall lower CSF p-tau181 (β = -0.16, 95% CI -0.23 to -0.092, p = 2.2e-05) and t-tau than controls (β = -0.13, 95% CI -0.19 to -0.065, p = 4e-04), but not Aβ42 (p = 0.061) or NfL (p = 0.32). Over time, patients with PD had greater increases in serum NfL than controls (β = 0.035, 95% CI 0.022 to 0.048, p = 9.8e-07); slopes of patients with PD did not differ from those of controls for CSF Aβ42 (p = 0.18), p-tau181 (p = 1), or t-tau (p = 0.96). Using ATNPD, PD classified as A+T+N± (n = 32; 9%) had worse cognitive decline on global MoCA (β = -73, 95% CI -110 to -37, p = 0.00077) than all other ATNPD statuses including A+ alone (A+T-N-; n = 75; 21%). DISCUSSION In patients with early PD, CSF p-tau181 and t-tau were low compared with those in controls and did not increase over 5 years of follow-up. Our study shows that classification using modified ATNPD (incorporating CSF Aβ42, CSF p-tau181, and serum NfL) can identify biologically relevant subgroups of PD to improve prediction of cognitive decline in early PD.
Collapse
Affiliation(s)
- Katheryn A Q Cousins
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Thomas F Tropea
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Emma Rhodes
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Jeffrey Phillips
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Alice S Chen-Plotkin
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Michael C Brumm
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Christopher S Coffey
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Ju Hee Kang
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Tanya Simuni
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Tatiana M Foroud
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Arthur W Toga
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Caroline M Tanner
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Karl D Kieburtz
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Brit Mollenhauer
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Douglas Galasko
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Samantha Hutten
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Daniel Weintraub
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Andrew D Siderowf
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Kenneth Marek
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Kathleen L Poston
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| | - Leslie M Shaw
- From the Department of Neurology (K.A.Q.C., D.J.I., T.F.T., E.R., J.P., A.S.C.-P., D.W.), University of Pennsylvania, Philadelphia; Department of Biostatistics (M.C.B., C.S.C.), College of Public Health, University of Iowa, Iowa City; Department of Pharmacology and Clinical Pharmacology (J.H.K.), Inha University, Incheon, South Korea; Feinberg School of Medicine (T.S.), Northwestern University, Chicago, IL; Department of Medical and Molecular Genetics (T.M.F.), Indiana University, Indianapolis; Laboratory of Neuro Imaging (A.W.T.), University of Southern California, Los Angeles; Department of Neurology (C.M.T.), Weill Institute for Neurosciences, University of California San Francisco; Department of Neurology (K.D.K.), University of Rochester Medical Center, NY; Department of Neurology (B.M.), University Medical Center, Göttingen, Paracelsus-Elena-Klinik, Germany; Department of Neurology (D.G.), University of California San Diego; The Michael J. Fox Foundation (S.H.), New York, NY; Department of Psychiatry (D.W.), School of Medicine at the University of Pennsylvania; Michael J. Crescenz VA Medical Center (D.W.), Parkinson's Disease Research, Education, and Clinical Center; Department of Neurology (A.D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Department of Neurology (K.L.P.), Stanford University, Palo Alto, CA; and Department of Pathology and Laboratory Medicine (L.M.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
13
|
Xiang Y, Huang X, Xu Q, Liu Z, Chen Y, Sun Q, Wang J, Jiang H, Shen L, Yan X, Tang B, Guo J. Estimating the sequence of biomarker changes in Parkinson's disease. Parkinsonism Relat Disord 2024; 118:105939. [PMID: 38029648 DOI: 10.1016/j.parkreldis.2023.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To estimate the sequence of several common biomarker changes in Parkinson's disease (PD) using a novel data-driven method. METHODS We included 374 PD patients and 169 healthy controls (HC) from the Parkinson's Progression Markers Initiative (PPMI). Biomarkers, including the left putamen striatal binding ratio (SBR), right putamen SBR, left caudate SBR, right caudate SBR, cerebrospinal fluid (CSF) α-synuclein, and serum neurofilament light chain (NfL), were selected in our study. The discriminative event-based model (DEBM) was utilized to model the sequence of biomarker changes and establish the disease progression timeline. The estimated disease stages for each subject were obtained through cross-validation. The associations between the estimated disease stages and the clinical symptoms of PD were explored using Spearman's correlation. RESULTS The left putamen is the earliest biomarker to become abnormal among the selected biomarkers, followed by the right putamen, CSF α-synuclein, right caudate, left caudate, and serum NfL. The estimated disease stages are significantly different between PD and HC and yield a high accuracy for distinguishing PD from HC, with an area under the curve (AUC) of 0.98 (95% confidence interval 0.97-0.99), a sensitivity of 0.95, and a specificity of 0.92. Moreover, the estimated disease stages correlate with motor experiences of daily living, motor symptoms, autonomic dysfunction, and anxiety in PD patients. CONCLUSION We determined the sequence of several common biomarker changes in PD using DEBM, providing data-driven evidence of the disease progression of PD.
Collapse
Affiliation(s)
- Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - XiuRong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China.
| |
Collapse
|
14
|
Santos-Rebouças CB, Cordovil Cotrin J, Dos Santos Junior GC. Exploring the interplay between metabolomics and genetics in Parkinson's disease: Insights from ongoing research and future avenues. Mech Ageing Dev 2023; 216:111875. [PMID: 37748695 DOI: 10.1016/j.mad.2023.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder, whose complex aetiology remains under construction. While rare variants have been associated with the monogenic PD form, most PD cases are influenced by multiple genetic and environmental aspects. Nonetheless, the pathophysiological pathways and molecular networks involved in monogenic/idiopathic PD overlap, and genetic variants are decisive in elucidating the convergent underlying mechanisms of PD. In this scenario, metabolomics has furnished a dynamic and systematic picture of the synergy between the genetic background and environmental influences that impact PD, making it a valuable tool for investigating PD-related metabolic dysfunctions. In this review, we performed a brief overview of metabolomics current research in PD, focusing on significant metabolic alterations observed in idiopathic PD from different biofluids and strata and exploring how they relate to genetic factors associated with monogenic PD. Dysregulated amino acid metabolism, lipid metabolism, and oxidative stress are the critical metabolic pathways implicated in both genetic and idiopathic PD. By merging metabolomics and genetics data, it is possible to distinguish metabolic signatures of specific genetic backgrounds and to pinpoint subgroups of PD patients who could derive personalized therapeutic benefits. This approach holds great promise for advancing PD research and developing innovative, cost-effective treatments.
Collapse
Affiliation(s)
- Cíntia Barros Santos-Rebouças
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Juliana Cordovil Cotrin
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos Junior
- LabMet, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
16
|
Jackson H, Anzures-Cabrera J, Simuni T, Postuma RB, Marek K, Pagano G. Identifying prodromal symptoms at high specificity for Parkinson's disease. Front Aging Neurosci 2023; 15:1232387. [PMID: 37810617 PMCID: PMC10556459 DOI: 10.3389/fnagi.2023.1232387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction To test drugs with the potential to prevent the onset of Parkinson's disease (PD), it is key to identify individuals in the general population at high risk of developing PD. This is often difficult because most of the clinical markers are non-specific, common in PD but also common in older adults (e.g., sleep problems). Objective We aimed to identify the clinical markers at high specificity for developing PD by comparing individuals with PD or prodromal PD to healthy controls. Methods We investigated motor and non-motor symptoms (Movement Disorder Society Unified Parkinson's Disease Rating Scale Part 1 and 2 items) in 64 prodromal PD and 422 PD individuals calculating the odds ratios, adjusting for age and gender, for PD and prodromal PD versus 195 healthy controls. Symptoms at high specificity were defined as having an adjusted odds ratio ≥ 6. Results Constipation had an adjusted odds ratio, 6.14 [95% CI: 2.94-12.80] showing high specificity for prodromal PD, and speech difficulties had an adjusted odds ratio, 9.61 [95% CI: 7.88-48.81] showing high specificity for PD. The proportion of participants showing these specific markers was moderate (e.g., prevalence of constipation was 43.75% in prodromal PD, and speech difficulties was 33.89% in PD), suggesting these symptoms may make robust predictors of prodromal PD and PD, respectively. Discussion Clinical markers at high specificity for developing PD could be used as tools in the screening of general populations to identify individuals at higher risk of developing PD.
