1
|
Jiang D, Hou J, Nan H, Yue A, Chu M, Wang Y, Wang Y, Wu L. Relationship between hearing impairment and dementia and cognitive function: a Mendelian randomization study. Alzheimers Res Ther 2024; 16:215. [PMID: 39385207 PMCID: PMC11462771 DOI: 10.1186/s13195-024-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND There is a substantial body of observational research indicating an association between hearing impairment and dementia, yet the causal relationship and underlying mechanisms remain uncertain. This study aims to investigate the causal relationship between hearing impairment and its subtypes with dementia and cognitive function using two-sample Mendelian randomization (MR) analysis. METHODS We performed two-sample MR analysis to examine the causal effects of hearing impairment and its subtypes, including conductive and sensorineural hearing loss (CSHL), conductive hearing loss (CHL), sensorineural hearing loss (SHL), and sudden sensorineural hearing loss (SIHL), on six dementia phenotypes (overall dementia, Alzheimer's disease [AD], Lewy body dementia [DLB], frontotemporal dementia [FTD], Parkinson's disease dementia, and vascular dementia) and four cognitive functions. Additionally, multivariable MR (MVMR) analysis was employed to investigate potential mediating mechanisms. RESULTS Genetically determined CSHL was associated with an elevated risk of DLB (odds ratio [OR] 1.69; 95% CI 1.08 to 2.63; P = 0.021) and FTD (OR 1.66; 1.04 to 2.67; P = 0.035), but not AD (P = 0.958). Genetic predisposition to CHL was found to link with increased risks of AD (OR 1.07; 1.01 to 1.14; P = 0.031). Genetically determined SHL was causally associated with an elevated risk of semantic dementia (OR 3.81; 1.09 to 13.37; P = 0.037). Genetically predicted CHL and SIHL were both causally associated with lower general cognitive performance (β -0.015 and - 0.043; P = 0.007 and 0.013) and fluid intelligence score (β -0.045 and - 0.095; P = 0.037 and 0.040). In MVMR analysis, the causal relationship between hearing impairment and dementia was mediated by loneliness, depressed mood, and brain cortical volume, particularly the medial temporal lobe, but not by aging or ischemic stroke. CONCLUSION Overall, the study provides evidence supporting a causal relationship between hearing impairment and increased risks of different types of dementia (including AD, FTD, and DLB), as well as poorer general cognitive function. These findings underscore the importance of addressing hearing impairment as a modifiable risk factor for dementia.
Collapse
Affiliation(s)
- Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Jiahui Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China.
| |
Collapse
|
2
|
Bandres-Ciga S, Faghri F, Majounie E, Koretsky MJ, Kim J, Levine KS, Leonard H, Makarious MB, Iwaki H, Crea PW, Hernandez DG, Arepalli S, Billingsley K, Lohmann K, Klein C, Lubbe SJ, Jabbari E, Saffie-Awad P, Narendra D, Reyes-Palomares A, Quinn JP, Schulte C, Morris HR, Traynor BJ, Scholz SW, Houlden H, Hardy J, Dumanis S, Riley E, Blauwendraat C, Singleton A, Nalls M, Jeff J, Vitale D. NeuroBooster Array: A Genome-Wide Genotyping Platform to Study Neurological Disorders Across Diverse Populations. Mov Disord 2024. [PMID: 39283294 DOI: 10.1002/mds.29902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Commercial genome-wide genotyping arrays have historically neglected coverage of genetic variation across populations. OBJECTIVE We aimed to create a multi-ancestry genome-wide array that would include a wide range of neuro-specific genetic content to facilitate genetic research in neurological disorders across multiple ancestral groups, fostering diversity and inclusivity in research studies. METHODS We developed the Illumina NeuroBooster Array (NBA), a custom high-throughput and cost-effective platform on a backbone of 1,914,934 variants from the Infinium Global Diversity Array and added custom content comprising 95,273 variants associated with more than 70 neurological conditions or traits, and we further tested its performance on more than 2000 patient samples. This novel platform includes approximately 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related genome-wide association study loci across diverse populations. RESULTS In this article, we describe NBA's potential as an efficient means for researchers to assess known and novel disease genetic associations in a multi-ancestry framework. The NBA can identify rare genetic variants and accurately impute more than 15 million common variants across populations. Apart from enabling sample prioritization for further whole-genome sequencing studies, we envisage that NBA will play a pivotal role in recruitment for interventional studies in the precision medicine space. CONCLUSIONS From a broader perspective, the NBA serves as a promising means to foster collaborative research endeavors in the field of neurological disorders worldwide. Ultimately, this carefully designed tool is poised to make a substantial contribution to uncovering the genetic etiology underlying these debilitating conditions. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Faraz Faghri
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica, Washington, District of Columbia, USA
| | | | - Mathew J Koretsky
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Kim
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin S Levine
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica, Washington, District of Columbia, USA
| | - Hampton Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica, Washington, District of Columbia, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica, Washington, District of Columbia, USA
| | - Peter Wild Crea
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberley Billingsley
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Paula Saffie-Awad
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Trastornos del Movimiento, Santiago, Chile
- Clínica Santa María, Santiago, Chile
| | - Derek Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Armando Reyes-Palomares
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - John P Quinn
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen and German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Bryan J Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, Maryland, USA
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Henry Houlden
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John Hardy
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sonya Dumanis
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Ekemini Riley
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mike Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica, Washington, District of Columbia, USA
| | | | - Dan Vitale
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Data Tecnica, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Wang T, Geng J, Zeng X, Han R, Huh YE, Peng J. Exploring causal effects of sarcopenia on risk and progression of Parkinson disease by Mendelian randomization. NPJ Parkinsons Dis 2024; 10:164. [PMID: 39198455 PMCID: PMC11358304 DOI: 10.1038/s41531-024-00782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Previous observational studies suggested that sarcopenia is associated with Parkinson disease (PD), but it is unclear whether this association is causal. The objective of this study was to examine causal associations between sarcopenia-related traits and the risk or progression of PD using a Mendelian randomization (MR) approach. Two-sample bidirectional MR analyses were conducted to evaluate causal relationships. Genome-wide association study (GWAS) summary statistics for sarcopenia-related traits, including right handgrip strength (n = 461,089), left handgrip strength (n = 461,026), and appendicular lean mass (n = 450,243), were retrieved from the IEU OpenGWAS database. GWAS data for the risk of PD were derived from the FinnGen database (4235 cases; 373,042 controls). Summary-level data for progression of PD, including progression to Hoehn and Yahr stage 3, progression to dementia, and development of levodopa-induced dyskinesia, were obtained from a recent GWAS publication on progression of PD in 4093 patients from 12 longitudinal cohorts. Significant causal associations identified in MR analysis were verified through a polygenic score (PGS)-based approach and pathway enrichment analysis using genotype data from the Parkinson's Progression Markers Initiative. MR results supported a significant causal influence of right handgrip strength (odds ratio [OR] = 0.152, 95% confidence interval [CI] = 0.055-0.423, adjusted P = 0.0036) and appendicular lean mass (OR = 0.597, 95% CI = 0.440-0.810, adjusted P = 0.0111) on development of levodopa-induced dyskinesia. In Cox proportional hazard analysis, higher PGSs for right handgrip strength (hazard ratio [HR] = 0.225, 95% CI = 0.095-0.530, adjusted P = 0.0019) and left handgrip strength (HR = 0.303, 95% CI = 0.121-0.59, adjusted P = 0.0323) were significantly associated with a lower risk of developing levodopa-induced dyskinesia, after adjusting for covariates. Pathway enrichment analysis revealed that genome-wide significant single-nucleotide polymorphisms for right handgrip strength were substantially enriched in biological pathways involved in the control of synaptic plasticity. This study provides genetic evidence of the protective role of handgrip strength or appendicular lean mass on the development of levodopa-induced dyskinesia in PD. Sarcopenia-related traits can be promising prognostic markers for levodopa-induced dyskinesia and potential therapeutic targets for preventing levodopa-induced dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Tao Wang
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jiaquan Geng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Xi Zeng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ruijiang Han
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, South Korea.
- Parkinson's Disease and Movement Disorder Center, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, South Korea.
| | - Jiajie Peng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
4
|
Wang Q, Liu F, Wang X, Zhong L, Cai B, Chen T. Identifying potential repurposable medications for Parkinson's disease through Mendelian randomization analysis. Sci Rep 2024; 14:19670. [PMID: 39181920 PMCID: PMC11344818 DOI: 10.1038/s41598-024-70758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Observational studies have suggested the potential benefits of several medications for Parkinson's disease (PD) and their potential for repurposing. However, the conclusions drawn from these studies are not entirely consistent. To address this inconsistency, we used the two-sample Mendelian randomization (MR) method to explore the putative causal relationships between 23 medications and the risk and progression of PD. We applied inverse-variance weighted meta-analysis (IVW) to combine MR estimates. Additionally, sensitivity analyses were conducted to evaluate the robustness of the results. Our genetic evidence suggests that thyroid preparations and calcium channel blockers reduce the risk of PD, and salicylic acid and derivatives slow the progression of PD motor symptoms. Additionally, genetic evidence also suggests that four medications were associated with PD risk or progression, but the sensitivity analysis revealed that three of the medications may have interference caused by reverse causality. Our findings suggest that there are weak causal relationships between several medications and the risk or progression of PD. Though further replication studies are needed to verify these findings, these new insights may help in understanding the etiology of the disease, generate new clues related to drug discovery, and quantify the risk of future drug intake.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Lifan Zhong
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
5
|
Senkevich K, Liu L, Alvarado CX, Leonard HL, Nalls MA, Gan-Or Z. Lack of genetic evidence for NLRP3 inflammasome involvement in Parkinson's disease pathogenesis. NPJ Parkinsons Dis 2024; 10:145. [PMID: 39103393 DOI: 10.1038/s41531-024-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Activation of the NLRP3 inflammasome has been implicated in Parkinson's disease (PD) based on in vitro and in vivo studies. Clinical trials targeting the NLRP3 inflammasome in PD are ongoing. However, the evidence supporting NLRP3's involvement in PD from human genetics data is limited. We analyzed common and rare variants in NLRP3 inflammasome-related genes in PD cohorts, performed pathway-specific polygenic risk score (PRS) analyses, and studied causal associations using Mendelian randomization (MR) with the NLRP3 components and the cytokines IL-1β and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway PRS with PD. MR suggests that altering the expression of the NLRP3 inflammasome, IL-1β, or IL-18, does not affect PD risk or progression. Therefore, our results do not support a role for the NLRP3 inflammasome in PD pathogenesis or as a target for drug development.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Lang Liu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
- DZNE Tübingen, Tübingen, Germany
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Li C, Hou Y, Ou R, Wei Q, Zhang L, Liu K, Lin J, Chen X, Song W, Zhao B, Wu Y, Shang H. GWAS Identifies DPP6 as Risk Gene of Cognitive Decline in Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2024; 79:glae155. [PMID: 38875006 PMCID: PMC11272050 DOI: 10.1093/gerona/glae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Cognitive decline is among the most common non-motor symptoms in Parkinson's disease (PD), while its physiological mechanisms remain poorly understood. Genetic factors constituted a fundamental determinant in the heterogeneity of cognitive decline among PD patients. However, the underlying genetic background was still less studied. METHODS To explore the genetic determinants contributing to cognitive decline in PD, we performed genome-wide survival analysis using a Cox proportional hazards model in a longitudinal cohort of 450 Chinese patients with PD, and further explored the functional effect of the target variant. Additionally, we built a clinical-genetic model by incorporating clinical characteristics and polygenic risk score (PRS) to predict cognitive decline in PD. RESULTS The cohort was followed up for an average of 5.25 (SE = 2.46) years, with 95 incidents of cognitive impairment. We identified significant association between locus rs75819919 (DPP6) and accelerated cognitive decline (p = 8.63E-09, beta = 1.74, SE = 0.30). Dual-luciferase reporter assay suggested this locus might be involved in the regulation of DPP6 expression. Using data set from the UK Biobank, we identified rs75819919 was associated with cognitive performance in the general population. Incorporation of PRS increased the model's predictability, achieving an average AUC of 75.6% through fivefold cross-validation in 1 000 iterations. CONCLUSIONS These findings improve the current understanding of the genetic etiology of cognitive impairment in PD, and provide a novel target DPP6 to explore therapeutic options. Our results also demonstrate the potential to develop clinical-genetic model to identify patients susceptible to cognitive impairment and thus provide personalized clinical guidance.