Collapse
Affiliation(s)
- Holly Jackson
- Roche Products Ltd, Welwyn Garden City, United Kingdom
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ronald B. Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, United States
| | - Gennaro Pagano
- Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
- University of Exeter Medical School, London, United Kingdom
| |
Collapse
|
17
|
Murakami H, Tokuda T, El-Agnaf OMA, Ohmichi T, Mori Y, Asano M, Kanemoto M, Baba Y, Tsukie T, Ikeuchi T, Ono K. IgG index of cerebrospinal fluid can reflect pathophysiology associated with Lewy bodies in Parkinson's disease. J Neurol Sci 2023; 452:120760. [PMID: 37544209 DOI: 10.1016/j.jns.2023.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Neuroinflammation is one of the pathophysiologies of Parkinson's disease (PD). Lewy bodies, the pathological hallmark of PD, emerge as a consequence of α-synuclein aggregation, and neuroinflammation is induced concurrently with this aggregation. Imaging and cerebrospinal fluid (CSF) biomarkers that reflect PD pathophysiology have been developed or are under investigation. The IgG index of CSF is a marker of inflammation, and may also reflect the pathophysiology of PD. AIM We examined if the IgG index reflects the pathophysiology of PD in drug-naïve PD patients. METHOD The subjects were 20 consecutive PD patients who underwent 123I-MIBG scintigraphy for assessment of the heart to mediastinum (H/M) ratio and wash out rate, 123I-Ioflupane SPECT for examination of the specific binding ratio in the striatum, and lumbar puncture before treatment. The CSF IgG index and levels of pathogenic proteins (total α-synuclein, oligomeric α-synuclein, total tau, phosphorylated tau and amyloid Aβ1-42) were determined. The IgG index was compared with the other parameters using Spearman correlation analysis. RESULTS The IgG index showed a significant correlation with the H/M ratio in early (r = -0.563, p = 0.010) and delayed (r = -0.466, p = 0.038) images in 123I-MIBG scintigraphy and with the CSF total tau level (r = -0.513, p = 0.021). CONCLUSION Neuroinflammation is involved in PD pathophysiology in some patients, and a higher IgG index indicates the presence of neuroinflammation accompanied by emergence of Lewy bodies.
Collapse
Affiliation(s)
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Japan
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Japan
| | - Yukiko Mori
- Department of Neurology, Showa University School of Medicine, Japan
| | - Miki Asano
- Department of Neurology, Showa University School of Medicine, Japan
| | - Mizuki Kanemoto
- Department of Neurology, Showa University School of Medicine, Japan
| | - Yasuhiko Baba
- Department of Neurology, Showa University Fujigaoka Hospital, Japan
| | - Tamao Tsukie
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| |
Collapse
|
18
|
Bae YJ, Kim JM, Choi BS, Choi JH, Ryoo N, Song YS, Cho SJ, Kim JH. Glymphatic function assessment in Parkinson's disease using diffusion tensor image analysis along the perivascular space. Parkinsonism Relat Disord 2023; 114:105767. [PMID: 37523953 DOI: 10.1016/j.parkreldis.2023.105767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Glymphatic dysfunction can contribute to α-synucleinopathies. We examined glymphatic function in idiopathic Parkinson's disease (PD) utilizing Diffusion Tensor Image Analysis aLong the Perivascular Space (DTI-ALPS). METHODS This study enrolled consecutive patients diagnosed with de novo PD between June 2017 and March 2019 who underwent brain DTI with concurrent 123I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane (123I-FP-CIT) SPECT, and age- and sex-matched controls. From DTI-ALPS, the ALPS-index was calculated as a ratio of diffusivities along the x-axis in the region of neural fibers passing vertically to the diffusivities perpendicular to them, which reflected perivascular water motion at the lateral ventricular body level. The ALPS-index of the PD and control groups was compared using Student's t-test; its correlations with clinical scores for motor and cognition (UPDRS-III, MMSE, and MoCA) and striatal dopamine transporter uptake measured by 123I-FP-CIT specific binding ratios (SBRs) were examined using a correlation coefficient. RESULTS In all, 54 patients in the de novo PD group (31 women, 23 men; mean age, 68.9 ± 9.4 years) and 54 in the control group (mean age, 69.0 ± 10.5 years) were included. The ALPS-index was lower in the PD group than in the controls (1.51 ± 0.22 versus 1.66 ± 0.20; P < 0.001). In the PD group, the ALPS-index negatively correlated with the UPDRS-III score (r = -0.526), and positively correlated with the MMSE (r = 0.377) and MoCA scores (r = 0.382) (all, P < 0.05). No correlation was observed between the ALPS-index and striatal 123I-FP-CIT SBRs (P > 0.05). CONCLUSIONS DTI-ALPS can reveal glymphatic dysfunction in patients with PD, whose severity correlated with motor and cognitive dysfunction, but not striatal dopamine transporter uptake.
Collapse
Affiliation(s)
- Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Ji-Hyun Choi
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Nayoung Ryoo
- Department of Neurology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Se Jin Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
19
|
Barba L, Abu-Rumeileh S, Halbgebauer S, Bellomo G, Paolini Paoletti F, Gaetani L, Oeckl P, Steinacker P, Massa F, Parnetti L, Otto M. CSF Synaptic Biomarkers in AT(N)-Based Subgroups of Lewy Body Disease. Neurology 2023; 101:e50-e62. [PMID: 37188538 PMCID: PMC10351307 DOI: 10.1212/wnl.0000000000207371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with Lewy body disease (LBD) often show a co-occurring Alzheimer disease (AD) pathology. CSF biomarkers allow the detection in vivo of AD-related pathologic hallmarks included in the amyloid-tau-neurodegeneration (AT(N)) classification system. Here, we aimed to investigate whether CSF biomarkers of synaptic and neuroaxonal damage are correlated with the presence of AD copathology in LBD and can be useful to differentiate patients with LBD with different AT(N) profiles. METHODS We retrospectively measured CSF levels of AD core biomarkers (Aβ42/40 ratio, phosphorylated tau protein, and total tau protein) and of synaptic (β-synuclein, α-synuclein, synaptosomal-associated protein 25 [SNAP-25], and neurogranin) and neuroaxonal proteins (neurofilament light chain [NfL]) in 28 cognitively unimpaired participants with nondegenerative neurologic conditions and 161 participants with a diagnosis of either LBD or AD (at both mild cognitive impairment, AD-MCI, and dementia stages, AD-dem). We compared CSF biomarker levels in clinical and AT(N)-based subgroups. RESULTS CSF β-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL levels did not differ between LBD (n = 101, age 67.2 ± 7.8 years, 27.7% females) and controls (age 64.8 ± 8.6 years, 39.3% females) and were increased in AD (AD-MCI: n = 30, AD-dem: n = 30, age 72.3 ± 6.0 years, 63.3% females) compared with both groups (p < 0.001 for all comparisons). In LBD, we found increased levels of synaptic and neuroaxonal degeneration biomarkers in patients with A+T+ (LBD/A+T+) than with A-T- profiles (LBD/A-T-) (p < 0.01 for all), and β-synuclein showed the highest discriminative accuracy between the 2 groups (area under the curve 0.938, 95% CI 0.884-0.991). CSF β-synuclein (p = 0.0021), α-synuclein (p = 0.0099), and SNAP-25 concentrations (p = 0.013) were also higher in LBD/A+T+ than in LBD/A+T- cases, which had synaptic biomarker levels within the normal range. CSF α-synuclein was significantly decreased only in patients with LBD with T- profiles compared with controls (p = 0.0448). Moreover, LBD/A+T+ and AD cases did not differ in any biomarker level. DISCUSSION LBD/A+T+ and AD cases showed significantly increased CSF levels of synaptic and neuroaxonal biomarkers compared with LBD/A-T- and control subjects. Patients with LBD and AT(N)-based AD copathology showed, thus, a distinct signature of synaptic dysfunction from other LBD cases. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that CSF levels of β-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL are higher in patients with AD than in patients with LBD.
Collapse
Affiliation(s)
- Lorenzo Barba
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy.
| | - Samir Abu-Rumeileh
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Steffen Halbgebauer
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Giovanni Bellomo
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Federico Paolini Paoletti
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Lorenzo Gaetani
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Patrick Oeckl
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Petra Steinacker
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Federico Massa
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Lucilla Parnetti
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy
| | - Markus Otto
- From the Department of Neurology (L.B., S.A.-R., P.S., M.O.), Martin-Luther-University of Halle-Wittenberg, Germany; Section of Neurology (L.B., G.B., F.P.P., L.G., L.P.), Department of Medicine and Surgery, University of Perugia, Italy; Department of Neurology (S.H., P.O., M.O.), Ulm University, Germany; German Center for Neurodegenerative Disorders Ulm (DZNE e.V.) (P.O.); and Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (F.M.), University of Genoa, Italy.
| |
Collapse
|
20
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
22
|
Bressan E, Reed X, Bansal V, Hutchins E, Cobb MM, Webb MG, Alsop E, Grenn FP, Illarionova A, Savytska N, Violich I, Broeer S, Fernandes N, Sivakumar R, Beilina A, Billingsley KJ, Berghausen J, Pantazis CB, Pitz V, Patel D, Daida K, Meechoovet B, Reiman R, Courtright-Lim A, Logemann A, Antone J, Barch M, Kitchen R, Li Y, Dalgard CL, Rizzu P, Hernandez DG, Hjelm BE, Nalls M, Gibbs JR, Finkbeiner S, Cookson MR, Van Keuren-Jensen K, Craig DW, Singleton AB, Heutink P, Blauwendraat C. The Foundational Data Initiative for Parkinson Disease: Enabling efficient translation from genetic maps to mechanism. CELL GENOMICS 2023; 3:100261. [PMID: 36950378 PMCID: PMC10025424 DOI: 10.1016/j.xgen.2023.100261] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/22/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson's Progression Markers Initiative study, which included participants with PD carrying monogenic PD variants, variants with intermediate effects, and variants identified by genome-wide association studies and unaffected individuals. We generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from iPSC-derived DA neurons to understand molecular relationships between disease-associated genetic variation and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable cellular context and foundational atlas for modeling PD genetic risk. We have integrated these data into a FOUNDIN-PD data browser as a resource for understanding the molecular pathogenesis of PD.
Collapse
Affiliation(s)
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vikas Bansal
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Elizabeth Hutchins
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Melanie M. Cobb
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Michelle G. Webb
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Eric Alsop
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Francis P. Grenn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Natalia Savytska
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ivo Violich
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Stefanie Broeer
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Noémia Fernandes
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ramiyapriya Sivakumar
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Joos Berghausen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline B. Pantazis
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vanessa Pitz
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dhairya Patel
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bessie Meechoovet
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Rebecca Reiman
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Amanda Courtright-Lim
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Amber Logemann
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jerry Antone
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mariya Barch
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Robert Kitchen
- Massachusetts General Hospital, Cardiovascular Research Center, Charlestown, MA, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - The American Genome Center
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
- Massachusetts General Hospital, Cardiovascular Research Center, Charlestown, MA, USA
- Protein/Peptide Sequencing Facility, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Mike Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - David W. Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Chahine LM, Simuni T. Role of novel endpoints and evaluations of response in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:325-345. [PMID: 36803820 DOI: 10.1016/b978-0-323-85555-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With progress in our understanding of Parkinson disease (PD) and other neurodegenerative disorders, from clinical features to imaging, genetic, and molecular characterization comes the opportunity to refine and revise how we measure these diseases and what outcome measures are used as endpoints in clinical trials. While several rater-, patient-, and milestone-based outcomes for PD exist that may serve as clinical trial endpoints, there remains an unmet need for endpoints that are clinically meaningful, patient centric while also being more objective and quantitative, less susceptible to effects of symptomatic therapy (for disease-modification trials), and that can be measured over a short period and yet accurately represent longer-term outcomes. Several novel outcomes that may be used as endpoints in PD clinical trials are in development, including digital measures of signs and symptoms, as well a growing array of imaging and biospecimen biomarkers. This chapter provides an overview of the state of PD outcome measures as of 2022, including considerations for selection of clinical trial endpoints in PD, advantages and limitations of existing measures, and emerging potential novel endpoints.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
24
|
Canever JB, Soares ES, de Avelar NCP, Cimarosti HI. Targeting α-synuclein post-translational modifications in Parkinson's disease. Behav Brain Res 2023; 439:114204. [PMID: 36372243 DOI: 10.1016/j.bbr.2022.114204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Although the exact mechanisms underlying PD are still not completely understood, it is well accepted that α-synuclein plays key pathophysiological roles as the main constituent of the cytoplasmic inclusions known as Lewy bodies. Several post-translational modifications (PTMs), such as the best-known phosphorylation, target α-synuclein and are thus implicated in its physiological and pathological functions. In this review, we present (1) an overview of the pathophysiological roles of α-synuclein, (2) a descriptive analysis of α-synuclein PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, truncation, and O-GlcNAcylation, as well as (3) a brief summary on α-synuclein PTMs as potential biomarkers for PD. A better understanding of α-synuclein PTMs is of paramount importance for elucidating the mechanisms underlying PD and can thus be expected to improve early detection and monitoring disease progression, as well as identify promising new therapeutic targets.
Collapse
Affiliation(s)
- Jaquelini B Canever
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Núbia C P de Avelar
- Laboratory of Aging, Resources and Rheumatology, UFSC, Araranguá, Santa Catarina, Brazil
| | - Helena I Cimarosti
- Post-Graduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Post-Graduate Program in Pharmacology, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
25
|
A proteogenomic view of Parkinson's disease causality and heterogeneity. NPJ Parkinsons Dis 2023; 9:24. [PMID: 36774388 PMCID: PMC9922273 DOI: 10.1038/s41531-023-00461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/19/2023] [Indexed: 02/13/2023] Open
Abstract
The pathogenesis and clinical heterogeneity of Parkinson's disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into "endotypes". The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.
Collapse
|
26
|
Nabizadeh F, Pirahesh K, Ramezannezhad E. Longitudinal striatal dopamine transporter binding and cerebrospinal fluid alpha-synuclein, amyloid beta, total tau, and phosphorylated tau in Parkinson's disease. Neurol Sci 2023; 44:573-585. [PMID: 36227385 DOI: 10.1007/s10072-022-06440-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies investigated CSF levels of α-synuclein (α-syn), amyloid-β (Aβ1-42), total tau (t-tau), and phosphorylated tau (p-tau) with clinical progression of Parkinson's disease (PD). However, there is limited data on the association between CSF biomarkers and dopamine uptake status in PD. AIM In the current study, we aim to investigate the longitudinal association between striatal dopaminergic neuronal loss assessed by dopamine active transporter single photon emission computerized tomography (DaTSCAN) imaging with CSF α-syn, t-tau, p-tau, and Aβ1-42. METHODS A total of 413 early-stage PD patients and 187 healthy controls (HCs) from the PPMI. Striatal binding ratios (SBRs) of DaTSCAN images in caudate and putamen nuclei were calculated. We investigated the cross-sectional and longitudinal association between CSF biomarkers and dopamine uptake using partial correlation models adjusted for the effect of age, sex, and years of education over 24 months of follow-up. RESULTS The level of CSF α-syn, Aβ1-42, t-tau, and p-tau was significantly higher in HCs compared to PD groups at any time point. We found that higher CSF α-syn was associated with a higher SBR score in the left caudate at baseline (P = 0.038) and after 12 months (P = 0.012) in PD patients. Moreover, SBR scores in the left caudate and CSF Aβ1-42 were positively correlated at baseline (P = 0.021), 12 months (P = 0.006), and 24 months (P = 0.014) in patients with PD. Our findings demonstrated that change in CSF Aβ1-42 was positively correlated with change in SBR score in the left caudate after 24 months in the PD group (P = 0.043). CONCLUSION We found that cross-sectional levels of α-syn and Aβ1-42 could reflect the degree of dopaminergic neuron loss in the left caudate nucleus. Interestingly, longitudinal changes in CSF Aβ1-42 could predict the severity of left caudal dopaminergic neuron loss throughout the disease. This suggested that Aβ pathology might precede dopaminergic loss in striatal nuclei in this case left caudate and subsequently cognitive impairment in PD patients, although future studies are needed to confirm our results and expand the understanding of the pathophysiology of cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kasra Pirahesh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
27
|
Bartl M, Dakna M, Schade S, Otte B, Wicke T, Lang E, Starke M, Ebentheuer J, Weber S, Toischer K, Schnelle M, Sixel-Döring F, Trenkwalder C, Mollenhauer B. Blood Markers of Inflammation, Neurodegeneration, and Cardiovascular Risk in Early Parkinson's Disease. Mov Disord 2023; 38:68-81. [PMID: 36267007 DOI: 10.1002/mds.29257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent studies point toward a significant impact of cardiovascular processes and inflammation on Parkinson's disease (PD) progression. OBJECTIVE The aim of this study was to assess established markers of neuronal function, inflammation, and cardiovascular risk by high-throughput sandwich immune multiplex panels in deeply phenotyped PD. METHODS Proximity Extension Assay technology on 273 markers was applied in plasma of 109 drug-naive at baseline (BL) patients with PD (BL, 2-, 4-, and 6-year follow-up [FU]) and 96 healthy control patients (HCs; 2- and 4-year FU) from the de novo Parkinson's cohort. BL plasma from 74 individuals (37 patients with PD, 37 healthy control patients) on the same platform from the Parkinson Progression Marker Initiative was used for independent validation. Correlation analysis of the identified markers and 6 years of clinical FU, including motor and cognitive progression, was evaluated. RESULTS At BL, 35 plasma markers were differentially expressed in PD, showing downregulation of atherosclerotic risk markers, eg, E-selectin and ß2 -integrin. In contrast, we found a reduction of markers of the plasminogen activation system, eg, urokinase plasminogen activator. Neurospecific markers indicated increased levels of peripheral proteins of neurodegeneration and inflammation, such as fibroblast growth factor 21 and peptidase inhibitor 3. Several markers, including interleukin-6 and cystatin B, correlated with cognitive decline and progression of motor symptoms during FU. These findings were independently validated in the Parkinson Progression Marker Initiative. CONCLUSIONS We identified and validated possible PD plasma biomarker candidates for state, fate, and disease progression, elucidating new molecular processes with reduced endothelial/atherosclerotic processes, increased thromboembolic risk, and neuroinflammation. Further investigations and validation in independent and larger longitudinal cohorts are needed. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Schade
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Birgit Otte
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | | | | | | | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Karl Toischer
- Department of Cardiology, University Medical Center Goettingen, Goettingen, Germany
| | - Moritz Schnelle
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
28
|
Brumm MC, Siderowf A, Simuni T, Burghardt E, Choi SH, Caspell-Garcia C, Chahine LM, Mollenhauer B, Foroud T, Galasko D, Merchant K, Arnedo V, Hutten SJ, O’Grady AN, Poston KL, Tanner CM, Weintraub D, Kieburtz K, Marek K, Coffey CS. Parkinson's Progression Markers Initiative: A Milestone-Based Strategy to Monitor Parkinson's Disease Progression. JOURNAL OF PARKINSON'S DISEASE 2023; 13:899-916. [PMID: 37458046 PMCID: PMC10578214 DOI: 10.3233/jpd-223433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Identifying a meaningful progression metric for Parkinson's disease (PD) that reflects heterogeneity remains a challenge. OBJECTIVE To assess the frequency and baseline predictors of progression to clinically relevant motor and non-motor PD milestones. METHODS Using data from the Parkinson's Progression Markers Initiative (PPMI) de novo PD cohort, we monitored 25 milestones across six domains ("walking and balance"; "motor complications"; "cognition"; "autonomic dysfunction"; "functional dependence"; "activities of daily living"). Milestones were intended to be severe enough to reflect meaningful disability. We assessed the proportion of participants reaching any milestone; evaluated which occurred most frequently; and conducted a time-to-first-event analysis exploring whether baseline characteristics were associated with progression. RESULTS Half of participants reached at least one milestone within five years. Milestones within the cognitive, functional dependence, and autonomic dysfunction domains were reached most often. Among participants who reached a milestone at an annual follow-up visit and remained active in the study, 82% continued to meet criteria for any milestone at one or more subsequent annual visits and 55% did so at the next annual visit. In multivariable analysis, baseline features predicting faster time to reaching a milestone included age (p < 0.0001), greater MDS-UPDRS total scores (p < 0.0001), higher GDS-15 depression scores (p = 0.0341), lower dopamine transporter binding (p = 0.0043), and lower CSF total α-synuclein levels (p = 0.0030). Symptomatic treatment was not significantly associated with reaching a milestone (p = 0.1639). CONCLUSION Clinically relevant milestones occur frequently, even in early PD. Milestones were significantly associated with baseline clinical and biological markers, but not with symptomatic treatment. Further studies are necessary to validate these results, further assess the stability of milestones, and explore translating them into an outcome measure suitable for observational and therapeutic studies.