Collapse
Affiliation(s)
- Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Tan MMX, Lawton MA, Pollard MI, Brown E, Real R, Carrasco AM, Bekadar S, Jabbari E, Reynolds RH, Iwaki H, Blauwendraat C, Kanavou S, Hubbard L, Malek N, Grosset KA, Bajaj N, Barker RA, Burn DJ, Bresner C, Foltynie T, Wood NW, Williams-Gray CH, Andreassen OA, Toft M, Elbaz A, Artaud F, Brice A, Corvol JC, Aasly J, Farrer MJ, Nalls MA, Singleton AB, Williams NM, Ben-Shlomo Y, Hardy J, Hu MTM, Grosset DG, Shoai M, Pihlstrøm L, Morris HR. Genome-wide determinants of mortality and motor progression in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:113. [PMID: 38849413 PMCID: PMC11161485 DOI: 10.1038/s41531-024-00729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
There are 90 independent genome-wide significant genetic risk variants for Parkinson's disease (PD) but currently only five nominated loci for PD progression. The biology of PD progression is likely to be of central importance in defining mechanisms that can be used to develop new treatments. We studied 6766 PD patients, over 15,340 visits with a mean follow-up of between 4.2 and 15.7 years and carried out genome-wide survival studies for time to a motor progression endpoint, defined by reaching Hoehn and Yahr stage 3 or greater, and death (mortality). There was a robust effect of the APOE ε4 allele on mortality in PD. We also identified a locus within the TBXAS1 gene encoding thromboxane A synthase 1 associated with mortality in PD. We also report 4 independent loci associated with motor progression in or near MORN1, ASNS, PDE5A, and XPO1. Only the non-Gaucher disease causing GBA1 PD risk variant E326K, of the known PD risk variants, was associated with mortality in PD. Further work is needed to understand the links between these genomic variants and the underlying disease biology. However, these may represent new candidates for disease modification in PD.
Collapse
Affiliation(s)
- Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Miriam I Pollard
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Emmeline Brown
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez Carrasco
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Samir Bekadar
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sofia Kanavou
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Katherine A Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nin Bajaj
- Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Roger A Barker
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexis Elbaz
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, 94807, Villejuif, France
| | - Fanny Artaud
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, 94807, Villejuif, France
| | - Alexis Brice
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Departement of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science (INB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - John Hardy
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Department of Clinical Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
8
|
Somerville EN, Krohn L, Senkevich K, Yu E, Ahmad J, Asayesh F, Ruskey JA, Speigelman D, Fahn S, Waters C, Sardi SP, Alcalay RN, Gan-Or Z. Genome-wide association study of glucocerebrosidase activity modifiers. RESEARCH SQUARE 2024:rs.3.rs-4425669. [PMID: 38883744 PMCID: PMC11177962 DOI: 10.21203/rs.3.rs-4425669/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
One of the most common genetic risk factors for Parkinson's disease (PD) are variants in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GCase deficiency has been associated with an increased PD risk, but not all individuals with low GCase activity are carriers of GBA1 mutations, suggesting other factors may be acting as modifiers. We aimed to discover common variants associated with GCase activity, as well as replicate previously reported associations, by performing a genome-wide association study using two independent cohorts: a Columbia University cohort consisting of 697 PD cases and 347 controls and the Parkinson's Progression Markers Initiative (PPMI) cohort consisting of 357 PD cases and 163 controls. As expected, GBA1 variants have the strongest association with decreased activity, led by p.N370S (beta = -4.36, se = 0.32, p = 5.05e-43). We also identify a novel association in the GAA locus (encoding for acid alpha-glucosidase, beta = -0.96, se = 0.17, p = 5.23e-09) that may be the result of an interaction between GCase and acid alpha-glucosidase based on various interaction analyses. Lastly, we show that several PD-risk loci are potentially associated with GCase activity. Further research will be needed to replicate and validate our findings and to uncover the functional connection between acid alpha-glucosidase and GCase.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Lynne Krohn
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | | | - Eric Yu
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jamil Ahmad
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Farnaz Asayesh
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jennifer A Ruskey
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Dan Speigelman
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| |
Collapse
|
9
|
Senkevich K, Liu L, Alvarado CX, Leonard HL, Nalls MA, Gan-Or Z. Lack of genetic evidence for NLRP3-inflammasome involvement in Parkinson's disease pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.20.23295790. [PMID: 37886468 PMCID: PMC10602039 DOI: 10.1101/2023.09.20.23295790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Activation of the NLRP3-inflammasome has been implicated in Parkinson's disease based on in vitro and in vivo studies. Clinical trials targeting the NLRP3-inflammasome in Parkinson's disease are ongoing. However, the evidence supporting NLRP3's involvement in Parkinson's disease from human genetics data is limited. In this study, we conducted analyses of common and rare variants in NLRP3-inflammasome related genes in Parkinson's disease cohorts. We performed pathway-specific analyses using polygenic risk scores and studied potential causal associations using Mendelian randomization with the NLRP3 components and the cytokines IL-1β and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway polygenic risk score with Parkinson's disease. Mendelian randomization suggests that altering the expression of the NLRP3-inflammasome, IL-1β or IL-18, does not affect Parkinson's disease risk or progression. Therefore, our results do not support a role for the NLRP3-inflammasome in Parkinson's disease pathogenesis or as a target for drug development.
Collapse
|
10
|
Bhore N, Bogacki EC, O'Callaghan B, Plun-Favreau H, Lewis PA, Herbst S. Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220517. [PMID: 38368938 PMCID: PMC10874702 DOI: 10.1098/rstb.2022.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Noopur Bhore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
| | - Erin C. Bogacki
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Benjamin O'Callaghan
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Helene Plun-Favreau
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Susanne Herbst
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
11
|
Beaulieu-Jones BK, Frau F, Bozzi S, Chandross KJ, Peterschmitt MJ, Cohen C, Coulovrat C, Kumar D, Kruger MJ, Lipnick SL, Fitzsimmons L, Kohane IS, Scherzer CR. Disease progression strikingly differs in research and real-world Parkinson's populations. NPJ Parkinsons Dis 2024; 10:58. [PMID: 38480700 PMCID: PMC10937726 DOI: 10.1038/s41531-024-00667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Characterization of Parkinson's disease (PD) progression using real-world evidence could guide clinical trial design and identify subpopulations. Efforts to curate research populations, the increasing availability of real-world data, and advances in natural language processing, particularly large language models, allow for a more granular comparison of populations than previously possible. This study includes two research populations and two real-world data-derived (RWD) populations. The research populations are the Harvard Biomarkers Study (HBS, N = 935), a longitudinal biomarkers cohort study with in-person structured study visits; and Fox Insights (N = 36,660), an online self-survey-based research study of the Michael J. Fox Foundation. Real-world cohorts are the Optum Integrated Claims-electronic health records (N = 157,475), representing wide-scale linked medical and claims data and de-identified data from Mass General Brigham (MGB, N = 22,949), an academic hospital system. Structured, de-identified electronic health records data at MGB are supplemented using a manually validated natural language processing with a large language model to extract measurements of PD progression. Motor and cognitive progression scores change more rapidly in MGB than HBS (median survival until H&Y 3: 5.6 years vs. >10, p < 0.001; mini-mental state exam median decline 0.28 vs. 0.11, p < 0.001; and clinically recognized cognitive decline, p = 0.001). In real-world populations, patients are diagnosed more than eleven years later (RWD mean of 72.2 vs. research mean of 60.4, p < 0.001). After diagnosis, in real-world cohorts, treatment with PD medications has initiated an average of 2.3 years later (95% CI: [2.1-2.4]; p < 0.001). This study provides a detailed characterization of Parkinson's progression in diverse populations. It delineates systemic divergences in the patient populations enrolled in research settings vs. patients in the real-world. These divergences are likely due to a combination of selection bias and real population differences, but exact attribution of the causes is challenging. This study emphasizes a need to utilize multiple data sources and to diligently consider potential biases when planning, choosing data sources, and performing downstream tasks and analyses.