Collapse
Affiliation(s)
- Michael C. Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elliot Burghardt
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Lana M. Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena Klinik, Kassel, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, CA, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vanessa Arnedo
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Samantha J. Hutten
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Alyssa N. O’Grady
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, SanFrancisco, CA, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Daniel Weintraub
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departmentof Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Christopher S. Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - on behalf of the Parkinson’s Progression Markers Initiative
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of California, San Diego, CA, USA
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, SanFrancisco, CA, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Departmentof Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
29
|
Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer's disease. Alzheimers Res Ther 2022; 14:201. [PMID: 36587215 PMCID: PMC9805257 DOI: 10.1186/s13195-022-01150-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is considered the main pathophysiological protein component of Lewy bodies in synucleinopathies. α-Syn is an intrinsically disordered protein (IDP), and several types of structural conformations have been reported, depending on environmental factors. Since IDPs may have distinctive functions depending on their structures, α-syn can play different roles and interact with several proteins, including amyloid-beta (Aβ) and tau, in Alzheimer's disease (AD) and other neurodegenerative disorders. MAIN BODY In previous studies, α-syn aggregates in AD brains suggested a close relationship between AD and α-syn. In addition, α-syn directly interacts with Aβ and tau, promoting mutual aggregation and exacerbating the cognitive decline. The interaction of α-syn with Aβ and tau presented different consequences depending on the structural forms of the proteins. In AD, α-syn and tau levels in CSF were both elevated and revealed a high positive correlation. Especially, the CSF α-syn concentration was significantly elevated in the early stages of AD. Therefore, it could be a diagnostic marker of AD and help distinguish AD from other neurodegenerative disorders by incorporating other biomarkers. CONCLUSION The overall physiological and pathophysiological functions, structures, and genetics of α-syn in AD are reviewed and summarized. The numerous associations of α-syn with Aβ and tau suggested the significance of α-syn, as a partner of the pathophysiological roles in AD. Understanding the involvements of α-syn in the pathology of Aβ and tau could help address the unresolved issues of AD. In particular, the current status of the CSF α-syn in AD recommends it as an additional biomarker in the panel for AD diagnosis.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Chul Youn
- grid.411651.60000 0004 0647 4960Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seong Soo A. An
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - SangYun Kim
- grid.412480.b0000 0004 0647 3378Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
30
|
Miller-Patterson C, Hsu JY, Chahine LM, Morley JF, Willis AW. Selected autonomic signs and symptoms as risk markers for phenoconversion and functional dependence in prodromal Parkinson's disease. Clin Auton Res 2022; 32:463-476. [PMID: 36057046 PMCID: PMC10979289 DOI: 10.1007/s10286-022-00889-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE To determine whether dysautonomia can stratify individuals with other prodromal markers of Parkinson's disease (PD) for risk of phenoconversion and functional decline, which may help identify subpopulations appropriate for experimental studies. METHODS Data were obtained from Parkinson's Progression Markers Initiative. Cohorts without PD but with at-risk features were included (hyposmia and/or rapid-eye-movement-sleep behavior disorder, LRRK2 gene mutation, GBA gene mutation). Dysautonomia measures included Scales-for-Outcomes-in-Parkinson's-Disease Autonomic (SCOPA-AUT), seven SCOPA-AUT subscales, and cardiovascular dysfunction (supine hypertension, low pulse pressure, neurogenic orthostatic hypotension). Outcome measures were phenoconversion and Schwab-and-England Activities-of-Daily-Living (SE-ADL) ≤ 70, which indicates functional dependence. Cox proportional-hazards regression was used to evaluate survival to phenoconversion/SE-ADL ≤ 70 for each dysautonomia measure. If a significant association was identified, a likelihood-ratio test was employed to evaluate whether a significant interaction existed between the measure and cohort. If so, regression analysis was repeated stratified by cohort. RESULTS Median follow-up was 30 months. On multivariable analysis, gastrointestinal and female sexual dysfunction subscales were associated with increased risk of phenoconversion, while the cardiovascular subscale and neurogenic orthostatic hypotension were associated with increased risk of SE-ADL ≤ 70; respective hazard ratios (95% confidence intervals) were 1.13 (1.01-1.27), 3.26 (1.39-7.61), 1.87 (1.16-2.99), 5.45 (1.40-21.25). Only the association between the cardiovascular subscale and SE-ADL ≤ 70 was modified by cohort. CONCLUSIONS Symptoms of gastrointestinal and female sexual dysfunction predict phenoconversion in individuals with other risk markers for PD, while signs and symptoms of cardiovascular dysfunction may be associated with functional decline.
Collapse
Affiliation(s)
- Cameron Miller-Patterson
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| | - Jesse Y Hsu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Morley
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Allison W Willis
- Department of Epidemiology and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Raja WK, Neves E, Burke C, Jiang X, Xu P, Rhodes KJ, Khurana V, Scannevin RH, Chung CY. Patient-derived three-dimensional cortical neurospheres to model Parkinson's disease. PLoS One 2022; 17:e0277532. [PMID: 36454869 PMCID: PMC9714816 DOI: 10.1371/journal.pone.0277532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
There are currently no preventive or disease-modifying therapies for Parkinson's Disease (PD). Failures in clinical trials necessitate a re-evaluation of existing pre-clinical models in order to adopt systems that better recapitulate underlying disease mechanisms and better predict clinical outcomes. In recent years, models utilizing patient-derived induced pluripotent stem cells (iPSC) have emerged as attractive models to recapitulate disease-relevant neuropathology in vitro without exogenous overexpression of disease-related pathologic proteins. Here, we utilized iPSC derived from patients with early-onset PD and dementia phenotypes that harbored either a point mutation (A53T) or multiplication at the α-synuclein/SNCA gene locus. We generated a three-dimensional (3D) cortical neurosphere culture model to better mimic the tissue microenvironment of the brain. We extensively characterized the differentiation process using quantitative PCR, Western immunoblotting and immunofluorescence staining. Differentiated and aged neurospheres revealed alterations in fatty acid profiles and elevated total and pathogenic phospho-α-synuclein levels in both A53T and the triplication lines compared to their isogenic control lines. Furthermore, treatment of the neurospheres with a small molecule inhibitor of stearoyl CoA desaturase (SCD) attenuated the protein accumulation and aberrant fatty acid profile phenotypes. Our findings suggest that the 3D cortical neurosphere model is a useful tool to interrogate targets for PD and amenable to test small molecule therapeutics.
Collapse
Affiliation(s)
- Waseem K. Raja
- Yumanity Therapeutics, Boston, MA, United States of America
- * E-mail: (CYC); (WKR)
| | - Esther Neves
- Yumanity Therapeutics, Boston, MA, United States of America
| | | | - Xin Jiang
- Yumanity Therapeutics, Boston, MA, United States of America
| | - Ping Xu
- Yumanity Therapeutics, Boston, MA, United States of America
| | | | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Ann Romney Center for Neurologic Disease, Boston, MA, United States of America
- Harvard Stem Cell Institute, Cambridge, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | | | - Chee Yeun Chung
- Yumanity Therapeutics, Boston, MA, United States of America
- * E-mail: (CYC); (WKR)
| |
Collapse
|
32
|
Tao M, Dou K, Xie Y, Hou B, Xie A. The associations of cerebrospinal fluid biomarkers with cognition, and rapid eye movement sleep behavior disorder in early Parkinson's disease. Front Neurosci 2022; 16:1049118. [PMID: 36507360 PMCID: PMC9728099 DOI: 10.3389/fnins.2022.1049118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background In Parkinson's disease (PD), levels of cerebrospinal fluid (CSF) biomarkers and progression of non-motor symptoms are associated, but the specifics are not yet clear. Objective The aim of this study was to investigate the associations of non-motor symptoms with CSF biomarkers in PD. Materials and methods We assessed 487 individuals from the Parkinson's Progression Markers Initiative (PPMI), consisting of 155 healthy controls (HCs) and 332 individuals with PD. Patients with PD were grouped according to non-motor symptoms and compared CSF α-synuclein (α-syn), amyloid-beta 1-42 (Aβ1-42), and total tau (t-tau) levels. Multiple linear regressions were used in baseline analysis and linear mixed-effects models in longitudinal analysis. Analyses of mediating effects between cognition and CSF biomarkers were also performed. Results At baseline, PD patients with cognitive impairment (PDCI) exhibited significantly lower CSF α-syn (β = -0.1244; P = 0.0469), Aβ (β = -0.1302; P = 0.0447), and t-tau (β = -0.1260; P = 0.0131) levels than PD patients without cognitive impairment (PDCU). Moreover, a faster decline of α-syn (β = -0.2152; P = 0.0374) and Aβ (β = -0.3114; P = 0.0023) and a faster rise of t-tau (β = -0.1534; P = 0.0274) have been found in longitudinal analysis. The Aβ positive group showed an earlier decline in cognitive performance (β = -0.5341; P = 0.0180) compared with the negative Aβ group in both analyses. In addition, we found that PD patients with probable rapid eye movement sleep behavior disorder (pRBD) showed decreased CSF α-syn (β = -0.1343; P = 0.0033) levels. Finally, mediation analysis demonstrated that olfactory function partially mediated the relationship between cognition and CSF biomarkers levels. Conclusion Our study shows that CSF biomarkers are associated with cognition at baseline and longitudinally. Cognitive impairment is more severe in patients with a heavier Aβ burden. CSF α-syn decreased in PD patients with pRBD. This study suggests that early recognition of the increased risk of non-motor symptoms is important for disease surveillance and may be associated with the pathological progression of CSF markers.
Collapse
Affiliation(s)
- Mingzhu Tao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaixin Dou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yijie Xie
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China,Binghui Hou,
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China,Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Anmu Xie,
| |
Collapse
|
33
|
Erythrocytic alpha-synuclein in early Parkinson's disease: A 3-year longitudinal study. Parkinsonism Relat Disord 2022; 104:44-48. [PMID: 36228514 DOI: 10.1016/j.parkreldis.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Early diagnosis of Parkinson's disease (PD) could significantly improve outcomes for patients and future disease-modifying treatments. Several studies have revealed that α-synuclein levels in peripheral erythrocytes are associated with PD, but the diagnostic value in early PD is still unknown. METHODS This study included both cross-sectional and longitudinal design. The subjects included 45 patients with early PD and 79 age-matched healthy controls. Participants were re-examined with repeated blood collection and clinical assessments after 3 years. The electrochemiluminescence assay was used to measure total and oligomeric α-synuclein levels respectively. The diagnostic value of erythrocytic α-synuclein for early PD was determined by receiver operator characteristic (ROC) curve. Correlations between RBC α-synuclein levels and changes over 3 years in clinical characteristic scores were further investigated with a linear regression. RESULTS Total and oligomeric α-synuclein levels in erythrocyte were significantly increased in early PD groups compared with control group (Total α-synuclein, p < 0.001; Oligomer, p < 0.001). Levels of total and oligomeric α-synuclein in erythrocytes were correlated with MDS-UPDRS III scores in early PD (Total α-synuclein, p = 0.008; Oligomer, p = 0.037). After adjusting for age, gender and dopaminergic medication, an association was found between higher erythrocytic oligomeric α-synuclein levels at baseline and greater increase in MDS-UPDRS III scores over 3 years (p = 0.007). CONCLUSION Our study suggests that total and oligomeric α-synuclein in erythrocyte were elevated even in the initial motor stage of PD. Higher erythrocytic oligomeric α-synuclein levels at baseline predicts a faster clinical decline over time in patients with early PD.
Collapse
|
34
|
Longitudinal clinical and biomarker characteristics of non-manifesting LRRK2 G2019S carriers in the PPMI cohort. NPJ Parkinsons Dis 2022; 8:140. [PMID: 36273008 PMCID: PMC9588016 DOI: 10.1038/s41531-022-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
We examined 2-year longitudinal change in clinical features and biomarkers in LRRK2 non-manifesting carriers (NMCs) versus healthy controls (HCs) enrolled in the Parkinson's Progression Markers Initiative (PPMI). We analyzed 2-year longitudinal data from 176 LRRK2 G2019S NMCs and 185 HCs. All participants were assessed annually with comprehensive motor and non-motor scales, dopamine transporter (DAT) imaging, and biofluid biomarkers. The latter included cerebrospinal fluid (CSF) Abeta, total tau and phospho-tau; serum urate and neurofilament light chain (NfL); and urine bis(monoacylglycerol) phosphate (BMP). At baseline, LRRK2 G2019S NMCs had a mean (SD) age of 62 (7.7) years and were 56% female. 13% had DAT deficit (defined as <65% of age/sex-expected lowest putamen SBR) and 11% had hyposmia (defined as ≤15th percentile for age and sex). Only 5 of 176 LRRK2 NMCs developed PD during follow-up. Although NMCs scored significantly worse on numerous clinical scales at baseline than HCs, there was no longitudinal change in any clinical measures over 2 years or in DAT binding. There were no longitudinal differences in CSF and serum biomarkers between NMCs and HCs. Urinary BMP was significantly elevated in NMCs at all time points but did not change longitudinally. Neither baseline biofluid biomarkers nor the presence of DAT deficit correlated with 2-year change in clinical outcomes. We observed no significant 2-year longitudinal change in clinical or biomarker measures in LRRK2 G2019S NMCs in this large, well-characterized cohort even in the participants with baseline DAT deficit. These findings highlight the essential need for further enrichment biomarker discovery in addition to DAT deficit and longer follow-up to enable the selection of NMCs at the highest risk for conversion to enable future prevention clinical trials.