Collapse
Affiliation(s)
- Brett K Beaulieu-Jones
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- APDA Center for Advanced Parkinson Research of Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Precision Neurology Program of Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Medicine, University of Chicago, Chicago, IL, 60615, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | | | - Sylvie Bozzi
- Sanofi Health Economics and Value Assessment, Sanofi, Paris, France
| | | | | | | | | | - Dinesh Kumar
- Sanofi Translational Sciences, Framingham, MA, 01701, USA
| | - Mark J Kruger
- Sanofi Genzyme, Clinical Development Neurology, Cambridge, MA, USA
| | - Scott L Lipnick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Lane Fitzsimmons
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Research of Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Precision Neurology Program of Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
12
|
Wang Q, Cai B, Zhong L, Intirach J, Chen T. Causal relationship between diabetes mellitus, glycemic traits and Parkinson's disease: a multivariable mendelian randomization analysis. Diabetol Metab Syndr 2024; 16:59. [PMID: 38438892 PMCID: PMC10913216 DOI: 10.1186/s13098-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Observational studies have indicated an association between diabetes mellitus (DM), glycemic traits, and the occurrence of Parkinson's disease (PD). However, the complex interactions between these factors and the presence of a causal relationship remain unclear. Therefore, we aim to systematically assess the causal relationship between diabetes, glycemic traits, and PD onset, risk, and progression. METHOD We used two-sample Mendelian randomization (MR) to investigate potential associations between diabetes, glycemic traits, and PD. We used summary statistics from genome-wide association studies (GWAS). In addition, we employed multivariable Mendelian randomization to evaluate the mediating effects of anti-diabetic medications on the relationship between diabetes, glycemic traits, and PD. To ensure the robustness of our findings, we performed a series of sensitivity analyses. RESULTS In our univariable Mendelian randomization (MR) analysis, we found evidence of a causal relationship between genetic susceptibility to type 1 diabetes (T1DM) and a reduced risk of PD (OR = 0.9708; 95% CI: 0.9466, 0.9956; P = 0.0214). In our multivariable MR analysis, after considering the conditions of anti-diabetic drug use, this correlation disappeared with adjustment for potential mediators, including anti-diabetic medications, insulin use, and metformin use. CONCLUSION Our MR study confirms a potential protective causal relationship between genetically predicted type 1 diabetes and reduced risk of PD, which may be mediated by factors related to anti-diabetic medications.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Lifan Zhong
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Jitrawadee Intirach
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Afliated Hospital of Hainan Medical University, 570311, Haikou, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, 570100, Haikou, China.
| |
Collapse
|
13
|
Kreft KL, Uzochukwu E, Loveless S, Willis M, Wynford-Thomas R, Harding KE, Holmans P, Lawton M, Tallantyre EC, Robertson NP. Relevance of Multiple Sclerosis Severity Genotype in Predicting Disease Course: A Real-World Cohort. Ann Neurol 2024; 95:459-470. [PMID: 37974536 DOI: 10.1002/ana.26831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Currently, 233 genetic loci are known to be associated with susceptibility to multiple sclerosis (MS). Two independent pivotal severity genome-wide association studies recently found the first genome-wide significant single-nucleotide variant (SNV; rs10191329A ) and several other suggestive loci associated with overall disability outcomes. It is now important to understand if these findings can influence individual patient management. METHODS We assessed whether these progression SNVs are associated with detailed clinical phenotypes in a well-characterized prospective cohort of 1,455 MS patients. We used logistic regression, survival analysis, and propensity score matching to predict relevant long-term clinical outcomes. RESULTS We were unable to detect any association between rs10191329A and a range of clinically relevant outcomes (eg, time to Expanded Disability Status Scale milestones, age-related MS severity score, anatomical localization at onset or during subsequent relapses, annualized relapse rate). In addition, an extremes of outcome case-control analysis using a propensity score matching for genotype detected no association between disease severity and rs10191329A . However, we were able to replicate the association of two suggestive SNVs (rs7289446G and rs868824C ) with the development of fixed disability, albeit with modest effect sizes, and the association of HLA-DRB1*1501 with age at onset. INTERPRETATION Identification of rs10191329A and other suggestive SNVs are of considerable importance in understanding pathophysiological processes associated with MS severity. However, it is unlikely that individual genotyping can currently be used in a clinical setting to guide disease management. This study shows the importance of independent replication of genome-wide association studies associated with disease progression in neurodegenerative disorders. ANN NEUROL 2024;95:459-470.
Collapse
Affiliation(s)
- Karim L Kreft
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Emeka Uzochukwu
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Sam Loveless
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Mark Willis
- Department of Neurology, University Hospital of Wales, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Ray Wynford-Thomas
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | | | - Peter Holmans
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Michael Lawton
- Bristol Medical School (PHS), Bristol Population Health Science Institute, University of Bristol, Bristol, UK
| | - Emma C Tallantyre
- Department of Neurology, University Hospital of Wales, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Department of Neurology, University Hospital of Wales, Cardiff, UK
- Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Beaulieu-Jones BK, Frau F, Bozzi S, Chandross KJ, Peterschmitt MJ, Cohen C, Coulovrat C, Kumar D, Kruger MJ, Lipnick SL, Fitzsimmons L, Kohane IS, Scherzer CR. Disease progression strikingly differs in research and real-world Parkinson's populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.17.24302981. [PMID: 38405736 PMCID: PMC10889035 DOI: 10.1101/2024.02.17.24302981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Characterization of Parkinson's disease (PD) progression using real-world evidence could guide clinical trial design and identify subpopulations. Efforts to curate research populations, the increasing availability of real-world data and recent advances in natural language processing, particularly large language models, allow for a more granular comparison of populations and the methods of data collection describing these populations than previously possible. This study includes two research populations and two real-world data derived (RWD) populations. The research populations are the Harvard Biomarkers Study (HBS, N = 935), a longitudinal biomarkers cohort study with in-person structured study visits; and Fox Insights (N = 36,660), an online self-survey-based research study of the Michael J. Fox Foundation. Real-world cohorts are the Optum Integrated Claims-electronic health records (N = 157,475), representing wide-scale linked medical and claims data and de-identified data from Mass General Brigham (MGB, N = 22,949), an academic hospital system. Structured, de-identified electronic health records data at MGB are supplemented using natural language processing with a large language model to extract measurements of PD progression. This extraction process is manually validated for accuracy. Motor and cognitive progression scores change more rapidly in MGB than HBS (median survival until H&Y 3: 5.6 years vs. >10, p<0.001; mini-mental state exam median decline 0.28 vs. 0.11, p<0.001; and clinically recognized cognitive decline, p=0.001). In the real-world populations, patients are diagnosed more than eleven years later (RWD mean of 72.2 vs. research mean of 60.4, p<0.001). After diagnosis, in real-world cohorts, treatment with PD medications is initiated 2.3 years later on average (95% CI: [2.1-2.4]; p<0.001). This study provides a detailed characterization of Parkinson's progression in diverse populations. It delineates systemic divergences in the patient populations enrolled in research settings vs. patients in the real world. These divergences are likely due to a combination of selection bias and real population differences, but exact attribution of the causes is challenging using existing data. This study emphasizes a need to utilize multiple data sources and to diligently consider potential biases when planning, choosing data sources, and performing downstream tasks and analyses.
Collapse
Affiliation(s)
- Brett K Beaulieu-Jones
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- APDA Center for Advanced Parkinson Research of Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Precision Neurology Program of Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, University of Chicago, Chicago, IL 60615 USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase MD, 20815
| | | | - Sylvie Bozzi
- Sanofi Health Economics and Value Assessment, Sanofi, Paris, France
| | | | | | | | | | - Dinesh Kumar
- Sanofi Translational Sciences, Framingham, 01701 USA
| | - Mark J Kruger
- Sanofi Genzyme, Clinical Development Neurology, Cambridge, MA, United States
| | - Scott L Lipnick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Lane Fitzsimmons
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Research of Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
- Precision Neurology Program of Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase MD, 20815
| |
Collapse
|
15
|
Dulski J, Uitti RJ, Beasley A, Hernandez D, Ramanan VK, Cahn EJ, Ren Y, Johnson PW, Quicksall ZS, Wszolek ZK, Ross OA, Heckman MG. Genetics of Parkinson's disease heterogeneity: A genome-wide association study of clinical subtypes. Parkinsonism Relat Disord 2024; 119:105935. [PMID: 38072719 PMCID: PMC10872335 DOI: 10.1016/j.parkreldis.2023.105935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Substantial heterogeneity between individual patients in the clinical presentation of Parkinson's disease (PD) has led to the classification of distinct PD subtypes. However, genetic susceptibility factors for specific PD subtypes are not well understood. Therefore, the present study aimed to investigate the genetics of PD heterogeneity by performing a genome-wide association study (GWAS) of PD subtypes. METHODS A total of 799 PD patients were included and classified into tremor-dominant (TD) (N = 345), akinetic-rigid (AR) (N = 227), gait-difficulty (GD) (N = 82), and mixed (MX) (N = 145) phenotypic subtypes. After array genotyping and subsequent imputation, a total of 7,918,344 variants were assessed for association with each PD subtype using logistic regression models that were adjusted for age, sex, and the top five principal components of GWAS data. RESULTS We identified one genome-wide significant association (P < 5 × 10-8), which was between the MIR3976HG rs7504760 variant and the AR subtype (Odds ratio [OR] = 6.12, P = 2.57 × 10-8). Suggestive associations (P < 1 × 10-6) were observed regarding TD for RP11-497G19.3/RP11-497G19.1 rs7304254 (OR = 3.33, P = 3.89 × 10-7), regarding GD for HES2 rs111473931 (OR = 3.18, P = 6.85 × 10-7), RP11-400D2.3/CTD-2012I17.1 rs149082205 (OR = 8.96, P = 9.08 × 10-7), and RN7SL408P/SGK1 rs56161738 (OR = 2.97, P = 6.19 × 10-7), and regarding MX for MMRN2 rs112991171 (OR = 4.98, P = 1.02 × 10-7). CONCLUSION Our findings indicate that genetic variation may account for part of the clinical heterogeneity of PD. In particular, we found a novel genome-wide significant association between MIR3976HG variation and the AR PD subtype. Replication of these findings will be important in order to better define the genetic architecture of clinical variability in PD disease presentation.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland; Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Elliot J Cahn
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Yingxue Ren
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Patrick W Johnson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Zachary S Quicksall
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
16
|
Faouzi J, Tan M, Casse F, Lesage S, Tesson C, Brice A, Mangone G, Mariani LL, Iwaki H, Colliot O, Pihlstrøm L, Corvol JC. Proxy-analysis of the genetics of cognitive decline in Parkinson's disease through polygenic scores. NPJ Parkinsons Dis 2024; 10:8. [PMID: 38177146 PMCID: PMC10767119 DOI: 10.1038/s41531-023-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Cognitive decline is common in Parkinson's disease (PD) and its genetic risk factors are not well known to date, besides variants in the GBA and APOE genes. However, variation in complex traits is caused by numerous variants and is usually studied with genome-wide association studies (GWAS), requiring a large sample size, which is difficult to achieve for outcome measures in PD. Taking an alternative approach, we computed 100 polygenic scores (PGS) related to cognitive, dementia, stroke, and brain anatomical phenotypes and investigated their association with cognitive decline in six longitudinal cohorts. The analysis was adjusted for age, sex, genetic ancestry, follow-up duration, GBA and APOE status. Then, we meta-analyzed five of these cohorts, comprising a total of 1702 PD participants with 6156 visits, using the Montreal Cognitive Assessment as a cognitive outcome measure. After correction for multiple comparisons, we found four PGS significantly associated with cognitive decline: intelligence (p = 5.26e-13), cognitive performance (p = 1.46e-12), educational attainment (p = 8.52e-10), and reasoning (p = 3.58e-5). Survival analyses highlighted an offset of several years between the first and last quartiles of PGS, with significant differences for the PGS of cognitive performance (5 years) and educational attainment (7 years). In conclusion, we found four PGS associated with cognitive decline in PD, all associated with general cognitive phenotypes. This study highlights the common genetic factors between cognitive decline in PD and the general population, and the importance of the participant's cognitive reserve for cognitive outcome in PD.