Collapse
|
35
|
Soto M, Iranzo A, Lahoz S, Fernández M, Serradell M, Gaig C, Melón P, Martí M, Santamaría J, Camps J, Fernández‐Santiago R, Ezquerra M. Serum MicroRNAs Predict Isolated Rapid Eye Movement Sleep Behavior Disorder and Lewy Body Diseases. Mov Disord 2022; 37:2086-2098. [PMID: 35962561 PMCID: PMC9804841 DOI: 10.1002/mds.29171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Isolated rapid eye movement sleep behavior disorder (IRBD) is a well-established clinical risk factor for Lewy body diseases (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). OBJECTIVE To elucidate whether serum microRNA (miRNA) deregulation in IRBD can antedate the diagnosis of LBD by performing a longitudinal study in different progression stages of IRBD before and after LBD diagnosis and assessing the predictive performance of differentially expressed miRNAs by machine learning-based modeling. METHODS Using genome-wide miRNA analysis and real-time quantitative polymerase chain reaction validation, we assessed serum miRNA profiles from patients with IRBD stratified by dopamine transporter (DaT) single-photon emission computed tomography into DaT-negative IRBD (n = 17) and DaT-positive IRBD (n = 21), IRBD phenoconverted into LBD (n = 13), and controls (n = 20). Longitudinally, we followed up the IRBD cohort by studying three time point serum samples over 26 months. RESULTS We found sustained cross-sectional and longitudinal deregulation of 12 miRNAs across the RBD continuum, including DaT-negative IRBD, DaT-positive IRBD, and LBD phenoconverted IRBD (let-7c-5p, miR-19b-3p, miR-140, miR-22-3p, miR-221-3p, miR-24-3p, miR-25-3p, miR-29c-3p, miR-361-5p, miR-425-5p, miR-4505, and miR-451a) (false discovery rate P < 0.05). Age- and sex-adjusted predictive modeling based on the 12 differentially expressed miRNA biosignatures discriminated IRBD and PD or DLB from controls with an area under the curve of 98% (95% confidence interval: 89-99%). CONCLUSIONS Besides clinical diagnosis of IRBD or imaging markers such as DaT single-photon emission computed tomography, specific miRNA biosignatures alone hold promise as progression biomarkers for patients with IRBD for predicting PD and DLB clinical outcomes. Further miRNA studies in other PD at-risk populations, such as LRRK2 mutation asymptomatic carriers or hyposmic subjects, are warranted. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marta Soto
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Alex Iranzo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Sara Lahoz
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
| | - Manel Fernández
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Mónica Serradell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Carles Gaig
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Paula Melón
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Maria‐Jose Martí
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Joan Santamaría
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
| | - Rubén Fernández‐Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| |
Collapse
|
36
|
Ahnaou A, Whim D. REM sleep behavior and olfactory dysfunction: improving the utility and translation of animal models in the search for neuroprotective therapies for Parkinson's disease. Neurosci Biobehav Rev 2022; 143:104897. [PMID: 36183864 DOI: 10.1016/j.neubiorev.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease that belongs to the family of synucleiopathies, varying in age, symptoms and progression. Hallmark of the disease is the accumulation of misfolded α-synuclein protein (α-Syn) in neuronal and non-neuronal brain cells. In past decades, diagnosis and treatment of PD has focused on motor deficits, which for the clinical endpoint, have contributed to the prevalence of deficits in the nigrostriatal dopaminergic system and animal models related to motor behavior to study disease. However, clinical trials have failed to translate results from animal models into effective treatments. PD as a multisystem disorder therefore requires additional assessment of motor and non-motor symptoms. Braak's staging revealed early α-Syn pathology in pontine brainstem and olfactory circuits controlling rapid eye movement sleep behavior disorder (RBD) and olfaction, respectively. Recent converging evidence from multicenter clinical studies supports that RBD is the most important risk factor for prodromal PD and the conduct of neuroprotective therapeutic trials in RBD-enriched cohorts has been recommended. Animal models of RBD and olfaction dysfunction can aid to fill the gap in translational research.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Drinkenburg Whim
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
37
|
Wurster I, Quadalti C, Rossi M, Hauser AK, Deuschle C, Schulte C, Waniek K, Lachmann I, la Fougere C, Doppler K, Gasser T, Bender B, Parchi P, Brockmann K. Linking the phenotype of SNCA Triplication with PET-MRI imaging pattern and alpha-synuclein CSF seeding. NPJ Parkinsons Dis 2022; 8:117. [PMID: 36109514 PMCID: PMC9476413 DOI: 10.1038/s41531-022-00379-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lewy-body pathology with aggregation of abnormal conformations of the protein alpha-synuclein (α-Syn) represent the histopathological hallmarks of Parkinson’s disease (PD). Genetic prototypes such as PD due to mutations in the alpha-synuclein gene (SNCA) offer the opportunity to evaluate α-Syn-related profiles in patient-derived biomaterial. We identified a family with a SNCA triplication and assessed the index patient for CSF α-Syn seeding capacity and levels of total α-Syn along with other neurodegenerative CSF markers (Aβ1-42, total-Tau, phospho-Tau, NFL). As no published CSF data in patients with SNCA triplication are available, we descriptively compared his CSF profiles to those of sporadic PD patients and PD patients with GBA mutations as these are also specifically associated with prominent α-Syn pathology. Additionally, skin biopsies with staining for phospho-α-Syn were done. To assess cerebral glucose metabolism and brain atrophy combined positron emission tomography and magnetic resonance imaging ([18F]FDG-PET/MRI) was performed. Age at onset was 24 years and motor impairment was accompanied by prominent non-motor symptoms with early development of dementia, depression, REM sleep behavior disorder, hyposmia, and dysautonomia. Correspondingly, PET-MRI showed hypometabolism and atrophy in frontal, temporoparietal and occipital regions. CSF levels of total α-Syn were threefold higher and RT-QuIC showed remarkable α-Syn seeding activity in all kinetic categories in the SNCATriplication patient compared to patients with GBA mutations. Our results are consistent with findings that not only mutant forms but also overexpression of the wild-type α-Syn protein lead to PD and PD dementia and show a striking CSF α-Syn seeding profile, thus substantiating the role of RT-QuIC as a specific in vivo biomarker of α-Syn brain pathology.
Collapse
|
38
|
Giri B, Seamon M, Banerjee A, Chauhan S, Purohit S, Morgan J, Baban B, Wakade C. Emerging urinary alpha-synuclein and miRNA biomarkers in Parkinson's disease. Metab Brain Dis 2022; 37:1687-1696. [PMID: 33881722 DOI: 10.1007/s11011-021-00735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases after Alzheimer's disease (AD), afflicting adults above the age of sixty irrespective of gender, race, ethnicity, and social status. PD is characterized by motor dysfunctions, displaying resting tremor, rigidity, bradykinesia, and postural imbalance. Non-motor symptoms, including rapid eye movement (REM) behavior disorder, constipation, and loss of sense of smell, typically occur many years before the appearance of the PD motor symptoms that lead to a diagnosis. The loss of dopaminergic neurons in the substantia nigra, which leads to the motor symptoms seen in PD, is associated with the deposition of aggregated, misfolded α-Synuclein (α-Syn, SNCA) proteins forming Lewy Bodies. Additionally, dysregulation of miRNA (a short form of mRNA) may contribute to the developing pathophysiology in PD and other diseases such as cancer. Overexpression of α-Syn and miRNA in human samples has been found in PD, AD, and dementia. Therefore, evaluating these molecules in urine, present either in the free form or in association with extracellular vesicles of biological fluids, may lead to early biomarkers for clinical diagnosis. Collection of urine is non-invasive and thus beneficial, particularly in geriatric populations, for biomarker analysis. Considering the expression and function of α-Syn and miRNA, we predict that they can be used as early biomarkers in the diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Banabihari Giri
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| | - Marissa Seamon
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
- Department of Neuroscience, Augusta University, Augusta, GA, USA
| | - Aditi Banerjee
- Brain Peds Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sneha Chauhan
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - John Morgan
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Babak Baban
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Chandramohan Wakade
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
- Department of Neuroscience, Augusta University, Augusta, GA, USA
- Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| |
Collapse
|
39
|
Högl B, Arnulf I, Bergmann M, Cesari M, Gan‐Or Z, Heidbreder A, Iranzo A, Krohn L, Luppi P, Mollenhauer B, Provini F, Santamaria J, Trenkwalder C, Videnovic A, Stefani A. Rapid eye movement sleep behaviour disorder: Past, present, and future. J Sleep Res 2022; 31:e13612. [PMID: 35470494 PMCID: PMC9541438 DOI: 10.1111/jsr.13612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
This manuscript presents an overview of REM sleep behaviour disorder (RBD) with a special focus on European contributions. After an introduction examining the history of the disorder, we address the pathophysiological and clinical aspects, as well as the diagnostic issues. Further, implications of RBD diagnosis and biomarkers are discussed. Contributions of European researchers to this field are highlighted.
Collapse
Affiliation(s)
- Birgit Högl
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Isabelle Arnulf
- Service des Pathologies du Sommeil, Hôpital Pitié‐SalpêtrièreParisFrance
- Faculty of MedicineSorbonne UniversityParisFrance
| | - Melanie Bergmann
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Matteo Cesari
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Ziv Gan‐Or
- Montreal Neurological Institute and HospitalMcGill UniversityMontréalQuébecCanada
- Department of Neurology & NeurosurgeryMcGill UniversityMontréalQuébecCanada
- Department of Human GeneticsMcGill UniversityMontréalQuébecCanada
| | - Anna Heidbreder
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Alex Iranzo
- Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018‐ISCIII) BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - Lynne Krohn
- Montreal Neurological Institute and HospitalMcGill UniversityMontréalQuébecCanada
- Department of Neurology & NeurosurgeryMcGill UniversityMontréalQuébecCanada
- Department of Human GeneticsMcGill UniversityMontréalQuébecCanada
| | - Pierre‐Hervé Luppi
- Centre of Neuroscience of LyonUMR 5292 CNRS/U1028 INSERMLyonFrance
- Centre Hospitalier Le VinatierBronFrance
| | - Brit Mollenhauer
- Paracelsus‐Elena‐KlinikKasselGermany
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Federica Provini
- IRCCS Institute of Neurological SciencesUOC NeuroMet, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
| | - Joan Santamaria
- Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018‐ISCIII) BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - Claudia Trenkwalder
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Department of NeurosurgeryUniversity Medical CenterGöttingenGermany
| | | | - Ambra Stefani
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| |
Collapse
|
40
|
Myers PS, O'Donnell JL, Jackson JJ, Lessov-Schlaggar CN, Miller RL, Foster ER, Cruchaga C, Benitez BA, Kotzbauer PT, Perlmutter JS, Campbell MC. Proteinopathy and Longitudinal Cognitive Decline in Parkinson Disease. Neurology 2022; 99:e66-e76. [PMID: 35418463 PMCID: PMC9259093 DOI: 10.1212/wnl.0000000000200344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES People with Parkinson disease (PD) commonly experience cognitive decline, which may relate to increased α-synuclein, tau, and β-amyloid accumulation. This study examines whether the different proteins predict longitudinal cognitive decline in PD. METHODS All participants (PD n = 152, controls n = 52) were part of a longitudinal study and completed a lumbar puncture for CSF protein analysis (α-synuclein, total tau [tau], and β-amyloid42 [β-amyloid]), a β-amyloid PET scan, and/or provided a blood sample for APOE genotype (ε4+, ε4-), which is a risk factor for β-amyloid accumulation. Participants also had comprehensive, longitudinal clinical assessments of overall cognitive function and dementia status, as well as cognitive testing of attention, language, memory, and visuospatial and executive function. We used hierarchical linear growth models to examine whether the different protein metrics predict cognitive change and multivariate Cox proportional hazard models to predict time to dementia conversion. Akaike information criterion was used to compare models for best fit. RESULTS Baseline measures of CSF β-amyloid predicted decline for memory (p = 0.04) and overall cognitive function (p = 0.01). APOE genotypes showed a significant group (ε4+, ε4-) effect such that ε4+ individuals declined faster than ε4- individuals in visuospatial function (p = 0.03). Baseline β-amyloid PET significantly predicted decline in all cognitive measures (all p ≤ 0.004). Neither baseline CSF α-synuclein nor tau predicted cognitive decline. All 3 β-amyloid--related metrics (CSF, PET, APOE) also predicted time to dementia. Models with β-amyloid PET as a predictor fit the data the best. DISCUSSION Presence or risk of β-amyloid accumulation consistently predicted cognitive decline and time to dementia in PD. This suggests that β-amyloid has high potential as a prognostic indicator and biomarker for cognitive changes in PD.
Collapse
Affiliation(s)
- Peter S Myers
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - John L O'Donnell
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Joshua J Jackson
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Christina N Lessov-Schlaggar
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Rebecca L Miller
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Erin R Foster
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Carlos Cruchaga
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Bruno A Benitez
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Paul T Kotzbauer
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Joel S Perlmutter
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO
| | - Meghan C Campbell
- From the Department of Neurology (P.S.M., J.L.O., R.L.M., E.R.F., C.C., P.T.K., J.S.P., M.C.C.), Department of Psychiatry (C.N.L.-S., E.R.F., C.C., B.A.B.), Program in Occupational Therapy (E.R.F., J.S.P.), Department of Genetics (C.C.), Department of Radiology (J.S.P., M.C.C.), Department of Neuroscience (J.S.P.), and Program in Physical Therapy (J.S.P.), Washington University School of Medicine; and Department of Psychological and Brain Sciences (J.J.J.), Washington University in St. Louis, MO.
| |
Collapse
|
41
|
Chen Y, Xue N, Fang Y, Jin C, Li Y, Tian J, Yan Y, Yin X, Zhang B, Pu J. Association of concurrent olfactory dysfunction and pRBD with early Parkinson's disease progression. Mov Disord Clin Pract 2022; 9:909-919. [PMID: 36247907 PMCID: PMC9547146 DOI: 10.1002/mdc3.13511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background Parkinson's disease (PD), with either rapid eye movement sleep behavior disorder (RBD) or olfactory dysfunction (OD), has been associated with disease progression. However, there is currently heterogeneity in predicting prognosis. Objectives To identify whether the concurrent presence of OD and probable RBD (pRBD) in PD (Dual hit in PD, PD‐DH) is associated with disease progression. Methods We included 420 patients with de novo PD from the Parkinson's Progression Markers Initiative: 180 PD only (PD), 82 PD with OD (PD‐OD), 94 PD with pRBD (PD‐pRBD), and 64 PD with both OD and pRBD (PD‐DH). Participants underwent motor and nonmotor evaluations, dopamine transporter imaging, and cerebrospinal fluid (CSF) assessment. Data were analyzed with generalized estimating equations and Cox proportional hazards analysis. Results The PD‐DH subtype was associated with higher scores and faster progression rates in Movement Disorder Society–Unified PD Rating Scale (MDS‐UPDRS) Parts II and III. Also, patients in PD‐DH group had faster deterioration in nonmotor symptoms, including MDS‐UPDRS Part I score, Montreal Cognitive Assessment, Hopkins Verbal Learning Test–Revised, Wechsler Memory Scale‐Third edition (WMS‐III) Letter Number Sequencing score, Symbol Digit Modalities Test, and Scales for Outcomes in PD–Autonomic scores, with all P values <0.002. Moreover, the PD‐DH subtype had a higher mild cognitive impairment risk (hazard ratio = 1.756, 95% confidence interval [CI] = 1.132–2.722; P = 0.012), faster decline in caudate standard uptake values (β = −0.03, 95% CI = −0.06 to −0.008, P = 0.012), and CSF α‐synuclein levels (β = −77, 95% CI = −149 to −5, P = 0.034) than the PD group. Conclusion Coexisting pRBD and OD in patients with PD may be associated with faster progressions in motor measurements and in cognitive and autonomic symptoms, indicating PD‐DH as a more aggressive subtype for PD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Nai‐Jia Xue
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Chong‐Yao Jin
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Yao‐Lin Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Ya‐Ping Yan
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Xin‐Zhen Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Bao‐Rong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| | - Jia‐Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou Zhejiang 310009 China
| |
Collapse
|
42
|
Höglinger G, Schulte C, Jost WH, Storch A, Woitalla D, Krüger R, Falkenburger B, Brockmann K. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm (Vienna) 2022; 129:1219-1233. [PMID: 35639160 PMCID: PMC9463270 DOI: 10.1007/s00702-022-02511-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Given the clear role of GBA in the pathogenesis of Parkinson’s disease (PD) and its impact on phenotypical characteristics, this review provides an overview of the current knowledge of GBA-associated PD with a special focus on clinical trajectories and the underlying pathological mechanisms. Importantly, differences and characteristics based on mutation severity are recognized, and current as well as potential future treatment options are discussed. These findings will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures when designing clinical trials.
Collapse
Affiliation(s)
- Günter Höglinger
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Claudia Schulte
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center for Neurodegenerative Disease (DZNE), Tuebingen, Germany
| | | | - Alexander Storch
- Department of Neurology, Rostock University, Gehlsheimer Str. 20, 18147, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Katholische Kliniken Ruhrhalbinsel, Contilia Gruppe, Essen, Germany
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Björn Falkenburger
- Department of Neurology, Faculty of Medicine, University Hospital Carl Gustav Carus and Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany. .,German Center for Neurodegenerative Disease (DZNE), Tuebingen, Germany.
| |
Collapse
|
43
|
Shakya S, Prevett J, Hu X, Xiao R. Characterization of Parkinson's Disease Subtypes and Related Attributes. Front Neurol 2022; 13:810038. [PMID: 35677337 PMCID: PMC9167933 DOI: 10.3389/fneur.2022.810038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease with complex, heterogeneous motor and non-motor symptoms. The current evidence shows that there is still a marked heterogeneity in the subtyping of Parkinson's disease using both clinical and data-driven approaches. Another challenge posed in PD subtyping is the reproducibility of previously identified PD subtypes. These issues require additional results to confirm previous findings and help reconcile discrepancies, as well as establish a standardized application of cluster analysis to facilitate comparison and reproducibility of identified PD subtypes. Our study aimed to address this gap by investigating subtypes of Parkinson's disease using comprehensive clinical (motor and non-motor features) data retrieved from 408 de novo Parkinson's disease patients with the complete clinical data in the Parkinson's Progressive Marker Initiative database. A standardized k-means cluster analysis approach was developed by taking into consideration of common practice and recommendations from previous studies. All data analysis codes were made available online to promote data comparison and validation of reproducibility across research groups. We identified two distinct PD subtypes, termed the severe motor-non-motor subtype (SMNS) and the mild motor- non-motor subtype (MMNS). SMNS experienced symptom onset at an older age and manifested more intense motor and non-motor symptoms than MMNS, who experienced symptom onset at a younger age and manifested milder forms of Parkinson's symptoms. The SPECT imaging makers supported clinical findings such that the severe motor-non-motor subtype showed lower binding values than the mild motor- non-motor subtype, indicating more significant neural damage at the nigral pathway. In addition, SMNS and MMNS show distinct motor (ANCOVA test: F = 47.35, p< 0.001) and cognitive functioning (F = 33.93, p< 0.001) progression trends. Such contrast between SMNS and MMNS in both motor and cognitive functioning can be consistently observed up to 3 years following the baseline visit, demonstrating the potential prognostic value of identified PD subtypes.
Collapse
Affiliation(s)
| | - Julia Prevett
- School of Nursing, Duke University, Durham, NC, United States
| | - Xiao Hu
- School of Nursing, Emory University, Atlanta, GA, United States
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Computer Science, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Ran Xiao
- School of Nursing, Duke University, Durham, NC, United States
- *Correspondence: Ran Xiao
| |
Collapse
|
44
|
Emdina A, Hermann P, Varges D, Nuhn S, Goebel S, Bunck T, Maass F, Schmitz M, Llorens F, Kruse N, Lingor P, Mollenhauer B, Zerr I. Baseline Cerebrospinal Fluid α-Synuclein in Parkinson's Disease Is Associated with Disease Progression and Cognitive Decline. Diagnostics (Basel) 2022; 12:diagnostics12051259. [PMID: 35626415 PMCID: PMC9140902 DOI: 10.3390/diagnostics12051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson’s disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation.