Collapse
Affiliation(s)
- Johann Faouzi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
- Univ Rennes, Ensai, CNRS, CREST-UMR 9194, F-35000, Rennes, France
| | - Manuela Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Fanny Casse
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Christelle Tesson
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Département de Génétique, F-75013, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Département de Neurologie, F-75013, Paris, France
- Department of Neurology, Movement Disorder Division, Rush University Medical Center, 1725 W. Harrison Street, Chicago, IL, 60612, USA
| | - Louise-Laure Mariani
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Département de Neurologie, F-75013, Paris, France
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Département de Neurologie, F-75013, Paris, France.
| |
Collapse
|
17
|
Zhou H, Shen B, Huang Z, Zhu S, Yang W, Xie F, Luo Y, Yuan F, Zhu Z, Deng C, Zheng W, Yang C, Lin CH, Xiao B, Tan EK, Wang Q. Mendelian randomization reveals association between retinal thickness and non-motor symptoms of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:163. [PMID: 38092812 PMCID: PMC10719335 DOI: 10.1038/s41531-023-00611-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Retinal thickness is related to Parkinson's disease (PD), but its association with the severity of PD is still unclear. We conducted a Mendelian randomized (MR) study to explore the association between retinal thickness and PD. For the two-sample MR analysis, the summary statistics obtained from genome-wide association studies on the thickness of Retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) were employed as exposure, while the summary statistics associated with PD were used as the outcome. The primary approach utilized was inverse variance weighted. To correct for multiple testing, the false discovery rate (FDR) was employed. For sensitivity analysis, an array of robust MR methods was utilized. We found genetically predicted significant association between reduced RNFL thickness and a reduced risk of constipation in PD (odds ratio [OR] = 0.854, 95% confidence interval [CI] (0.782, 0.933), P < 0.001, FDR-corrected P = 0.018). Genetically predicted reduced RNFL thickness was associated with a reduced Unified Parkinson's Disease Rating Scale total score (β = -0.042, 95% CI (-0.079, 0.005), P = 0.025), and reduced GCIPL thickness was associated with a lower risk of constipation (OR = 0.901, 95% CI (0.821, 0.988), P = 0.027) but a higher risk of depression (OR = 1.103, 95% CI (1.016, 1.198), P = 0.020), insomnia (OR = 1.090, 95% CI (1.013, 1.172), P = 0.021), and rapid eye movement sleep behaviour disorder (RBD) (OR = 1.198, 95% CI (1.061, 1.352), P = 0.003). In conclusion, we identify an association between retinal thickness and non-motor symptoms (constipation, depression, insomnia and RBD) in PD, highlighting the potential of retinal thickness as a biomarker for PD nonmotor symptoms.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Feilan Yuan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T.H. Chan School of Medicine, UMass Chan Medical School, Massachusetts, 01605, USA
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China.
| |
Collapse
|
18
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Bandres-Ciga S, Faghri F, Majounie E, Koretsky MJ, Kim J, Levine KS, Leonard H, Makarious MB, Iwaki H, Crea PW, Hernandez DG, Arepalli S, Billingsley K, Lohmann K, Klein C, Lubbe SJ, Jabbari E, Saffie-Awad P, Narendra D, Reyes-Palomares A, Quinn JP, Schulte C, Morris HR, Traynor BJ, Scholz SW, Houlden H, Hardy J, Dumanis S, Riley E, Blauwendraat C, Singleton A, Nalls M, Jeff J, Vitale D. NeuroBooster Array: A Genome-Wide Genotyping Platform to Study Neurological Disorders Across Diverse Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298176. [PMID: 37986980 PMCID: PMC10659467 DOI: 10.1101/2023.11.06.23298176] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Genome-wide genotyping platforms have the capacity to capture genetic variation across different populations, but there have been disparities in the representation of population-dependent genetic diversity. The motivation for pursuing this endeavor was to create a comprehensive genome-wide array capable of encompassing a wide range of neuro-specific content for the Global Parkinson's Genetics Program (GP2) and the Center for Alzheimer's and Related Dementias (CARD). CARD aims to increase diversity in genetic studies, using this array as a tool to foster inclusivity. GP2 is the first supported resource project of the Aligning Science Across Parkinson's (ASAP) initiative that aims to support a collaborative global effort aimed at significantly accelerating the discovery of genetic factors contributing to Parkinson's disease and atypical parkinsonism by generating genome-wide data for over 200,000 individuals in a multi-ancestry context. Here, we present the Illumina NeuroBooster array (NBA), a novel, high-throughput and cost-effective custom-designed content platform to screen for genetic variation in neurological disorders across diverse populations. The NBA contains a backbone of 1,914,934 variants (Infinium Global Diversity Array) complemented with custom content of 95,273 variants implicated in over 70 neurological conditions or traits with potential neurological complications. Furthermore, the platform includes over 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related GWAS loci across diverse populations. The NBA can identify low frequency variants and accurately impute over 15 million common variants from the latest release of the TOPMed Imputation Server as of August 2023 (reference of over 300 million variants and 90,000 participants). We envisage this valuable tool will standardize genetic studies in neurological disorders across different ancestral groups, allowing researchers to perform genetic research inclusively and at a global scale.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC 20037, USA
| | | | - Mathew J Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Kim
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristin S Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC 20037, USA
| | - Hampton Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC 20037, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC 20037, USA
| | - Peter Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberley Billingsley
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Paula Saffie-Awad
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Trastornos del Movimiento (CETRAM), Santiago, Chile
- Clínica Santa María, Santiago, Chile
| | - Derek Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Armando Reyes-Palomares
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - John P Quinn
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen and German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Against Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Bryan J. Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Henry Houlden
- Aligning Science Against Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - John Hardy
- Aligning Science Against Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Sonya Dumanis
- Aligning Science Against Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ekemini Riley
- Aligning Science Against Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC 20037, USA
| | | | - Dan Vitale
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC 20037, USA
| |
Collapse
|
20
|
Zhou H, Luo Y, Zhang W, Xie F, Deng C, Zheng W, Zhu S, Wang Q. Causal effect of gut-microbiota-derived metabolite trimethylamine N-oxide on Parkinson's disease: A Mendelian randomization study. Eur J Neurol 2023; 30:3451-3461. [PMID: 36692876 DOI: 10.1111/ene.15702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE It has been suggested that trimethylamine N-oxide (TMAO) is related to Parkinson's disease (PD) in observational studies. However, the direction of this association is inconsistent. An exploratory Mendelian randomization study was conducted to investigate whether TMAO and its precursors have a causal relationship with PD. METHODS Summary statistics were obtained for single nucleotide polymorphisms related to circulating levels of TMAO, betaine, carnitine and choline, and the corresponding data for the risk, age at onset and progression of PD from genome-wide association studies. Inverse-variance weighting was used as the primary method for effect estimation. The false discovery rate was applied to the correction of multiple testing. A p value of association <0.05 but above the false discovery rate corrected threshold was deemed suggestive evidence of a possible association. A range of robust Mendelian randomization methods were used for sensitivity analysis. RESULTS Suggestive evidence was observed of an inverse causal effect of TMAO on motor fluctuations (odds ratio [OR] 0.851, 95% confidence interval [CI] 0.731, 0.990, p = 0.037) and carnitine on insomnia (OR 0.817, 95% CI 0.700, 0.954, p = 0.010) and a positive causal effect of betaine on Hoehn-Yahr stage (OR 1.397, 95% CI 1.112, 1.756, p = 0.004), Unified Parkinson's Disease Rating Scale (UPDRS) III score (β = 0.138, 95% CI 0.051, 0.225, p = 0.002), motor fluctuations (OR 1.236, 95% CI 1.011, 1.511, p = 0.039), and choline on UPDRS IV (β = 0.106, 95% CI 0.026, 0.185, p = 0.009) and modified Schwab and England Activities of Daily Living Scale score (β = 0.806, 95% CI 0.127, 1.484, p = 0.020). CONCLUSIONS Our findings provide suggestive evidence that TMAO and its precursors have a causal effect on the progression of PD. Further investigation of the underlying mechanisms is required.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wenjie Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Gu XJ, Su WM, Dou M, Jiang Z, Duan QQ, Yin KF, Cao B, Wang Y, Li GB, Chen YP. Expanding causal genes for Parkinson's disease via multi-omics analysis. NPJ Parkinsons Dis 2023; 9:146. [PMID: 37865667 PMCID: PMC10590374 DOI: 10.1038/s41531-023-00591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Genome‑wide association studies (GWASs) have revealed numerous loci associated with Parkinson's disease (PD). However, some potential causal/risk genes were still not revealed and no etiological therapies are available. To find potential causal genes and explore genetically supported drug targets for PD is urgent. By integrating the expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets from multiple tissues (blood, cerebrospinal fluid (CSF) and brain) and PD GWAS summary statistics, a pipeline combing Mendelian randomization (MR), Steiger filtering analysis, Bayesian colocalization, fine mapping, Protein-protein network and enrichment analysis were applied to identify potential causal genes for PD. As a result, GPNMB displayed a robust causal role for PD at the protein level in the blood, CSF and brain, and transcriptional level in the brain, while the protective role of CD38 (in brain pQTL and eQTL) was also identified. We also found inconsistent roles of DGKQ on PD between protein and mRNA levels. Another 9 proteins (CTSB, ARSA, SEC23IP, CD84, ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A) were associated with the risk for PD based on only a single pQTL after multiple corrections. We also identified some proteins' interactions with known PD causative genes and therapeutic targets. In conclusion, this study suggested GPNMB, CD38, and DGKQ may act in the pathogenesis of PD, but whether the other proteins involved in PD needs more evidence. These findings would help to uncover the genes underlying PD and prioritize targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Dou
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang-Fu Yin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Tunold JA, Tan MMX, Koga S, Geut H, Rozemuller AJM, Valentino R, Sekiya H, Martin NB, Heckman MG, Bras J, Guerreiro R, Dickson DW, Toft M, van de Berg WDJ, Ross OA, Pihlstrøm L. Lysosomal polygenic risk is associated with the severity of neuropathology in Lewy body disease. Brain 2023; 146:4077-4087. [PMID: 37247383 PMCID: PMC10545498 DOI: 10.1093/brain/awad183] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-β and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-β and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.
Collapse
Affiliation(s)
- Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Rebecca Valentino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicholas B Martin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Program Neurodegeneration, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
23
|
Tsukita K, Sakamaki-Tsukita H, Kaiser S, Zhang L, Messa M, Serrano-Fernandez P, Takahashi R. High-Throughput CSF Proteomics and Machine Learning to Identify Proteomic Signatures for Parkinson Disease Development and Progression. Neurology 2023; 101:e1434-e1447. [PMID: 37586882 PMCID: PMC10573147 DOI: 10.1212/wnl.0000000000207725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to identify CSF proteomic signatures characteristic of Parkinson disease (PD) and evaluate their clinical utility. METHODS This observational study used data from the Parkinson's Progression Markers Initiative (PPMI), which enrolled patients with PD, healthy controls (HCs), and non-PD participants carrying GBA1, LRRK2, and/or SNCA pathogenic variants (genetic prodromals) at international sites. Study participants were chosen from PPMI enrollees based on the availability of aptamer-based CSF proteomic data, quantifying 4,071 proteins, and classified as patients with PD without GBA1, LRRK2, and/or SNCA pathogenic variants (nongenetic PD), HCs, patients with PD carrying the aforementioned pathogenic variants (genetic PD), or genetic prodromals. Differentially expressed protein (DEP) analysis and the least absolute shrinkage and selection operator (LASSO) were applied to the data from nongenetic PD and HCs. Signatures characteristics of nongenetic PD were quantified as a PD proteomic score (PD-ProS), validated internally and then externally using data of 1,556 CSF proteins from the LRRK2 Cohort Consortium (LCC). We further tested the PD-ProS in genetic PD and genetic prodromals and examined associations with clinical progression. RESULTS Data from 279 patients with nongenetic PD (mean ± SD, age 62.0 ± 9.6 years; male 67.7%) and 141 HCs (age 60.5 ± 11.9 years; male 64.5%) were used for PD-ProS derivation. From 23 DEPs, LASSO determined weights of 14 DEPs for the PD-ProS (area under the curve [AUC] 0.83, 95% CI 0.78-0.87), validated in an independent internal validation cohort of 71 patients with nongenetic PD and 35 HCs (AUC 0.81, 95% CI 0.73-0.90). In the LCC, only 5 of the 14 DEPs were also measured. Notably, these 5 DEPs still distinguished 34 patients with nongenetic PD from 31 HCs with the same weights (AUC 0.75, 95% CI 0.63-0.87). Furthermore, the PD-ProS distinguished 258 patients with genetic PD from 365 genetic prodromals. Finally, regardless of genetic status, the PD-ProS independently predicted both cognitive and motor decline in PD (dementia, adjusted hazard ratio in the highest quintile [aHR-Q5] 2.8 [95% CI 1.6-5.0]; Hoehn and Yahr stage IV, aHR-Q5 2.1 [95% CI 1.1-4.0]). DISCUSSION By integrating high-throughput proteomics with machine learning, we identified PD-associated CSF proteomic signatures crucial for PD development and progression. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov (NCT01176565). A link to the trial registry page is clinicaltrials.gov/ct2/show/NCT01141023. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the CSF proteome contains clinically important information regarding the development and progression of Parkinson disease that can be deciphered by a combination of high-throughput proteomics and machine learning.
Collapse
Affiliation(s)
- Kazuto Tsukita
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA.
| | - Haruhi Sakamaki-Tsukita
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Sergio Kaiser
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Luqing Zhang
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Mirko Messa
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Pablo Serrano-Fernandez
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| | - Ryosuke Takahashi
- From the Department of Neurology (K.T., H.S.-T., R.T.), Graduate School of Medicine, Kyoto University; Advanced Comprehensive Research Organization (K.T.), Teikyo University, Itabashi; Division of Sleep Medicine (K.T.), Kansai Electric Power Medical Research Institute, Osaka, Japan; Translational Medicine Department (S.K., P.S.-F.), Novartis Institutes for Biomedical Research, Basel, Switzerland; and Cardiovascular and Metabolism Department (L.Z.), and Neuroscience Department (M.M.), Novartis Institutes for Biomedical Research, Cambridge, MA
| |
Collapse
|
24
|
Martínez Carrasco A, Real R, Lawton M, Hertfelder Reynolds R, Tan M, Wu L, Williams N, Carroll C, Corvol JC, Hu M, Grosset D, Hardy J, Ryten M, Ben-Shlomo Y, Shoai M, Morris HR. Genome-wide Analysis of Motor Progression in Parkinson Disease. Neurol Genet 2023; 9:e200092. [PMID: 37560120 PMCID: PMC10409573 DOI: 10.1212/nxg.0000000000200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Background and Objectives The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous studies of the genetics of PD progression have included small cohorts and shown a limited overlap with genetic PD risk factors from case-control studies. Here, we have studied genomic variation associated with PD motor severity and early-stage progression in large longitudinal cohorts to help to define the biology of PD progression and potential new drug targets. Methods We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years from study entry. We used linear mixed-effect models with additive effects, corrected for age at diagnosis, sex, and the first 5 genetic principal components to assess variability in axial, limb, and total Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III scores. Results We included 3,572 unrelated European ancestry patients with PD from 5 observational cohorts and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We identified an association between PD axial motor progression and variation at the GJA5 locus at 1q12 (β = -0.25, SE = 0.04, p = 3.4e-10). Exploration of the regulation of gene expression in the region (cis-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was associated with expression of ACP6, a lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis (cis-eQTL p-values in blood and brain RNA expression data sets: <10-14 in eQTLGen and 10-7 in PsychEncode). Discussion Our study highlights the potential role of mitochondrial lipid homeostasis in the progression of PD, which may be important in establishing new drug targets that might modify disease progression.
Collapse
Affiliation(s)
- Alejandro Martínez Carrasco
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Raquel Real
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Michael Lawton
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Regina Hertfelder Reynolds
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Manuela Tan
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Lesley Wu
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Nigel Williams
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Camille Carroll
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Jean-Christophe Corvol
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Michele Hu
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Donald Grosset
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - John Hardy
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Mina Ryten
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Yoav Ben-Shlomo
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Maryam Shoai
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| | - Huw R Morris
- From the Department of Clinical and Movement Neurosciences (A.M.C., R.R., L.W., H.R.M.), UCL Queen Square Institute of Neurology; UCL Movement Disorders Centre (A.M.C., R.R., L.W., H.R.M.), University College London, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network (A.M.C., R.R., R.H.R. L.W., M.R., M.S. J.H., H.R.M.), Chevy Chase, MD; Population Health Sciences (M.L., Y.B.-S.), Bristol Medical School, University of Bristol; Genetics and Genomic Medicine (R.H.R., M.R.), UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom; Department of Neurology (M.T.), Oslo University Hospital, Norway; Institute of Psychological Medicine and Clinical Neurosciences (N.W.), MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University; Faculty of Health (C.C.), University of Plymouth, United Kingdom; Sorbonne Université (J.-C.C.), Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, Hôpital Pitié-Salpêtrière, France; Division of Clinical Neurology (M.H.), Nuffield Department of Clinical Neurosciences; Oxford Parkinson's Disease Centre (M.H.), University of Oxford; School of Neuroscience and Psychology (D.G.), University of Glasgow; Department of Neurodegenerative Diseases (J.H., M.S.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute (J.H., M.S.), University College London; Reta Lila Weston Institute (J.H., M.S.), UCL Queen Square Institute of Neurology; National Institute for Health Research (NIHR), University College London Hospitals Biomedical Research Centre (J.H.); Institute for Advanced Study (J.H.), The Hong Kong University of Science and Technology, Hong Kong SAR, China; and NIHR Great Ormond Street Hospital Biomedical Research Centre (M.R.), University College London, United Kingdom
| |
Collapse
|
25
|
Grel H, Woznica D, Ratajczak K, Kalwarczyk E, Anchimowicz J, Switlik W, Olejnik P, Zielonka P, Stobiecka M, Jakiela S. Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes. Int J Mol Sci 2023; 24:13033. [PMID: 37685840 PMCID: PMC10487704 DOI: 10.3390/ijms241713033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration and death of neurons, leading to a range of neurological symptoms. Despite the heterogeneity of these conditions, a common denominator is the implication of mitochondrial dysfunction in their pathogenesis. Mitochondria play a crucial role in creating biomolecules, providing energy through adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS), and producing reactive oxygen species (ROS). When they're not functioning correctly, becoming fragmented and losing their membrane potential, they contribute to these diseases. In this review, we explore how mitochondria fuse and undergo fission, especially in the context of NDs. We discuss the genetic and protein mutations linked to these diseases and how they impact mitochondrial dynamics. We also look at the key regulatory proteins in fusion (MFN1, MFN2, and OPA1) and fission (DRP1 and FIS1), including their post-translational modifications. Furthermore, we highlight potential drugs that can influence mitochondrial dynamics. By unpacking these complex processes, we aim to direct research towards treatments that can improve life quality for people with these challenging conditions.
Collapse
Affiliation(s)
- Hubert Grel
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Damian Woznica
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Katarzyna Ratajczak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Ewelina Kalwarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Julia Anchimowicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Weronika Switlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Zielonka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
26
|
Sosero YL, Gan‐Or Z. LRRK2 and Parkinson's disease: from genetics to targeted therapy. Ann Clin Transl Neurol 2023; 10:850-864. [PMID: 37021623 PMCID: PMC10270275 DOI: 10.1002/acn3.51776] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
LRRK2 variants are implicated in both familial and sporadic PD. LRRK2-PD has a generally benign clinical presentation and variable pathology, with inconsistent presence of Lewy bodies and marked Alzheimer's disease pathology. The mechanisms underlying LRRK2-PD are still unclear, but inflammation, vesicle trafficking, lysosomal homeostasis, and ciliogenesis have been suggested, among others. As novel therapies targeting LRRK2 are under development, understanding the role and function of LRRK2 in PD is becoming increasingly important. Here, we outline the epidemiological, pathophysiological, and clinical features of LRRK2-PD, and discuss the arising therapeutic approaches targeting LRRK2 and possible future directions for research.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
| | - Ziv Gan‐Or
- Montreal Neurological InstituteMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Human GeneticsMcGill UniversityMontréalQuébecH3A 1A1Canada
- Department of Neurology and NeurosurgeryMcGill UniversityMontréalQuébecH3A 0G4Canada
| |
Collapse
|
27
|
Xia C, Pickett SJ, Liewald DCM, Weiss A, Hudson G, Hill WD. The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism. Nat Commun 2023; 14:3146. [PMID: 37253732 PMCID: PMC10229642 DOI: 10.1038/s41467-023-38480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Neuroticism is a heritable trait composed of separate facets, each conferring different levels of protection or risk, to health. By examining mitochondrial DNA in 269,506 individuals, we show mitochondrial haplogroups explain 0.07-0.01% of variance in neuroticism and identify five haplogroup and 15 mitochondria-marker associations across a general factor of neuroticism, and two special factors of anxiety/tension, and worry/vulnerability with effect sizes of the same magnitude as autosomal variants. Within-haplogroup genome-wide association studies identified H-haplogroup-specific autosomal effects explaining 1.4% variance of worry/vulnerability. These H-haplogroup-specific autosomal effects show a pleiotropic relationship with cognitive, physical and mental health that differs from that found when assessing autosomal effects across haplogroups. We identify interactions between chromosome 9 regions and mitochondrial haplogroups at P < 5 × 10-8, revealing associations between general neuroticism and anxiety/tension with brain-specific gene co-expression networks. These results indicate that the mitochondrial genome contributes toward neuroticism and the autosomal links between neuroticism and health.