Collapse
Affiliation(s)
- Anna Emdina
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Correspondence: ; Tel.: +49-551-398-955
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Sabine Nuhn
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Niels Kruse
- Department of Neuropathology, University Medical Centre Göttingen, 37075 Göttingen, Germany;
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 80333 Munich, Germany;
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
45
|
Effects of Alzheimer's genetic risk scores and CSF biomarkers in de novo Parkinson's Disease. NPJ Parkinsons Dis 2022; 8:57. [PMID: 35545633 PMCID: PMC9095668 DOI: 10.1038/s41531-022-00317-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Coexisting Alzheimer's disease (AD) pathology is common in Parkinson's disease (PD). However, the implications of genetic risk scores (GRS) for AD have not been elucidated in PD. In 413 de novo PD and 195 healthy controls from the Parkinson's Progression Marker Initiative database, the effects of GRS for AD (GRS-AD) and PD (GRS-PD) on the risk of PD and longitudinal CSF biomarkers and clinical outcomes were explored. Higher GRS-PD and lower baseline CSF α-synuclein were associated with an increased risk of PD. In the PD group, GRS-AD was correlated positively with CSF p-tau/Aβ and negatively with CSF α-synuclein. Higher GRS-PD was associated with faster CSF p-tau/Aβ increase, and GRS-AD and GRS-PD were interactively associated with CSF α-synuclein. In the PD group, higher GRS-AD was associated with poor visuospatial function, and baseline CSF p-tau/Aβ was associated with faster cognitive decline. Higher GRS-PD was associated with better semantic fluency and frontal-related cognition and motor function given the same levels of CSF biomarkers and dopamine transporter uptake. Taken together, our results suggest that higher GRS-AD and CSF p-tau/Aβ, reflecting AD-related pathophysiology, may be associated with cognitive decline in PD patients.
Collapse
|
46
|
Detection and assessment of alpha-synuclein in Parkinson disease. Neurochem Int 2022; 158:105358. [PMID: 35561817 DOI: 10.1016/j.neuint.2022.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Different studies have reported varying alpha-synuclein values in the cerebrospinal fluid (CSF), serum, and plasma, making determination of the alpha-synuclein cutoff value for Parkinson's disease difficult and rendering identifying the cause of variation essential. METHOD We searched PubMed from inception to June 2021 and identified 76 eligible studies. Included studies reported data on total, phosphorylated, and oligomeric alpha-synuclein in the CSF, serum, or plasma from individuals with Parkinson's disease and healthy controls. The mean or median alpha-synuclein values from the included studies were summarized and categorized through laboratory assays to visualize potential trends. RESULTS The enzyme-linked immunosorbent assay (ELISA) is the most common assay used to determine alpha-synuclein concentrations. Less common assays include Luminex, single molecule arrays, electrochemiluminescence, and immunomagnetic reduction (IMR). IMR is a single-antibody and wash-free immunoassay designed for determining the extremely low concentration of bio-molecules. For patients with Parkinson's disease, the median or mean testing values ranged from 60.9 to 55,000 pg/mL in the CSF, 0.446 to 1,777,100 pg/mL in plasma, and 0.0292 to 38,200,000 pg/mL in serum. The antibody selection was diverse between studies. The tendency of distribution was more centralized among studies that used the same kit. Studies adopting specific antibodies or in-house assays contribute to the extreme values. Only a few studies on phosphorylated and oligomeric alpha-synuclein were included. CONCLUSION The type of assay and antibody selection in the laboratory played major roles in the alpha-synuclein variation. Studies that used the same assay and kit yielded relatively unanimous results. Furthermore, IMR may be a promising assay for plasma and serum alpha-synuclein quantification. A consensus on sample preparation and testing protocol unification is warranted in the future.
Collapse
|
47
|
Ren J, Pan C, Wang Y, Xue C, Lin H, Xu J, Wang H, Zhang W, Xu P, Chen Y, Liu W. Plasma α-synuclein and phosphorylated tau 181 as a diagnostic biomarker panel for de novo Parkinson's Disease. J Neurochem 2022; 161:506-515. [PMID: 35234288 PMCID: PMC9314946 DOI: 10.1111/jnc.15601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
The use of a diagnostic panel comprising multiple biomarkers has the potential to accurately diagnose Parkinson’s disease (PD). However, a panel consisting solely of plasma biomarkers to diagnose PD is not available. This study aimed to examine the diagnostic ability of plasma biomarker panels for de novo PD using novel digital ultrasensitive immunoassay technology. We recruited 45 patients with de novo PD and 20 healthy controls (HCs). The concentrations of plasma α‐synuclein (α‐syn), amyloid β‐42 (Aβ42), Aβ40, phosphorylated tau 181 (p‐tau181), neurofilament light (NFL), and glial fibrillary acidic protein (GFAP) were quantified using the ultrasensitive single molecule array (Simoa) platform. Patients with de novo PD had higher plasma levels of α‐syn and p‐tau181 than HCs, adjusting for age and sex. Plasma levels of α‐syn and p‐tau181 were positively correlated in de novo PD patients. Higher plasma α‐syn levels were significantly associated with worse Unified Parkinson’s Disease Rating Scale (UPDRS) Part III motor scores, modified Hoehn and Yahr (H‐Y) stages, and increased risk of PD with mild cognitive impairment (PD‐MCI). Higher plasma p‐tau181 concentrations were linked to worse H‐Y stages. The diagnostic panel using plasma α‐syn and p‐tau181, combined with age and sex, showed good performance in discriminating de novo PD patients from HCs (area under the curve = 0.806). These findings suggest that plasma α‐syn and p‐tau181 together may be a promising diagnostic biomarker panel for de novo PD patients.
Collapse
Affiliation(s)
- Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chenxi Pan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huixia Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxia Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong Chen
- Department of Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Mahlknecht P, Marini K, Werkmann M, Poewe W, Seppi K. Prodromal Parkinson's disease: hype or hope for disease-modification trials? Transl Neurodegener 2022; 11:11. [PMID: 35184752 PMCID: PMC8859908 DOI: 10.1186/s40035-022-00286-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The ultimate goal in Parkinson's disease (PD) research remains the identification of treatments that are capable of slowing or even halting the progression of the disease. The failure of numerous past disease-modification trials in PD has been attributed to a variety of factors related not only to choosing wrong interventions, but also to using inadequate trial designs and target populations. In patients with clinically established PD, neuronal pathology may already have advanced too far to be modified by any intervention. Based on such reasoning, individuals in yet prediagnostic or prodromal disease stages, may provide a window of opportunity to test disease-modifying strategies. There is now sufficient evidence from prospective studies to define diagnostic criteria for prodromal PD and several approaches have been studied in observational cohorts. These include the use of PD-risk algorithms derived from multiple established risk factors for disease as well as follow-up of cohorts with single defined prodromal markers like hyposmia, rapid eye movement sleep behavior disorders, or PD gene carriers. In this review, we discuss recruitment strategies for disease-modification trials in various prodromal PD cohorts, as well as potential trial designs, required trial durations, and estimated sample sizes. We offer a concluding outlook on how the goal of implementing disease-modification trials in prodromal cohorts might be achieved in the future.
Collapse
|
49
|
Kwon EH, Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF Biomarkers in Parkinson's Disease. Biomolecules 2022; 12:biom12020329. [PMID: 35204829 PMCID: PMC8869235 DOI: 10.3390/biom12020329] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in developing disease-modifying therapies in Parkinson’s disease (PD) can only be achieved through reliable objective markers that help to identify subjects at risk. This includes an early and accurate diagnosis as well as continuous monitoring of disease progression and therapy response. Although PD diagnosis still relies mainly on clinical features, encouragingly, advances in biomarker discovery have been made. The cerebrospinal fluid (CSF) is a biofluid of particular interest to study biomarkers since it is closest to the brain structures and therefore could serve as an ideal source to reflect ongoing pathologic processes. According to the key pathophysiological mechanisms, the CSF status of α-synuclein species, markers of amyloid and tau pathology, neurofilament light chain, lysosomal enzymes and markers of neuroinflammation provide promising preliminary results as candidate biomarkers. Untargeted approaches in the field of metabolomics provide insights into novel and interconnected biological pathways. Markers based on genetic forms of PD can contribute to identifying subgroups suitable for gene-targeted treatment strategies that might also be transferable to sporadic PD. Further validation analyses in large PD cohort studies will identify the CSF biomarker or biomarker combinations with the best value for clinical and research purposes.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Sabrina Tennagels
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
| | - Klaus Gerwert
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Léon Beyer
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Correspondence: ; Tel.: +49-234-509-2420; Fax: +49-234-509-2439
| |
Collapse
|
50
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|