Collapse
Affiliation(s)
- Charley Xia
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research and Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David C M Liewald
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Alexander Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - W David Hill
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
28
|
Senkevich K, Alipour P, Chernyavskaya E, Yu E, Noyce AJ, Gan-Or Z. Potential Protective Link Between Type I Diabetes and Parkinson's Disease Risk and Progression. Mov Disord 2023. [PMID: 37148456 DOI: 10.1002/mds.29424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Epidemiological studies suggested an association between Parkinson's disease (PD) and type 2 diabetes, but less is known about type 1 diabetes (T1D) and PD. OBJECTIVE This study sought to explore the association between T1D and PD. METHODS We used Mendelian randomization, linkage disequilibrium score regression, and multi-tissue transcriptome-wide analysis to examine the association between PD and T1D. RESULTS Mendelian randomization showed a potentially protective role of T1D for PD risk (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.94-0.99; P = 0.039), as well as motor (OR, 0.94; 95% CI, 0.88-0.99; P = 0.044) and cognitive progression (OR, 1.50; 95% CI, 1.08-2.09; P = 0.015). We further found a negative genetic correlation between T1D and PD (rg = -0.17; P = 0.016), and we identified eight genes in cross-tissue transcriptome-wide analysis that were associated with both traits. CONCLUSIONS Our results suggest a potential genetic link between T1D and PD risk and progression. Larger comprehensive epidemiological and genetic studies are required to validate our findings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Paria Alipour
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | | | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
29
|
Song N, Wang Y, Zhou L, Zhang J, Wu F, Li M, Wang W, Liu Y, Lu X, Chen Q, Zhang N, Yan Y, Han F. Genetic analysis of the LRP10 gene in Chinese patients with Parkinson's disease. Neurol Sci 2023; 44:905-912. [PMID: 36434476 DOI: 10.1007/s10072-022-06496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by resting tremor, bradykinesia, muscle rigidity, and abnormal gait. The low-density lipoprotein receptor-related protein 10 (LRP10) was recently shown to be a causal gene for PD, and different ethnic cohorts have distinct frequencies and spectrum of LRP10 variants. METHODS We sequenced the full coding regions and exon-intron boundaries of LRP10 in 129 patients with sporadic Chinese PD to further investigate the connection of LRP10 with PD in a sample of Chinese patients. RESULTS In this study, we identified four potentially pathogenic mutations, including one novel mutation of p.Gly328Asp and three known mutations of p.Cys165Tyr, p.Arg230Trp, and p.Arg661His in four of the 129 Chinese patients with PD. CONCLUSION According to our study, the LRP10 gene may attribute to PD pathogenesis.
Collapse
Affiliation(s)
- Na Song
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Yan Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Liangxing Zhou
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Junli Zhang
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Fan Wu
- Department of Dermatology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengpeng Li
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Yanming Liu
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Yongjian Yan
- Department of Occupational Disease, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Laboratory for Stem Cell & Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. .,The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
30
|
Senkevich K, Rudakou U, Gan-Or Z. Genetic mechanism vs genetic subtypes: The example of GBA. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:155-170. [PMID: 36803808 DOI: 10.1016/b978-0-323-85555-6.00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Genetic variants in GBA, encoding the lysosomal enzyme glucocerebrosidase (GCase), are common risk factors for Parkinson's disease (PD). Genotype-phenotype studies have demonstrated that different types of GBA variants have differential effects on the phenotype. Variants could be classified as mild or severe depending on the type of Gaucher disease they cause in the biallelic state. It was shown that severe GBA variants, as compared to mild variants, are associated with higher risk of PD, earlier age at onset, and faster progression of motor and nonmotor symptoms. The observed difference in phenotype might be caused by a diversity of cellular mechanisms related to the particular variants. The lysosomal function of GCase is thought to play a significant role in the development of GBA-associated PD, and other mechanisms such as endoplasmic reticulum retention, mitochondrial dysfunction, and neuroinflammation have also been suggested. Moreover, genetic modifiers such as LRRK2, TMEM175, SNCA, and CTSB can either affect GCase activity or modulate risk and age at onset of GBA-associated PD. To achieve ideal outcomes with precision medicine, therapies will have to be tailored to individuals with specific variants, potentially in combination with known modifiers.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
31
|
Ren J, Zhou G, Wang Y, Zhang R, Guo Z, Zhou H, Zheng H, Sun Y, Ma C, Lu M, Liu W. Association of GBA genotype with motor and cognitive decline in Chinese Parkinson's disease patients. Front Aging Neurosci 2023; 15:1091919. [PMID: 36845659 PMCID: PMC9950580 DOI: 10.3389/fnagi.2023.1091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Objective Variants in the glucocerebrosidase (GBA) gene are the most common and significant risk factor for Parkinson's disease (PD). However, the impact of GBA variants on PD disease progression in the Chinese population remains unclear. This study aimed to explore the significance of GBA status on motor and cognitive impairment in a longitudinal cohort of Chinese patients with PD. Methods The entire GBA gene was screened by long-range polymerase chain reaction (LR-PCR) and next generation sequencing (NGS). A total of 43 GBA-related PD (GBA-PD) and 246 non-GBA-mutated PD (NM-PD) patients with complete clinical data at baseline and at least one follow-up were recruited for this study. The associations of GBA genotype with rate of motor and cognitive decline, as measured by Unified PD Rating Scale (UPDRS) motor and Montreal Cognitive Assessment (MoCA), were assessed by linear mixed-effect models. Results The estimated (standard error, SE) UPDRS motor [2.25 (0.38) points/year] and MoCA [-0.53 (0.11) points/year] progression rates in the GBA-PD group were significantly faster than those in the NM-PD group [1.35 (0.19); -0.29 (0.04) points/year; respectively]. In addition, the GBA-PD group showed significantly faster estimated (SE) bradykinesia [1.04 (0.18) points/year], axial impairment [0.38 (0.07) points/year], and visuospatial/executive [-0.15 (0.03) points/year] progression rates than the NM-PD group [0.62 (0.10); 0.17 (0.04); -0.07 (0.01) points/year; respectively]. Conclusion GBA-PD is associated with faster motor and cognitive decline, specifically greater disability in terms of bradykinesia, axial impairment, and visuospatial/executive function. Better understanding of GBA-PD progression may help predict prognosis and improve clinical trial design.
Collapse
Affiliation(s)
- Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ronggui Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huifen Zheng
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Laboratory for Children’s Medical Imaging Research, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Weiguo Liu,
| |
Collapse
|
32
|
Baisgaard AE, Koldby KM, Kristensen TN, Nyegaard M, Rohde PD. Functionally Validating Evolutionary Conserved Risk Genes for Parkinson's Disease in Drosophila melanogaster. INSECTS 2023; 14:168. [PMID: 36835737 PMCID: PMC9958964 DOI: 10.3390/insects14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous and complex neurodegenerative disorder and large-scale genetic studies have identified >130 genes associated with PD. Although genomic studies have been decisive for our understanding of the genetic contributions underlying PD, these associations remain as statistical associations. Lack of functional validation limits the biological interpretation; however, it is labour extensive, expensive, and time consuming. Therefore, the ideal biological system for functionally validating genetic findings must be simple. The study aim was to assess systematically evolutionary conserved PD-associated genes using Drosophila melanogaster. From a literature review, a total of 136 genes have found to be associated with PD in GWAS studies, of which 11 are strongly evolutionary conserved between Homo sapiens and D. melanogaster. By ubiquitous gene expression knockdown of the PD-genes in D. melanogaster, the flies' escape response was investigated by assessing their negative geotaxis response, a phenotype that has previously been used to investigate PD in D. melanogaster. Gene expression knockdown was successful in 9/11 lines, and phenotypic consequences were observed in 8/9 lines. The results provide evidence that genetically modifying expression levels of PD genes in D. melanogaster caused reduced climbing ability of the flies, potentially supporting their role in dysfunctional locomotion, a hallmark of PD.
Collapse
Affiliation(s)
- Amalie Elton Baisgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | | | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
33
|
Liu G, Ni C, Zhan J, Li W, Luo J, Liao Z, Locascio JJ, Xian W, Chen L, Pei Z, Corvol JC, Maple-Grødem J, Campbell MC, Elbaz A, Lesage S, Brice A, Hung AY, Schwarzschild MA, Hayes MT, Wills AM, Ravina B, Shoulson I, Taba P, Kõks S, Beach TG, Cormier-Dequaire F, Alves G, Tysnes OB, Perlmutter JS, Heutink P, van Hilten JJ, Barker RA, Williams-Gray CH, Scherzer CR. Mitochondrial haplogroups and cognitive progression in Parkinson's disease. Brain 2023; 146:42-49. [PMID: 36343661 PMCID: PMC10202390 DOI: 10.1093/brain/awac327] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are a culprit in the onset of Parkinson's disease, but their role during disease progression is unclear. Here we used Cox proportional hazards models to exam the effect of variation in the mitochondrial genome on longitudinal cognitive and motor progression over time in 4064 patients with Parkinson's disease. Mitochondrial macro-haplogroup was associated with reduced risk of cognitive disease progression in the discovery and replication population. In the combined analysis, patients with the super macro-haplogroup J, T, U# had a 41% lower risk of cognitive progression with P = 2.42 × 10-6 compared to those with macro-haplogroup H. Exploratory analysis indicated that the common mitochondrial DNA variant, m.2706A>G, was associated with slower cognitive decline with a hazard ratio of 0.68 (95% confidence interval 0.56-0.81) and P = 2.46 × 10-5. Mitochondrial haplogroups were not appreciably linked to motor progression. This initial genetic survival study of the mitochondrial genome suggests that mitochondrial haplogroups may be associated with the pace of cognitive progression in Parkinson's disease over time.
Collapse
Affiliation(s)
- Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chunming Ni
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiamin Zhan
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Weimin Li
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Junfeng Luo
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Research, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Neurogenomics Lab, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph J Locascio
- APDA Center for Advanced Parkinson Research, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Neurogenomics Lab, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wenbiao Xian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Meghan C Campbell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexis Elbaz
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, ‘Exposome and Heredity’ Team, CESP, F94805 Villejuif, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Albert Y Hung
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael T Hayes
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ira Shoulson
- Department of Neurology, Center for Health and Technology, University of Rochester, Rochester, NY 14642, USA
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
- Neurology Clinic, Tartu University Hospital, Tartu 50406, Estonia
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Florence Cormier-Dequaire
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute - ICM, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, 5020 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Departments of Radiology and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program of Physical Therapy and Program of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Heutink
- German Center for Neurodegenerative diseases (DZNE), 72076 Tübingen, Germany
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Wellcome—MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Research, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Neurogenomics Lab, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
34
|
Chen J, Zhao D, Wang Q, Chen J, Bai C, Li Y, Guo X, Chen B, Zhang L, Yuan J. Predictors of cognitive impairment in newly diagnosed Parkinson's disease with normal cognition at baseline: A 5-year cohort study. Front Aging Neurosci 2023; 15:1142558. [PMID: 36926634 PMCID: PMC10011149 DOI: 10.3389/fnagi.2023.1142558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Background and objective Cognitive impairment (CI) is a substantial contributor to the disability associated with Parkinson's disease (PD). We aimed to assess the clinical features and explore the underlying biomarkers as predictors of CI in patients with newly diagnosed PD (NDPD; less than 2 years). Methods We evaluated the cognitive function status using the Montreal Cognitive Assessment (MoCA) and a battery of neuropsychological tests at baseline and subsequent annual follow-up for 5 years from the Parkinson's Progression Markers Initiative (PPMI) database. We assessed the baseline clinical features, apolipoprotein (APO) E status, β-glucocerebrosidase (GBA) mutation status, cerebrospinal fluid findings, and dopamine transporter imaging results. Using a diagnosis of CI (combined mild cognitive impairment and dementia) developed during the 5-year follow-up as outcome measures, we assessed the predictive values of baseline clinical variables and biomarkers. We also constructed a predictive model for the diagnosis of CI using logistic regression analysis. Results A total of 409 patients with NDPD with 5-year follow-up were enrolled, 232 with normal cognitive function at baseline, and 94 patients developed CI during the 5-year follow-up. In multivariate analyses, age, current diagnosis of hypertension, baseline MoCA scores, Movement disorder society Unified PD Rating Scale part III (MDS-UPDRS III) scores, and APOE status were associated with the development of CI. Predictive accuracy of CI using age alone improved by the addition of clinical variables and biomarkers (current diagnosis of hypertension, baseline MoCA scores, and MDS-UPDRS III scores, APOE status; AUC 0.80 [95% CI 0.74-0.86] vs. 0.71 [0.64-0.77], p = 0.008). Cognitive domains that had higher frequencies of impairment were found in verbal memory (12.6 vs. 16.8%) and attention/processing speed (12.7 vs. 16.9%), however, no significant difference in the prevalence of CI at annual follow-up was found during the 5-year follow-up in NDPD patients. Conclusion In NDPD, the development of CI during the 5-year follow-up can be predicted with good accuracy using a model combining age, current diagnosis of hypertension, baseline MoCA scores, MDS-UPDRS III scores, and APOE status. Our study underscores the need for the earlier identification of CI in NDPD patients in our clinical practice.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Danhua Zhao
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Qi Wang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Junyi Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Chaobo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Yuan Li
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xintong Guo
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Baoyu Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Zhang
- Department of Neurology and Neurological Surgery, UC Davis Deep Brain Stimulation (DBS), Sacramento, CA, United States
| | - Junliang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| |
Collapse
|
35
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
36
|
Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li JY, Li W, Feng J. Association between Parkinson's Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging Dis 2022; 13:1591-1605. [PMID: 36465171 PMCID: PMC9662283 DOI: 10.14336/ad.2022.0325] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson's disease (PD) are both age-related diseases of global concern being among the most common chronic metabolic and neurodegenerative diseases, respectively. While both diseases can be genetically inherited, environmental factors play a vital role in their pathogenesis. Moreover, DM and PD have common underlying molecular mechanisms, such as misfolded protein aggregation, mitochondrial dysfunction, oxidative stress, chronic inflammation, and microbial dysbiosis. Recently, epidemiological and experimental studies have reported that DM affects the incidence and progression of PD. Moreover, certain antidiabetic drugs have been proven to decrease the risk of PD and delay its progression. In this review, we elucidate the epidemiological and pathophysiological association between DM and PD and summarize the antidiabetic drugs used in animal models and clinical trials of PD, which may provide reference for the clinical translation of antidiabetic drugs in PD treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhen Wang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Kaidong Zhao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia-Yi Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Wen Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
37
|
Dulski J, Uitti RJ, Ross OA, Wszolek ZK. Genetic architecture of Parkinson’s disease subtypes – Review of the literature. Front Aging Neurosci 2022; 14:1023574. [PMID: 36337703 PMCID: PMC9632166 DOI: 10.3389/fnagi.2022.1023574] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneity of Parkinson’s disease (PD) has been recognized since its description by James Parkinson over 200 years ago. The complexity of motor and non-motor PD manifestations has led to many attempts of PD subtyping with different prognostic outcomes; however, the pathophysiological foundations of PD heterogeneity remain elusive. Genetic contributions to PD may be informative in understanding the underpinnings of PD subtypes. As such, recognizing genotype-phenotype associations may be crucial for successful gene therapy. We review the state of knowledge on the genetic architecture underlying PD subtypes, discussing the monogenic forms, as well as oligo- and polygenic risk factors associated with various PD subtypes. Based on our review, we argue for the unification of PD subtyping classifications, the dichotomy of studies on genetic factors and genetic modifiers of PD, and replication of results from previous studies.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
| | - Ryan J. Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Zbigniew K. Wszolek,
| |
Collapse
|
38
|
Lansbury P. The Sphingolipids Clearly Play a Role in Parkinson's Disease, but Nature Has Made it Complicated. Mov Disord 2022; 37:1985-1989. [PMID: 36087026 DOI: 10.1002/mds.29204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter Lansbury
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Zarkali A, Luppi AI, Stamatakis EA, Reeves S, McColgan P, Leyland LA, Lees AJ, Weil RS. Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson's disease. Commun Biol 2022; 5:928. [PMID: 36075964 PMCID: PMC9458713 DOI: 10.1038/s42003-022-03903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hallucinations are a core feature of psychosis and common in Parkinson's. Their transient, unexpected nature suggests a change in dynamic brain states, but underlying causes are unknown. Here, we examine temporal dynamics and underlying structural connectivity in Parkinson's-hallucinations using a combination of functional and structural MRI, network control theory, neurotransmitter density and genetic analyses. We show that Parkinson's-hallucinators spent more time in a predominantly Segregated functional state with fewer between-state transitions. The transition from integrated-to-segregated state had lower energy cost in Parkinson's-hallucinators; and was therefore potentially preferable. The regional energy needed for this transition was correlated with regional neurotransmitter density and gene expression for serotoninergic, GABAergic, noradrenergic and cholinergic, but not dopaminergic, receptors. We show how the combination of neurochemistry and brain structure jointly shape functional brain dynamics leading to hallucinations and highlight potential therapeutic targets by linking these changes to neurotransmitter systems involved in early sensory and complex visual processing.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 149 Tottenham Court Rd, London, W1T 7BN, UK
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
40
|
Zhang RQ, Kuo K, Liu FT, Chen SD, Yang YX, Guo Y, Dong Q, Tan L, Zhang C, Yu JT. Shared polygenic risk and causal inferences in Parkinson's disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Li C, Li X, Lin J, Cui Y, Shang H. Psoriasis and Progression of Parkinson’s Disease: a Mendelian Randomization Study. J Eur Acad Dermatol Venereol 2022; 36:2401-2405. [PMID: 35870136 DOI: 10.1111/jdv.18459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| | - Xiaoxue Li
- Department of Dermatology and Venerology, National Clinical Research Center for Geriatrics West China Hospital of Sichuan University Chengdu Sichuan China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
42
|
Berger AA, Winnick A, Izygon J, Jacob BM, Kaye JS, Kaye RJ, Neuchat EE, Kaye AM, Alpaugh ES, Cornett EM, Han AH, Kaye AD. Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson's Disease "Off" Episodes. Health Psychol Res 2022; 10:36074. [PMID: 35774903 DOI: 10.52965/001c.36074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder and the leading cause of disability. It causes significant morbidity and disability through a plethora of symptoms, including movement disorders, sleep disturbances, and cognitive and psychiatric symptoms. The traditional pathogenesis theory of PD involves the loss of dopaminergic neurons in the substantia nigra (SN). Classically, treatment is pursued with an assortment of medications that are directed at overcoming this deficiency with levodopa being central to most treatment plans. Patients taking levodopa tend to experience "off episodes" with decreasing medication levels, causing large fluctuations in their symptoms. These off episodes are disturbing and a source of morbidity for these patients. Opicapone is a novel, peripherally acting Catechol-O-methyl transferase (COMT) inhibitor that is used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of "off episodes." It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in duration of "off episodes." The main side effect demonstrated was dyskinesia, mostly with the 100mg dose, which is higher than the approved, effective dose of 50mg. Post-marketing surveillance and analysis are required to further elucidate its safety profile and contribute to patient selection. This paper reviews the seminal and latest evidence in the treatment of PD "off episodes" with the novel drug Opicapone, including efficacy, safety, and clinical indications.
Collapse
Affiliation(s)
- Amnon A Berger
- Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center
| | - Ariel Winnick
- Soroka University Medical Center and Faculty of Health Sciences; School of Optometry, University of California
| | - Jonathan Izygon
- Soroka University Medical Center and Faculty of Health Sciences
| | - Binil M Jacob
- Soroka University Medical Center and Faculty of Health Sciences
| | - Jessica S Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | | | | | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | - Edward S Alpaugh
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Andrew H Han
- Georgetown University School of Medicine, Georgetown University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| |
Collapse
|
43
|
Glucocerebrosidase variant T369M is not a risk factor for Parkinson's disease in Sweden. Neurosci Lett 2022; 784:136767. [PMID: 35779693 DOI: 10.1016/j.neulet.2022.136767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Genetic variants in the Beta-glucocerebrosidase gene (GBA1) is a known risk factor for Parkinson's disease. The GBA1 mutations L444P, N370S and many other have been shown to associate with the disease in populations with diverse background. Some GBA1 polymorphisms have a less pronounced effect, and their pathogenicity has been debated. We have previously found associations with L444P, N370S and E326K and Parkinson's disease in Sweden. METHOD In this study we used pyrosequencing to genotype the T369M variant in a large Swedish cohort consisting of 1,131 patients with idiopathic Parkinson's disease, and 1,594 control subjects to evaluate the possibility of this variant conferring an increased risk for Parkinson's disease. RESULTS The minor allele frequency was 2.15% in patients and 1.76% in controls. Statistical analysis showed that there was no significant difference in allele frequency between patients and control subjects, p-value 0.37, Odds Ratio 1.23 with a 95% confidence interval of 0.82-1.83. CONCLUSION Our results suggest that T369M is not a risk factor for Parkinson's disease in the Swedish population.
Collapse
|
44
|
Margiana R, Hammid AT, Ahmad I, Alsaikhan F, Turki Jalil A, Tursunbaev F, Umar F, Romero Parra RM, Fakri Mustafa Y. Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson's Disease Biomarkers. Crit Rev Anal Chem 2022; 54:617-632. [PMID: 35754381 DOI: 10.1080/10408347.2022.2091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, Parkinson's disease (PD) has been introduced as a long-term degenerative disorder of the central nervous system which mainly affects approximately more than ten million people worldwide. The vast majority of diagnostic methods for PD have operated based on conventional sensing platforms, while the traditional laboratory tests are not efficient for diagnosis of PD in the early stage due to symptoms of this common neurodegenerative syndrome starting slowly. The advent of the aptasensor has revolutionized the early-stage diagnosis of PD by measuring related biomarkers due to the myriad advantages of originating from aptamers which can be able to sensitive and selective capture various types of related biomarkers. The progress of numerous sensing platforms and methodologies in terms of biosensors based on aptamer application for PD diagnosis has revealed promising results. In this review, we present the latest developments in myriad types of aptasensors for the determination of related PD biomarkers. Working strategies, advantages and limitations of these sensing approaches are also mentioned, followed by prospects and challenges.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Dr. Soetomo General Academic Hospital, Indonesia Surabaya
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Farkhod Tursunbaev
- Independent Researcher, "Medcloud" Educational Centre, Tashkent, Uzbekistan
- Research Scholar, Department of Science and Innovation, Akfa University, Tashkent, Uzbekistan
| | - Fadilah Umar
- Department of Sports Science, Faculty of Sports, Sebelas Maret University, Surakarta, Indonesia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
45
|
Li C, Lin J, Yang T, Shang H. Green Tea Intake and Parkinson's Disease Progression: A Mendelian Randomization Study. Front Nutr 2022; 9:848223. [PMID: 35719152 PMCID: PMC9199515 DOI: 10.3389/fnut.2022.848223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Epidemiological studies have suggested green tea intake was associated with a reduced risk of Parkinson's disease (PD). However, whether green tea intake has an effect on PD progression is unknown. To evaluate the role of green tea intake in PD progression, we conducted a two-sample Mendelian randomization analysis using summary statistics from genome-wide association studies of green tea intake (N = 64,949), age at onset (N = 28,568) and progression (N = 4,093) of PD. One standard deviation increase in genetically determined green tea intake was significantly associated with slower progression to dementia (OR: 0.87, 95% CI: 0.81-0.94, P: 3.48E-04) after the Bonferroni correction. Meanwhile, higher green tea intake was nominally associated with slower progression to depression, and lower risk of dementia, depression, hyposmia and insomnia at baseline. The results were robust under all sensitivity analyses. These results might facilitate novel therapeutic targets to slow down the progression of PD in clinical trials, and have clinical implications for patients with PD.
Collapse
Affiliation(s)
- Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Jin Y, Li F, Sonoustoun B, Kondru NC, Martens YA, Qiao W, Heckman MG, Ikezu TC, Li Z, Burgess JD, Amerna D, O’Leary J, DeTure MA, Zhao J, McLean PJ, Dickson DW, Ross OA, Bu G, Zhao N. APOE4 exacerbates α-synuclein seeding activity and contributes to neurotoxicity in Alzheimer's disease with Lewy body pathology. Acta Neuropathol 2022; 143:641-662. [PMID: 35471463 PMCID: PMC9107450 DOI: 10.1007/s00401-022-02421-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023]
Abstract
Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-β (Aβ) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aβ40, Aβ42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.
Collapse
|
47
|
Genetics of cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:195-226. [PMID: 35248195 DOI: 10.1016/bs.pbr.2022.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Presentation and progression of cognitive symptoms in Parkinson's disease are highly variable. PD is a genetically complex disorder with multiple genetic risk factors and understanding the role that genes play in cognitive outcomes is important for patient counseling and treatment. Currently, there are seven well-described genes that increase the risk for PD, with variable levels of penetrance: SNCA, LRRK2, VPS35, PRKN, PINK1, DJ1 and GBA. In addition, large, genome-wide association studies have identified multiple loci in our DNA which increase PD risk. In this chapter, we summarize what is currently known about each of the seven strongly-associated PD genes and select PD risk variants, including PITX3, TMEM106B, SNCA Rep1, APOɛ4, COMT and MAPT H1/H1, along with their respective relationships to cognition.
Collapse
|
48
|
Koks S, Pfaff AL, Bubb VJ, Quinn JP. Longitudinal intronic RNA-Seq analysis of Parkinson's disease patients reveals disease-specific nascent transcription. Exp Biol Med (Maywood) 2022; 247:945-957. [PMID: 35289213 DOI: 10.1177/15353702221081027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcriptomic studies usually focus on either gene or exon-based annotations, and only limited experiments have reported changes in reads mapping to introns. The analysis of intronic reads allows the detection of nascent transcription that is not influenced by steady-state RNA levels and provides information on actively transcribed genes. Here, we describe substantial intronic transcriptional changes in Parkinson's disease (PD) patients compared to healthy controls (CO) at two different timepoints; at the time of diagnosis (BL) and three years later (V08). We used blood RNA-Seq data from the Parkinson's Progression Markers Initiative (PPMI) cohort and identified significantly changed transcription of intronic reads only in PD patients during this follow-up period. In CO subjects, only nine transcripts demonstrated differentially expressed introns between visits. However, in PD patients, 4873 transcripts had differentially expressed introns at visit V08 compared to BL, many of them in genes previously associated with neurodegenerative diseases, such as LRRK2, C9orf72, LGALS3, KANSL1AS1, and ALS2. In addition, at the time of diagnosis (BL visit), we identified 836 transcripts (e.g. SNCA, DNAJC19, PRRG4) and at visit V08, 2184 transcripts (e.g. PINK1, GBA, ALS2, PLEKHM1) with differential intronic expression specific to PD patients. In contrast, reads mapping to exonic regions demonstrated little variation indicating highly specific changes only in intronic transcription. Our study demonstrated that PD is characterized by substantial changes in the nascent transcription, and description of these changes could help to understand the molecular pathology underpinning this disease.
Collapse
Affiliation(s)
- Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
49
|
Pihlstrøm L, Fan CC, Frei O, Blauwendraat C, Bandres-Ciga S, Dale AM, Seibert TM, Andreassen OA, Dale AM, Seibert TM, Andreassen OA. Genetic Stratification of Age-Dependent Parkinson's Disease Risk by Polygenic Hazard Score. Mov Disord 2022; 37:62-69. [PMID: 34612543 PMCID: PMC9843635 DOI: 10.1002/mds.28808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a highly age-related disorder, where common genetic risk variants affect both disease risk and age at onset. A statistical approach that integrates these effects across all common variants may be clinically useful for individual risk stratification. A polygenic hazard score methodology, leveraging a time-to-event framework, has recently been successfully applied in other age-related disorders. OBJECTIVES We aimed to develop and validate a polygenic hazard score model in sporadic PD. METHODS Using a Cox regression framework, we modeled the polygenic hazard score in a training data set of 11,693 PD patients and 9841 controls. The score was then validated in an independent test data set of 5112 PD patients and 5372 controls and a small single-study sample of 360 patients and 160 controls. RESULTS A polygenic hazard score predicts the onset of PD with a hazard ratio of 3.78 (95% confidence interval 3.49-4.10) when comparing the highest to the lowest risk decile. Combined with epidemiological data on incidence rate, we apply the score to estimate genetically stratified instantaneous PD risk across age groups. CONCLUSIONS We demonstrate the feasibility of a polygenic hazard approach in PD, integrating the genetic effects on disease risk and age at onset in a single model. In combination with other predictive biomarkers, the approach may hold promise for risk stratification in future clinical trials of disease-modifying therapies, which aim at postponing the onset of PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway,Corresponding authors at: Department of Neurology, Oslo University Hospital, PO Box 4950 Nydalen, 0424 Oslo, Norway. , NORMENT Centre, Oslo University Hospital, Ullevål, PO Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA,Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Center for Bioinformatics, Department of Informatics, University of Oslo
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MY, USA
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MY, USA
| | | | - Anders M. Dale
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA,Department of Radiology, University of California San Diego, La Jolla, CA, USA,Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Tyler M. Seibert
- Department of Radiology, University of California San Diego, La Jolla, CA, USA,Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, La Jolla, California, USA.,Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, California, USA.,NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Radiology, University of California San Diego, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Tyler M Seibert
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, California, USA.,NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA.,Department of Radiology, University of California San Diego, La Jolla, California, USA.,Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
O’Day C, Finkelstein DI, Diwakarla S, McQuade RM. A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1841-1861. [PMID: 35848035 PMCID: PMC9535602 DOI: 10.3233/jpd-223262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 06/06/2023]
Abstract
Constipation afflicts many patients with Parkinson's disease (PD) and significantly impacts on patient quality of life. PD-related constipation is caused by intestinal dysfunction, but the etiology of this dysfunction in patients is unknown. One possible cause is neuron loss within the enteric nervous system (ENS) of the intestine. This review aims to 1) Critically evaluate the evidence for and against intestinal enteric neuron loss in PD patients, 2) Justify why PD-related constipation must be objectively measured, 3) Explore the potential link between loss of enteric neurons in the intestine and constipation in PD, 4) Provide potential explanations for disparities in the literature, and 5) Outline data and study design considerations to improve future research. Before the connection between intestinal enteric neuron loss and PD-related constipation can be confidently described, future research must use sufficiently large samples representative of the patient population (majority diagnosed with idiopathic PD for at least 5 years), implement a consistent neuronal quantification method and study design, including standardized patient recruitment criteria, objectively quantify intestinal dysfunctions, publish with a high degree of data transparency and account for potential PD heterogeneity. Further investigation into other potential influencers of PD-related constipation is also required, including changes in the function, connectivity, mitochondria and/or α-synuclein proteins of enteric neurons and their extrinsic innervation. The connection between enteric neuron loss and other PD-related gastrointestinal (GI) issues, including gastroparesis and dysphagia, as well as changes in nutrient absorption and the microbiome, should be explored in future research.
Collapse
Affiliation(s)
- Chelsea O’Day
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - David Isaac Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Shanti Diwakarla
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - Rachel Mai McQuade
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|